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Research interests: 

Operating Systems, Systems Security, Bug Finding, etc

https://taesoo.kim/
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Our Group
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Our Group’s Research Interests

• Bug finding: 
e.g., static analysis, fuzzing, symbolic execution, etc.

• System security:
e.g., system updates, Intel SGX, sandboxing, etc.

• System scalability:
e.g., file system, graph processing, scalable lock, etc.
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Our Group’s Research Interests

5https://gts3.org/pages/cves.html

(> 300 bugs in Linux, Firefox, OpenSSL, etc.)

https://gts3.org/pages/cves.html


DEFKOR00T: Won DEF CON CTF’18
(DEFKOR + R00tmentary)
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Disclaimer
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https://software.intel.com/en-us/sgx/academic-research

https://software.intel.com/en-us/sgx/academic-research


Outline

• Threat model / assumption
• Traditional attack vectors
• New attack vectors
• On-going approaches
• Summary
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Outline

• Threat model / assumption

• Traditional attack vectors

• New attack vectors
• Page table attack
• Branch shadowing attack
• Rowhammer against SGX
• L1 terminal fault against SGX (i.e., Foreshadow)

• On-going approaches

• Summary
12

https://foreshadowattack.eu/


Revisited: Intel SGX 101
• “Practical” TEE implementation by Intel
• Extending x86 Instruction Set Architecture (ISA)
– Native performance
– Compatible to x86
– Commodity (i.e., cheap)

Supermicro ServerLenovo T560 Dell OptiPlex 5040



Revisited: SGX for Cloud
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Cloud provider (untrusted)



Revisited: SGX for Cloud
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Cloud provider (untrusted)



Revisited: SGX for Cloud (Isolation)
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Cloud provider (untrusted)



Revisited: SGX for Cloud 
(Remote attestation)

17

Cloud provider (untrusted)

Client

EPID
by developer



Revisited: SGX for Cloud 
(Remote attestation)

18

Cloud provider (untrusted)

Client

EPID
by developer



SGX Ecosystem for Attackers
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:  Trusted components (i.e., where we should attack)

:  Attacker’s capabilities (i.e., what attackers can do)



Our Initial Interests as Attacker

20

Not interesting 
(unknown, not popular)

Not interesting 
(non technical issues)

Attacking applications running on enclaves
(i.e., breaking their isolation and confidentiality)
with the capabilities of the cloud provider



Summary: Intel SGX 101

• Two important design goals:
• Performance (i.e., native speed, multithread)
• General purpose (i.e., x86 ISA)

• Two important security primitives:
• Isolated execution → confidentiality, integrity
• Remote attestation → integrity

21



Isolated Execution

• Protect enclaves from untrusted privilege software
• Small attack surface (TCB: App + CPU)

22
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Isolated Execution

• Protect enclaves from untrusted privilege software
• Small attack surface (TCB: App + CPU)
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SGX’s Threat Model (very strong!)

● All except the core package can be malicious
● Device, firmware, …
● Operating systems, hypervisor …

● DoS (availability) is naturally out of concern
● Intel excludes cache-based side-channel 

(due to performance)



What if Enclave is Compromised?
• Leak sensitive information
• Prevent attackers from being audited/analyzed
• Permanently parasite to the enclave program

25
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What if Enclave is Compromised?
• Leak sensitive information
• Prevent attackers from being audited/analyzed
• Permanently parasite to the enclave program
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Protected?
by SGX

Enclave

No access 
from 

OS/VMM

Leak secret

Enclave

Rootkit

Enclave

MiTM

Due to 1) its strong threat model and 
2) consequences of compromises, developing a 
secure enclave program is much more difficult 

than a typical program!



Demonstrated Post Exploitation
• Dumping confidential data
• e.g., memcpy(non-enclave region, enclave, size)

• Permanent parasite 
• e.g., MiTM on the remote attestation 

• Breaking ecosystem
• e.g., leaking attestation keys for Quoting enclaves

2727SEC’17 SEC’18



Thinking of SGX Usages

28

User

Data

Company

DRM X
e.g., prevent reverse engineering 
(or DRM data)



Traditional Attack Vectors

• Cache-based side channel
• Memory safety
• Weak mitigation techniques
• Uninitialized padding in EDL

29



Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

30



Cache-based Side-channel Attacks

31

arXiv’17

EuroSec’17

WOOT’17

arXiv’17



Cache-based Side-channel Attacks

32

Cache attacks are possible and often, makes it 
“easier” to launch  the attack due to its strong threat 

model (e.g., using PMC)
→ Known defenses (e.g., coloring ...)



CS101: Cache Structure
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CS101: Cache
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CS101: Cache
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CS101: Cache
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Which cacheline do we have to keep/evict (policy)?
How to organize cacheline (structure)?



Basic Idea: Cache Side-channel
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Real Attack: AES?
{SubBytes + ShiftRows + MixColumns + AddRoundKeys} x {10, 12, 14}

Monitoring cacheline access of Lookup Table!



Known Attack Demonstrations

• Known cache-based side channel attacks:
• 2003 DES by Tsunoo et al. (with 226.0 samples)
• 2005 AES by Bernstein et al. (with 218.9 samples)
• 2005 RSA by Percival et al. (-)
• …
• 2011 AES by Gullasch et al. (with 26.6 samples)
• …
• 2017 AES by Ahmad et al. (with 10 samples against SGX)
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Cache Side-channel (in Cloud)
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Cache Side-channel against SGX
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Thinking of SGX Adversaries:
SGX Makes Cache Attack Easier

• Accurate intervention (i.e., scheduling/exception)
• Controlled environment (i.e., OS, hyperthread)
• Rich information available (e.g., physical mapping, PMC)

43
arXiv’17 WOOT’17



Cache Attack is Practical Concern?

• Yes or no, depending on contexts and applications.
• Think first: why considering SGX? on cloud?

• Performance (= cache) vs. potential risks!
• SGX can make the cache attack harder too
• By leveraging isolation / randomization

(security by obscurity practical)

→ Intel explictly noted that it’s better to be 
addressed in SW (if you wish) rather than HW (by 
default).
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Breaking Remote Attestation via 
Cache-based Side-channel Attacks

45

IACR’18



Defense: Cache Attacks

• Cache oblivious implementation of crypto algos
• Fine-grained code/data randomization
• Mitigating via contiguous monitoring (e.g., Varys)
• Looking for better HW-based solutions! 

(e.g., partitioning/coloring)

46SEC’16ATC’18



Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information
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Memory Safety Issues

48

• SGX is not free from memory safety issues
• Current ecosystem is built on memory unsafe lang.

Defense

SEC’17 SEC’18



Return-oriented Programming (ROP)
void vuln(char *input) {

char dst[0x100];
memcpy(dst, input, 0x200);

}

ret

dst



Return-oriented Programming (ROP)
void vuln(char *input) {

char dst[0x100];
memcpy(dst, input, 0x200);

}
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ret

dst

ret pop rdi; ret
arg1
ret



Return-oriented Programming (ROP)
void vuln(char *input) {

char dst[0x100];
memcpy(dst, input, 0x200);

}
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ret

dst

ret pop rdi; ret
arg1
ret

ret

system(arg1)
arg1
ret

e.g., system(“/bin/sh”)



Typical Requirements for ROP 
void vuln(char *input) {

char dst[0x100];

memcpy(dst, input, 0x200);
}

52

dst

ret

system(arg1)
arg1
ret

e.g., system(“/bin/sh”)

pop rdi; ret

Code (via reverse 
engineering)

Need to determine 
the length of payload



ROP Inside an Enclave
void vuln(char *input) {

char dst[0x100];
memcpy(dst, input, 0x200);

}

53

Code is not visible!
(e.g., loaded in an encrypted form)???

???



ROP Inside an Enclave
void vuln(char *input) {

char dst[0x100];

memcpy(dst, input, 0x200);
}

54

dst

Code is not visible!
(e.g., loaded in an encrypted form)

0x0000
0x0008

0x0100
0x0108

…

0x0110
0x0118

???
???

0x0000
0x0008

0x0100

0x0108

…

ret
0x0110
0x0118

???

SGX doesn’t report RIP 
directly but the 

corresponding page



ROP in Darkness: Dark ROP

• Step 1. Debunking the locations of pop gadgets

• Step 2. Locating ENCLU + pop rax (i.e., EEXIT)

• Step 3. Deciphering all pop gadgets

• Step 4. Locating memcpy()

55



Threat Model for DarkROP

• Know existence of a buffer overflow (i.e., crash)
• Crashing the enclave arbitrarily times
• Built with standard libraries (e.g., SGX SDK)
• Distributed in an encrypted form (like VC3)

56



Step 1. Looking for pop Gadgets
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0x0000
0x0008

0x0100
0x0108

…

ret
0x0110
0x0118

You have a full control over the layout 
of the enclave



Step 1. Looking for pop Gadgets
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0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

0xff00
0xff01
0xff02

…

Rip = 0xff00
(e.g., crash illegal instruction)



Step 1. Looking for pop Gadgets
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…
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Step 1. Looking for pop Gadgets
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Step 1. Looking for pop Gadgets
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Rip = 0x0118
(segfault)

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop ????
ret

0xff02

0x0000
0x0008

0x0100
…

ret
0x0110
0x0118

pop ????
pop ????
pop ????
ret

0xff30

0x0120
0x0128

Rip = 0x0128
(segfault)

0xff02 → pop ?;ret
0xff30 → pop ?;pop ?;pop ?;ret
…

Catalog of pop gadgets
(unknown args)



Step 2. Looking for ENCLU

• ENCLU: an inst. dispatches to various leaf functions
• rax = 0: EREPORT
• rax = 1: EGETKEY
• …
• rax = 4: EEXIT

62



Step 2. Looking for ENCLU

• ENCLU: an inst. dispatches to various leaf functions
• rax = 0: EREPORT
• rax = 1: EGETKEY
• …
• rax = 4: EEXIT
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→ Scan code for each “pop????;ret”
→ If gracefully exit, rip = ENCLU

0x0000
0x0008

0x0100
pop;ret

…

ret
0x0004
0x0118ret ENCLU



Step 3. Deciphering pop Gadgets

• EEXIT (ENCLU & rax=4) left a register file uncleaned

64

→ Scan code for all pop gadgets

→ Check arguments

0x0000
0x0008

0x0100
pop arg1; pop arg2; ret

…

ret
0x0001
0x0002

ret ENCLU

pop rax; retret
0x0004



Step 3. Deciphering pop Gadgets

• EEXIT (ENCLU & rax=4) left a register file uncleaned

65

→ Scan code for all pop gadgets

→ Check arguments

0x0000
0x0008

0x0100
pop arg1; pop arg2; ret

…

ret
0x0001
0x0002

ret ENCLU

pop rax; retret
0x0004

arg1 = 0x0001
arg2 = 0x0002

rax = 0x0004
rsi = 0x0001
rdi = 0x0002
…

Deciphering 
pop? pop? gadget

Register file
+

pop rsi
pop rdi
ret

=



Step 4. Looking for memcpy()

• Identifying memcpy(dst*, valid, 0x10)

66

pop rdi; pop rsi; pop rdx; retret
0xEE00

ret pop rax; ret

0x0010

ret ENCLU
0x0004

0xFF00

ret Varying (looking for memcpy)



Step 4. Looking for memcpy()

• E.g., invoking memcpy(0x7ff1000, any valid, 0x10)

67

0x7fff1000: 00 00 00 00 00 00 00 00 00 …
0x7fff1010: 00 00 00 00 00 00 00 00 00 …

….
0x7fff2000: 01 02 03 04 05 06 07 08 09 …
0x7fff2010: 11 12 13 14 15 16 17 18 19 …

0x7fff1000: 01 02 03 04 05 06 07 08 09 …
0x7fff1010: 11 12 13 14 15 16 17 18 19 …

….
0x7fff2000: 01 02 03 04 05 06 07 08 09 …
0x7fff2010: 11 12 13 14 15 16 17 18 19 …

Untrusted application memory 



Gadgets Everywhere (e.g., SDK)



DEMO: PoC Dark ROP
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Case Study 1: Unsealing Data

• Unsealing and leaking confidential data 
• i.e., EGETKEY retrieves the hardware key bound to 

specific enclave

71

Untrusted Application
Secure Enclave

RAX Gadget

RBX Gadget

RCX Gadget

ENCLU Gadget

memcpy Gadget

Shadow_read_sealing_data( )
{

ROP_to_egetkey( )
unseal_data ( )

}

Sealing key



Case Study 2: Hijacking Remote 
Attestation

• Breaking the Integrity guarantees of SGX
• MiTM between secure enclave and attestation server
• Masquerading to deceive remote attestation service

72

Emulated Enclave Secure Enclave

memcpy
Gadget

RAX Gadget

RBX Gadget

RCX Gadget

RDX Gadget

ENCLU 
Gadget

RSI Gadget

RDI Gadget

RCX Gadget

Fake_Attestation () 
{

Compute_DH_key( )
Generate_REPORTDATA( )
ROP_to_copy_parameter( )
ROP_to_get_report( )
Get_Quote( )

}
REPORTDATA REPORTDATA

REPORT



Defense: SGXBounds

73

• Addressing spatial memory problems (bound chk)

EuroSys’17



Defense: SGXBounds

74

• Addressing spatial memory problems (bound chk)
• Key idea: an efficient tag representation thanks to 

smaller memory space!



Defense: SGXBounds

75



Done w/ Memory Safety on SGX?

• SGXBounds is a temporary solution
• No temporal safety (i.e., UAF)
• More address space in the future (e.g., large pages)

• What about traditional mitigations (required)?

76



Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

77



SGX Mitigation Checklist

• Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE

78



SGX Mitigation Checklist

• Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE
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ecall_pointer_user_check():

prologue epillogue



SGX Mitigation Checklist

• Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE
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Defense: ASLR/SW-DEP inside SGX

• Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE

81NDSS’17



Challenges for Mitigation Schemes 

It is non-trivial when an attacker is the kernel:

• Visible memory layout
• Small randomization entropy
• No runtime page permission change

82



Challenges for Mitigation Schemes 

It is non-trivial when an attacker is the kernel:

• Visible memory layout
à Secure in-enclave loading

• Small randomization entropy
à Fine-grained ASLR

• No runtime page permission change
à Soft-DEP/SFI

83



SGX-Shield’s Approach: 
In-enclave Loading

Code pages

Data pages

Enclave

User process

In-enclave
loader

Enclave program

84

Stage 1



SGX-Shield’s Approach: 
In-enclave Loading

Code pages
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Encrypted
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SGX-Shield’s Approach: 
In-enclave Loading

Code pages

Data pages

Runtime Data

User process

SGX related
data structure

Code pages

Data pages

Enclave

User process

Enclave

In-enclave
loader

Enclave program

Encrypted
enclave program

In-enclave
loading

86

Stage 1 Stage 2

Fine-grained ASLR

(basic block)



SGX-Shield’s Approach: 
In-enclave Loading

Code pages

Data pages

Runtime Data

User process

SGX related
data structure

Code pages

Data pages

Enclave

User process

Enclave

In-enclave
loader

Enclave program

Encrypted
enclave program

In-enclave
loading

87

Stage 1 Stage 2

Fine-grained ASLR

(basic block)
Soft DEP/SFI



SGX-Shield’s Fine-grained ASLR

88



No Runtime Permission Change

89

RWX



SW-based Permission Enforcement
(via SFI like Nacl)

90

No Permission

Software+Hardware
permission

X

No Permission

RW

Code of loader

Code

Data of loader

Virtual address space of an enclave

Out of enclave

Out of enclave

Data

Hardware-based
permission

RWX

RWX

RW

RW

Loading



DEMO: SGX-Shield

91
https://github.com/sslab-gatech/SGX-Shield

https://github.com/sslab-gatech/SGX-Shield


SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained 
side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

92

SEC’18Under 
submission



Breaking Fine-grained ASLR

93



Attacking Randomization Process

94

1 → A[1]
2 → A[2]
3 → A[3]
4 → A[4]

A[1]
A[2]
A[3]
A[4]

1
2
3
4

4 → A[2]

1
2
3
4

Memory read Memory write
Side-channel observations

1 → 3 (A[1])
2 → 4 (A[2])
3 → 1 (A[3])
4 → 2 (A[4])

3 → A[1]
2 → A[4]
1 → A[3]

A[1]
A[2]

A[4]
A[3]

Address



SGX-Armor: Obfuscating 
Randomization via Oblivious Swap
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A[1]
A[2]
A[3]
A[4]

1
2
3
4

1
2
3
4

Memory read Memory write
Side-channel observations

1 → 3 → 1 → 3
2 → 4 → 2 → 4

?

?

Bit = 1 Bit = 0

A[1]
A[4]

A[2]
A[3]

Address

Oblivious swapSwap or not
reveals the same

patterns

(Swap)
(No swap)



Oblivious Swap Primitive
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SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained 
side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

97

SEC’18Under 
submission



Another ROP

• Similar to Signal Oriented Programming
• SGX has ORET/CONT gadgets in SDK

98

SEC’18



Traditional Attack Vectors

• Cache-based side channel
→ e.g., inferring a private key

• Memory safety
→ e.g., control flow hijacking

• Weak mitigation techniques
→ e.g., breaking ALSR

• Uninitialized padding in EDL
→ e.g., leaking security sensitive information

99



Uninitialized Padding Problem

struct usbdevfs_connectinfo { 
unsigned int devnum; 
unsigned char slow; 

}; 



Uninitialized Padding Problem

struct usbdevfs_connectinfo { 
unsigned int devnum; 
unsigned char slow; 

}; 

struct usbdevfs_connectinfo { 
.devnum = 1, 
.slow = 0,

}; 



Uninitialized Padding Problem

struct usbdevfs_connectinfo { 
unsigned int devnum; 
unsigned char slow; 

}; 

????

devnum (4 bytes) slow (1 byte)

struct usbdevfs_connectinfo { 
.devnum = 1, 
.slow = 0,

}; 



Uninitialized Padding Problem

????

devnum (4 bytes) slow (1 byte)

struct usbdevfs_connectinfo { 
.devnum = 1, 
.slow = 0,

}; 

( )

DEADBE



Uninitialized Padding Problem

CCS’16



Ecall/Ocall: EDL Interface for SGX

If there is a padding issue in test_struct, it 
leaks (or inject) potentially sensitive data 
(e.g., a private key like HeartBleed)

105

// Enclave.edl
untrusted {

test_struct e/ocall_test_struct(void);
}



Ecall/Ocall: EDL Interface for SGX

106

// Enclave.edl
untrusted {

test_struct e/ocall_test_struct(void);
}

arXiv’17

Host

Enclave

ec
all

oc
all



DEMO: SGX Bleed POC

107https://github.com/sslab-gatech/unisan

https://github.com/sslab-gatech/unisan


108

Implication 1: Using memory-safe 
language doesn’t solve the problem

memory-safe



Implication 2: Using Certified 
C compilers doesn’t help neither

109

C11 (ISO/IEC 9899:201x), 701 pages

When a value is stored in an object of structure (…), 
the bytes of the object representation that correspond 
to any padding bytes take unspecified values.

§6.2.6.1/6

certified

padding bytes take unspecified
values



New Attack Vectors

• Page table attack
• Branch shadowing attack
• Rowhammer against SGX
• L1 terminal fault against SGX (i.e., Foreshadow)

110



New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)

111



Page Table Attack
(controlled-channel attack)
• Page level access pattern → reveal sensitive info.

(e.g., page faults, page access bits, …)

112

SP’15

Sec’17



DEMO: Page Fault Attack

113



Defense: T-SGX

114
NDSS’17

• Using Intel Transactional Synchronization Extension 
(TSX) to isolate page faults inside SGX



Key Idea: TSX Isolates Faults!

• Unexpected side-effects (see, DrK [CCS’16])
• Any faults → invokes an abort handler

115CCS’16



A Strawman Solution

• Protect the entire program with TSX!

116

Enclave Program

Transaction

XBEGIN

XEND

abort

Fallback code

Page fault



Challenge: Not Progressing!
1) Timer interrupt (i.e., external faults) 
2) False TSX aborts (e.g., capacity)

117

Enclave Program

Transaction

XBEGIN

XEND

abort

Fallback code

Timer interrupt

…

Cache

Cache full

abort

OS Timer



Approach: Smaller Execution Units
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Enclave Program

Fallback code

…

Cache

OS Timer

1) Execution time analysis

Execution Block

2) Cache analysis

time constraint



This design still leaks information

Execution Blocks
XBEGIN

XEND

Page 
fault

Page A

Page B

Page A

Page B

TSX instructions are not 
protected
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Solution: Springboard
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Execution Blocks

Page fault

Springboard page

Springboard page

Fallback code

Page A

Page B

Leak only single page 
(already known to attackers)!

All transactions begin and end on the 
springboard, so attacker can only observe 
page fault on the springboard



Design of T-SGX (Compiler)
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T-SGX: Eradicating Page Faults

• Technique to avoid false aborts (e.g., capacity)
• Security analysis → springboard design
• Performance optimizations 
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DEMO: T-SGX

123https://github.com/sslab-gatech/t-sgx

https://github.com/sslab-gatech/t-sgx


New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)
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New Side Channel: 
Branch Shadowing Attack
• Finer-grained, yet noise-free!

(unlike page faults / cache attacks, respectively)

• Observation:
• Branch history is shared between SGX and non-SGX

→ Execution history of an enclave affects the 
performance of non-SGX execution
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New Side Channel: 
Branch Shadowing Attack
• Finer-grained, yet noise-free!

(unlike page faults / cache attacks, respectively)

126
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Idea: Exploiting New HW Features

• Intel Skylake (and Broadwell) introduced two new 
debugging features that report prediction results

• Last Branch Record (LBR)
• Intel Processor Trace (PT)

→ But only for non-enclave programs 
(or enclave on a debug mode) 
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Our Approach: Branch Shadowing
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enclave

non-enclave

Shadow replica



Our Approach: Branch Shadowing

• are mapped onto the 
same branch prediction buffer  
• is a shadow copy of an 

enclave program forced to take 
all branches (e.g., je → jmp)
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je 0x0010 
enclave

non-enclave

jmp 0xFF10 

BTB/BPU

store

affect



Our Approach: Branch Shadowing

• are mapped onto the 
same branch prediction buffer  
• is a shadow copy of an 

enclave program forced to take 
all branches (e.g., je → jmp)
• Monitor        with LBR/PT and 

extract branch prediction 
results indirectly                
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je 0x0010 
enclave

non-enclave

jmp 0xFF10 

BTB/BPU

store

affect

Intel PT/LBR



Branch Prediction 101

…
cmp $0, rax
je  L1
inc rbx
…

L1:dec rbx

Predict the next instr. of a branch instr. to avoid 
pipeline stalls

Which one would be the next instr.
to be predicted?

132



Branch Prediction 101

…
cmp $0, rax
je  L1
inc rbx
…

L1:dec rbx

Predict the next instr. of a branch instr. to avoid 
pipeline stalls

Make this prediction if 
1) there is no history or
2) the branch has not been taken
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Branch Prediction 101

…
cmp $0, rax
je  L1
inc rbx
…

L1:dec rbx

Predict the next instr. of a branch instr. to avoid 
pipeline stalls

Make this prediction if 
the branch has been taken

Conditional behavior → Reveal history
How can we know which branch was taken?
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Branch Prediction vs. Misprediction

• Measure branch execution time
• Take longer if a branch is incorrectly predicted

(e.g., roll back, clear pipeline, jump to the correct target)
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Prediction Misprediction

mean stdev mean stdev

RDTSCP 94.21 13.10 120.61 806.56

PT CYC 59.59 14.44 90.64 191.48
LBR cycle 25.69 9.72 35.04 10.52

→ Observable difference but high measurement noise



Exploiting New HW Features

• Intel LBR/PT explicitly report the prediction result, 
but only taken branches (w/ limited buf size)

• Approach:
• Translating all cond. to be taken in the shadow copy
• Synchronization b/w enclave and its shadow
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Example: Inferring Cond. Branch

cmp $0, rax
0x00530: je  0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave
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Example: Inferring Cond. Branch

cmp $0, rax
0x00530: je  0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

• Prepare a shadow copy w/
• Colliding conditional branches

cmp rax, rax
0xff530: je  0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow copy
aligned
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Example: Inferring Cond. Branch

cmp $0, rax
0x00530: je  0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

• Prepare a shadow copy w/
• Colliding conditional branches
• Always to be taken (to be monitored by LBR)

cmp rax, rax
0xff530: je  0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow copy
aligned
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Example: Inferring Cond. Branch

cmp $0, rax
0x00530: je  0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

OR

BPU/BTB

taken

0x**530 not taken

0x**530
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Example: Inferring Cond. Branch

cmp $0, rax
0x00530: je  0x005f4
0x00532: inc rbx

…
0x005f4: dec rbx

Enclave

LBR

OR

BPU/BTB

taken

0x**530 not taken

0x**530

Indexed/tagged by 
lower 31 bits
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Example: Inferring Taken Branch

cmp rax, rax
0xff530: je  0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow code
BPU/BTB

0x**530 taken

LBR
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Example: Inferring Taken Branch

• BPU/BTB correctly predicts the execution of the 
shadow branch using the history

cmp rax, rax
0xff530: je  0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow code
BPU/BTB

0x**530 taken

LBR
Correct!
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Example: Inferring Taken Branch

• If LBR reports:
• Predicted → The target branch has been taken

cmp rax, rax
0xff530: je  0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow code
BPU/BTB

0x**530 taken

LBR
0xff530 0xff5f4 Predicted

Correct!
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Example: Inferring Not-taken Branch

• If LBR reports:
• Predicted → The target branch has been taken
• Mispredicted → The target branch has NOT been taken

cmp rax, rax
0xff530: je  0xff5f4
0xff532: nop

…
0xff5f4: nop

Shadow code
BPU/BTB

0x**530 not taken

LBR
0xff530 0xff5f4 Mispredicted

Wrong!
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Enabling Single Stepping!

• Check branch state as frequently as possible to 
overcome the capacity limit of BPU/BTB and LBR
• e.g., BTB: 4,096 entries, LBR: 32 entries (Skylake)

• Increase timer interrupt frequency
• Adjust the TSC value of the local APIC timer

• Disable the CPU cache
• CD bit of the CR0 register

~50 cycles

~5 cycles
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SGX-Step: Open Source Framework

SysTEX’17

https://github.com/jovanbulck/sgx-step

• Local APIC
• Userspace mapping for PTE

https://github.com/jovanbulck/sgx-step


Example: Attacking RSA Exp.
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
}
…

}

Sliding-window 
exponentiation of mbedTLS
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Example: Attacking RSA Exp.
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
}
…

}

Taken only when ei is zero

Sliding-window 
exponentiation of mbedTLS
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Example: Attacking RSA Exp.
/* X = A^E mod N */
mbedtls_mpi_exp_mod(X, A, E, N, _RR) {
…
while (1) {
…
// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;

if (ei == 0 && state == 1)
mpi_montmul(X, X, N, mm, &T);

…
}
…

}

Taken only when ei is zero

Sliding-window 
exponentiation of mbedTLS
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• The probability that the two branches return 
different results: 0.34 (error rates)
• The inference accuracy of the remaining bits: 0.998
• We were able to recover 66% of an RSA private 

key bit from a single run.
• ≤10 runs are enough to fully recover the key.



DEMO: Branch Shadowing Attack
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What Else?
Program/Function Description Leakages
libc/strtol Convert a string 

into an integer
The sign and length of an 
input
Hexadecimal digits

libc/vfprintf Print a formatted
string

The input format string

LIBSVM/k_function Evaluate a kernel 
function

The type of a kernel (e.g., 
linear, RBF)
The number of features

Apache/lookup_bui
ltin_method

Parse the method 
of an HTTP 
request

HTTP request method (e.g., 
GET, POST)
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Defense: Flushing Branch States
(Hardware)
• Clear branch states during enclave mode switches
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Defense: Flushing Branch States
(Hardware)
• Clear branch states during enclave mode switches
• How much overheads (depending on frequency)?
• Simulation: Flushing per >10k cycles incurs

negligible overheads
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Mitigation: Obfuscating Branch 
(Software/Compiler)
• Set of conditional/indirect branches → 

a single indirect branch + conditional move instructions
• The final indirect branch has a lot of targets such that it 

is difficult to infer its state.

cmp $0, $a
je block2
<code1>
jmp block5
cmp $0, $b
je block4
<code2>
jmp block5
<code3>
<code4>

block3:

block1:

block2:

block5:

block0:

block4:

(a) An example code snippet. It selectively executes a branch block
according to a and b variables.

(b) The protected code snippet by Zigzagger. All branch instructions
are executed regardless of a and b variables. An indirect branch in
the trampoline and CMOV instructions in the translated code are used
to obfuscate the final target address. Note that r15 is reserved in
Zigzagger to store the target address.

Fig. 15: Securing an example code snippet with Zigzagger.

straightforward to compute the target block of each branch
without relying on conditional jumps because conditional
expressions would become very complex when we need to
handle nested branches. In Zigzagger, we solved this problem
by utilizing a CMOV instruction, which performs a conditional
MOV operation, and introducing a sequence of non-conditional
jump instructions in lieu of each branch. Zigzagger’s approach
has several benefits: 1) in terms of security, it provides a
first line of protection on each branch blocks and explodes
the potential flows in an enclave program; 2) in terms of
performance, the unconditional jumps are much more favorable
to instruction pipelining; 3) in terms of practicality, Zigzagger’s
transformation does not require complex analysis of code
semantics (i.e., possible to implement it as a compiler pass).
Furthermore, Zigzagger’s execution pattern—back-and-forth
jumps between the converted branch set and the Zigzagger’s
trampoline—practically increases the bar for de-obfuscating
the fine-grained control-flow of the protected enclave problem.
It is worth noting that this countermeasure is not specific to
Intel SGX nor the branch shadowing attack proposed in this
paper; we can use this approach to mitigate other types of
branch-based timing attacks.

Figure 15 shows how Zigzagger transforms an example
code snippet having if, else-if, and else blocks. It converts
all conditional and unconditional branches into unconditional
branches targeting Zigzagger’s trampoline that jumps back-
and-forth with the converted branches and finally jumps
into the real target address in a reserved register r15 stored
before jumping into the Zigzagger. It reserves the register

Benchmark Baseline Zigzagger
(iter/s) #Branches (overhead)

2 3 4 5 All

numeric sort 967.25 1.05⇥ 1.11⇥ 1.12⇥ 1.13⇥ 1.15⇥
string sort 682.31 1.08⇥ 1.15⇥ 1.18⇥ 1.15⇥ 1.27⇥
bitfield 4.5E+08 1.03⇥ 1.10⇥ 1.14⇥ 1.18⇥ 1.31⇥
fp emulation 96.204 1.10⇥ 1.21⇥ 1.15⇥ 1.27⇥ 1.35⇥
fourier 54982 0.99⇥ 0.99⇥ 1.01⇥ 1.01⇥ 1.01⇥
assignment 35.73 1.36⇥ 1.56⇥ 1.50⇥ 1.55⇥ 1.90⇥
idea 10,378 2.16⇥ 2.16⇥ 2.18⇥ 2.19⇥ 2.19⇥
huffman 2478.1 1.59⇥ 1.46⇥ 1.61⇥ 1.63⇥ 1.81⇥
neural net 16.554 0.75⇥ 0.77⇥ 0.85⇥ 0.86⇥ 0.89⇥
lu decomposition 1,130 1.04⇥ 1.09⇥ 1.08⇥ 1.11⇥ 1.17⇥

GEOMEAN 1.17⇥ 1.22⇥ 1.24⇥ 1.26⇥ 1.34⇥

TABLE IV: Overhead of the Zigzagger approach according to the
number of branches belonging to each Zigzagger

for performance reasons; for programs that can utilize more
registers, it can potentially use the main memory instead, but
reserving r15 in SGX has negligible performance overhead [51].
To emulate conditional execution without using conditional
jump, we use CMOV instructions: e.g., the CMOV instructions in
Figure 15b update r15 only when a or b is zero. Otherwise,
these instructions are treated as NOP instructions. Since all of
the unconditional branches are executed almost simultaneously
in sequence, an attacker has difficulty recognizing the current
instruction pointer; our APIC timer trick is not fine-grained
enough to distinguish each branches in practice (§III-F). At
last, the indirect branch in Zigzagger’s trampoline now has five
different target addresses, obfuscating potential target addresses.

Implementation. We implemented Zigzagger in LLVM 4.0
as an LLVM pass that converts branches in each function and
constructs the required trampoline. We also modified the LLVM
backend to reserve the r15 register. We observed that when
a function has many branches, making them share a single
trampoline in Zigzagger introduces non-negligible performance
overhead due to frequent jumps. To avoid this problem, our
implementation provides a knob to configure the number of
branches that each trampoline manages and randomly assigns
branches to each trampoline. Note that such merging-based
optimization trades the security for performance, but we believe
it becomes more useful in practice (e.g., selectively applying
to security-sensitive routines).

Our proof-of-concept implementation of Zigzagger, which
provides full protection, imposes 1.34⇥ performance overheads,
when evaluating it with the nbench benchmark suite (Table IV).
With optimization (i.e., merging  3 branches into a single
trampoline), the average overhead becomes less than 1.22⇥.
Note that reserving a register in our microbenchmark results
in 4%–50% performance improvement.

VI. DISCUSSION

In this section, we explain some limitations of the branch
shadowing attack and discuss possible advanced attacks.
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(a) An example code snippet. It selectively executes a branch block
according to a and b variables.

mov $block1, r15
cmp $0, $a
cmov $block2, r15
jmp zz1
<code1>
mov $block5, r15
jmp zz2
mov $block3, r15
cmp $0, $b
cmov $block4, r15
jmp zz3
<code2>
mov $block5, r15
jmp zz4
<code3>
<code4>

block0:

block0.j:

block1.j:

block1:

block2.j:

block2:

block3.j:

block3:

block5:
block4:

Zigzagger's trampoline

zz1:jmp block1.j

zz2:jmp block2.j

zz3: jmp block3.j

zz4: jmpq *r15

(b) The protected code snippet by Zigzagger. All branch instructions
are executed regardless of a and b variables. An indirect branch in
the trampoline and CMOV instructions in the translated code are used
to obfuscate the final target address. Note that r15 is reserved in
Zigzagger to store the target address.

Fig. 15: Securing an example code snippet with Zigzagger.

straightforward to compute the target block of each branch
without relying on conditional jumps because conditional
expressions would become very complex when we need to
handle nested branches. In Zigzagger, we solved this problem
by utilizing a CMOV instruction, which performs a conditional
MOV operation, and introducing a sequence of non-conditional
jump instructions in lieu of each branch. Zigzagger’s approach
has several benefits: 1) in terms of security, it provides a
first line of protection on each branch blocks and explodes
the potential flows in an enclave program; 2) in terms of
performance, the unconditional jumps are much more favorable
to instruction pipelining; 3) in terms of practicality, Zigzagger’s
transformation does not require complex analysis of code
semantics (i.e., possible to implement it as a compiler pass).
Furthermore, Zigzagger’s execution pattern—back-and-forth
jumps between the converted branch set and the Zigzagger’s
trampoline—practically increases the bar for de-obfuscating
the fine-grained control-flow of the protected enclave problem.
It is worth noting that this countermeasure is not specific to
Intel SGX nor the branch shadowing attack proposed in this
paper; we can use this approach to mitigate other types of
branch-based timing attacks.

Figure 15 shows how Zigzagger transforms an example
code snippet having if, else-if, and else blocks. It converts
all conditional and unconditional branches into unconditional
branches targeting Zigzagger’s trampoline that jumps back-
and-forth with the converted branches and finally jumps
into the real target address in a reserved register r15 stored
before jumping into the Zigzagger. It reserves the register

Benchmark Baseline Zigzagger
(iter/s) #Branches (overhead)

2 3 4 5 All

numeric sort 967.25 1.05⇥ 1.11⇥ 1.12⇥ 1.13⇥ 1.15⇥
string sort 682.31 1.08⇥ 1.15⇥ 1.18⇥ 1.15⇥ 1.27⇥
bitfield 4.5E+08 1.03⇥ 1.10⇥ 1.14⇥ 1.18⇥ 1.31⇥
fp emulation 96.204 1.10⇥ 1.21⇥ 1.15⇥ 1.27⇥ 1.35⇥
fourier 54982 0.99⇥ 0.99⇥ 1.01⇥ 1.01⇥ 1.01⇥
assignment 35.73 1.36⇥ 1.56⇥ 1.50⇥ 1.55⇥ 1.90⇥
idea 10,378 2.16⇥ 2.16⇥ 2.18⇥ 2.19⇥ 2.19⇥
huffman 2478.1 1.59⇥ 1.46⇥ 1.61⇥ 1.63⇥ 1.81⇥
neural net 16.554 0.75⇥ 0.77⇥ 0.85⇥ 0.86⇥ 0.89⇥
lu decomposition 1,130 1.04⇥ 1.09⇥ 1.08⇥ 1.11⇥ 1.17⇥

GEOMEAN 1.17⇥ 1.22⇥ 1.24⇥ 1.26⇥ 1.34⇥

TABLE IV: Overhead of the Zigzagger approach according to the
number of branches belonging to each Zigzagger

for performance reasons; for programs that can utilize more
registers, it can potentially use the main memory instead, but
reserving r15 in SGX has negligible performance overhead [51].
To emulate conditional execution without using conditional
jump, we use CMOV instructions: e.g., the CMOV instructions in
Figure 15b update r15 only when a or b is zero. Otherwise,
these instructions are treated as NOP instructions. Since all of
the unconditional branches are executed almost simultaneously
in sequence, an attacker has difficulty recognizing the current
instruction pointer; our APIC timer trick is not fine-grained
enough to distinguish each branches in practice (§III-F). At
last, the indirect branch in Zigzagger’s trampoline now has five
different target addresses, obfuscating potential target addresses.

Implementation. We implemented Zigzagger in LLVM 4.0
as an LLVM pass that converts branches in each function and
constructs the required trampoline. We also modified the LLVM
backend to reserve the r15 register. We observed that when
a function has many branches, making them share a single
trampoline in Zigzagger introduces non-negligible performance
overhead due to frequent jumps. To avoid this problem, our
implementation provides a knob to configure the number of
branches that each trampoline manages and randomly assigns
branches to each trampoline. Note that such merging-based
optimization trades the security for performance, but we believe
it becomes more useful in practice (e.g., selectively applying
to security-sensitive routines).

Our proof-of-concept implementation of Zigzagger, which
provides full protection, imposes 1.34⇥ performance overheads,
when evaluating it with the nbench benchmark suite (Table IV).
With optimization (i.e., merging  3 branches into a single
trampoline), the average overhead becomes less than 1.22⇥.
Note that reserving a register in our microbenchmark results
in 4%–50% performance improvement.

VI. DISCUSSION

In this section, we explain some limitations of the branch
shadowing attack and discuss possible advanced attacks.
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Example: Branch Obfuscation

L0:cmp $0,$a
je  L2

L1:…
L2:…

Can identify whether L1 or L2 
has been executed

Can identify whether Z1 has been 
executed but not its target

transformation

L0: mov $L1,r15
cmp $0,$a
cmov $L2,r15
jmp Z1

L1:   …
L2: …
…
Z1:   jmpq *r15
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Mitigation: Obfuscating Branch 
(Software/Compiler)
• LLVM-based implementation
• Overhead (nbench): ≤1.5✕
• Just mitigate the attack, don’t solve it completely
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New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)
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Controlling Bit Flipping in DRAM

159ISCA’14

• Reported random bit flippings happening in DRAM
• Rowhammer by Google Project Zero (2015)
• Further enhanced by many researchers



SGX-Bomb: Rowhammer Attack

• Integrity violation of EPC results in CPU lockdown
• Rowhammer (SW) can trigger the violation!

Core $

MEE Root

DRAM

EPC – Int Tree

EPC – Enclaves



SGX-Bomb: Rowhammer Attack

• Integrity violation of EPC results in CPU lockdown
• Rowhammer (SW) can trigger the violation!

SysTEX’17



About Integrity Violation

• SGX assumes HW/physical attackers
• Integrity violation → drop-and-lock policy

• Implications:
• DoS: Freezing an entire machine (cloud provider)
• Require power recycle (not via normal methods)
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SGX-Bomb Remarks

• Easier to trigger than normal rowhammer
i.e., a single, arbitrary bit in EPC region (128MB)

• Harder to detect
• Not notifiable in terms of resource usages
• Popular defenses (e.g., in Linux) rely on PMU (e.g., cache 

misses) that is not possible for enclaves
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DEMO: SGX-Bomb

164https://github.com/sslab-gatech/sgx-bomb

https://github.com/sslab-gatech/sgx-bomb


Defenses against SGX-Bomb

• Use non-faulty DRAM!
• Use LPDDR3 that has Pseudo-TRR (Target Row Refresh)
• ECC can’t completely block (easy to trigger multiple bits)

• Potential mitigations:
• Higher refresh rate (2x)
• Using Uncore PMU
• Row-aware memory allocation for EPC regions
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New Attack Vectors

• Page table attack
→ e.g., leaking image data

• Branch shadowing attack
→ e.g., breaking RSA

• Rowhammer against SGX
→ e.g., freezing machines

• L1 terminal fault against SGX (i.e., Foreshadow)
→ e.g., breaking SGX ecosystem (and more!)
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L1TF: L1 Terminal Fault

167

enclave1 enclave2

Same address space

X

Not present & L1D

SEC’18 ArXiv’18



Impacts of L1TF on SGX

• Broken isolation guarantees
• Distrustful remote attestation, thus ecosystem
• Leaking secrets from architectural enclaves 

(e.g., quoting/launching)
• Emulator vs. SGX
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Defense: L1TF against SGX

• Immediate steps (via microcode update):
• Flushing L1 on EEXIT/AEX
• Disabling hyperthreading

• Q. What should we do to address this issue more 
fundamentally?
• Q. What’s the right way to prevent further issues?
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Outline

• Threat model / assumption
• Traditional attack vectors
• New attack vectors
• On-going approaches
• Summary
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On-going Projects for Defenses
(collaborating with MS and Intel)

1) Multifaceted side-channel attack (under review)

2) Hardware-based fault isolation (on-going)
- Seeking a better HW abstraction to contain faults

(i.e., ideal interface to replace ad-hoc TSX)

3) Loading-time synthesis (on-going)
- Addressing side-channel at loading time, depending on 

the execution environment at end points
(i.e., compositing SW-based schemes without conflicts)
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PRIDWIN: Load-time Synthesis

172

Enclave

1011
0100

Program &
specifications

1011
0100

Program &
specifications

1011
0100

Program

T-SGX +
Page-level

ASLR

Local Remote

1011
0100

Program

T-SGX + Page-level ASLR

Page-level
ASLR 

enabled

TSX is not supported
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T-SGX
Target: Page-table attacks
Priority: High
Requirement: TSX
Instrumentation:
- Insert XBEGIN, XEDN at each block 

Page-level ASLR
Target: Page-table attacks
Priority: Low
Requirement: N/A
Instrumentation:
- Break program into 4-KB pages

Hardware configuration
TSX support: No

1011
0100

Program +
Page-level

ASLR

Constraints
solver

Load-time synthesis

Specifications & Constraints

PRIDWIN: Load-time Synthesis
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1011
0100

Protected
executable

Enclave

1011
0100

WASM

Initialization Synthesis Generation

Defense
specifications

Hardware
specifications

Compiler

Program
source

Multi-stage Loader

PRIDWIN: Load-time Synthesis



Summary

• Intel SGX is a practical, promising building block to 
write a secure program
• Intel SGX has unusually strong threat model, 

opening up unexpected attacks

• Today’s Talk: Recent Attack/Defense of Intel SGX
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Summary

• It’s not future technology; it’s already everywhere!


