%M1

Apple Silicon

Fan
01/06/2021

e 4 "

“People who are really serious about software
should make their own hardware.”

Agenda

e An overview of Apple M1 SoC

o Micro-architecture
o Compatibility (from x86 to ARM)

e Why is Apple M1 so fast?
o The cores
o Unified Memory Architecture (UMA)
o Rosetta 2 with Dual memory models
o Apple Neural Engine (ANE)

e Security
o Secure Enclave (T2 style)

= =
P Bl ey

== Ui) e I) | i}
TV SN ey vy ey

1S Lid QNN

SEdANNCSZ

N D PTG S FiBid i @RS DA

)H3

DCH

N D

YH%

Advanced power
management

High-bandwidth
caches

Cryptography
acceleration

High-performance

unified memory

Machine learning

accelerators

High-efficiency
CPU cores

Advanced
display engine

HDR video
processor

Always-on
processor

High-quality image

signal processor

Low-power
design

High-performance
CPU cores

Secure
Enclave

High-performance
NVMe storage

Low-power video
playback

High-performance
GPU

High-performance
video editing

Thunderbolt / USB 4
controller

High-efficiency audio
processor

Neural Engine

HDR imaging

Gen 4 PCI
Express

Performance
controller

Advanced
silicon
packaging

The Apple M1 SoC: An A14X for Macs

e First System on a Chip (SoC) for the Mac
e Unified memory architecture

e 8-core CPU

e 8-core GPU

e 16-core Apple Neural Engine

Neural
= Engine

e Secure Enclave

Micro-architecture

e Frees up die space by keeping the
LPDDR4X DRAM close at hand

e 4 Firestorm performance cores

e 4 |cestorm efficiency cores

e Big GPU die size

S cestonm s

el i
R (ficicn eV : ‘
L2 el i

Compatibility (from x86 to ARM)

Universal apps

Universal apps support both
Intel-based and Apple
silicon—based Mac systems.

Rosetta 2

A binary translation software
allows most x86 programs to
be able to execute after an
initial translation step.

iPhone and iPad apps can
directly run on Mac

Why is Apple M1 so fast?

CPU performance vs. power

€M1

P

Latest PC Ll
laptop chip
faster CPU
performance’

Matches peak PC
performance using

of the power?

10W

Firestorm Cores (starting A14)

Beat most Intel cores and almost beats the o 1ooKB LAl TS Apple Aild
fastest AMD Ryzen cores Firestorm

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

e Perform more instructions in a
sequence faster.
e Perform lots of instructions in parallel. INT Rename FP Rename

PRF ~354?? Entries PRF ~384?? Entries

Refill the instruction buffer quickly relies on o | | aw [aw | aw | [s o
decoding code instruction into micro-ops.

FP/SIMD + fDIV

e 4 decoders (Intel and AMD) vs. s - 30zmg
e 8 decoders (Apple)

f SNAINDVIEWH 128KB L1D

Firestorm Cores (starting A14)

A W|n fOI’ RISC VS. CISC S AL Front-end A[@[@u@ /Al AL
(Here be dragons) Fﬁl}'@@{t@l}'m

e Various length x86 instruction (1-15 bytes) 8 Wide Decode
e Fixed length ARM instruction (4 bytes) HEEEEES

Dispatch / Commit
~630 Reorder-Buffer

Intel and AMD attempt to decode instructions at rr— ——
. . . PRF ~354?? Entries PRF ~384?? Entries
every possible starting point

e Convoluted and complicated decoder stage
e Hard to add more

FP/SIMD + fDIV

256pg 3072pg
L1-DTLB L2-TLB

Twice as many instructions as AMD and Intel
CPUs at the same clock frequency

f CNAINDIEWH 128KBL1D

Firestorm Cores (starting A14)

Huge out-of-order window

Apple A14 Firestorm - OO0 Window

e Apple-630 ROB

e |Intel Sunny Cove and Willow Cove - 352 ROB
e AMD Zen3 - 256 ROB

e Arm Cortex-X1 - 224 ROB

High ILP (Instruction level-parallelism) with many,

many Execution Units.

100 200 300 400 500 600 700 800 900
——Out-of-Order Window / ROB Estimate

Firestorm Cores (starting A14)

Others

e 256 pages L1 TLB and 3072 pages L2 TLB
e Massive 192KB instruction cache

e Fast L1D with 3-cycle load-use latency

e Ashared huge 12MB L2 cache

e 4 128-bit SIMD units

e etc.

Up to

faster CPU
performance’

Matches peak PC
performance using

of the power?

Unified Memory Architecture (UMA)

CPU Fabric GPU DRAM
:I_ Neural DRAM
= Engine
i | |
| Cache

A single pool that’s accessible by any portion of the
processor

e Closer to components

e No need to copy data around

e Access at the same memory address

e Dynamic distribution of memory (e.g. GPU vs CPU)

e 8x 16-bit LPDDR4X-4266 offer 68.25GB/s memory
bandwidth

Rosetta 2

Ahead-of-time binary translation system
e About 70-80% of native performance
Memory-ordering could be the biggest hurdle

e Intel strong model vs. ARM weaker model
e Microsoft's emulation of x86 on Arm-based
Surface laptops

In package Intel memory model

e Switch CPU memory mode to Intel when
running translated x86

=

EEE

Y|
Y|

=<

o

Apple Neural Engine (ANE)

‘| Neural
| Engine

A special processor that makes machine
learning models (Core ML) really fast

e Accelerates neural network operations
(e.g., convolutions and matrix multiplies)

e Huge improvement on image and signal
processing

e Assist GPU processes

o e.g. keep image features while
compressing the data

Not much is publicly known : (

George Hotz is reverse-engineering it :)
https://github.com/geohot/tinygrad/tree/master/ane

https://github.com/geohot/tinygrad/tree/master/ane

Apple Neural Engine (ANE)

" M1 16 wide Kernel DMA engine
et % = l 7 Works with 5D Tensors
e Column (width)

R B e Row (height)

ﬁ e Plane (channels)
[162core | v == ={| |’ 4§ o Depth
Eﬁ;‘l'ﬁe' e Group (batch)
| = =

Apple Neural Engine (ANE)

The ops have several parts

" M1 ‘ ‘a e Header - base addresses of the DMA engines
| 5 ‘ e KernelDMASrc - 16x wide DMA engine
e Common - parameters for the convolution
Il e TileDMASrc - Input DMA engine
ﬁ % | e L|2-Usethel2cache

T | EE f o NE- Configure Kernel/MAC/Post
Elﬁgirﬁel e TileDMADSst - Output DMA engine
i | 7 Work with 8 base addresses for the DMA streams per op

Apple Matrix coprocessor

AMX machine learning on-die accelerators
e Apple’s custom ARM “NEON” or “SVE”

A superset of the ARM ISA that is running on the
CPU cores.

e Not publicly exposed to developers
e And not included in Apple’s public
compilers.

Accelerate.framework (Apple’s vector
processing framework) takes advantage of AMX

E] aarch64_amx.py

#
#
#
#
#
#

https://qist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f

IDA (disassembler) and Hex-Rays (decompiler) plugin for Apple AMX

WIP research. (This was edited to add more info after someone posted it to
Hacker News. Click "Revisions" to see full changes.)

Copyright (c) 2020 dougall

Based on Python port of VMX intrinsics plugin:
Copyright (c) 2019 w4kfu - Synacktiv

Based on AArch64 8.3-A Pointer Authentication plugin:
Copyright (c) 2018 Eloi Benoist-Vanderbeken - Synacktiv
Copyright (c) 2018 xerub

TODO: XZR can be an operand, but I don't handle that correctly in
the decompuler yet.

AMX: Apple Matrix coprocessor

This is an undocumented arm64 ISA extension present on the Apple M1. These
instructions have been reversed from Accelerate (vImage, 1ibBLAS, 1ibBNNS,
LibvDSP and libLAPACK all use them), and by experimenting with their
behaviour on the M1. Apple has not published a compiler, assembler, or
disassembler, but by callling into the public Accelerate framework

APIs you can get the performance benefits (fast multiplication of big
matrices). This is separate from the Apple Neural Engine

Warning: This is a work in progress, some of this is going to be incorrect.
This may actually be very similar to Intel Advanced Matrix Extension (AMX),

making the name collision even more confusing, but it's not a bad place to
look for some idea of what's probably going on.

WIP simulator/hardware tests are at
https://gist.github.com/dougallj/7cba721dala94da725ee37cle9cd1f21

https://gist.github.com/dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f

Secure Enclave on M1

Same as the Secure Enclave in A14
e Previously on T2 chip on Intel MACs

A high-performance storage controller with AES
encryption hardware

e Biometrics (e.g., TouchlD and FacelD)
e Derives APFS and FileVault keys
e Hardware-verified secure boot

Similar to Intel SGX technology

e Encrypted memory (inline AES engine)
e Compromised macOS kernel

Secure Enclave Key Derivation

Secure Enclave Processor

B

a
Hardware UID —p Media Key

Password

o)

v User Records oltiea

& o Metadata
Class Key = \/olume Key ™ and Contents

Secure Enclave coprocessor (SEP)

L4 family of microkernels

e Runs Secure Enclave coprocessor Operating System (SEPOS)
o Supplied by application processor during boot time

e Own peripherals, drivers, services and apps
o Crypto Engine
o Random Number Generator

o Fuses
o GID/UID

e |t shares RAM with the AP, but its portion of the RAM is encrypted
o Specified by TZ0 register
o Enforced by Apple’s Memory Cache Controller (AMCC)

Secure Enclave coprocessor (SEP)

Application processor (AP) and the SEP are seperate
Communicate via a secure mailbox

e A series of registers shared between the processors
e Use interrupts for signalling

Secure Boot

Boot ROM evaluates iBoot signature

l

iBoot evaluates T2 kernel cache signature

A A

T2 kernel cache evaluates UEFI firmware signature

A chain of trust rooted in hardware,
including the UEFI firmware,
bootloaders, kernel, and kernel
extensions necessary for boot.

UEFI firmware

> UEFI firmware evaluates boot.efi signature

l

boot.efi evaluates macOS immutable kernel signature

|

EEON]

Thanks!

