
Principles and Methodologies for
Serial Performance Optimization

Sujin Park Mingyu Guan Xiang Cheng Taesoo Kim

Georgia Institute of Technology

Performance: long-standing goal in systems community

2

43%

10 Years of
OSDI/SOSP papers

• This is not a paper about building a new system

• Instead, we ask a meta question:

– “ Can we systematize how sequential performance is optimized in practice?”

• We reviewed 477 OSDI/SOSP papers over the past decade

• Distilled a unified framework of recurring optimization methodologies

• It’s not a solution to one problem – It’s a guide to solve many

Why this paper may feel different

3

• Profiled to find a cause… and it turns out the bottleneck is lock contention!

• So how do you optimize this?

You found a bottleneck. Now what?

4

of threads

Th
ro

ug
hp

ut

Parallelism helps… but not everything can be parallelized

5

The speedup is limited by the sequential portion of the program.

Timeparallelism

Th
ro

ug
hp

ut

Amdahl’s Law

Parallelism

Sequential

Sequential optimization remains crucial

6

Concurrent threads are running1

Sequential

Critical Section

Only one thread
can enter critical section

2

Threads join
lock waiting queue

3

Sequential optimization remains crucial

7

Concurrent threads are running1

Critical Section

Sequential

To achieve higher throughput :

• Reorder waiting queue for faster progress (ShflLock, SOSP’19)

• Batch threads to better utilize underlying cache (CNA, EuroSys’19)

• Allow dynamic custom policy for reordering (SynCord, OSDI’22)

Only one thread
can enter critical section

2

Threads join
lock waiting queue

3

How to optimize sequential execution

8

1. Can we systematize sequential optimization?

2. How many distinct approaches?

3. When to use each of them?

Our questions

Three principles of sequential execution

9

1. Remove a task

2. Replace with a faster one

3. Reorder tasks for better locality

T2

T2

T2

T2

T1

T3

To optimize existing sequence,

T1

T1

From principles to practice: The eight methodologies

10

• A set of common optimization patterns for sequential performance

• Each methodology is derived from the three principles

• Together, a unified way to understand and explore sequential optimization

• Check our paper for definitions, visualizations, and real examples from OSDI/SOSP papers

Batching Caching Precomputing

Relaxation Contextualization Hardware Layering

Deferring

Are they enough to cover common patterns?

11

Yes, we manually reviewed 10 years of OSDI & SOSP papers
(477 papers)

(36)
RelaxationTotal (477)

Not
performance

papers
(271)

Performance
optimization

papers
(206)

Batching
(52)

Caching
(25)

(75)
Contextualization

Precomputing
(35)

Layering
(83)

(20)
Deferring

(62)
Hardware

Batching

12

1. Coalesced calls
• When each task incurs expensive cost every time it’s called

2. Discard stale tasks at the time of batched request
• Batching inherently defers earlier tasks to make a batch
• E.g., group commit, write buffer

3. Maximize spatial and temporal locality

1. Fewer tasks after batched

2. Batched task is shorter

Before:

After:
batched

remove

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

epoch

𝑔𝑎 𝑐 𝑒

replace

remove

reorder

Deferring

13

Before: 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

1. Move tasks out of a sequence and use later resources

2. Reorder tasks within a sequence for better decision or locality

3. Based on two types of speculation

• (1) the task might not be needed later, (2) it might be handled more efficiently if delayed

𝑎, 𝑐, 𝑒 moved out of the sequence;
𝑏 𝑑 𝑓

1. Fewer tasks for the sequence

2. Deferred task is shorter

𝑎, 𝑒 move backward; 𝑐 removed𝑎′𝑏 𝑑 𝑒′𝑓

After
(Case 1): 𝑎 𝑐 𝑒

remove

reorder

(Case 2):

Contextualization

14

Before:

After:

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

1. Collect runtime context and make workload-specific decision

2. Move the runtime analysis off the critical path if possible

collecting data

𝑎 𝑏′ 𝑐 𝑑′ 𝑒 𝑓′𝑔

better decision later

Overhead < Later optimization

replace

Applying methodologies to a real problem

15

critical section

T1T3T4T5

lock

threads waiting in a queue

T2

Applying methodologies to a real problem

16

critical section

T1T3T4T5

lock

T2

SynCord (OSDI ‘22)

To maximize throughput,
threads can be reordered based on different policies

Applying methodologies to a real problem

17

critical section

T1T3T4T5

lock

T2

SynCord (OSDI ‘22)

Deferring – move T2 later in the queue

To maximize throughput,
threads can be reordered based on different policies

Contextualization – collect runtime context

Applying methodologies to a real problem

18

critical section

T1T3T4 T5

lock

T2

SynCord (OSDI ‘22)

Batching – group threads from same socket

Deferring – move T2 later in the queue

Contextualization – collect runtime context

To maximize throughput,
threads can be reordered based on different policies

batched

Applying methodologies to a real problem

19

critical section

T1T3T4 T5

lock

T2

SynCord (OSDI ‘22)

Batching – group threads from same socket

Deferring – move T2 later in the queue

Contextualization – collect runtime context

To maximize throughput,
threads can be reordered based on different policies

batched

More optimization!

Caching +23.8% throughput
cache auxiliary data into per-thread cache line

Delayering +14.4% throughput
Directly run policy code once it passes the verifier

Conclusion

20

• Sequential tasks are basic building blocks for performance optimization

• A systematic framework to guide sequential optimization

https://persona0220.github.io/performance-book/

Human

https://github.com/sslab-gatech/SysGPT

AI agent It really captures ideas from the latest OSDI/SOSP papers

even those it was not trained on!

https://persona0220.github.io/performance-book/
https://persona0220.github.io/performance-book/
https://persona0220.github.io/performance-book/
https://github.com/sslab-gatech/SysGPT
https://github.com/sslab-gatech/SysGPT
https://github.com/sslab-gatech/SysGPT

Questions

	Slide 1: Principles and Methodologies for Serial Performance Optimization
	Slide 2: Performance: long-standing goal in systems community
	Slide 3: Why this paper may feel different
	Slide 4: You found a bottleneck. Now what?
	Slide 5: Parallelism helps… but not everything can be parallelized
	Slide 6: Sequential optimization remains crucial
	Slide 7: Sequential optimization remains crucial
	Slide 8: How to optimize sequential execution
	Slide 9: Three principles of sequential execution
	Slide 10: From principles to practice: The eight methodologies
	Slide 11: Are they enough to cover common patterns?
	Slide 12: Batching
	Slide 13: Deferring
	Slide 14: Contextualization
	Slide 15: Applying methodologies to a real problem
	Slide 16: Applying methodologies to a real problem
	Slide 17: Applying methodologies to a real problem
	Slide 18: Applying methodologies to a real problem
	Slide 19: Applying methodologies to a real problem
	Slide 20: Conclusion
	Slide 21: Questions

