INFORMATION SECURITY CENTER

Attacks and Defenses for
Intel SGX

Taesoo Kim

&Georgiaﬂmsﬁﬁﬁ@ﬁ@
o Tlechholog)y

[—1

About Myself

* 03-09: B.S. from KAIST in CS/EE

e 09-11: S.M. from MIT in CS

e 11-14: Ph.D. from MIT in CS

* 14- : Assistant Professor at Gatech

Research interests:

Operating Systems, Systems Security, Bug Finding, etc

https://taesoo.kim/

https://taesoo.kim/

SSlab People Projects Publications CVEs Visiting About Blog

Systems Software & Security Lab

We build practical systems with focuses on security, performance, robustness, or often just for fun. Our research projects have been
published in top academic conferences, and have made great impacts on real programs, such as Firefox, Android, and the Linux
kernel, that you might be using every day. If you are interested in hacking with us, please drop us an email via
<sslab@cc.gatech.edu>.

In particular, we have one or two openings for postdocs and two positions for PhDs in this coming 2018 Fall.

News (all/18/17/16/15/14)

» [08/15/2018] QSYM got a Distinguished Paper Award at USENIX Security'18!
« [08/12/2018] DEFKOROOT won DEF CON CTF 2018!!

Group Leaders

Ssngho Lee (w/ Wenke Lee) Hong Hu (w/ Wenke Lee)

» [03/10/2018] Kaleidoscope accepted at the EuroSys Doctoral Workshop
« [02/07/2018] Steffen got the best poster award at the KAUST OBD Workshop!

» [11/11/2017] Insu has been selected as one of finalists for the MSR PhD fellowsh
« [11/03/2017] Gift by Intel to support our SGX research ($90K)!

............................. [RenDing

« [05/11/2017] PlatPal, PITTYPAT, Branch Shadowing Attack, and Dark ROP are a
« [05/04/2017] AVPASS is accepted to Black Hat USA 2017

Our Group’s Research Interests

* Bug finding:
e.g., static analysis, fuzzing, symbolic execution, etc.

* System security:
e.g., system updates, Intel SGX, sandboxing, etc.

e System scalability:
e.g., file system, graph processing, scalable lock, etc.

Our Group’s Research Interests

(> 300 bugs in Linux, Firefox, OpenSSL, etc.)

CVEs

We frequently report and fix security-critical vulnerabilities that we find as a byproduct of our research. Some of bugs that have an
explictly assigned CVE or references are listed here:

Date
2018/07/27

2018/07/27

2018/07/27

2018/07/16

2018/07/16

2018/07/03

2018/07/03

2018/04/24

2018/04/01

2017/11/30

Description

Ref.
CVE-2018-14617

CVE-2018-14614,14615,14616

CVE-2018-
14609,14610,14611,14612,14613

CVE-2018-
10879,10880,10881,10882,10883

CVE-2018-
10840,10876,10877,10878

CVE-2018-
13096,13097,13098,13099,13100

CVE-2018-13093,13094,13095
CVE-2018-10322,10323
CVE-2018-1092,1093,1094,1095

CVE-2017-17081

https://gts3.org/pages/cves.html

https://gts3.org/pages/cves.html

DEFKOROOT: Won DEF CON CTF'18
(DEFKOR + ROOtmentary)

(ROOtmentary) °

INFORMATION SECURITY CENTER

Attacks and Defenses for
Intel SGX

Taesoo Kim

&Georgiaﬂmsﬁﬁﬁ@ﬁ@
o Tlechholog)y

[—1

The Team

. _
' -
B Microsoft
Ore on State B Research
Unlver51ty

Disclaimer

https://software.intel.com/en-us/sgx/academic-research

intel‘ Developer Zone

Development » Tools > Resources »

Intel® Software Guard Extensions
(Intel® SGX)

An Intel® architecture extension designed to increase the security of
application code and data.

https://software.intel.com/en-us/sgx/academic-research

Outline

* Threat model / assumption
* Traditional attack vectors

* New attack vectors

* On-going approaches

* Summary

Outline

* Threat model / assumption

* Traditional attack vectors
e Cache-based side channel

* Memory safety
* Weak mitigation techniques (e.g., ASLR)
* Uninitialized padding in EDL

* New attack vectors
* On-going approaches
* Summary

11

Outline

* Threat model / assumption
* Traditional attack vectors

* New attack vectors
* Page table attack
* Branch shadowing attack

e Rowhammer against SGX
* L1 terminal fault against SGX (i.e., Foreshadow)

* On-going approaches
* Summary

12

https://foreshadowattack.eu/

Revisited: Intel SGX 101

* “Practical” TEE implementation by Intel
e Extending x86 Instruction Set Architecture (ISA)

— Native performance
— Compatible to x86
— Commodity (i.e., cheap)

= - i
&1
m m-« m.' ag_zg;,m Super X115SH-F

Lenovo T560 Dell OptiPlex 5040 Supermicro Server

Revisited: SGX for Cloud

Skylake CPU

Application (untrusted)

Operating System (untrusted)

Cloud provider (untrusted)

14

Revisited: SGX for Cloud

Application (untrusted)

Skylake CPU |Operating System (untrusted)

—_— -~ Cloud provider (untrusted)

15

Revisited: SGX for Cloud (lsolation)

Skylake CPU

Data

Enclave

e)
! Code

Application (untrusted)

o

Operating System (untrusted) Q

o

Cloud provider (untrusted)

16

Revisited: SGX for Cloud

(Remote attestation)
EPID

by de\;eloper

Application (untrusted)

Operating System (untrusted)

- Cloud provider (untrusted)

_

Client

Revisited: SGX for Cloud
(Remote attestation)

EPID
(intei'& by developer

Application (untrusted)

Operating System (untrusted) w

- Cloud provider (untrusted)

intel)
—1\Q
Client

18

SGX Ecosystem for Attackers

o . Trusted components (i.e., where we should attack)

Q . Attacker’s capabilities (i.e., what attackers can do)

EPID
(inteis by developer

o Data u
Code
Enclave

Application (untrusted) Q

Operating System (untrusted) Q

)

Cloud provider (untrusted)

2 19

Our Initial Interests as Attacker

Attacking applications running on enclaves
(i.e., breaking their isolation and confidentiality)
with the capabilities of the cloud provider

Not interesting
(unknown, not popular)

EPID
(inteis

N =y

| Application (untrusted)

Operating System (untrusted) w

o

Cloud provider (untrusted

—lQ

Client

Not interesting
(non technical issues)

20

Summary: Intel SGX 101

* Two important design goals:
* Performance (i.e., native speed, multithread)
e General purpose (i.e., x86 ISA)

* Two important security primitives:

* Isolated execution - confidentiality, integrity

* Remote attestation - integrity

21

lsolated Execution

* Protect enclaves from untrusted privilege software
* Small attack surface (TCB: App + CPU)

Physical Address
Memory Space

CPU Package
Processor Key EPC

o

Encrypted
code/data

Memory Encryption
Engine (MEE) N

lsolated Execution

* Protect enclaves from untrusted privilege software
* Small attack surface (TCB: App + CPU)

Physical Address

Memory Space Access from
OS/VMM

CPU Package
Processor Key EPC

. |Encrypted
@g\%plng code/data

Memory Encryption
Engine (MEE) N

Access b/w
enclaves

SGX’s Threat Model (very strong!)

. All except the core package can be malicious
. Device, firmware, ...
. Operating systems, hypervisor ...

. DoS (availability) is naturally out of concern

. Intel excludes cache-based side-channel
(due to performance)

What if Enclave is Compromised?

* Leak sensitive information
* Prevent attackers from being audited/analyzed
* Permanently parasite to the enclave program

Protected?
by SGX Leak secret Rootkit

No access
from
OS/VMM

What if Enclave is Compromised?

* Leak sensitive information

Due to 1) its strong threat model and
2) consequences of compromises, developing a

secure enclave program is much more difficult
than a typical program!

No access
from
OS/VMM

26

Demonstrated Post Exploitation

* Dumping confidential data
e e.g., memcpy(non-enclave region, enclave, size)

* Permanent parasite
* e.g., MiTM on the remote attestation

* Breaking ecosystem
* e.g., leaking attestation keys for Quoting enclaves

Hacking in Darkness: Return-oriented Programming against Secure
Enclaves

Jaehvuk Leet dinsoo J'a‘n,s‘:f

Taesoo Kin®

Yeongiin Jang”

RAIST

Abstract

Intel Soltware Guand Extensions (SCX01 15 o h anlwasne
harses

Tnssted bxecuhen baronme

wenbely seen as o prommiang solebon o issiinon] seouriy
thrzats. While SGX promises strong protection to bug-
tree software, decades of experience show that we have
to expect vulnerabilities In oy non-trivial applicaion. In
n rraditional eovironment, such vulnerobilitics otten allow
attackers wo take complete contol of valnerble systoms.
Etforts to cvaluate the scourity of SGX have focused on

Notivir Kwak™
Mascus Peinade” Brent Bvanghoon Kang™

“Georgia lnstitute of Technology

Yesew! Choit Chansho Choi”

tMicrosoft Research

The comsequences of Dk ROP e slarmmng; the ol

lischer o

wanprletely breach the enclive s memaory pro
lecinms

il ek the SGX hardware into disclosing the
enchave's encryphion keys and produsing measurement
reprorts Uil deled renate allestabon, Ths resell dmng |y
aagEesis husl

suanpuling b
Hawen)

FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution

Jo Van Bulck!, Marina MinkinZ, Ofir Weisse?, Daniel Genkin?, Baris Kasikci®

, Frank Piessens!,

Mark Silberstein?, Thomas F. Wenisch?, Yuval Yarom*, and Raoul Strackx'

1

. . . y
imec-DistriNet, KU Leuven, 2Technion, 3 University of Michigan, *University of Adelaide and

Data61

Abstract

Trusted execution environments, and particularly the Soft-
ware Guard eXtensions (SGX) included in recent Intel
x86 processors, gained significant traction in recent years.
A long track of research papers, and increasingly also real-

world mdusln .lpplu.muns l.ll\(‘ advantage ut the stmng
howd. R e | - A N

distrusting enclaves with a minimal Trusted Computing
Base (TCB) that includes only the processor package and
microcode. Enclave-private CPU and memory state is
exclusively accessible to !he uxic running inside it, and
remains explicitly g
software runni
tentially mali

Thinking of SGX Usages

User
e.\
D

Company

e.g., prevent reverse engineering
(or DRM data)

28

Traditional Attack Vectors

* Cache-based side channel

* Memory safety

* Weak mitigation techniques
* Uninitialized padding in EDL

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
— e.g., control flow hijacking

* Weak mitigation techniques
— e.g., breaking ALSR

* Uninitialized padding in EDL

— e.g., leaking security sensitive information

Cache-based Side-channel Attacks

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth

Worcester |
{amog}

Abstract, In mods
commonly shared, a
CAN Ccause privacy i
forced. Intel propos

within the processo

.CR] 24 Feb 2017

Ferdinand Brasser', Urs Milller”, Alexandra Dmitrienko®, Kari Kostiainen®, Srdjan Capkun®, and
Ahmad-Reza Sadeghi'

Cache Attacks on Intel SG

mui

Side-c
tion of §
dependel
executiol
quently,
ing coun
widely 1
side chuy

ABSTRACT

For the e time, we practical|
S0X ewthaves are villeer able agy
As o coe sblly, we presend an |
mitnck om AES when renmimsg i
Usiigg Newe andl Seilfert’s eliming
cache prohing mechasiam relving
1o eatiact the AES sevret by
sivestygating A8 encrypted bk
A - aw

& L b |

r 2017

arXiv’17

WOOT’17

Software Grand Exposure: SGX Cache Attacks Are Practical

Moritz Eckert

Sebastian Schinzel
FH Manstar

Malware Guard Extension:
Using SGX to Conceal Cache Attacks

(Extended Version)

Michael Schwarz

Graz University of Technology
Email: michaclschwarz @ iaik.tugraz ot

Clémentine Maurice
Graz University of Technology
Email: clementine maurice @ik tugraz.s

Samuel Weiser Daniel Gr
Graz University of Technology Graz University of
Email: samuel. weiser@ iaik. graz.at Email: daniel. gruss @

Stefan Mangard
Graz University of Technology
Email: stefanmangard@iaik. tugraz.at

Cache-based Side-channel Attacks

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Cache attacks are possible and often, makes it
“easier” to launch the attack due to its strong threat

model (e.q., using PMC)
— Known defenses (e.g., coloring ...)

side cha ABSTRACT .
O —— Using SGX to Conceal Cache Attacks
SOX ot haves are vidlewts abole gy
As o cooe sbidly, we presesd an | .
mtnck on AES when renmng in (EXtended VerSIOn)
Usitgg Neve and Sl 1
cactw prohing mechasisam relving) . 3 N
‘0 etract the AES seeret hev | Michael Schwarz Samuel Weiser Daniel Gr
snvvetagating A8 encrypted blod Graz University of Technology Graz University of Technology Graz University of
e — Email: michaclschwarz @ iaik.tugraz st Email: samuel.weiser@iaik. ugraz.at Email: daniel. gruss @
Clémentine Maurice Stefan Mangard
~ Graz University of Technology Graz University of Technology
— Email: clementine. maurice @ik tugraz.a Email: stefan.mangard@iaik tugraz.at
-

9

CS101: Cache Structure

' Graphics

. Processor

e hared L3 Cache**

Fpﬁ"lh—h R

o1 Core

m—

N oy Controller |

. System '
® Agent & |
. Memory

including

DMI, Display
and Misc. /O

I“E’-.;‘?.-i Memory Controller I/0

Integrated:Memory Controller~:3:Ch DDR3

Core0 Core1 Core2 - Core 3

CS101: Cache

Shared L3 Cache

Integrated:Memory Controller~:3:Ch DDR3

Core0 Core1 Core2 - Core 3

CS101: Cache

Q
P Shared L3 Cache
|

- L3 hit L2hit L1 hit

Integrated:Memory Controller~3:Ch DDR3

Core0 Core1 Core2 - Core 3

CS101: Cache

Shared L3 Cache

Which cacheline do we have to keep/evict (policy)?

How to organize cacheline (structure)?

Basic Idea: Cache Side-channel

o o

Real Attack: AES?

{SubByteshH ShiftRows + MixColumns + AddRoundKeys} x {10, 12, 14}

a0.0 %,1 %,2 ao.z b0.0 bO.l bO.Z b0.3
| . I
al.o al.l al.l al.3 [U—Ytes] bl.O bl.l b1.2 bl.3
o
a!.O a). 82.2 3 b2.0 bZ. b2.2 2,3
a!.O a!.l a!.l 83.3 b3.0 b 32 33
S

Monitoring cacheline access of Lookup Table!

Known Attack Demonstrations

 Known cache-based side channel attacks:

e 2003 DES by Tsunoo et al. (with 226.0 samples)
2005 AES by Bernstein et al. (with 218.9 samples)
2005 RSA by Percival et al. (-)

2011 AES by Gullasch et al. (with 26.6 samples)

2017 AES by Ahmad et al. (with 10 samples agai

Cache Side-channel (in Cloud)

£ Windows Azure

Cache Side-channel against SGX

£ Windows Azure

Thinking of SGX Adversaries:
SGX Makes Cache Attack Easier

» Accurate intervention (i.e., scheduling/exception)
e Controlled environment (i.e., OS, hyperthread)
 Rich information available (e.g., physical mapping, PMC)

CacheZoom: How SGX Amplifies
The Power of Cache Attacks

Ahmad Moghimi, Gorka lrazoqui, and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
[amoghimi, girazoki,teisenbarth }0wpi. edu

Abstract, In modern computing environg
commonly shared, and l:-.ll.l”t|III|II|I|||.<|i
can cause privacy and security problem

forced. Intel proposed SCGX to create a 1)

within the processor. SGX relies on the hardware, and clums runtime

Software Grand Exposure: SGX Cache Attacks Are Practical

Ferdinand Brasser', Urs Miiller’, Alexandra Dmitrienko®, Kari Kostiainen®, Srdjan (‘upkun". and
Ahmad-Reza Sadeghi'

'System Security Lab, Technische Universitit Darmstadt, Germany
{ ferdinand brasser,ahmad.sadeghi } @ trust.tu-darmstade. de

“Institute of Information Security, ETH Zurich, Switzerland
muurs @ student.ethz.ch, {alexandra.dmitrienko, kari_kostiainen,srdjan.capkun } @inf.ethz.ch

Abstract

Side-channel information leakage is a known limita-
tion of SGX. Rescarchers have demonstrated that secret-
dependent information can be extracted from enclave
execution through page-fault access patterns. Conse-
quently, various recent research efforts are actively seck-
ing countermeasures to SGX side-channel attacks. It is
widely assumed that SGX may be vulnerable to other
side channels, such as cache access pattern monitoring.

that can ssue remotely verifiable attestation stalements
on enclave software configuration, These SGX mecha
msns (sokation, 2

ment of applici

security, The

cloud computing

AN be ouSOUrCEd TR e Ve T Tt T LI Ig HETEIEv
twre without having 1o fully trust the cloud provider and
the entire software stack .

Cache Attack is Practical Concern?

* Yes or no, depending on contexts and applications.
* Think first: why considering SGX? on cloud?

e Performance (= cache) vs. potential risks!

e SGX can make the cache attack harder too

* By leveraging isolation / randomization
(security by obscurity practical)

— Intel explictly noted that it’s better to be
addressed in SW (if you wish) rather than HW (by
default).

Breaking Remote Attestation via
Cache-based Side-channel Attacks

CacheQuote: Efficiently Recovering Long-term
Secrets of SGX EPID via Cache Attacks

-

- . . «) . W . « 9
Jergus Dall', Gabrielle De Micheli?, Thomas Eisenbarth®*, Daniel Genkin®?,
Nadia Heninger?, Ahmad Moghimi* and Yuval Yarom"®

! University of Adelaide
fergus@beware.dropbear.id.au,yval@cs.adelaide.edu.au
* University of Pennsylvania
{gmicheli,danielg3,nadiah}@cis.upenn.edu
’ University of Liibeck
thomas .eisenbarth@uni-luebeck.de
* Worcester Polytechnic Institute
amoghimi@wpi.edu
® University of Maryland
" Data61

Abstract. Intel Software Guard Extensions (SGX) allows users to perform secure
computation on platforms that run untrusted software. To validate that the compu-
tation is correctly initialized and that it executes on trusted hardware, SCAXananant
attestation providers that can vouch for the user’s computation. Commmuy
these attestation providers is based on the Extended Privacy 1D (EP

45

Defense: Cache Attacks

e Cache oblivious implementation of crypto algos

* Fine-grained code/data randomization

* Mitigating via contiguous monitoring (e.g., Varys)

* Looking for better HW-based solutions!
(e.g., partitioning/coloring)

Varys

Protecting SGX Enclaves From Practical Side-Channel Attacks

Oleksii Oleksenko®, Bohdan Trach®, Robert Krahn®, Andre Martin®,
Christof Fetzer', Mark Silberstein®
"TU Dresden, *Technion

Abstract

Numerous recent works have experimentally shown that
Intel Software Guard Extensions (SGX) are vulnerable to
cache timing and page table side-channel attacks which
could be used to circumvent the data confidentiality guar-
antees provided by SGX. Existing mechanisms that pro-
tect against these attacks either incur high execution costs,
are ineffective against certain attack variants, or require
significant code modifications

cludes side channels from the SGX threat model, SCAs
effectively circumvent the SGX confidentiality guarantees
and impede SGX adoption in many real-world scenarios.
More crucially, a privileged adversary against SGX can
mount much more powerful SCAs compared to the un-
privileged x-
ample,

levels

by slov

Sanctum: Minimal Hardware Extensions for Strong Software Isolation

Victor Costan, Ilia Lebedev, and Srinivas Devadas
victor@ costan.us, ilebedev@mit.edu, devadas@mit.edu
MIT CSAIL

Abstract

Sanctum offers the same promise as Intel’s Software
Guard Extensions (SGX), namely strong provable isola-
tion of software modules running concurrently and shar-
ing resources, but protects against an important class of
additional software attacks that infer private information
from a program’s memory access patterns. Sanctum shuns
unnecessary complexity, leading to a simpler security
analysis. We follow a principled approach to eliminat-
ino entire attack surfaces throneh isolation. rather than

formal verification effort [26] spent 20 man-years to cover
9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and
uncertain prospects for formal verification, a prudent sys-
tem designer cannot include either in a TCB (trusted com-
puting base) aadamuatlantealsanbana fon Samere
isolation 1y

Fortung
[5, 36] ha
ing softwarc

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
— e.g., control flow hijacking

* Weak mitigation techniques
— e.g., breaking ALSR

* Uninitialized padding in EDL

— e.g., leaking security sensitive information

Memory Safety Issues

* SGX is not free from memory safety issues

e Current ecosystem is built on memory unsafe lang.

Hacking in Darkness: Return-oriented Programming against Secure
Enclaves

Jaehvuk Leet finsoo Jang® Yeongiin Jang™ Nohvurn Kwak” Yesewl Choi' Changho Choi”
Taesoo Kin™ Marcus Peinado” Brent Beunghoon Kang™

RAIST

Abstract

Intel Soltware Guanl Extenswons (SCX1 15 o bindeare
based Tnssted bsecubon bovironment (FEE) tist is
wubely seen as o promisang solubon o rsiition] seourity
threats, While SGX promises strong protection to bug-
’ ; i v that we have
pplicarion. In
s often allow
rble systems.
ave focused on

“Georgia lnstitute of Technology

tMicrosoft Research

The conseguences oF Dk ROP e slarmmng; the
tseher can comprletely breach the enclave s menury pro
Limek the SGX hardw

enchve's encryplion keys and prodiscing measurement

s oo dhsclosing the

el ar

reprrts Uil delel renate atlestabon, Ths resull Smngly
snggests bisl SOX research shonld Tocus maore on s

Bt securily bzt et ber i on nisking enclive
developanent more convement by espanding the Trusted
comnputing bisse s the siisek suorlsee (e, Crsphens,

Hirvern)

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti
University of Padua, Italy

Lucas Davi

University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi
TU Darmstadt, Germany

Abstract

Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remote attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully-inspected code, which could be

formallymeseestasthasaa Sanlaamahilivaa i taave ver,
legag ide
SGX S.
Fornl X
legacy “me

memory-corruption vulnerabilines that plague legacy
software are also very likely to occur in those complex

48

Return-oriented Programming (ROP)

vuln(*input) {
dst[0x100];
memcpy(dst, input, 0x200);

}

dst

Return-oriented Programming (ROP)

void vuln(char *input) {
char dst[0x100];
memcpy(dst, input, 0x200);

}

dst

pop rdi; ret

50

Return-oriented Programming (ROP)

void vuln(char *input) {
char dst[0x100];
memcpy(dst, input, 0x200);

e.g., system(“/bin/sh”)

dst

pop rdi; ret

system(argl)

51

Typical Requirements for ROP

void vuln(char *input) {
Code (via reverse

char dSt" engineering)
memcpy(dst, input);

e.g., system(“/bin/sh”)

pop rdi; ret

Need to determine
the length of payload

system(argl)

52

ROP Inside an Enclave

void vuln(char *input) { Code is not visible!
char dst[ekddl; (e.g., loaded in an encrypted form)

memcpy(dst, input, B&ER);
}

53

ROP Inside an Enclave

void vuln(char *input) { Code is not visible!
char dst[[elrad; (e.g., loaded in an encrypted form)
memcpy(dst, input, B&ER);

}

SGX doesn’t report RIP

dst directly but the

0x0000
0x0008

corresponding page

0x0100
0x0108
0x0110
0x0118

X

0x0108

0x0110
0x0118

54

ROP in Darkness: Dark ROP

» Step 1. Debunking the locations of pop gadgets
 Step 2. Locating ENCLU + pop rax (i.e., EEXIT)
 Step 3. Deciphering all pop gadgets

 Step 4. Locating memcpy()

Threat Model for DarkROP

* Know existence of a buffer overflow (i.e., crash)
* Crashing the enclave arbitrarily times

* Built with standard libraries (e.g., SGX SDK)

* Distributed in an encrypted form (like VC3)

Step 1. Looking for pop Gadgets
<,

ou have a full control over the layout
of the enclave

0x0000

0x0008

0x0100

x0108

0x0110
0x0118

57

Step 1. Looking for pop Gadgets

OxffO0
OxffO1
Oxff02

0x0000

0x0008

0x0100

0x0110
0x0118

Rip = 0xffO0
(e.g., crash illegal instruction)

58

Step 1. Looking for pop Gadgets

$

OxffO0
OxffO1

0xff02 0xff02

pop 2?7?77
ret

0x0000
0x0008

0x0000
0x0008

0x0100 0x0100

0x0110
0x0118

Rip = OxffOO Rip = 0x0118
(e.g., crash illegal instruction) (segfault)

59

Step 1. Looking for pop Gadgets

OxffO0
OxffO1
Oxff02

Oxff30§§ pop ????

0x0000 0x0000

0x0008

0x0008

0x0100 0x0100

0x0110
0x0118

Rip = 0xffO0
(e.g., crash illegal instruction)

Rip = 0x0128
(segfault)

Step 1. Looking for pop Gadgets

0xff02 Oxff30 | pop ???7?

Catalog of pop gadgets
(unknown args)

pop 2?7?77
ret

0xff02 = pop ?;ret
Oxff30 = pop ?;pop ?;pop ?;ret

0x0000
0x0008

0x0000
0x0008

0x0100 0x0100

Rip = 0x0118 Rip =0x0128
(segfault) (segfault)

Step 2. Looking for ENCLU

* ENCLU: an inst. dispatches to various leaf functions

* rax = 0: EREPORT
e rax = 1: EGETKEY

e rax =4: EEXIT

Step 2. Looking for ENCLU

* ENCLU: an inst. dispatches to various leaf functions
* rax = 0: EREPORT
* rax = 1: EGETKEY

e rax =4: EEXIT 0x0000

0x0008

0x0100
«“ 2777, ” ret pop;ret
— Scan code for each “pop???7?;ret
ret ENCLU

— If gracefully exit, rip = ENCLU

63

Step 3. Deciphering pop Gadgets

 EEXIT (ENCLU & rax=4) left a register file uncleaned
—> Scan code for all pop gadgets

— Check arguments

0x0000
0x0008

0x0100
ret pop argl; pop arg2; ret

0x0001
0x0002

ret pop rax; ret

0x0004
ret ENCLU

64

Step 3. Deciphering pop Gadgets

 EEXIT (ENCLU & rax=4) left a register file uncleaned
—> Scan code for all pop gadgets

— Check arguments Deciphering
pop”? pop? gadget

0x0000 _
0x0008 argl = 0x0001

arg2 = 0x0002
0x0100

pop rsi
ret pop argl; pop arg2; ret = _ :
HX000 1 = pop rdi
0x0002 Register file
ret pop rax; ret ret

rax = 0x0004

0"4 ENCLU rsi = 0x0001

rdi = 0x0002

65

Step 4. Looking for memcpy()

* [dentifying memcpy(dst*, valid, 0x10)

pop rdi; pop rsi; pop rdx; ret

ret
OxEEOO

OxFFOO
0x0010

ret Varying (looking for memcpy)
ret pop rax; ret

ret ENCLU

Step 4. Looking for memcpy()

* E.g., invoking memcpy(0x7ff1000, any valid, 0x10)

Untrusted application memory

0x7fff1000: PO 00 00 00 00 00 00 00 00 ...
0x7fff1010: 00 00 00 00 00 00 00 00 00 ...

0x7fff2000: 01 02 03 04 05 06 07 08 09 ...
0x7fff2010: 11 1213141516 17 18 19 ...

0x7fff1000: 01 02 03 04 05 06 07 08 09 ...
0x7fff1010: 11 1213141516 17 18 19 ...

0x7fff2000: 01 02 03 04 05 06 07 08 09 ...

0x7fff2010: 11 1213141516 17 18 19 ...

67

Gadgets Everywhere (e.g., SDK

From

__intel_cpu_indicator_init:

Gadget From Gadget
ENCLU Gadget GPR Modification Gadget
do_ereport:
ENCLU libsgx_trts.a
pop ri5
pop rdx pop rl4
pop rcx pop ri3
pop rbx pop ri2
ret pop r9
sgx_register_exception_handler: pop r8
mov rax, rbx libsgx_trts.a pop rbp
pop rbx pop rsi
pop rbp pop rdi
pop rl2 pop rbx
ret pop rcx
Memcpy Gadget pop rdx
memcpy : libsgx_tstdc.a pop rax
ret
SgXx_sgx_ra_proc_msg2_trusted: libsgx_tkey_exchange.a
gx-Sgx-Ta-P 9 gx-Teey g ENCLU Gadget
pop rsi
pop ris do_ereport:
ret enclu
pop rdi pop rax
ret ret

sgx_tstdc.lib

sgx_trts.lib

DEMO: PoC Dark ROP

Step1. Looking for pop gadgets

Case Study 1: Unsealing Data

RAX Gadget

Shadow_read_sealing_data()

{ RBX Gadget '

ROP_to_egetkey() _
unseal data ()

}
O=r

e Unsealing and leaking confidential data

* i.e., EGETKEY retrieves the hardware key bound to
specific enclave

71

Case Study 2: Hijacking Remote
Attestation

Emulated Enclave Secure Enclave

RSI Gadget
RDI Gadget
RCX Gadget

memcpy

Gadget ENCLU
Gadget

* Breaking the Integrity guarantees of SGX
* MiTM between secure enclave and attestation server
* Masquerading to deceive remote attestation service

72

Defense: SGXBounds

» Addressing spatial memory problems (bound chk)

SGXBOUNDS: Memory Safety for Shielded Execution

Dmitrii Kuvaiskii’ Oleksii Oleksenko!

Sergei Arnautov! Bohdan Trach'

Pramod Bhatotia* Pascal Felber Christof Fetzer'

"TU Dresden *The University of Edinburgh *University of Neuchitel

Abstract

Shielded execution based on Intel SGX provides strong secu-
rity guarantees for legacy applications running on untrusted
platforms. However, memory safety attacks such as Heart-
bleed can render the confidentiality and integrity properties
of shielded execution completely ineffective, To prevent these
attacks, the state-of-the-art memory-safety approaches can be
used in the context of shielded execution,

Shielded execution aims to protect confidentiality and
integrity of applications when executed in an untrusted envi-
ronment [19,22]. The main idea is to isolate the application
from the rest of the system (including privileged software),
using only a narrow interface to communicate to the outside,
potentially malicious world. Since this interface defines the
security boundary, checks are performed to prevent the un-
trusted environment from

in an altamnt talaal cond

73

Defense: SGXBounds

» Addressing spatial memory problems (bound chk)

» Key idea: an efficient tag representation thanks to
smaller memory space!

6 1 Q
r UB pointer I

v

object LB

Lower Bound Upper Bound

Defense: SGXBounds

—_—

L= (= 4] -1 O h - ad b2

10

int *s[N], *d[N]

for (i=0; i<M; i++):
si=s5+1
di=d+ 1

val = load si

store val, di

int *s[N], *=d[N]
s = specify_bounds(s, s + N)
d = specify_bounds(d, d + N)
for (i=0; 1i<M; i++):
si=s+1
di=d+ 1
sp, sLB, sUB = extract(si)

if bounds_violated(sp, sLB, sUB):

crash(si)
val = load si
dp, dLB, dUB = extract(di)

if bounds_violated(dp, dLB, dUB):

crash(di)
store val, di

75

Done w/ Memory Safety on SGX?

* SGXBounds is a temporary solution
* No temporal safety (i.e., UAF)
* More address space in the future (e.g., large pages)

* What about traditional mitigations (required)?

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
— e.g., control flow hijacking

* Weak mitigation techniques

— e.g., breaking ALSR

* Uninitialized padding in EDL
— e.g., leaking security sensitive information

SGX Mitigation Checklist

* Popular mitigation schemes:
Stack Canary
RELRO
DEP/NX
ASLR/PIE

SGX Mitigation Checklist

* Popular mitigation schemes:
@ Stack Canary
& RELRO

DEP/NX

ASLR/PIE

ecall_pointer_user_check():

push %rbp

xor BFs:0x28,%rs1
mov ®rsp,arop

sub $0x90,%rsp 18 ARTA cecall mnninter user checkifix11R-
MoV %rdi ;EXSSf%”pr callg 8fb@ <__stack_chk_fail>

(s OMA L O enbnin ™ LCuveCy

%fs:0x28.%rax retq

%rax, -@x8(%rbp)

prologue epillogue

SGX Mitigation Checklist

* Popular mitigation schemes:
@ Stack Canary
@ RELRO

(@) ASLR/PIE

80

Defense: ASLR/SW-DEP inside SGX

* Popular mitigation schemes:
@ Stack Canary
@ RELRO

(@) ASLR/PIE

SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs

Jachack Sen”t | Bvounyoung e, Scongmin Kim*, Ming-Wei Shikt,
[n=ik Shin*, Dongsu [lan®, Taesvo Kim-
TKAIST P Puduee Universin Veenrgia Tnstiture of Teehnology
{jachack, dallas 1, ishin, dongsu_han) (@ kaist.ac kr, blec@ purduc.cdu, {mingweishih, tacson | i@ gatech.edu

Abstraci— Uraditional execulion emviromments deploy Address
Space Layoul Randomization (ASLID (o deled against awawny
corruption attacks. However, Litel Software Guard Extension
(SGX), a pew trusted execulion enviconment designed (o serve
securily-critical applications on Use cloud. Backs such an ellective.
well-studied feature. Lo Fact. we find that applying ASLK fo SGX
programs raises pon-trivial issoes beyond simple engineering lor
a number of reasons: 1) SGX B desizoed o defeal a stronger
adversary than Use traditional model, whidh requires e address
gpace Byyout to be hidden frons the herwel; 21 tse Loited meanry
uses in SGX programs presest a new challenge in providing
sullicient degree of entropr: 3) renwdle altestation conflicts with
the drsamic relocation required lor ASLK; and 4) fhe SGX
specification relice on known and fixed nddresses for key dota
strwtures that canmt be rondomized.

svstem and hypervisor. Iv also offers hardwore-bosed measure-
meat. artestation, and enclave page ncoess conrol to verify the
inrcgrity of its application code.

'..‘.'I[llliu.'l::lkfl}'\ we ubserve hal beae |’ll\!f:t‘!|1i:f.\ sl
conhdentushiy md di nol pusmanlee the
secunly of SOX programs, especilly when tabion] menore
corrupion vilverho e, suchoas boller overlow, eust maide
SGX progroms. Worse ver. mony existing SGX-based sv
rend o have o large ©
library in Haven T12]
for Inre]l SGX [28, 7
unsafe programming
in an pssembly languags

paal)

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

* Visible memory layout
* Small randomization entropy
* No runtime page permission change

Challenges for Mitigation Schemes

It is non-trivial when an attacker is the kernel:

* Visible memory layout
—> Secure in-enclave loading

* Small randomization entropy
- Fine-grained ASLR

* No runtime page permission change
— Soft-DEP/SFI

SGX-Shield’s Approach:
In-enclave Loading

Stage 1

Enclave

Enclave program

Data pages

User process

SGX-Shield’s Approach:
In-enclave Loading

Stage 1

Enclave

In-enclave
loader

Code pages

Encrypted
enclave program

12 12
<<<<<<<<
?????????

! ii Enclave program
(
I Data pages

User process

SGX-Shield’s Approach:

In-enclave Loading

Encrypted
enclave program

12 12
{{{{{{{{
?????????

Stage 1

Enclave

In-enclave
loader

Code pages

Enclave program

Data pages

User process

In-enclave
loading

Stage 2

Enclave

SGX related
data structure

Runtime Data

Data pages

User process

86

SGX-Shield’s Approach:

In-enclave Loading

Encrypted
enclave program

12 12
{{{{{{{{
?????????

Stage 1

Enclave

In-enclave
loader

Code pages

}}}}}}}}}}}}
{{{{{{{{{{{{{
????????????

Enclave program

Data pages

User process

In-enclave
loading

Stage 2

Enclave

-
T

- - - -
{{{{{{{{{{{

}}}}}}}}}}}}}

data structure

Runtime Data S

SGX related

Data pages

User process

87

SGX-Shield’s Fine-grained ASLR

Secure in-enclave RUC
loading
| RU A : A
e VT rRU Al
- Ty
= : RU B
9 A -
® imp C |
o | RU C
“a RU B
g A
Imp C*

Secure in-enclave
loader

>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<

>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<

Enclave program

Data pages

User process

Secure
in-enclave
loading

No Runtime Permission Change

#”
3
’
#
/
-

Enclave

SGX related
data structure

Runtime Data

AN

Data pages

4

User process

RWX

89

SW-based Permission Enforcement
(via SFI like Nacl)

Hardware-based Software+Hardware
out of enclave 1 permission permission
Code of loader RWX .
Loading
Code RWX X
—'/’//
Data of loader RW
Data RW RW
Out of enclave ‘1'

Virtual address space of an enclave
90

DEMO: SGX-Shield

https://github.com/sslab-gatech/SGX-Shield

https://github.com/sslab-gatech/SGX-Shield

SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained

side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

Securing ASLR on SGX against Multifaceted
Side-channel Attacks

Paper #233

Abxrmtr—lnlel Software Guard Exlemmm (SGX) allows
security ications to run in isolation, thus protecting
their confidentiality and integrity. SGX protects applications from
all other software on the platform, including the operating system.
However, the trusted computing base of the application still
includes the application code itself, and vulnerabilities in this
code can have the same catastrophic consequences under SGX
as they have elsewhere. Thus, it is desirable to deploy the known
general defense schemes in SGX. In particular, address space
layout randomization (ASLR) has been proposed as a general
way to mitigate vulnerabilities in SGX code.

This paper i the I security chall of
deploying ASLR in SGX-like environments which are subject
to multiple side-channels. An SGX adversary who can observe
the memory accesses of the code running under SGX at cache-
line and/or page granularity may gain enough information to
derandomize even fine-grained ASLR.

Our results include multifaceted side-channel attacks against
SGX-Shield, the only published ASLR system for SGX. One of

O S WA POV T VO

protect entire classes of vulnerabilities from being exploited
highly desirable. Techniques such as control-flow integrity
(CFI) [6], address space layout randomization (ASLR) [61],
data execution prevention (DEP) [8], and stack canaries [20] are
widely deployed in mass-market commercial systems and have
kept countless bugs from becoming exploitable vulnerabilities.

Despite the undeniable benefits of these generic defenses,
their deployment in TEE:s is, at best, incomplete. The reason
lies in the additional challenges posed by the TEE environment.
Some of the defenses such as CFI or stack canaries are
compiler-based and can be elTurlIesxly deployed into TEEs.
However, other delcnsc\ requlre system support lhdl is not
which

readily available in
is the focus of thj
operating system
However, in the
attacker. SGX-SI
loader into the encl®

submission

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti
University of Padua, Italy

Lucas Davi
University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi

TU Darms

Abstract

Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remolte attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and

tadtr, Germany

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully- mspu.l;d code, which could be

formallymesmmeianty Yoot e ver,
legag \de
SGX S.
Fornl X
legacy .me

memory-corruption vulnerabilines that plague legacy
software are also very likely to occur in those complex

92

Breaking Fine-grained ASLR

Loaderkllllllll!l:

code_unitl:

jme {1

Program

code_unit2:

jmp 1

code_unit3:

Randomized
code

code_unit2:

code_unitl:

code_unit3:

jmp -:—_—-'

93

Attacking Randomization Process

Side-channel observations

1> 3 (A[1])
2 - 4 (A[2])
3 > 1(A[3])
4 - 2 (A[4])

Memory read

Memory write

I
l
: Address

1
: 1 A[1] ~~~~~ ”’,‘v
13 A[3] -7 ST %3
I ”f ~~NA
| 4] A4 |7 4
I
! 1-> A[1]
: 2> A[2]
| 3> A[3]
: 4 - A[4]
I

A[3]

Al4]

Al1]

A[2]

1-> A[3]
2 - Al4]
3> A[1]
4 - A[2]

SGX-Armor: Obfuscating
Randomization via Oblivious Swap

Side-channel observations

|

|

| Adddress Memory read Memory write

E A w1 A[3]
1>3->1->3 (Swap) L2 A[2] ~ 2 Al2]
2>4>2>4 (Noswap) | 3| AB] |~7 » 3 Al1]

I 4] A4l |--" =>4 Al4]

|

Swap or not : Oblivious swap
I 1 - i -
reveals the same | , \\..Blt "1/,1 Seeoit0
patterns l P e S _ovbe==k
: - N* - N'L
|

Oblivious Swap Primitive

1 # swap(al, az, b) 1 # oswap(al, az, b)
2 # %rsi, %rdi, Xedx 2 # %rsi, %rdi, Xedx
3 swap 3 oswap

4 cmpl $0x1, %edx 4 movq (%rdi), %rax

5 jne no_swap 5 movq (%rsi), %rcx

6 movq (%rdi), %rax 6 cmpl $0x1, %edx

7 movq (%rsi), %rdx 7

8 movq %rdx, (%rdi) 8

9 movq %rax, (%rsi)

10 10 movq %rax, (%rdi)

11 no_swap: 1 movq %rcx, (%rsi)

12 retq 12 retq

96

SGX-Shield has Two Limitations

1) ALSR scheme is vulnerable against fine-grained
side-channels (i.e., multifaceted)

2) No protections on backward edges and SDK libs

Securing ASLR on SGX against Multifaceted
Side-channel Attacks

Paper #233

Abxrmtr—lnlel Software Guard Exlemmm (SGX) allows
security ications to run in isolation, thus protecting
their confidentiality and integrity. SGX protects applications from
all other software on the platform, including the operating system.
However, the trusted computing base of the application still
includes the application code itself, and vulnerabilities in this
code can have the same catastrophic consequences under SGX
as they have elsewhere. Thus, it is desirable to deploy the known
general defense schemes in SGX. In particular, address space
layout randomization (ASLR) has been proposed as a general
way to mitigate vulnerabilities in SGX code.

This paper i the I security chall of
deploying ASLR in SGX-like environments which are subject
to multiple side-channels. An SGX adversary who can observe
the memory accesses of the code running under SGX at cache-
line and/or page granularity may gain enough information to
derandomize even fine-grained ASLR.

Our results include multifaceted side-channel attacks against
SGX-Shield, the only published ASLR system for SGX. One of

O S WA POV T VO

protect entire classes of vulnerabilities from being exploited
highly desirable. Techniques such as control-flow integrity
(CFI) [6], address space layout randomization (ASLR) [61],
data execution prevention (DEP) [8], and stack canaries [20] are
widely deployed in mass-market commercial systems and have
kept countless bugs from becoming exploitable vulnerabilities.

Despite the undeniable benefits of these generic defenses,
their deployment in TEE:s is, at best, incomplete. The reason
lies in the additional challenges posed by the TEE environment.
Some of the defenses such as CFI or stack canaries are
compiler-based and can be elTurlIesxly deployed into TEEs.
However, other delcnsc\ requlre system support lhdl is not
which

readily available in
is the focus of thj
operating system
However, in the
attacker. SGX-SI
loader into the encl®

submission

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti
University of Padua, Italy

Lucas Davi
University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi

TU Darms

Abstract

Intel Software Guard Extensions (SGX) isolate security-
critical code inside a protected memory area called
enclave. Previous research on SGX has demonstrated
that memory corruption vulnerabilities within enclave
code can be exploited to extract secret keys and bypass
remolte attestation. However, these attacks require kernel
privileges, and rely on frequently probing enclave code
which results in many enclave crashes. Further, they
assume a constant, not randomized memory layout.

In this paper, we present novel exploitation techniques
against SGX that do not require any enclave crashes and

tadtr, Germany

using one of the pre-defined entry points. The enclave
can subsequently perform sensitive computations, call
pre-defined functions in the host, and return to the caller.

In the ideal scenario, the enclave code only includes
minimal carefully- mspu.l;d code, which could be

formallymesmmeianty Yoot e ver,
legag \de
SGX S.
Fornl X
legacy .me

memory-corruption vulnerabilines that plague legacy
software are also very likely to occur in those complex

97

The Guard’s Dilemma:
Efficient Code-Reuse Attacks Against Intel SGX

Andrea Biondo, Mauro Conti Lucas Davi
University of Padua, Italy University of Duisburg-Essen, Germany

Tommaso Frassetto, Ahmad-Reza Sadeghi

| TU Darmstadt, Germany
Abstract
" ns (SGX) isolate security- on to e
. re-define
critical code inside
e s res
c
m

ted memory area called
h on SGX has demonstrated
ith

hin enclave

against SGX that do not require any encis

 Similar to Signal Oriented Programming
* SGX has ORET/CONT gadgets in SDK

@ Payload prep.

e Find gadgets
e Design gadget chain

Attack Runtime

Fake stack ORET+CONT loop

e ~N F?:?oe)l(c. —(Gadget 1
.

Pad A7 Fe;:cfeoe;c. —»(Gadget 2

Fa;:ioe;(c. —(Gadget 3

Y

@ Fake structures prep.

e n fake exception infos
e 1 fake stack

@ Attack execution

e Launch first CONT

T T T
NI/ N /A N
€
Y
m
—

98

Traditional Attack Vectors

e Cache-based side channel
- e.g., inferring a private key

* Memory safety
— e.g., control flow hijacking

* Weak mitigation techniques
- e.g., breakmg ALSR

Uninitialized Padding Problem

struct usbdevfs _connectinfo {
devnum;
slow;

Uninitialized Padding Problem

struct usbdevfs _connectinfo {
devnum;
slow;

struct usbdevfs connectinfo {
.devnum =1,
.Slow =0,

5

Uninitialized Padding Problem

struct usbdevfs _connectinfo {
devnum;
slow;

devnum (4 bytes) slow (1 byte)

struct usbdevfs connectinfo {
.devnum =1,
.Slow =0,

5

Uninitialized Padding Problem

BN -

devnum (4 bytes) slow (1 byte)

(e

struct usbdevfs connectinfo {
.devnum =1,
.Slow =0,

5

DEADBE

slow (1 byte)

7N)

Uninitialized Padding Problem

UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee
School of Computer Science, Georgia Institute of Technology

ABSTRACT

The aperating system kernel is the de facwo trusted computing hase
for moesl computer systems, To seoure the O8 kemel, many security
mechanisms, e g., KASLR and StackGuard, have been increasingly

deployed 1o delend against attacks (e.g., code reuse stiack). How-

ever, the elfectiveness ol these protections has been proven 1o be
inadeguate—there are many infoemation leak valnervhilities in the
kermel 1o leak the randomized poanter or canary, thus bypassing
EASLR and StackGurd, Other sensitive data in the kemnel, such s

1. INTRODUCTION

As the de Facto trusted computing base (TCB) of computer sys-
tems, the opernting system (0O8) kernel has always been a prime
target lor attackers. By compromising the kemnel, stiackers can es-
calme their privilege o steal sensitive data in the system and controd
the whole companer. There wre theee main appmaches to launch priv-

ilege escalabion atacks: 1) direct ¢
CCS’'16

attacks [17]; and 3) coxde reuse ant
Prevention) protection has been de

Ecall/Ocall: EDL Interface for SGX

{

e/ocall_test_struct();

If there is a padding issue in , it
leaks (or inject) potentially sensitive data
(e.g., a private key like HeartBleed)

Ecall/Ocall: EDL Interface for SGX

untrusted {
test_stru

s
-l

“R]

S.(

e an isolated execution environment., known as an
enclave, for a user-level process to maximize its con-
fidentiality and integrity. In this paper, we study how
uninitialized data inside a secure enclave can be leaked
via structure padding. We found that, during ECALL and
OCALL, proxy functions that are automatically generated
by the Intel SGX Software Development Kit (SDK)
fully copy structure vanables from an enclave 1o the
normal memory to return the result of an ECALL function

and to pass input parameters to an OCALL function, If the
sl - la saddlca hisaa

atmsatiina sosalallas NS, | ssalalalallaad

trusted functions (e.g., system calls), Their any other
attempts 1o execute untrusted functions (e.g.. jumping
nte non-enclave code) result in faults.

Intel SGX Software Development Kit (SDK) is
shipped with a tool called Edgerdr [1] that automati-
cally and securely generated code for ECALL and OCALL
interfaces. Although SGX enclaves can access both
EPCs and normal memory, non-enclave applications

Thus, all input

can only access the normal memo
and output values for t
between them need 1o
ory first and then copied
caller later. The Edger8r

DEMO: SGX Bleed POC

107

https://github.com/sslab-gatech/unisan

https://github.com/sslab-gatech/unisan

mplication 1: Using

anguage doesn’t solve the problem

Rust SGX SDK

Rust SGX SDK helps developers writs

it's easy to port RN
refer to release_nof}

108

Implication 2: Using (88 aditzel
C compilers doesn’t help neither

109

New Attack Vectors

* Page table attack
* Branch shadowing attack
* Rowhammer against SGX

* L1 terminal fault against SGX (i.e., Foreshadow)

New Attack Vectors

* Page table attack
— e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
— e.g., freezing machines

e L1 terminal fault against SGX (i.e., Foreshadow)
— e.g., breaking SGX ecosystem (and more!)

Page Table Attack
controlled-channel attack

* Page level access pattern - reveal sensitive info.
(e.g., page faults, page access bits, ...)

2015 IEEE Symposium on Security and Privacy

Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems

Marcus Peinado
Microsoll Research
me spe @ picrasaft. com

Yuunzhong Xu
The University of Texar w Awsiin
s 0 cx wtexas, edi

Weidomg Cui
Micisoft Research
wake i @ micrasoft. com

Abstract—The presence of large numbsy
abilities in popular Feature-rich comamed
has lnsplred o long lne of work en excl

2= - i b

Telling Your Secrets Without Page Faul
Stealthy Page Table-Based Attacks on Enclaved

Original

(b)

Jo Van Bulck Nico Weichbrodt
imec-DistriNet, KU Leuven IBR DS, TU Braunschweig IBR
Jo.vanbulck@cs.kuleuven.be weichbr@ibr.cs.tu-bs.de kay

Frank Piessens Raoul Strac

imec-DistriNet, KU Leuven
frank.piessens @cs.kuleuven.be

Abstract

Protected module architectures, such as Intel SGX, en-
able strong trusted computing guarantees for hardware-
enforced enclaves on top a potentially malicious operat-
ino evetem However ench enclaved syecntion enviran-

imec-DistriNet, Kl
raoul.strackx@cs.kuleuven.be

ware to make it relag

ing or writing a

DEMO: Page Fault Attack

Defense: T-SGX

* Using Intel Transactional Synchronization Extension
(TSX) to isolate page faults inside SGX

T-SGX: Eradicating Controlled-Channel Attacks
Against Enclave Programs
Ming-Wei Shih'*, Sangho Lee!, and Taesoo Kim

Georgia Institute of Technology
mingwershih, sangho, taesoo | 00 gatech.edu
L ¥ !

Marcus Peinado
Microsoft Research
marcuspe WrmcrosolLeom

Abstract—Intel Soltware Guard Extensions (SGX) is a [. INTRODUCTION
hardware-based trusted execution emwironment (TEE) that en-

ables secure execution of a program in an isolated emwiron- Hardware-based trusted execution environments (TEEs)
ment, an enchive. SGX hardware protects the running enclave have become one of the most

against malichows sofltware, including an operating system (05), vanous security thremts, meludi

’
a hypervisor, and even low-level Brmwares. This strong security kemel exploits, hardware Trojans N DSS 17

Key Idea: TSX Isolates Faults!

* Unexpected side-effects (see, DrK [CCS’16])
* Any faults = invokes an abort handler

unsigned status;

// begin a transaction
if ((status = _xbegin()) == _XBEGIN_STARTED) {
// execute a transaction

Y 1 1
// atomic commit Breaking Kernel Address Space Layout Randomization
_xend(Q); with Intel TSX

|
3
4
5
f [code]
.
8
9 } else {

f . " Yeongjin Jang, Sangho Lee, and Taesoo Kim
10 ,// / d b oI t School of Computer Science, Georgia Institute of Technology
{yeongjin.jang, sangho, taesoo}@gatech.edu
1}
ABSTRACT ‘“lnd‘v“~.\'uU_ 0S5 0SX 108 Linux 3.14

User-space Kernel-space Kernel-space

Kernel hardening has been an important topic since many applica-
tions and security mechanisms often consider the kernel as part of
their Trusted Computing Base (TCB). Among various hardening
techniques, Kernel Address Space Layout Randomization (KASLR)
is the most effective and widely adopted defense mechanism that
can practically mitigate various memory corruption vulnerabilities,
such as buffer overflow and use-after-free. In principle, KASLR
. f [P Lo . RN

A Strawman Solution

* Protect the entire program with TSX!

Enclave Program
Page fault
~<

abort

116

Challenge: Not Progressing!

1) Timer interrupt (i.e., external faults)
2) False TSX aborts (e.g., capacity)

OS Timer Enclave Program

@ —— = — = — ¢ — —

117

Approach: Smaller Execution Units

1) Execution time analysis

08 Timer 2) Cache analysis

Enclave Program

) . Cache
time constraint

@ = =) = e) = = = = == =

O dz

118

This design still leaks information

Execution Blocks

TSX instructions are not
protected

Page A

~

Page A

Jault

N
\
N
R} Page B
=
~~~~
T t

Page B

119



Solution: Springboard

All transactions begin and end on the
springboard, so attacker can only observe
page fault on the springboard

Execution Blocks

Springboard page

Page A

Springboard page

Page fault

Page B

Leak only single page
(already known to attackers)!

120



Design of T-SGX (Compiler)

Enclave
/~  entry point N
Host g 'n-1.0v entry, rl5 9 execution
program ~_— jmp begin push rbp entry
mov rax, rbx
® EENTER Qpringboard (R-X/
\p |
next: xend() - mov EB1, r15
e J?(nlz;grl?g/l [~ jmp next
end: ;le_lgdr(%s [~ oV rbx, rex EB1
/,{ abort handler mov EB2, r15
EEXIT/AEX ® i (;r:tp fext
\_ J

User space

@ terminate (or interrupted)

Kernel space

Exception
handler

transactional regions
—» control flows

121



T-SGX: Eradicating Page Faults

* Technique to avoid false aborts (e.g., capacity)
* Security analysis - springboard design
* Performance optimizations

50% CPU, 30% Mem overheads

""l | | I |f'I"j"| T

&
122

0



DEMO: T-5GX

mingwei@sgx3:~/workspace/t-sgx/test/sgx-pf-attack$ I

https://github.com/sslab-gatech/t-sgx 123



https://github.com/sslab-gatech/t-sgx

New Attack Vectors

* Page table attack
— e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
— e.g., freezing machines

e L1 terminal fault against SGX (i.e., Foreshadow)
— e.g., breaking SGX ecosystem (and more!)



New Side Channel:
Branch Shadowing Attack

* Finer-grained, yet noise-free!
(unlike page faults / cache attacks, respectively)

* Observation:
* Branch history is shared between SGX and non-SGX

— Execution history of an enclave affects the
performance of non-SGX execution



New Side Channel:
Branch Shadowing Attack

* Finer-grained, yet noise-free!
(unlike page faults / cache attacks, respectively)

Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing

Sangho Lee’ Ming-Wei Shih® Prasun Gera™ Taesoo Kim' Hyesoon Kim' Marcus Peinado*

T Georgia Institute of Technology
* Microsoft Research

Abstract we need either to fully trust the operator, which is prob-

. ) lematic [16], or encrypt all data before uploading them
Intel has introduced a hardware-based trusted execution , the cloud and perform computations directly on the

environment, Intel Softlware Guard E:ftensmn‘s (SGX), encrypted data. The latter can be
that provides a secure, isolated execution environment,  npicencryntion, which is still s
or en'clave. for a user program vlvuhout trusting any un-  nrecerving encryption, which is
derlying software (e.g., an operating system) or firmware.  hen we use a private cloud or

126



ldea: Exploiting New HW Features

* Intel Skylake (and Broadwell) introduced two new
debugging features that report prediction results

 Last Branch Record (LBR)
* Intel Processor Trace (PT)

— But only for non-enclave programs
(or enclave on a debug mode)



Our Approach: Branch Shadowing

enclave

Shadow replica

non-enclave

129



Our Approach: Branch Shadowing

enclave

[ J
. are mapped onto the

same branch prediction buffer

. is @ shadow copy of an
enclave program forced to take
all branches (e.g., je = jmp)

BTB/BPU

non-enclave

jmp OxFF10 affect

130



Our Approach: Branch Shadowing

enclave

. are mapped onto the

je 0x0010 e
same branch prediction buffer

| jmp OxFF10 ‘

Intel PT/LBR

. is @ shadow copy of an
enclave program forced to take
all branches (e.g., je = jmp)

* Monitor with LBR/PT and
extract branch prediction
results indirectly

BTB/BPU

non-enclav

131



Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

e 2 == Which one would be the next instr.

inc rox<¢” | to be predicted?

Ll:dec rbx<=

132



Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

cmp $0, rax

G M Make this prediction if

inc rbx &

1) there is no history or

1:” rbx
bhidee b 2) the branch has not been taken

133



Branch Prediction 101

Predict the next instr. of a branch instr. to avoid
pipeline stalls

L1:dec rox<=’ |Make this prediction if
the branch has been taken

Conditional behavior - Reveal history
How can we know which branch was taken?

134



Branch Prediction vs. Misprediction

* Measure branch execution time

* Take longer if a branch is incorrectly predicted
(e.g., roll back, clear pipeline, jump to the correct target)

| Predicion | Misprediction

RDTSCP 94.21 . 13.10 ;20.61 806.56

4
1
PTCYC 5959 ° 1444 90.64 /191.48
U
LBRcycle 25.69 %9.72 ,/ 3504 / 10.52
\\\ ,,/ ll
\\ // II

— Observable difference but high measurement noise



Exploiting New HW Features

* Intel LBR/PT explicitly report the prediction result,
but only taken branches (w/ limited buf size)

* Approach:

* Translating all cond. to be taken in the shadow copy
* Synchronization b/w enclave and its shadow



Example: Inferring Cond. Branch

Enclave
a cmp $0, rax
0x00530: je Ox005f4ﬁjﬁ

0x00532: inc rbx

(0%005f4: dec rbx l
.

137



Example: Inferring Cond. Branch

Enclave Shadow copy
4 cmp SO, rax\ aligned cmp rax, rax
0x00530: je Ox005f4-’-'-;-[Z;I;\f--------"OXffSBO: je Oxffbf4r=
0x00532: inc rbx 2 0xf£532: nop
(0%005£4: dec rbx J Oxf£5F4: nop

* Prepare a shadow copy w/
* Colliding conditional branches

138



Example: Inferring

Enclave

Cond. Branch

Shadow copy

- aligned

0x00530: je OX005f4?jq*~"_--ﬂ
0x00532: inc rbx l

»0xf£f530:
Oxff532:

je Oxff5f4

nop

Oxff5f4: nop

O0x005f4: dec rbx )
& =

* Prepare a shadow copy w/

* Colliding conditional branches
* Always to be taken (to be monitored by LBR)

139



Example: Inferring Cond. Branch

Enclave 4 BPU/BTB ™\
4 cmp $0, rax —
0x00530: e oXoo5f4r.-.-1: ______________ P Ox**530 | nottaken
0x00532: inec rbx OR
§
T L ox*
(0%005£4: dec rbx l 0x™7530 taken

140



Example: Inferring Cond. Branch

Enclave [ /BRU/BTB \
4 cmp S0, rax "
0x00530: je 0x005f4 T P 0x¥/*530 \| not taken
0x00532: inc rbx OR
Hrmme
T ——— %
\0x005£4: dec rbx . yl ’\ Ox \530/ taken
“x \—
‘[ e ] Indexed/tagged by
lower 31 bits

141



Example: Inferring Taken Branch

Shadow code

BPU/BTB cmp rax, rax
Ox**530 taken Fh-------- +0x££530: je Oxff5f4

0xff532: nop
X
{ LBR }
’

,0xff5f4: nop

142



Example: Inferring Taken Branch

Shadow code

BPU/BTB cmp rax, rax
Ox**530 taken Fh-------- +0x££530: je Oxff5f4

0xff532: nop
,OXff5f4 . nop Correct!
Cy
{ LBR }

 BPU/BTB correctly predicts the execution of the
shadow branch using the history

143



Example: Inferring Taken Branch

Shadow code
BPU/BTB cmp rax, rax

Ox**530 taken Ft----—---- +0xf£f530: je Oxff5f4

0xff532: nop
LBR
Oxff530| Oxff5f4 | Predicted

* If LBR reports:
* Predicted - The target branch has been taken

,OXff5f4 . nop Correct!

144



Example: Inferring Not-taken Branch

Shadow code
BPU/BTB cmp rax, rax

Ox**530 not taken e e e s »0Xff530: je OXff5f4

0xff532: nop
LBR
0xff530| Oxff5f4 [Mispredicted

* If LBR reports:
* Predicted - The target branch has been taken
* Mispredicted - The target branch has NOT been taken

,OXff5f4: nop Wrong!

145



Enabling Single Stepping!

* Check branch state as frequently as possible to
overcome the capacity limit of BPU/BTB and LBR

* e.g., BTB: 4,096 entries, LBR: 32 entries (Skylake)

* Increase timer interrupt frequency
* Adjust the TSC value of the local APIC timer

e Disable the CPU cache
* CD bit of the CRO register

~50 cycles

~5 cycles



SGX-Step: Open Source Framework

* Local APIC
e Userspace mapping for PTE

IRQ Handler IDT Lookup

-
(2 Aex

Enclave

IRQ

s

if secret
instl

else
inst2

do

~

<«

endif

SSA

(N

Y.

. (EDBGRD)

(6) ERESUME

/dev/sgx-step

»| rdtsc (:)

IRQ Handler

mov %eax, (tsc2)

iretqg

Y

(...

“movl S$STMR,
rdtsc

(@) IReT
N

Oxfee0380

AEP )

Tasssses

(optional IOCTL)

R R R R R R R R R R R et

User

Kernel

SGX-Step: A Practical Attack Framework for Precise
Enclave Execution Control

Jo Van Bulck
imec-DistriNet, KU Leuven
jovanbulck@cs.kuleuven.be
Abstract
Protected module architectures such as Intel SGX hold the

promise of protecting sensitive computations from a poten-
tially compromised operating system. Recent research con-

vincingly however, that SGX's
adversary model also gives rise to to a new class of powerful,
low-noise side-channel attacks leveraging first-rate control
over hardware. These attacks commonly rely on frequs
enclave preemptions to obtain fine-grained side-chang
servations. A maximal temporal resolution is achievef

the victim state is measured after every instruction. ¢
state-of-the-art enclave execution control schemes, h

uch instruction-level grant

X-Ste
an untrusted host process 1o

do not generally achicve

‘This paper presen , an open-source Linui:

nel framework that allows

configure APIC timer interrupt:
w

teine disactls fonen

Frank Piessens
imec-DistriNet, KU Leuven
frank piessens@cs.kuleuven.be

and track page table en-

Raoul Strackx
imec-DistriNet, KU Leuven
raoul strackx@cs kuleuven.be

concerns, the past years have seen a significant research ef-
fort [3, 6,9] on Protected Module Architectures (PMAs) that
support isolated execution of security-sensitive application
components or enclaves with a minimal Trusted Computing
Base (TCB). These proposals have in common that they en-
force security primitives directly in hardware, or in a small
hypervisor, 5o as to prevent the untrusted OS from access-

struct high-resolution, low-noise channels to spy o

execution. Specifically, the past months have st

https://github.com/jovanbulck/sgx-step



https://github.com/jovanbulck/sgx-step

Example: Attacking RSA Exp.

/* X = A’E mod N */

mbedtls mpi exp mod(X, A, E, N, RR) { Sliding-window
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

if (ei == 0 && state == 0)
continue;
if (ei == 0 && state == 1)

mpi montmul (X, X, N, mm, &T);

148



Example: Attacking RSA Exp.

/* X = A’E mod N */

mbedtls mpi exp mod(X, A, E, N, RR) { Sliding-window
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

-s-ta:te_a=__0_)___ ..
; ~-==Taken only when ei is zero

%‘t‘é’E'e' ==

mpi montmul (X, X, N, mm, &T);

149



Example: Attacking RSA Exp.

/* X = A’E mod N */

mbedtls mpi exp mod(X, A, E, N, RR) { Sliding-window
while (1) { exponentiation of mbedTLS

// i-th bit of exponent
ei = (E->p[nblimbs] >> bufsize) & 1;

(et = Divssarem=0)
s = Dwveans =T

mpi montmiil1(X. X. N. mm. &T) :

* The probability that the two branches return
different results: 0.34 (error rates)

Taken only when ei is zero

* The inference accuracy of the remaining bits: 0.998

* We were able to recover 66% of an RSA private
key bit from a single run.

e <10 runs are enough to fully recover the key.



DEMO: Branch Shadowing Attack




What Else?

libc/strtol Convert astring  The sign and length of an
into an integer input
Hexadecimal digits
libc/vfprintf Print a formatted The input format string
string

LIBSVM/k_function Evaluate a kernel The type of a kernel (e.g.,
function linear, RBF)
The number of features

Apache/lookup _bui Parse the method HTTP request method (e.g.,
Itin_method of an HTTP GET, POST)
request



Defense: Flushing Branch States
(Hardware)

* Clear branch states during enclave mode switches



[y

Normalized IPC
© o O
N o 00

O
o N

Defense: Flushing Branch States
(Hardware)

* Clear branch states during enclave mode switches

 How much overheads (depending on frequency)?

e Simulation: Flushing per >10k cycles incurs
negligible overheads

m 100

m 1k

m 10k
100k

mi1iM

m10M
bzip2 gcc mcf  h264ref omnetpp astar gamess namd sphinx3 GMEAN

154



Mitigation: Obfuscating Branch
(Software/Compiler)

* Set of conditional/indirect branches >
a single indirect branch + conditional move instructions

* The final indirect branch has a lot of targets such that it
is difficult to infer its state.

block0:mov $block1, r15

cmp $0, $a
block0: cp $0, $a . cmov $1blocl<2, rls Zigzagger's trampoline
" ’ 0ockU.j: Jmp 2z
je block?2 block1: <codel > \ Zzl:jmp blOCkl.j

block1: <codel > mov $block5, r15 /

jmp l;:oc}sfg block1.j: jmp zz2 :
block2: cmp $0, block2:mov $block3, r15 <= ¥ :

je block4 ‘ cmp $0, $b ;i zz2:jmp block2j
block3: <code2> cmov $block4, r15 /

jmp block5 block2.j: jmp zz3 g : :
block4: P clc))de3> block3: <code2> 7 >73mp block3,

. mov $block5, r15
blockS: <code4> block3.j: jmp zz4

block4: <code3>
block5: <code4>

\Zm jmpq *r15



Example: Branch Obfuscation

LO: mov SL1,rl5

LO:cmp $0, Sa cmp $0,S$a
cmov $L2,rl5
. D jmp 21

Ll:.<«d 1
L2:.. <=2 transformation L1: :“’---
L2 . : 4——.
1
e ,
|
71: L¢mpq *r15

Can identify whether L1 or L2 Can identify whether Z1 has been
has been executed executed but not its target

156



Mitigation: Obfuscating Branch
(Software/Compiler)

e LLVM-based implementation
* Overhead (nbench): <1.5x
* Just mitigate the attack, don’t solve it completely



New Attack Vectors

* Page table attack
— e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
— e.g., freezing machines

e L1 terminal fault against SGX (i.e., Foreshadow)
— e.g., breaking SGX ecosystem (and more!)



Controlling Bit Flipping in DRAM

* Reported random bit flippings happening in DRAM

« Rowhammer by Google Project Zero (2015)

* Further enhanced by many researchers

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim! Ross Daly*  Jeremie Kim' Chris Fallin*  Ji Hye Lee'
Donghyuk Lee! Chris Wilkerson’> Konrad Lai  Onur Mutlu'

!Carnegie Mellon University

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology
scales down to smaller dimensions, it becomes more difficult
to prevent DRAM cells from electrically interacting with each
other. In this paper, we expose the vulnerability of commodity
DRAM chips to disturbance errors. By reading from the same
address in DRAM, we show that it is possible to corrupt data
in nearby addresses. More specifically, activating the same
row in DRAM corrupts data in nearby rows. We demonstrate
this phenomenon on Intel and AMD systems using a malicious
program that generates many DRAM accesses. We induce
errors in most DRAM modules (110 out of 129) from three
major DRAM manufacturers. From this we conclude that
many deployed systems are likely to be at risk. We identify

’Intel Labs

disturbance errors, DRAM manufacturers have been employ-
ing a two-pronged approach: (i) improving inter-cell isola-
tion through circuit-level techniques [22, 32, 49, 61, 73] and
(ii) screening for disturbance errors during post-production
testing [3, 4, 64]. We demonstrate that their efforts to contain
disturbance errors have not always been successful, and that
erroneous DRAM chips have been slipping into the field.!

In this paper, we expose the existence and the widespread
nature of disturbance errors in commodity DRAM chips sold
and used today. _Amana 120 DR AM modules we analuzed
(comprising 2
errors in 11(
manufacture
nerable, whi
rors in the ficd
more advanced generations ol process [echnology. Wwe show

Project Zero

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges

Posted by Mark Seaborn, sandbox builder and breaker, with contributions by Thomas Dullien, reverse eng

ontinues Project Zero's practice of promoting excellence in security research on the Proje




SGX-Bomb: Rowhammer Attack

* Integrity violation of EPC results in CPU lockdown
* Rowhammer (SW) can trigger the violation!

DRAM

( pr— \
Core
EPC — Int Tree / A DRAM BANK \

| pd

@i jé $3e

EPC — Enclaves J \_ Y,

Row Buffer




SGX-Bomb: Rowhammer Attack

* Integrity violation of EPC results in CPU lockdown

* Rowhammer (SW) can trigger the violation!

void dbl_sided_rowhammer(uint64_t *pl,
while(n_reads-- > 0) {
// read memory pl and p2
asm volatile("mov (%0), %¥rl1®;" ::

asm volatile("mov (%0), *¥¥rll;" :: "r"(p2) :

// flush pl and p2 from the cache
asm volatile("clflushopt (%0);" :1
asm volatile(“"clflushopt (%0);" :1
}
chk_£flip(Q);
}

uint64_t *p2, uint64_t n_reads) {

“r"(pl) : "memory");

"memorvy") :

SGX-Boms: Locking Down the Processor via Rowhammer Attack

Yeongjin Jang’
Oregon State University
yeongjin.jang@oregonstate.edu

Sangho Lee
Georgia Institute of Technology
sangho@gatech.edu

Abstract

Intel Software Guard Extensions (SGX) provides a strongly isolated
memory space, kl]O\\"l’l as an EHCIGVL’. fDT auser process, ensuring

confidentiality and integrity against software and hardware attacks.
Even the operating system and hypervisor cannot access the en-

clave because of the hardware-level isolation. Further, hardware
attacks are neither able to disclose plaintext data from the enclave
because its memory is always encrypted nor modify it because its

integrity is always verified using an integrity tree. When the proces-

sor detects any integrity violation, it locks itself to prevent further
damages; that is, a system reboot is necessary. The processor lock

seems a reasonable solution against such a powerful hardware at-

tacker; however, if a software attacker has a way to trigger integrity

Jaehyuk Lee
KAIST
jaehyuk.lee@kaist.ac.kr

Taesoo Kim
Georgia Institute of Technology
taesoo@gatech.edu

ACM Reference Format:

Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Boms:
Locking Down the Processor via Rowhammer Attack. In SysTEX'17: 2nd
Workshop on System Software for Trusted Execution , October 28, 2017, Shang-
hai, China. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3152701.3152709

1 Introduction
Trusted Execution E
enable secure compu|
program without rely

gerr  SysTEX'17

Extensions (SGX) [18] is a commodity hardware-based TEE imple-




About Integrity Violation

* SGX assumes HW/physical attackers
* Integrity violation - drop-and-lock policy

* Implications:
e DoS: Freezing an entire machine (cloud provider)
e Require power recycle (not via normal methods)



SGX-Bomb Remarks

* Easier to trigger than normal rowhammer
i.e., a single, arbitrary bit in EPC region (128MB)

* Harder to detect
* Not notifiable in terms of resource usages

* Popular defenses (e.g., in Linux) rely on PMU (e.g., cache
misses) that is not possible for enclaves



DEMOQO: SGX-Bomb

SGX machine
(normal state)

Press

# Ctrl+Alt+Del

://github.com


https://github.com/sslab-gatech/sgx-bomb

Defenses against SGX-Bomb

* Use non-faulty DRAM!

e Use LPDDR3 that has Pseudo-TRR (Target Row Refresh)
* ECC can’t completely block (easy to trigger multiple bits)

* Potential mitigations:

* Higher refresh rate (2x)
* Using Uncore PMU
 Row-aware memory allocation for EPC regions



New Attack Vectors

* Page table attack
— e.g., leaking image data

* Branch shadowing attack
— e.g., breaking RSA

* Rowhammer against SGX
— e.g., freezing machines




L1TF: L1 Terminal Fault

Not present & L1D

enclavel enclave2

uint8_t =xoracle,
uint8_t *secret_ptr)

uint8_t v = *secret_ptr;
v = v % 0x1000;
uint64_t o = oracle[v];

}

Same address space

FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with Foreshadow-NG: Breaking the Virtual Memor?' Abstraction with Transient
. . Out-of-Order Execution
Transient Out-of-Order Execution Revision 1.0 (August 14, 2018)

Jo Van Bulck!, Marina Minkin2, Ofir Weisse®, Daniel Genkin®, Baris Kasikei®, Frank Piessens', Ofir Weisse®, Jo Van Bulck', Marina Minkin?, Daniel Genkin®, Baris Kasikci®, Frank Piessens',
Mark Silberstein?, Thomas F. Wenisch®, Yuval Yarom*, and Raoul Strackx' Mark Silberstein?, Raoul Strackx!, Thomas F. Wenisch?, and Yuval Yarom*
Vimec-DistriNet, KU Leuven, >Technion, > University of Michigan, * University of Adelaide and limec-DistriNet, KU Leuven, *Technion, 3University of Michigan, * University of Adelaide and

Data61 Data6l
Abstract tion requires different computational tasks belonging to
Abstract distrusting enclaves with a minimal Trusted Computing separate security domains to be isolated from each other

Base (TCB) that includes only the processor package and In January 2018, we discovered the Foreshadow transient  and prevented from reading each other’'s memory. In
: is

execution attack (USENIX Security’18) targeting Intel  modern computer architectures this is typically achieved
SGX technology. Intel’s subseq i igation of our a

attack uncovered two closely related variants, which we
collectively call Foreshadow-NG and which Intel refers
to as L1 Terminal Fault. Current analyses focus mostly
on mitigation strategies, providing only limited insight
into the attacks th Ives and their cc | The

Trusted execution environments, and particularly the Soft-
ware Guard eXtensions (SGX) included in recent Intel
x86 processors, gained significant traction in recent years.
A long track of research papers, and increasingly also real-
world industry applications, take advantage of the strong
hardware-enforced confidentiality and integrity guaran-

Besides strong memory isolation, typically offer an




Impacts of L1TF on SGX

* Broken isolation guarantees

* Distrustful remote attestation, thus ecosystem

* Leaking secrets from architectural enclaves
(e.g., quoting/launching)

e Emulator vs. SGX



Defense: L1TF against SGX

* Immediate steps (via microcode update):
* Flushing L1 on EEXIT/AEX
* Disabling hyperthreading

* Q. What should we do to address this issue more
fundamentally?

* Q. What’s the right way to prevent further issues?



Outline

* Threat model / assumption
e Traditional attack vectors
 New attack vectors

* On-going approaches

* Summary

170



On-going
(collaborat

Projects for Defenses

ing with MS and Intel)

1) Multifaceted side-channel attack (under review)

2) Hardware-based fault isolation (on-going)

- Seeking a better HW abstraction to contain faults
(i.e., ideal interface to replace ad-hoc TSX)

3) Loading-time synthesis (on-going)
- Addressing side-channel at loading time, depending on

the execution environment at end points
(i.e., compositing SW-based schemes without conflicts)

171



PRIDWIN: Load-time Synthesis

Local Remote

Enclave

k : k \
1011] =——fpy | 1011 - + 1011 1011] =malpp”| Page-level
n 0100 0100 0100 ASLR
Program Pro_g_ram & Pro.g.ram- & Program enabled
specifications specifications

T-SGX + Page-level ASL

T-SGX +

Page-level TSX is not supported 8
ASLR




PRIDWIN: Load-time Synthesis

Specifications & Constraints

T-SGX
| Target: Page-table attacks]|
Priority: High
Requirement: TSX
Instrumentation:
- Insert XBEGIN, XEDN at each block

Page-level ASLR

Target: Page-table attackd
Priority: Lo

Requirement: N/A
Instrumentation:

- Break program into 4-KB pages

l

Hardware configuration
TSX support: No

ANV4

Load-time synthesis

[

Constraints
solver

—

[\
1011
0100

Program +
Page-level
ASLR

173



PRIDWIN: Load-time Synthesis

Multi-stage Loader Enclave

Initialization

Compiler i
1011
% "a 0100 "
\\ WASM
Program ~ -
source

>

Synthesis

>

Generation ', )

A

1011

0100
Protected

executablej

Defense
specifications |

\4

Hardware
specifications



Summary (intel®)

* Intel SGX is a practical, promising building block to
write a secure program

* Intel SGX has unusually strong threat model,
opening up unexpected attacks

* Today’s Talk: Recent Attack/Defense of Intel SGX

175



Summary intel.

* It’s not future technology; it’s already everywhere!

LY

Why Azure Solutions Products Documentation Pricing Training Marketplac|

Blog > Virtual Machines

Introducing Azure confidential
computing

Posted on September 14, 20

° Mark Russinovich, CTO, Microsoft Azure

yoOoInne HOME DEVELOPERS TEAM

BLOG PRESS WE'RE HIRING

OASISLABS

ilii Fortanix

— jrrurwana rtanixcom  +1 (628

Meet the Team

We put software and hardware security into billions of devices. 100+ security patents.
30+ papers in top conferences. USENIX, CCC, and Blackhat presenters.

our” private testmet's
Ready to test Fortanix SDKMS beta?




