
Apple Silicon
Fan

01/06/2021





Agenda
● An overview of Apple M1 SoC

○ Micro-architecture
○ Compatibility (from x86 to ARM)

● Why is Apple M1 so fast?
○ The cores
○ Unified Memory Architecture (UMA)
○ Rosetta 2 with Dual memory models
○ Apple Neural Engine (ANE)

● Security
○ Secure Enclave (T2 style)





The Apple M1 SoC: An A14X for Macs

● First System on a Chip (SoC) for the Mac

● Unified memory architecture

● 8-core CPU 

● 8-core GPU

● 16-core Apple Neural Engine

● Secure Enclave



Micro-architecture
● Frees up die space by keeping the 

LPDDR4X DRAM close at hand

● 4 Firestorm performance cores

● 4 Icestorm efficiency cores

● Big GPU die size



Compatibility (from x86 to ARM)

Universal apps

Universal apps support both 
Intel‑based and Apple 
silicon–based Mac systems.

Rosetta 2

A binary translation software 
allows most x86 programs to 
be able to execute after an 
initial translation step.

iPhone and iPad apps can 
directly run on Mac



Why is Apple M1 so fast?



Firestorm Cores (starting A14)
Beat most Intel cores and almost beats the 
fastest AMD Ryzen cores

● Perform more instructions in a 
sequence faster.

● Perform lots of instructions in parallel.

Refill the instruction buffer quickly relies on 
decoding code instruction into micro-ops.

● 4 decoders (Intel and AMD) vs. 
● 8 decoders (Apple)



Firestorm Cores (starting A14)
A win for RISC vs. CISC

● Various length x86 instruction (1-15 bytes)
● Fixed length ARM instruction (4 bytes)

Intel and AMD attempt to decode instructions at 
every possible starting point

● Convoluted and complicated decoder stage
● Hard to add more

Twice as many instructions as AMD and Intel 
CPUs at the same clock frequency



Firestorm Cores (starting A14)
Huge out-of-order window

● Apple - 630 ROB

● Intel Sunny Cove and Willow Cove - 352 ROB

● AMD Zen3 - 256 ROB

● Arm Cortex-X1 - 224 ROB

High ILP (Instruction level-parallelism) with many, 

many Execution Units.



Firestorm Cores (starting A14)
Others

● 256 pages L1 TLB and 3072 pages L2 TLB

● Massive 192KB instruction cache

● Fast L1D with 3-cycle load-use latency

● A shared huge 12MB L2 cache

● 4 128-bit SIMD units

● etc.



Unified Memory Architecture (UMA)

A single pool that’s accessible by any portion of the 
processor

● Closer to components

● No need to copy data around

● Access at the same memory address

● Dynamic distribution of memory (e.g. GPU vs CPU)

● 8x 16-bit LPDDR4X-4266 offer 68.25GB/s memory 

bandwidth



Rosetta 2
Ahead-of-time binary translation system

● About 70-80% of native performance

Memory-ordering could be the biggest hurdle

● Intel strong model vs. ARM weaker model
● Microsoft's emulation of x86 on Arm-based 

Surface laptops

In package Intel memory model

● Switch CPU memory mode to Intel when 
running translated x86



Apple Neural Engine (ANE)
A special processor that makes machine 
learning models (Core ML) really fast

● Accelerates neural network operations 
(e.g., convolutions and matrix multiplies)

● Huge improvement on image and signal 
processing

● Assist GPU processes
○ e.g. keep image features while 

compressing the data

Not much is publicly known : (

George Hotz is reverse-engineering it : )
https://github.com/geohot/tinygrad/tree/master/ane

https://github.com/geohot/tinygrad/tree/master/ane


Apple Neural Engine (ANE)

16 wide Kernel DMA engine

Works with 5D Tensors

● Column (width)

● Row (height)

● Plane (channels)

● Depth

● Group (batch)



Apple Neural Engine (ANE)

The ops have several parts

● Header - base addresses of the DMA engines

● KernelDMASrc - 16x wide DMA engine

● Common - parameters for the convolution

● TileDMASrc - Input DMA engine

● L2 - Use the L2 cache

● NE - Configure Kernel/MAC/Post

● TileDMADst - Output DMA engine

Work with 8 base addresses for the DMA streams per op



Apple Matrix coprocessor
AMX machine learning on-die accelerators

● Apple’s custom ARM “NEON” or “SVE”

A superset of the ARM ISA that is running on the 
CPU cores.

● Not publicly exposed to developers
● And not included in Apple’s public 

compilers.

Accelerate.framework (Apple’s vector 
processing framework) takes advantage of AMX

https://gist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f

https://gist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f


Secure Enclave on M1
Same as the Secure Enclave in A14

● Previously on T2 chip on Intel MACs

A high-performance storage controller with AES 
encryption hardware

● Biometrics (e.g., TouchID and FaceID)
● Derives APFS and FileVault keys
● Hardware‑verified secure boot

Similar to Intel SGX technology

● Encrypted memory (inline AES engine)
● Compromised macOS kernel



Secure Enclave Key Derivation



Secure Enclave coprocessor (SEP)
L4 family of microkernels

● Runs Secure Enclave coprocessor Operating System (SEPOS)
○ Supplied by application processor during boot time

● Own peripherals, drivers, services and apps
○ Crypto Engine
○ Random Number Generator
○ Fuses
○ GID/UID

● It shares RAM with the AP, but its portion of the RAM is encrypted
○ Specified by TZ0 register
○ Enforced by Apple’s Memory Cache Controller (AMCC)



Secure Enclave coprocessor (SEP)
Application processor (AP) and the SEP are seperate

Communicate via a secure mailbox

● A series of registers shared between the processors
● Use interrupts for signalling



Secure Boot

A chain of trust rooted in hardware, 
including the UEFI firmware, 
bootloaders, kernel, and kernel 
extensions necessary for boot. 

Boot ROM evaluates iBoot signature

iBoot evaluates T2 kernel cache signature

T2 kernel cache evaluates UEFI firmware signature

UEFI firmware

 UEFI firmware evaluates boot.efi signature

boot.efi evaluates macOS immutable kernel signature

macOS

T2

AP

eSPI



Thanks!


