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Abstract

Throughout the history of computer science, optimizing
existing systems to achieve higher performance has been a
longstanding aspiration. While the primary emphasis of this
endeavor lies in reducing latency and increasing throughput,
these two are closely intertwined, and answering the how
question has remained a challenge, often relying on intuition
and experience.

This paper introduces a systematic approach to optimizing
sequential tasks, which are fundamental for overall perfor-
mance. We define three principles—task removal, replace-
ment, and reordering—and distill them into eight actionable
methodologies: batching, caching, precomputing, deferring,
relaxation, contextualization, hardware specialization, and
layering. Our review of OSDI and SOSP papers over the past
decade shows that these techniques, when taken together,
comprehensively account for the observed sequential opti-
mization strategies.
To illustrate the framework’s practical value, we present

two case studies: one on file and storage systems, and another
analyzing kernel synchronization to uncover missed opti-
mization opportunities. Furthermore, we introduce SysGPT,
a fine-tuned GPT model trained on curated literature anal-
ysis, which offer context-aware performance suggestions.
SysGPT’s outputs aremore specific and feasible thanGPT-4’s,
aligning with core strategies from recent research without
direct exposure, demonstrating its utility as an optimization
assistant.

1 Introduction

Improving the performance of computer systems has been
a pivotal objective within the field of computer science,
profoundly influencing user experience, operational effi-
ciency, and cost reduction. High-performance systems pro-
cess tasks with greater speed and efficiency, thereby mini-
mizing response times for user applications and enhancing
the throughput of computational operations.

The optimization of sequential execution is particularly
crucial, as Amdahl’s law [8] highlights that the maximum
potential speedup of a system is constrained by the fraction of
the program that must remain sequential. Despite advances
in parallel processing, addressing the sequential bottleneck
remains foundational for achieving meaningful performance
gains.

In response to this challenge, this paper proposes a struc-
tured approach to optimizing sequential performance. Our
approach is founded on three key principles: the removal,
replacement, or reordering of tasks within a sequence. The
performance of sequential execution is inherently defined by
the sequence itself, as each task’s execution time directly con-
tributes to the total runtime, and tasks must be completed in
a specific order. This deterministic nature implies that modi-
fying the sequence—either by removing tasks to reduce the
overall sequence length, replacing slower tasks with faster
alternatives, or reordering tasks formore efficient execution—
constitutes the only practical means to improve sequential
performance under a fixed hardware and execution environ-
ment.
Building upon these principles, we define eight action-

able methodologies for sequential performance optimization:
batching, caching, precomputing, deferring, relaxation, con-
textualization, hardware specialization, and layering. Each
methodology can be systematically explained through one
or more of the three fundamental principles, providing clear
reasoning as to why and how it improves sequential perfor-
mance.

While each methodology may be individually familiar to
the systems community, our key contribution lies in synthe-
sizing them into a unified framework that captures the full
space of observed optimization opportunities for sequential
execution. By distilling common optimization patterns into
a systematic and actionable set of methodologies, our work
clarifies the space of existing optimization opportunities
and transforms the inherently open-ended challenge of per-
formance optimization into a fully structured and tractable
process.
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To investigate the completeness of this framework, we
conducted an empirical analysis by reviewing every system
paper published at OSDI and SOSP over the past decade. Our
goal was to examine whether the eight methodologies could
sufficiently account for the diverse optimization techniques
proposed in these papers, thereby demonstrating that the
methodologies form a complete set of common patterns for
sequential performance optimization. These eight method-
ologies are not intended to represent the only means of
achieving sequential performance optimization, but rather
to provide a comprehensive account of the common patterns
observed over the past decade.
We envision these methodologies serving as a checklist

for researchers and developers, helping them to systemati-
cally explore known optimization strategies, reduce the risk
of overlooking opportunities, and recognize when a true
algorithmic breakthrough may be required.
Finally, to bridge the gap between conceptual principles

and practical application, we present SysGPT, a fine-tuned
GPT model [2] trained on a curated analysis of a decade’s
literature. Through both qualitative and quantitative evalua-
tion, we demonstrate that SysGPT consistently outperforms
the base model and few-shot learning approaches. Our qual-
itative analysis shows that SysGPT generates more specific
and actionable suggestions that better align with ground-
truth solutions, while quantitative results demonstrate signif-
icant improvements in precision, recall, and F1-score across
various temperature settings and sampling configurations.
This combination of conceptual rigor and practical utility
ensures that the insights gleaned from our analysis do not
remain only theoretical, but instead become a tangible tool
for improving system performance.

In summary, this paper has the following contributions:

• Formalizes the performance of sequential execution and
defines three principles to optimize it. (§2)

• Establishes eight methodologies that systematically guide
sequential performance improvements.(§3)

• Empirically validates the completeness of the framework
through a comprehensive analysis of OSDI and SOSP pa-
pers over the past decade. (§3)

• Demonstrates the potential of AI-assisted performance
optimization through the development of SysGPT. (§5)

2 Problem Definition

Sparallel =
1

Fserial +(Fparallel/# threads)
(1)

Optimizing sequential performance is a fundamental
challenge in system design. Amdahl’s law (Equation 1)[8]
provides an insight into the potential speedup achievable
through the utilization of multiple processors in a computing
task. The law states that themaximum possible speedup from
parallelizing a program (Sparallel) is limited by the fraction

of the program that must be executed sequentially, denoted
as the serial fraction (Fserial). In other words, it highlights
the fact that not all parts of a program can be parallelized, so
even with infinite additional resources, there will always be a
limit to how much faster a program can run. It’s obvious that
augmenting Fparallel (and diminishing Fserial) leads to better
performance. However, there has been a lack of systematic
approach to optimize Fserial of a program. Moreover, many
problems (programs) cannot be parallelized due to compu-
tational dependencies among constituent tasks, making the
optimization of Fserial the only way to accelerate programs.

Sn = {ti}n
i=1 = Sequence of tasks for one epoch (2)

The serial fraction of a program plays a pivotal role in
determining the overall runtime and is of significant im-
portance in optimizing performance. We define the serial
fraction of a program (Fserial) as a sequence of tasks, t1, t2,
. . . tn as represented in Equation 2.

latency= F(Sn) = F({ti}n
i=1) (3)

throughput= N, where N ·F(Sn)< time (4)
In many common scenarios, a sequence of tasks is executed
iteratively, with the optimization of repetitive tasks being
the primary focus for performance enhancement. Each it-
eration is referred to as an epoch, and Equation 3 signifies
the elapsed time to execute one epoch, typically denoting
latency. Sn represents the sequence of tasks defined above,
and F represents the execution time required to process Sn,
where n is the number of tasks (length of Sn). Equation 4
defines throughput, providing insight into the number of
epochs that can be executed within a given time frame.

2.1 Principles for performance optimization

In pursuit of enhancing system performance for sequential
workloads, the focus lies on optimizing the sequence of tasks,
Sn, to ultimately reduce the runtime F(Sn). Given that the
optimization target is sequential, F(Sn) is deterministically
influenced by the sequence Sn and the hardware executing it.
Aside from completely rewriting Sn, there are three strategic
approaches: removal, replacement, or reordering of tasks
within the sequence. The following three principles delineate
these strategies:

• Prm: Remove ti from Sn. Upon optimization, the length
of the optimized sequence S′m is shorter than the original
sequence Sn, thereby satisfying m < n.

• Prep: Replace ti with t j within Sn. While the length of
the sequence Sn may remain unchanged, the optimized
sequence S′n yields a better overall runtime performance,
denoted as F(Sn)> F(S′n).

• Pord : Explore alternative permutations of Sn. Different
permutations of Sn indicates different execution order
of given tasks, which can impact overall runtime.
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Figure 1: Steps in performance optimization.

2.2 Research scope

Our research targets optimizing the sequential fraction of
system performance, focusing specifically on throughput
and latency. Throughput reflects the system’s capacity to
process tasks within a given timeframe, such as request
handling rates, model trainig speed, or data scanning speed.
Latency measures responsiveness, including per-request or
per-operation time, and offers insights into real-time perfor-
mance and user experience. We focus solely on optimizing
existing systems, excluding concerns such as security, energy
use, space efficiency, fault tolerance, and maintainability. We
also exclude the design of entirely new algorithms, as our
goal is to optimize existing ones.

2.3 Steps in performance optimization

Performance optimization is a multi-step, iterative process
involving inefficiency identification, solution design, imple-
mentation, and evaluation. While tools and benchmarks for
problem identification and evaluation have matured over
time, the intermediate steps—designing and implementing
solutions—remain largely reliant on the researcher’s exper-
tise, creativity, and experience. These stages are often the
most challenging, as they require both deep system knowl-
edge and the ability to predict how changes will interact
with the broader system dynamics. Within this context, this
paper focuses on establishing a systematic approach for the
second step: devising solutions.

3 The Eight Optimization Methodologies

The landscape of system optimization techniques is vast
and often discussed informally, with little consensus on how
many distinct strategies exist or how they relate to each
other. In this section, we distill a decade of performance op-
timization research in the systems community and define
eight actionable methodologies that together form a struc-
tured framework for sequential performance optimization:
batching (§3.1), caching (§3.2), precomputing (§3.3), defer-
ring (§3.4), relaxation (§3.5), contextualization (§3.6), hard-
ware specialization (§3.7), and layering (§3.8). We explain
eachmethodology through the principles of removal, replace-
ment, and reordering, detailing its rationale and impact on
sequential performance, and illustrating it with examples
from representative system papers.
To empirically validate the coverage of our framework,

we conducted a exhaustive review of 477 papers published at
OSDI and SOSP over the past decade. Our analysis indicates
that these eight methodologies collectively encompass all

common patterns of sequential performance improvements
observed in practice over the last ten years.

3.1 Batching

When the cost for computing a batch of items is lower than
the total cost for computing each item individually, combin-
ing these items into batches will enhance overall efficiency.
As shown in Table 1 (a), for every epoch, duplicate costs
(x2, x4 and x6) are incurred across epochs, and these costs
are repetitively accrued with each iteration of epochs. With
batching, depicted in Table 1 (b), these individual blocks are
merged into one big block (x7). To ensure the efficacy of
batching, two conditions must be satisfied: the length of the
optimized sequence should be shorter than that of the origi-
nal sequence, and the running time for batched items should
be shorter.

In terms of the three principles (§2.1), batching is a method-
ology which can effectively leverage all the three principles.
First, batching commonly yields benefits through coalesced
computation. By coalescing duplicate tasks together, particu-
larly when each task incurs significant overhead, the overall
runtime can be reduced. Upon comparing of the original and
batched sequences, the latter removes x2 and x4 (Prm), and
replaces x6 with x7 (Prep). Alongside Prm and Prep, the overall
runtime improves. NEVE ( 1 ) is an example of this approach
(see Table 2 for details).

Batching also inherently defers earlier tasks until a batch
of tasks is gathered. Consequently, it has the potential to de-
crease the overall number of tasks to be processed by discard-
ing stale tasks at the time of batched request (Prm), thereby
reducing the overall runtime. For instance, group commit and
write buffer batch multiple updates and apply modifications
in a deferred and batched manner, thereby some stale data
that has already been deleted or updated does not need to
be committed anymore. EAW ( 2 ) implements this approach
by enabling applications to update batched items in the log
prior to commit.
In addition, when batching is applied, the order of tasks

is reordered (Pord). For example, initially x2 was located be-
tween x1 and x3, but after optimization, x1 and x3 will be
executed consecutively. Therefore, batching might be em-
ployed to maximize the spatial and temporal locality of data.
IX ( 3 ) efficiently adopts this strategy to batch requests at
every stage of the network stack.

This concept is also closely interwined with caching (§3.2)
as batching eventually provides greater caching opportuni-
ties with the improved locality.
In general, batched items can achieve higher bandwidth

and throughput by eliminating redundant costs across tasks.
Nevertheless, this approach can lead to extended latency, as
initial earlier tasks in a batch might wait for subsequent tasks
to arrive, and processing a batch usually takes longer than
processing an individual task.
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Methodology Prm Prep Pord Visualization Condition and Strategies

(a) Original
epoch

X1 X3 X5 X6X2 X4
• Use below methodologies to reduce overall runtime.

(b) Batching ✓ ✓ ✓
X7X1 X3 X5

batched
len(Sbe f ore)> len(Sa f ter) AND F(x2)+F(x4)+F(x6)> F(x7)

• Coalesce duplicate tasks together.
• Discard stale tasks at the time of batched request.
• Maximize spatial and temporal locality.

(c) Caching ✓
storing to cache fetching from cache

X7 X'6X'4X1 X3 X5X2

F(x4)+F(x6)> F(x7)+F(x′4)+F(x′6)
• Introduce new caching layer on top of existing system.
• Modify system to reveal more caching opportunities.
• Develop caching policy to decide what to cache.

(d) Precomputing
& Deferring ✓ ✓

x1, x3, x5 move forward (out of epoch)

x1, x5 move backward; x3 removed

X1 X5X6X2 X4

X6X2 X4

len(Sbe f ore)> len(Sa f ter) OR F(x1,x2)> F(x2,x1)

• Move tasks out of a sequence and use resources in other time.
• Reorder tasks within a sequence and seek for better locality.
• Precomputing speculates a task will be required in near future.
• Precomputing speculates future context.
• Deferring expects the task will be shorter or not used at all.
• Deferring creates an opportunity to exploit future contextual advantages such
as caching or batching.

(e) Relaxation ✓ ✓
X1 X3 X5X'2 X'4 X'6

replaced with shorter task len(Sbe f ore)> len(Sa f ter) OR F(xk)> F(x′k)
• Compromises other properties such as accuracy, consistency or durability.
• Sampling is a common example of compromising accuracy.

(f) Contextualization ✓

collecting data

X1 X3 X5 X'6X'2 X'4X7

better decision later F(x2)+F(x4)+F(x6)> F(x7)+F(x′2)+F(x′4)+F(x′6)
• Collect runtime context and make workload-specific decision.
• Analyzing runtime characteristics can be done off the critical path then no
need to pay extra cost.

(g) Hardware
specialization ✓

potential software overhead (X7, X8)

execute on different hardware

X1 X3 X5 X6X2 X4

F(x4)> F(x7)+F ′(x4)+F(x8)

• Decide which tasks to execute on which hardware.
• Tailored design for specific hardware.

(h) Layering ✓ ✓ ✓

skipped X4

merged two tasks

X2 and X4 are spliited into two subtasks

X1 X3 X5 X6X2

X7 X8 X9

X1 X3 X5 X6X21 X22 X42

X41 is bypassed

Bypassing: len(Sbe f ore)> len(Sa f ter)
• Skip existing layer and take a fast-path.
• The most common strategy is kernel bypass.

Delayering: len(Sbe f ore)> len(Sa f ter) AND F(x1)+F(x2)> F(x7)
• Merge two tasks into one; singularity appraoch.

Decoupling: F(x2)> F(x1
2)+F(x2

2)
• Split one task into several fine-grained tasks.
• Enable finer control and loosen dependencies.
• Open more opportunities for other methodologies.

Table 1: Summary of the eightmethodologies, detailing their underlying principles, visual representations, necessary conditions,
and strategic applications.

3.2 Caching

While batching removes redundant costs across tasks,
caching addresses redundant costs over time. The funda-
mental idea behind caching is to keep computational results
in memory and reuse them at a later time, thereby avoiding
redundant computation and leveraging previously computed
values. Table 1 (c) illustrates how caching optimizes costs
over time. For caching to be effective, the computational re-
dundancy (x4 and x6) must outweigh the overhead of using
and maintaining the cache. This overhead involves the cost
for storing computed results in the cache (x7) and retrieving
old results from it (x′4 and x′6). In other words, caching lever-
ages Prep by replacing redundant computation with cached

results. Consequently, caching inherently reduces the overall
runtime at the expense of increased memory usage.

Introducing a new caching layer on top of existing system
involves identifying common operations that can be strategi-
cally cached for enhanced performance. Table 2 shows such
examples to optimize stream processing ( 4 ) and VM allo-
cation ( 5 ). Beyond introducing additional caching layer to
the current system, it is also possible to reveal more caching
opportunities by modifying existing structures ( 6 ).
Furthermore, numerous endeavors have been made to

optimize caching policy, determining what to cache. The
selective caching of frequently accessed (hot) data stands out
as a particularly effective method for improving cache hit
rates in environments having uneven access patterns ( 7 ).

360    19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



System Description

Ba
tc
hi
ng

1 NEVE [44] Coalesce and defer traps to the hypervisor by logging to avoid context switch overhead between a VM and the hypervisor.
2 EAW [13] Exclude outdated data from the batch by allowing modifications in the log before committing.
3 IX [11] Apply batching at every stage of the network stack, including system calls and hardware queues to enhance instruction and data locality.

Ca
ch
in
g

4 Drizzle [60] Reuse scheduling decisions across micro-batches as computation is largely static and undergoes infrequent changes.
5 Protean [27] Cache previous virtual machine allocation result and reuse the placement across multiple requests.
6 Tasi et al. [58] Decouple permission checking from locating a directory and memoizes permission check resuls to enable fast path.
7 NetCache [32] Let programmable switches to cache hot data for key-value store architectures.

Pr
ec
om

-
pu

tin
g

8 Duet [9] Reorder storage maintenance to prioritize data already cached in memory.
9 Itasks [18] Proactively trigger memory reclaiming upon detecting the first sign of memory pressure to reduce garbage collection during critical path.

10 Correctables [26] Prefetch dependent objects based on preliminary view instead of waiting for fully consistent one to hide the latency of strong consistency.

D
ef
er
rin

g 11 Sparrow [51] Delay assignment of tasks to worker machine until workers are prepared, mitigating race conditions among multiple distributed schedulers.

12 PACTree [35] With optimistic version lock, perform an operation optimistically without holding a lock and then check the version number.

13 SKYROS [23] Defer expensive ordering and operation execution until their effects are externalized.

Re
la
xa
tio

n 14 KnightKing [65] Allow for sampling the next edge in random walk algorithms without scanning all out-edges at the walker’s current vertex.

15 RSS and RSC [28] Relax certain real-time guarantees of strict serializability for causally unrelated transactions or operations.

16 SAUCR [6] Relax durability and availability when most servers crash simultaneously to achieve performance comparable to memory-durable one.

Co
nt
ex
t-

ua
liz
at
io
n 17 MemLiner [61] Let application threads notify garbage collection tracing threads about accessed objects for better alignment of memory accesses.

18 Syrup [34] Use eBPF to have customized scheduling policies defined by applications.

19 CLoF [15] Automatically generates various hierarchical combinations of locks and selects the most performant configuration.

H
ar
dw

ar
e 20 Nap [62] Introduce NUMA-aware layer over existing persistent memory (PM) indexes to manage hot items and avoid costly remote PM access.

21 FAERY [66] Adopt FPGA to accelerate embedding-based retrieval system which requires both high memory bandwidth and pipeline parallelism.

22 KV-Direct [40] Use programmable NICs to extend RDMA primitives and directly handle key-value operations in the host memory.

La
ye
rin

g 23 The nanoPU [29] Route incoming messages directly to the running threads’ registers, bypassing traditional memory hierarchies.

24 TinyNF [55] Simplify buffer management layers by removing buffer pool. Merge reception, processing and transmission into a single logical flow.

25 RackSched [69] Two-layer scheduling framework decouples inter-server scheduling in top-of-rack switch and intra-server scheduling in each server.

Table 2: List of example papers adopting each methodology to improve either latency or throughput.

3.3 Precomputing

Precomputing optimizes performance by strategically mov-
ing tasks to an earlier time, allowing them to be executed in
advance of their actual need. Tasks can be moved to earlier
time even before epochs start, as illustrated in Table 1 (d).
Although moving a task forward may not directly reduce its
execution time, it can optimize the performance of future
performance-sensitive executions by moving the task off the
critical paths (Prm) and leverages resources that would other-
wise be idle or less contended. On the other hand, task can
be rearranged within an epoch to seek better opportunity
for locality and reduce their execution time (Pord ). Duet ( 8 )
in Table 2 serves as an exemplary case which reorder tasks
to better utilize caching.

Executing work earlier relies on two types of speculations.
Firstly, it involves speculating that the task will be required
in the near future. For example, proactive task execution
serves as a preventive measure against unexpected overhead
during critical operations, ensuring better control over their
execution ( 9 ). Secondly, precomputing speculatively exe-
cutes tasks based on current information, rather than waiting
until a complete view of information is available ( 10 ). This
proactive approach can significantly enhance system perfor-

mance by ensuring the tasks are ready when needed, thus
minimizing waiting times and accelerating overall workflow.
However, to fully leverage the benefits of precomputing, it
is crucial to make precise decisions about when and which
tasks to execute ahead of time, as incorrect speculation may
introduce overhead.

3.4 Deferring

In contrast to precomputing, deferring postpones a task to a
later time, employing a lazy approach. Tasks can either be
delayed to beyond an epoch (Prm) or shifted to a later time
within an epoch (Pord).

One primary motivation for deferring a task is the an-
ticipation of its eventual reduction of runtime when post-
poned. For instance, deferring a task allows it to make better
decisions with the most up-to-date information available
( 11 ). Furthermore, as previously mentioned, the strategy of
deferring tasks can be effectively combined with batching
opportunities, since multiple deferred tasks can be executed
together. NEVE ( 1 ), given as a batching example, also ex-
ploits deferring, demonstrating the close relation between
these two methodologies (§4.2).
Some deferring examples even anticipate that the task
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may eventually be canceled. If there’s a possibility that a task
could be useless, it can be considered to be deferred. Should
it indeed prove unnecessary, the task can then be skipped,
thereby preventing the system from wasting resources on
tasks that were never required. Optimistic decision exem-
plifies this scenarios, rooted in the assumption that certain
events such as concurrency conflicts ( 12 ) or crash will not
occur, thereby deferring their handling until they actually
happen.
Another rationale for deferring tasks is to prioritize the

performance-sensitive sequence Sn, even if it may compro-
mise later performance. In scenarios where a task within the
Sn isn’t immediately necessary and can be deferred, it can
be executed lazily after Sn has been completed ( 13 ).

3.5 Relaxation

In some cases, precise or thorough answers are unnecessary
while a reasonably accurate approximation suffices. When
the workload and context can tolerate a modest degree of
inaccuracy or inconsistency, existing system can be modified
to reduce task size through approximate execution, thus de-
livering faster results. As depicted in Table 1 (e), relaxation
substitutes existing tasks with significantly shorter tasks
(Prep), or even completely skips them (Prm).

For example, sampling, a prevalent method of relaxation,
analyzes a small subset of data instead of the entire dataset
( 14 ). Despite working with a smaller portion of the data, sam-
pling aims to provide insights that reflect the overall dataset,
thereby facilitating faster analysis and decision-making. In
addition to the accuracy, other software requirements such
as consistency ( 15 ) or availability ( 16 ) may be compromised
in pursuit of performance.

3.6 Contextualization

There is typically a semantic gap between system design
and the execution of real workloads. Design decisions of-
ten aim to meet general requirements due to uncertainty
about future usage, but this lack of workload awareness can
hinder optimal performance. To bridge this gap, existing sys-
tems are often customized by incorporating runtime context
into their decision process. This context is often obtained by
collecting data available during execution ( 17 ). Table 1 (f)
illustrates a case where a system performs additional tasks
to inform future decisions. While these may incur runtime
overhead (denoted as x7), the resulting performance (Prep)
improvements generally justify the cost. Alternatively, pro-
filing workload characteristics off the critical path enables
specialization without runtime penalties ( 18 ). eBPF also
helps bridge the semantic gap by letting applications guide
the kernel toward more efficient, workload-aware behavior
( 19 ).

3.7 Hardware specialization

Customizing the general system design for specific hardware
configurations is another common approach. Optimization
for hardware primarily involves determining which tasks
should be executed on which hardware, taking into account
the workload characteristics and hardware specifications.
For example, numerous studies tailor existing general sys-
tems for specific hardware requirements such as non-volatile
memory, non-uniform memory access ( 20 ), FPGA ( 21 ), or
SmartNIC ( 22 ). In Table 1 (g), task x4 is executed on different
hardware (F ′) which can execute it more efficiently, resulting
in reduced runtime (F(x4)> F ′(x4)). When optimizing an
existing system for particular hardware, the advantage of
utilizing the hardware must outweigh the software overhead
(x7, x8) incurred in transitioning to that hardware.

3.8 Layering

A layer is a logical division or abstraction defined during
system design to organize and structure a system’s compo-
nents. Each layer encapsulates a specific set of functionalities
or services, helping to modularize the system and making
it easier to understand, maintain, and scale. While layers
provide clear structural benefits, they also introduce per-
formance overhead, stemming from additional processing,
communication, or indirection across layers.

Layering, the final methodology, optimizes sequential per-
formance by reducing the overhead associated with layers—
through merging multiple layers, decomposing layers more
efficiently, or selectively bypassing layers where appropriate.
Bypassing. It involves creating shortcuts or alternative
paths in a system to avoid unnecessary steps or processes,
thus reducing latency and improving overall performance. In
Table 1 (h), x4 is completely skipped through a fast-path (Prm).
Many existing works bypass the kernel stack [5, 16, 19, 21,
29, 37, 40, 46, 48, 54, 57, 68] and handle operations within the
user space to eliminate context switching overhead between
user and kernel, thereby having more flexible control for
runtime requirements ( 23 ).
Delayering. It reduces the number of layers in a system’s
architecture. This simplification consolidates multiple ab-
straction layers and removes software overhead between
them ( 24 ). Delayering often sacrifices generality, flexibility
or functionality to achieve improved performance in spe-
cific scenario. Table 1 (h) shows a scenario where two tasks
are merged into a single, larger layer, effectively reducing
overall runtime. Delayering not only combines existing lay-
ers into one but also minimizes the intermediate overhead,
leveraging both Prm and Prep.
While both delayering and bypassing aim to reduce the

number of layers being executed, their approaches differ. De-
layering restructures the system architecture itself to have
fewer layers, thereby simplifying the system. In contrast, by-
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(36)
Relaxation

Total (477)

Not 
focusing on
performance
optimization

(271)

Performance
optimization

papers
(206)

Batching
(52)

Caching
(25)

             (75)
Contextualization

Precomputing
  (35)

Layering
(83)   

  (20)
Deferring

(62)  
Hardware

Figure 2: Number of papers leveraging each methodology.
Since each paper may employ multiple methodologies, the
cumulative count of methodologies exceeds the total number
of papers within our scope.

passing selectively skips over existing layers without modi-
fying the underlying architecture—the skipped layers remain
present and may still be executed in other contexts.
Decoupling. In contrast to delayering, decoupling splits one
layer into multiple ones. Decoupling aims to minimize de-
pendencies between different components ormodules within
a system. This strategy enhances finer control and execution
by loosening the coupling between parts, allowing changes to
be made to one component without affecting others. Further-
more, by loosening dependencies between layers, it opens
more opportunity for parallelization. In Table 1 (h), x2 is de-
coupled into x1

2 and x2
2. Despite the potential for additional

overhead between the layers due to having more layers, the
benefit arises from the finer control it provides. For example,
it becomes possible to execute either x1

2 or x2
2 individually

rather than executing the larger x2, or to implement different
logic for each task ( 25 ).

4 Case Study

4.1 Statistics

To empirically evaluate the completeness of the eightmethod-
ologies in enhancing system performance, we systematically
analyzed entire papers from the OSDI and SOSP conferences
over the last decade, from 2013 to 2022. The review process
was rigorously conducted, with each paper independently
reviewed by two different reviewers to ensure accuracy and
minimize bias. Papers from 2023 and 2024 were intentionally
excluded from this analysis to serve as a fresh dataset for
evaluating our fine-tuned model, as discussed in Section §5.

As depicted in Figure 2, our analysis of 477 papers reveals
that 271 do not focus on performance optimization of sequen-
tial tasks. Among the remaining 206 performance-related
papers, every technique employed to enhance existing per-
formance aligns with one of our eight methodologies. Fur-
thermore, these methodologies are often used in tandem. On

average, research papers utilize approximately 2.01 method-
ologies, demonstrating the necessity of a multidimentional
approach for improving system performance.

Table 2 provides a detailed breakdown of file and storage
system papers presented at SOSP 2021, serving a case study
to illustrate the practical application of the methodologies
within the given domain. It provides insights into how the
eight methodologies are leveraged in practice to address
challenges within file and storage systems. Additionally, we
provide suggestions for further performance optimization
directly derived from the methodologies.

4.2 Relations between methodologies

The optimization of system performance through the eight
methodologies is not isolated; rather, these strategies often
interrelate and amplify one another when applied together.
Batching and deferring are closely interwined optimiza-

tion strategies. Batching aggregates multiple operations to
execute them collectively, inherently modifying their exe-
cution timing. For instance, a write buffer exemplifies the
combined use of batching and deferring, as it accumulates
multiple write operations to execute them together at a later
time, improving data transfer and write efficiency. This ap-
proach not only minimizes repetitive, immediate operations
but also strategically defers execution to a more opportune
moment, thereby leveraging both batching and deferring for
enhanced performance.

Decoupling separates tightly integrated components into
finer-grained subtasks, enhancing modularity and flexibil-
ity. This separation facilitates a more targeted optimization
of individual components. Often, specialization tailored for
specific hardware configurations or software requirements
necessitates initial decoupling of integrated mechanisms.
This ensures that modifications are minimal and do not inad-
vertently impact any other system components. For example,
Akkio [10] introduces an intermediary layer between client
applications and the datastore systems to separate the allo-
cation of shard data from its management. Consequently,
this allows application to specify their own shard sizes much
smaller than existing one, and determines the distribution
of data across shards, facilitating customized shard assign-
ment tailored to the needs of each application. Similarly,
decoupling can enable more effective caching opportunities,
especially when only a subset of a task’s output is reused
over time. For instance, Tsai et al. [58] first decouple permis-
sion checking from directory lookup, allowing permission
results to be cached and reused independently, creating a
fast path for common operations.

4.3 Applyingmethodologies to real problem

In exploring practical applications of the methodologies to
improve system performance, we bring one case study for

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation    363



Paper Methodologies used in the paper Suggestions for further optimization

ccNVMe [43] 1 Instead of having per-request communication, batch requests and ring
doorbell per transaction to reduce MMIOs and better utilize the write com-
bining buffer.
7 Leverage data dissemination mechanisms of NVMe for crash consistency.

6 Instead of always chaining the completion doorbell to order
transactions, enforce it only for dependent transactions.

Kangaroo [49] 1 Batch multiple objects in log-structured cache first and move objects to
set-associative cache as a group to reduce write amplification.

8 Objects are always written twice: once in KLog and once
in KSet. Having additional fast-path to bypass KLog and write
directly to KSet could be beneficial in certain scenarios.

IODA [41] 3 Proactively reclaim enough space via garbage collection to guarantee it
is not triggered during predictable window.
6 To reduce semantic gap between host and SSD for predictable latency, add
new fields to I/O submission command and quickly get contextual status.

2 Introduce a caching layer to serve hot items while the under-
lying flash storage is busy.

HeMem [56] 1 Sampled memory events are processed in batches.
1 Migrate memory pages in batches.
5 6 7 Monitor applications’ memory usage by sampling andmake memory
management decisions based on these patterns and hardware characteristics.

3 Based on the memory access pattern, speculatively prefetch
memory page from NVM to DRAM to lower the access latency.

J-NVM [39] 8 Decouple object into proxy and data to directly access NVMM without
runtime garbage collection.
8 Remove the cost of converting data back and forth between NVMM and
Java representation.

2 Since persistent objects are separated into persistent data
and a proxy in J-NVM, cache only the persistent data to hide
access latency to NVMM.

PACTree [35] 3 A reader optimistically performs a read on a data node.
8 Decouple search layer and data layer and asynchronously execute struc-
tural modification operations.
7 Take into account the specific characteristics of Non-Volatile Memory
(NVM) to design an efficient persistent index.

1 Given that allocating persistent memory incurs significant
costs, preallocate memory in batches to hide allocation latency
in critical path.

Aurora [59] 8 Instead of having volatile memory and persistent storage separately,
transparently persists all application states at regular intervals.

1 Aurora can leverage batching to persist relevant POSIX ob-
jects together and reduce the latency of persistence.

WineFS [33] 1 More huge pages to have less number of TLB entries
3 Proactively take actions to prevent future fragmentation.
6 Collects more runtime information for better allocation.

2 Instead of traversing red-black trees repeatedly to find un-
aligned free space, cache the results of the traversals for faster
allocation of small memory requests.

uFS [46] 8 The uFS servers are implemented on userspace and bypass existing oper-
ating system stack.

3 Preemptively reads more data than requested when the data
access patterns are predictable.

FragPicker [52] 1 Rather than issuing multiple small I/O requests due to fragmentation,
consolidate them by migrating data to contiguous storage locations.
6 Monitor applications’ I/O activities and selectively migrate data for de-
fragmentation.

2 To efficiently address defragmentation, FragPicker should
operate periodically. Caching previously observed I/O patterns
might expedite the analysis phase in subsequent executions, for
instance, predict which data blocks are more prone to fragmen-
tation.

Witcher [22] Propose automatic testing framework to detect correctness and performance
bugs in NVM-based persistent key-value stores.

The goal of the paper is out of our scope.

Table 3: A complete list of file and storage system papers presented at SOSP’21. Each paper is annotated with the corresponding
methodologies employed to improve performance: (1) batching, (2) caching, (3) precomputing, (4) deferring, (5) relaxation, (6)
contextualization, (7) hardware, and (8) layering. Suggestions for further optimizations, derived from these methodologies, are
also provided.

a paper, Application-informed kernel synchronization prim-
itives [53] from OSDI’22. The paper introduces SynCord, a
framework enabling application developers to deploy cus-
tom behaviors for kernel locks. Kernel locks are synchroniza-
tion primitives within the kernel, to ensure that concurrent
threads do not simultaneously access shared resources or
critical sections of code. When multiple threads simultane-
ously request the same lock to enter a critical section, the
lock implementation internally organizes these threads into
a waiting queue. This process ensures orderly lock acquisi-
tion and allows only one thread to enter the critical section
at any moment. Consequently, the critical section and the
lock implementation are fundamentally serial (Fserial) and
cannot benefit from parallelization. Optimizing these serial

components, therefore, holds the potential to significantly
improve performance.
Figure 3 demonstrates the strategies employed by Syn-

Cord to enhance lock performance and how they align with
ourmethodologies. Primarily, SynCordmaintains concurrent
threads in a waiting queue and allows dynamic rearrange-
ment of the waiters. A key contribution of SynCord is its
decoupling of the reordering policy from lock mechanism,
allowing the policy part to be managed in userspace ( 1 ).
Consequently, it allows userspace to create its own rule for
lock acquiring order, facilitating the specialization of kernel
lock behaviors to meet specific workload demands or require-
ments ( 2 ). With user-defined policy, SynCord dynamically
reorders threads in a waiting queue instead of conventional
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Figure 3: SynCord [53]’s strategies with integration of our
methodologies. SynCord leverages most of the methodolo-
gies to optimize the performance of kernel locks. Moreover,
using the methodologies, we identified two potential opti-
mization opportunities: caching and delayering.

first-in-first-out policy ( 3 ). For instance, a thread may be
prioritized and moved to the front if it has a short critical
section, or it can be deferred to the back if it operates on
a slower core. This strategic reordering is carried out with
the underlyig hardware in mind, as illustrated by batching
threads from the same NUMA node together ( 4 ) to remove
cacheline bouncing between them ( 5 ). Moreover, SynCord
provides an API to completely bypass the kernel lock, allow-
ing it to be redefined in userspace at the user’s own risk ( 6 ).
While this approach relaxes the safety guarantee, it unveils
opportunities for performance enhancements.

While SynCord incorporates the majority of our method-
ologies, two methodologies are still not directly adopted
in their work, which hold potential for further optimiza-
tion. The first one is caching. To accommodate various
user-defined lock policies, SynCord provides auxiliary data
through shadow variables [45], stored as a key-value store
in the kernel. In scenarios where lock performance is crucial,
it is common for threads to repeatedly acquire and release
locks aggressively. Therefore, introducing a caching mech-
anism for this auxiliary data would allow for the reuse of
previously accessed data upon subsequent accesses, thereby
further reducing the overhead associated with repeatedly
searching the key-value store every time using a lock.

Another overlooked opportunity is delayering. To protect
the kernel from potentially faulty user code, SynCord com-
piles user-defined policies into eBPF [20] bytecode, allowing
for static analysis through the eBPF verifier. However, the

execution of eBPF program introduces additional overhead
with each use of a lock. One potential optimization involves
compiling user-defined policy programs into native code
once they pass the static verifier, enabling their direct ex-
ecution. This approach would eliminate the intermediary
overhead between lock mechanism and user-provided poli-
cies.
In summary, this case study illustrates a successful ap-

plication of methodologies. Moreover, exploring additional
methodologies such as caching and delayering presents po-
tential avenues for further optimization. It not only demon-
strates that these methodologies are applicable in real re-
search works, but also highlights its role as a checklist to
maximize performance optimization and minimize any po-
tential opportunities to be missed.

5 SysGPT: Hints for System Performance

Devising effective solutions for system performance opti-
mization remains an open-ended and intuition-driven, often
relying on experience rather than structured guidance. While
tools for identifying bottlenecks and evaluating outcomes
are mature, the intermediate step—formulating an actionable
solution—often lacks systematic support. To address this gap,
we introduce SysGPT, a fine-tuned [4] large language model
(LLM) that provides context-aware optimization suggestions.

Our goal is to make our methodologies more applicable
to real-world optimization workflows. While standard LLMs
like GPT-4 [3] are trained on broad corpora, they often pro-
duce vague or overly verbose outputs that lack the speci-
ficity required for system-level decisions. We thus investi-
gate whether a model that internalizes the distilled insights
from a decade of systems research can provide more targeted
and practically feasible suggestions.

5.1 Implementation

To build SysGPT, we first constructed a fine-tuning dataset
based on our comprehensive review of all SOSP and OSDI
papers published from 2013 to 2022. This corpus contains
a wide range of system performance problems, each anno-
tated with a problem description, observations, and the solu-
tion strategy employed in the original paper. The solution is
annotated with both the applicable methodology from our
taxonomy defined in §3, and a concise explanation of how
it was used to address the problem. The dataset spans di-
verse systems domains, including file and storage systems,
databases, machine learning infrastructure, and more. No-
tably, we excluded papers from 2023 and 2024 to use them
exclusively for evaluation purposes, as described in §5.2 and
§5.3, ensuring that SysGPT is tested on unseen examples.
Using this dataset, we fine-tuned GPT-4o [2] to produce

SysGPT, a domain-specialized LLM that provides structured
suggestions for optimizing sequential system performance.
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System

improve system performance in a single-line of execution.

[Methodology Definitions] The eight methodologies defined in §3

User

Problem

Observations

:  [PROBLEM_DESCRIPTION]

:  [OBSERVATION_1]

[OBSERVATION_2]
Optional observations

...

Assistant

Try following suggestions to optimize given problem:
1. [METHODOLOGY_1]   :   [EXPLANATION_1]

2. [METHODOLOGY_2]   :   [EXPLANATION_2]

... Proposed optimization approaches

Given problem description with optional observations, provide a 
system solution for improving performance to the problem. Explain 
the solution in detail using the methodologies described above.

You are an expert in computer science, especially in systems area.
You know the following categories that are common methodologies to 

Figure 4: The prompt used for fine-tuning SysGPT. Obser-
vations can include background, existing challenges, related
work, and more. Based on the descriptions provided by sys-
tem and user, the assistant proposes multiple suggestions for
optimizing system performance. Each suggestion is explic-
itly tied to the eight methodologies, accompanied by a brief
explanation of its application.

The prompt format used during training is illustrated in
Figure 4. Once fine-tuned, SysGPT can be used interactively.
Given a system performance problem and context, the model
returns a set of optimization strategies, each rooted in our
methodology and supported by brief justifications.
To support reproducibility and facilitate future research

at the intersection of systems and LLMs, we release our com-
plete dataset and evaluation benchmark [1].

5.2 Qualitative results

We first examine whether SysGPT produces more feasible
and meaningful suggestions than baseline models. Evalu-
ating the quality of optimization suggestions is inherently
challenging. There is currently no well-established bench-
mark for this task, and much of the utility of a suggestion
depends on how it is interpreted and applied in practice.
Since the effectiveness of a response often becomes clear
only when a user reads and reasons about the suggestion in
context, we include in this section the actual outputs gen-
erated by SysGPT and baseline GPT-4 for direct inspection
and comparison.
Table 4 compares responses from SysGPT and baseline

GPT-4. The test set consists of all database-related papers
from SOSP and OSDI in 2023, which were excluded from
our training data. To ensure comprehensive coverage and

User

Extract and summarize the problems and observations from an 
academic paper PDF.

Please follow the same format in your response. 
Do not use any annotation or citation.

Here are three examples separated by ### marks: 
[THREE MANNUALLY_SUMMAIRIZED_EXAMPLES]

2. Summarize observations using bullet points. 
    Note that observations also include insights and challenges.

1. Summarize the problem that the paper tries to solve.
    Do not include their solutions and contributions.

Figure 5: The prompt to automatically extract problem
descriptions and observations from uploaded papers. The
prompt explicitly instruct the model to identify and extract
only the relevant problems and observations, while exclud-
ing any proposed solutions.

eliminate selection bias, we include the complete list of
database papers, even those that do not primarily focus on
performance optimization. Among the 10 papers, six address
performance-related problems, while the remaining ones fo-
cus on topics such as security, privacy, or maintainability. To
ensure scientific rigor, we use only the first model output for
each case, with the temperature set to 0 to ensure determin-
istic behavior. Due to space constraints, the table contains
summarized sentences, although most are directly extracted
from the full model outputs.
To eliminate human bias in preparing inputs for test set,

we automatically extracted problem statements and obser-
vations from each paper using a separate GPT-4o model
with knowledge retrieval capabilities. The extraction prompt
shown in Figure 5 explicitly instructs the model to include
only the problem and relevant observations, while omitting
any solutions or contributions described in the paper. This
setup ensures that both models are evaluated solely based
on their own reasoning given the same input, and that the
evaluation pipeline is fully automated without any human
intervention.

Since the problems and observations are directly derived
from the original papers, a strong model should generate sug-
gestions that meaningfully align with the solutions proposed
by the authors. In this context, SysGPT consistently pro-
duces outputs that exhibit a high degree of correspondence
with the ground-truth solutions, often matching not only the
methodology but also specific implementation details.

Examples include concrete recommendations such as “set
different lifetimes for hot/cold data by storing them sepa-
rately in cache” or “decouple range index into frontend stag-
ing buffers and backend index update”. In contrast, GPT-4
tends to produce more generic responses, such as “leverage
runtime heuristics” or “implement an in-memory caching
layer”, which are less specific and often lack actionable guid-
ance.
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DeToX

P+O Traditional caching policies focus on object hit rate, but transactional workloads need to cache all concurrently requested objects to
reduce latency. Transactions modeled as DAGs require scoring for eviction, which is costly, infeasible, and complicated by overlapping
object usage.

GPT-4 Design a caching policy that prioritizes key groups in transactional DAGs, leveraging runtime heuristics to balance latency and
computational complexity.

[12] SysGPT Infer transactional DAGs using dynamic profiling to capture transaction locality ( 6 ). Pre-fill the cache with keys ( 3 ) based on
dependency tracking.

Solution To limit the number of groups scored, keys interchangeable in reducing critical length are treated as one group. Dynamically infer
groups when DAGs are inaccessible ( 6 ). Preemptively cache related items based on dependency tracking ( 3 ).

VBASE

P+O Relational databases rely on strict monotonicity, while vector systems use approximate top-K, lacking this property. This division forces
hybrid queries, like finding top-K vectors meeting relational conditions, to handle similarity search and relational filtering separately,
resulting in inefficiencies.

GPT-4 Dynamically adjust indices based on query patterns and embedding techniques. Employ adaptive sampling strategies to balance
precision and computation. Integrate scalar and vector constraints to minimize computational overhead.

[67] SysGPT Integrate vector search with relational databases by developing a query engine tailored for hybrid workloads ( 8 ). Cache tentative
results to avoid redundant computation ( 2 ) while incrementally exploring new data. Use an adaptive search model that allows early
termination based on the size of the result set during the search ( 6 ).

Solution Instead of having two separate phases—one for finding top-K vectors and another for applying relational query filters—unify these
steps into a single execution engine ( 8 ) that incrementally expands traversal and terminates early once the query conditions are met.
Use runtime information to traverse high-quality indices more frequently ( 6 ).

Falcon

P+O The introduction of persistent cache challenges existing designs of online transaction processing engines on non-volatile memory.
Cache-NVM granularity mismatch causes write amplification, and out-of-place updates increase NVM writes and require frequent
index updates.

GPT-4 Eliminate traditional logging by ensuring atomic updates directly in persistent cache. Employ fine-grained in-place updates to minimize
NVM writes and integrate cache-aware index structures.

[30] SysGPT Eliminate explicit cache line flushing by introducing persistent cache ( 7 ). Set different lifetimes for hot/cold data by stroing them
separately in cache ( 2 ). Align cache eviction policies with NVM write block sizes ( 1 ).

Solution With persistent cache, no need to explicitly flush logs for persistency ( 7 ). To reduce write amplification from granularity mismatch,
multiple cache lines are merged into one NVM write ( 1 ). A small LRU cache absorbs hot tuples, avoiding manual flushing and reducing
NVM writes ( 2 ).

SPFresh

P+O Updating high-dimensional vector indices is challenging due to the cost of maintaining index quality during frequent updates. Existing
methods rely on costly periodic global rebuilds, result in fluctuating query latency and accuracy.

GPT-4 Adopt a hybrid approach combining cluster-based local updates with lightweight graph pruning. Cluster-based indexing minimizes the
cost of local modifications, while periodic, asynchronous graph pruning ensures global quality without frequent full rebuilds.

[64] SysGPT Incrementally update graph indices with minimal distortion on global indices ( 5 ). Only manage short range connections accurately at
runtime ( 6 ) and move partition maintenance tasks off the critical search path ( 3 ). Batch updates locally ( 1 ).

Solution Perform incremental updates by reassessing only vectors affected by local changes, rather than rebalancing the entire index ( 5 ).
Accumulate small updates locally in partitions ( 1 ) and use existing centroids and data distribution to expedite rebalancing ( 2 ). Move
the background split-reassign off from the critical path of update ( 3 ).

Chardo-

nnay

P+O Existing systems rely on two-phase commit for atomicity, causing performance limitations due to high RPC and log flushing latencies.
Modern hardware with µs-level latency alleviates these issues, shifting the bottleneck to disk read. This creates contention during
lock-holding periods, particularly under high workloads.

GPT-4 Implement an in-memory caching layer for frequently accessed data. Leverage low-latency storage and fast RPCs to asynchronously
synchronize disk-based storage.

[17] SysGPT Relax synchronization for reads and eliminate dependencies between transactions ( 6 ). Preemptively aggregate information about
transaction participants and prefetch data ( 3 ). Group read and write operations requesting same locks ( 1 , 6 ).

Solution Use fast RPCs to read a counter for strict serializability without locks ( 7 ). Dry run transactions to approximate read sets and prefetch
them ( 3 ). Reorder lock acquisition order based on the precomputed read/write sets to avoid deadlocks ( 6 ).

ScaleDB

P+O Scaling in-memory databases on multi-core architectures is hindered by contention on range-index structures like B+ trees, caused by
synchronous updates for consistency. However, range scans typically operate on stale data and read a few records.

GPT-4 Decouple updates and reads by leveraging append-only logs for write operations. Large read-only range scans can bypass the index to
directly access the underlying data.

[50] SysGPT Decouple range index into staging buffers for front-end and backend index update ( 8 ). Apply index updates in batches while caching
them in the staging buffers ( 1 , 2 ). Delay updating index from the critical path of transaction processing ( 4 ).

Solution Decouple transaction execution from updating the affected range index ( 8 ). Asynchronously apply batched updates to range indexes
with optimistic concurrencty control ( 1 , 4 ). Cache recently committed transactions separately ( 2 ).

Trubo [36] P+O The goal of the paper is user privacy, which is out of our scope.
TxCheck [31] P+O The goal of the paper is finding transactional bugs, which is out of our scope.
K9db [7] P+O The paper focuses on tracking data ownership in database and easier maintenance based on it.
HEDB [42] P+O The goal of the paper is security and maintainability, which are out of our scope.

Table 4: A complete list of database papers from SOSP’23 and OSDI’23, showing the problem and observations (P+O),
suggestions from standard GPT-4 and SysGPT, and the actual solution. Solutions and suggestions are tagged with corresponding
methodologies: (1) batching, (2) caching, (3) precomputing, (4) deferring, (5) relaxation, (6) contextualization, (7) hardware, (8)
layering.
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User

Evaluate two answers to a system performance problem by 
comparing them to the standard solution. Your goal is to 
determine which answer aligns more closely with the standard 
solution and explain your reasoning.

Observations : [observations]

Standard solution : [Actual solutions used in the paper]

Answer to evaluate : Answer 1 = [Answer from GPT-4]

  Answer 2 = [Answer from SysGPT]

Problem statement  : [problem description]

Figure 6: Prompt. LLM-based comparative evaluation.

To further validate this distinction, we conducted an LLM-
based comparative analysis following standard practices in
language model evaluation. In this setting, GPT-4o [2] serves
as an independent evaluator, tasked with judging which of
the two model outputs more closely aligns with the actual
solution from the paper. The prompt for this evaluation is
shown in Figure 6.
For 37 out of 42 papers (88%) in the test set (§5.3.2), the

evaluator preferred SysGPT’s output over that of the baseline.
This strong preference stems from SysGPT’s ability to pro-
vide more relevant and detailed suggestions that better align
with the actual solutions devised by systems researchers. For
example, in the case of Nomad [63], the evaluator noted that
SysGPT’s response “directly addresses two of the three key
strategies: contextualization and deferring, with a clear focus
on optimizing memory management based on application
behavior and reducing unnecessary migrations.” This demon-
strates how SysGPT’s methodologies enable it to generate
more targeted and actionable suggestions for real system
problems.
For the remaining 5 papers where GPT-4o’s output was

preferred, the evaluator’s rationale primarily focused on
broader strategy coverage rather than suggestion quality.
For instance, in the case of CHIME [47], the evaluator noted
that while GPT-4o’s response covered all three components
(batching, contextualization, and precomputing), it lacked
critical implementation details like RDMA usage and hotspot
buffer design. In contrast, SysGPT provided more practical
and detailed suggestions for batching and precomputing,
though it missed the contextualization aspect. This high-
lights SysGPT’s strength in delivering concrete, actionable
recommendations, even if it occasionally prioritizes depth
over breadth in its coverage of optimization strategies.

5.3 Quantitative results

While the qualitative results in §5.2 highlight the specificity
and feasibility of model-generated suggestions, it is inher-
ently interpretive. To provide more objective evidence, we
also include a quantitative evaluation that assesses how accu-
rately models can identify applicable optimization method-
ologies given a system performance problem.

5.3.1 Task definition

We frame the evaluation as a multi-label classification task:
given a system performance problem and its associated ob-
servations, the model must predict a set of applicable method-
ologies from the eight defined in §3. We then evaluate how
well these predictions align with the methodologies actually
used in the corresponding paper.
This formulation enables measurable evaluation using

standard classification metrics such as precision, recall, and
F1-score. It also helps reduce the subjectivity involved in
open-ended solution generation by focusing on whether
the model correctly identifies the underlying optimization
principles.

5.3.2 Evaluation setup

The test set consists of all performance-related papers pub-
lished at OSDI and SOSP in 2024 (42 out of 96). These papers
were not only excluded from the fine-tuning dataset, but
also released after the knowledge cutoff date (September 30,
2023) of both the base GPT-4o model [2] and SysGPT. As
a result, neither model has access to the content of these
papers, ensuring a fair evaluation on truly unseen examples.

Each paper is annotated with ground-truth methodologies
based on the actual solution described by the authors. We
compare three approaches: (1) the baseline GPT-4o model, (2)
GPT-4o with few-shot prompting using 3, 5, and 10 examples,
and (3) our fine-tuned SysGPT.
Few-shot examples are drawn from our training set and

are carefully selected to cover all eight methodologies when
10 examples are given (N = 10). Each prompt builds on the
structure shown in Figure 4. It includes a brief description
of the taxonomy in the system prompt, along with N repre-
sentative input-output examples and formatting instructions
for the model’s output.

All models are evaluated using the same inputs—problem
descriptions and observations—automatically extracted as
described in Figure 5. This ensures that any performance
differences reflect the models’ reasoning capabilities rather
than differences in prompt quality, output format, or prior
exposure to the test cases.

Metrics. We reportmicro-averaged precision (the fraction of
predicted methodologies that are correct), recall (the fraction
of ground-truth methodologies that are correctly identified),
and F1-score (the harmonic mean of the precision and re-
call) over the eight methodology labels. Partial matches are
accounted for; for example, if the ground truth is (batching,
caching) and the model predicts (batching, precomputing),
this counts as one true positive, one false negative, and one
false positive.
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Model N Output Precision Recall F1-score

GPT-4o 0 - 0.277 0.934 0.426
GPT-4o 0 Top-2 0.476 0.377 0.421

GPT-4o 3 - 0.342 0.840 0.486
GPT-4o 3 Top-2 0.560 0.443 0.495

GPT-4o 5 - 0.344 0.802 0.482
GPT-4o 5 Top-2 0.547 0.434 0.484

GPT-4o 10 - 0.345 0.868 0.479
GPT-4o 10 Top-2 0.536 0.425 0.474

SysGPT - - 0.758 0.651 0.701

Table 5: Methodology prediction evaluation on the
SOSP/OSDI’24 test set. We compare SysGPT and GPT-4o
under few-shot prompting (N = 0,3,5,10) with/without top-
2 output constraint.

5.3.3 Results

Table 5 summarizes the results of our evaluation. SysGPT
clearly outperforms all GPT-4o configurations in F1-score,
demonstrating that fine-tuning with methodology-aware su-
pervision leads to more accurate and relevant predictions.
In its default form, GPT-4o tends to enumerate nearly all
methodologies regardless of input context, resulting in an
average of 6.23 suggestions per query. This behavior leads
to a high number of false positives—resulting in low preci-
sion and high recall—and ultimately producing noisy and
unhelpful outputs.
To compensate for GPT-4o’s tendency to overgenerate,

we added a constraint limiting its output to the top-2 most
promising methodologies. While this adjustment improves
GPT-4o’s precision, now the recall drops significantly, and
the overall F1-score remains lower than that of SysGPT. We
believe this improvement stems from SysGPT’s exposure
during fine-tuning to realistic solution patterns with prop-
erly labeled methodologies. This training enables SysGPT to
more effectively filter out irrelevant suggestions and focus on
feasible strategies grounded in the problem and observations.
To assess robustness under non-deterministic sampling,

we evaluate performance (Best@k) across multiple tempera-
ture settings (T = 0.1,0.3,0.5,0.7) and trials (k = 1,3,5,10),
reflecting what an average user might expect from multi-
ple trials. For each temperature, we generate k samples and
report the best-scoring prediction relative to ground truth.
As shown in Figure 7, SysGPT consistently achieves higher
scores across all temperature settings and trial counts, with
an average F1-score improvement of 39.1% over GPT-4o. This
demonstrates that SysGPT’s methodology-aware training en-
ables more stable and reliable predictions even under varying
sampling conditions.
These results validate that SysGPT’s performance gains

are not simply due to stylistic alignment with the training
data, but stem from its improved capability to identify rele-
vant optimization principles. The methodology-aware fine-

tuning improves both precision (fewer irrelevant sugges-
tions) and recall (more comprehensive coverage), and gener-
alizes to unseen papers from a later publication year. This
demonstrates that SysGPT is not merely reproducing past
solutions, but learning transferable reasoning patterns appli-
cable to new system performance problems.

6 Discussion

6.1 Complementing causal profiling

Performance optimization is a multifaceted challenge. Opti-
mizing sequential code is not a panacea, and improvements
on one task do not always translate to end-to-end perfor-
mance gains. As demonstrated by Coz [14] paper, acceler-
ating a component may have little or no effect on overall
performance if it is not on the critical path. Coz introduces
causal profiling, a technique that quantifies the potential im-
pact of speeding up different parts of a program to identify
where optimizations will be most effective. Once such regions
are identified, however, the challenge becomes how to opti-
mize them effectively. This is where our work contributes.
While Coz identifies high-impact optimization targets, our
methodology provides a systematic framework for realizing
those optimizations. Together, they form a complementary
performance optimization pipeline guiding both where to
focus and how to proceed.

6.2 Coordination between tasks

While our framework models performance in terms of indi-
vidual sequences, coordinating multiple tasks is often crucial
for achieving system-wide performance improvements. In
multi-threaded and distributed environments, interactions
between tasks—such as contention for shared resources,
scheduling delays, or communication overhead—can dom-
inate execution time, even when individual operations are
optimized. Strategies that align task execution to reduce con-
tention, schedule work based on hardware topology, or over-
lap communication and computation are widely-recognized
techniques for improving throughput and latency.

These coordination strategies, however, typically require
reasoning across multiple execution contexts, extending be-
yond the assumptions of our sequential model. Although
some coordination effects—such as improved locality or de-
ferred execution—can be partially captured through batch-
ing or reordering, a full treatment of inter-task dynamics re-
mains beyond the current scope. Extending our methodology
to incorporate coordination-aware techniques represents a
promising direction for future work.
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Figure 7: F1-scores under non-deterministic sampling with temperature values set to 0.1, 0.3, 0.5 and 0.7. For each temperature,
we generate k responses and report the best score among the k trials (Best@k).

6.3 Limitations of SysGPT

SysGPT targets the second step of performance optimization:
devising solutions. Its effectiveness therefore depends on in-
put quality and the subsequent implementation. Well-defined
problems and detailed observations yield precise, actionable
suggestions, whereas vague inputs can lead to generic ones.
SysGPT offers conceptual guidance in natural language but
does not directly modify code. As such, implementation and
evaluation still require developer expertise.
We envision a future where the entire optimization

pipeline—from performance monitoring and solution design
to code generation and evaluation—is automated. Realizing
this vision will require significant advances across program
analysis, synthesis, and systems tooling. Our work takes a
step toward this goal, providing a foundation for automated
performance optimization.

7 Related Work

Optimizing system performance has been a longstanding as-
piration of computer systems research. Alongside countless
studies aimed at enhancing performance across various sys-
tems through diverse strategies, there have also been some
efforts to explore high-level methodologies for performance
optimization.

Lampson [38] provides hints and principles for computer
system design, suggesting principles such as simplicity, time-
liness, efficiency, adaptability, dependability and desirability.
While Lampson’s discussion of efficiency partially aligns with
our goal of system performance optimization, it largely re-
lies on intuition and high-level ideas. In contrast, our work
takes a systematic approach to optimize system performance
in terms of sequential execution, by defining fundamental
principles and empirically validating the completeness of the
four methodologies with scrutiny over a decade. We illus-
trate how these methodologies can be practically applied to
solve real-world problems efficiently, with case study and
SysGPT, significantly extending the existing literature on
performance optimization.

The Systems Performance book [25] also provides method-
ologies to improve performance and reduce latency. How-
ever, it targets system administrators and explains practical

tools for better system monitoring. Based on the introduc-
tion of various performance analysis tools and background
to understand them, the book guides how to use existing sys-
tem and tools better, rather than fundamentally optimizing
system designs itself, as our work does.
Similar to the CAP theorem [24], which states that a dis-

tributed system can optimize only two of consistency, avail-
ability, and partition tolerance, our methodologies define
the boundaries of system performance optimization. Both
frameworks help narrow the scope of exploration, guiding
developers toward feasible and practical improvements.

8 Conclusion

Optimizing sequential system performance remains a funda-
mental yet often understructured task in systems research.
We proposed a systemized framework based on three core
principles—removal, replacement, and reordering—and dis-
tilled them into eight actionable methodologies commonly
used across a decade of systems literature. This taxonomy
clarifies the space of optimization opportunities and offers a
systematic language for reasoning about performance. Built
on this foundation, we introduced SysGPT, a fine-tuned LLM
trained to suggest strategies grounded in this methodology.
Evaluated on unseen papers, SysGPT significantly outper-
formed GPT-4 baselines in both qualitative and quantitative
evaluations, demonstrating its superior ability to generate
targeted, actionable suggestions for real-world system per-
formance problems.
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