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Performance: long-standing goal in systems community
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• This is not a paper about building a new system

• Instead, we ask a meta question:

– “ Can we systematize how sequential performance is optimized in practice?”

• We reviewed 477 OSDI/SOSP papers over the past decade

• Distilled a unified framework of recurring optimization methodologies

• It’s not a solution to one problem – It’s a guide to solve many

Why this paper may feel different
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• Profiled to find a cause… and it turns out the bottleneck is lock contention!

• So how do you optimize this?

You found a bottleneck.  Now what?
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Parallelism helps… but not everything can be parallelized
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The speedup is limited by the sequential portion of the program.

Timeparallelism

Th
ro

ug
hp

ut

Amdahl’s Law
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Sequential optimization remains crucial

6

Concurrent threads are running1

Sequential

Critical Section

Only one thread
can enter critical section

2

Threads join
lock waiting queue
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Sequential optimization remains crucial
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Concurrent threads are running1

Critical Section

Sequential

To achieve higher throughput :

• Reorder waiting queue for faster progress  (ShflLock, SOSP’19)

• Batch threads to better utilize underlying cache  (CNA, EuroSys’19)

• Allow dynamic custom policy for reordering  (SynCord, OSDI’22)

Only one thread
can enter critical section

2

Threads join
lock waiting queue

3



How to optimize sequential execution
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1.  Can we systematize sequential optimization?

2.  How many distinct approaches?

3.  When to use each of them?

Our questions



Three principles of sequential execution
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1. Remove a task

2. Replace with a faster one

3. Reorder tasks for better locality

T2

T2

T2

T2

T1

T3

To optimize existing sequence,

T1

T1



From principles to practice: The eight methodologies

10

• A set of common optimization patterns for sequential performance

• Each methodology is derived from the three principles

• Together, a unified way to understand and explore sequential optimization

• Check our paper for definitions, visualizations, and real examples from OSDI/SOSP papers

Batching Caching Precomputing

Relaxation Contextualization Hardware Layering

Deferring



Are they enough to cover common patterns?
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Yes,  we manually reviewed 10 years of OSDI & SOSP papers
(477 papers)

(36)
RelaxationTotal (477)

Not 
performance 

papers
(271)

Performance
optimization

papers
(206)

Batching
(52)

Caching
(25)

(75)
Contextualization

Precomputing
(35)

Layering
(83)   

(20)
Deferring

(62)  
Hardware



Batching
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1. Coalesced calls
• When each task incurs expensive cost every time it’s called

2. Discard stale tasks at the time of batched request
• Batching inherently defers earlier tasks to make a batch
• E.g., group commit, write buffer

3. Maximize spatial and temporal locality

1. Fewer tasks after batched

2. Batched task is shorter 

Before: 

After: 
batched

remove

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

epoch

𝑔𝑎 𝑐 𝑒

replace

remove

reorder



Deferring
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Before: 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

1. Move tasks out of a sequence and use later resources

2. Reorder tasks within a sequence for better decision or locality

3. Based on two types of speculation 

• (1) the task might not be needed later,  (2) it might be handled more efficiently if delayed

𝑎, 𝑐, 𝑒 moved out of the sequence; 
𝑏 𝑑 𝑓

1. Fewer tasks for the sequence

2. Deferred task is shorter

𝑎, 𝑒 move backward;   𝑐 removed𝑎′𝑏 𝑑 𝑒′𝑓

After     
(Case 1): 𝑎 𝑐 𝑒

remove

reorder

(Case 2): 



Contextualization
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Before: 

After: 

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

1. Collect runtime context and make workload-specific decision

2. Move the runtime analysis off the critical path if possible

collecting data

𝑎 𝑏′ 𝑐 𝑑′ 𝑒 𝑓′𝑔

better decision later

Overhead < Later optimization

replace



Applying methodologies to a real problem
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critical section

T1T3T4T5

lock

threads waiting in a queue

T2



Applying methodologies to a real problem
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critical section

T1T3T4T5

lock

T2

SynCord (OSDI ‘22)

To maximize throughput, 
threads can be reordered based on different policies



Applying methodologies to a real problem
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critical section

T1T3T4T5

lock

T2

SynCord (OSDI ‘22)

Deferring –  move T2 later in the queue

To maximize throughput, 
threads can be reordered based on different policies

Contextualization –  collect runtime context



Applying methodologies to a real problem
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critical section

T1T3T4 T5

lock

T2

SynCord (OSDI ‘22)

Batching –  group threads from same socket

Deferring –  move T2 later in the queue

Contextualization –  collect runtime context

To maximize throughput, 
threads can be reordered based on different policies

batched



Applying methodologies to a real problem
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critical section

T1T3T4 T5

lock

T2

SynCord (OSDI ‘22)

Batching –  group threads from same socket

Deferring –  move T2 later in the queue

Contextualization –  collect runtime context

To maximize throughput, 
threads can be reordered based on different policies

batched

More optimization!

Caching      +23.8% throughput
cache auxiliary data into per-thread cache line

Delayering     +14.4% throughput
Directly run policy code once it passes the verifier



Conclusion
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• Sequential tasks are basic building blocks for performance optimization

• A systematic framework to guide sequential optimization

https://persona0220.github.io/performance-book/

Human 

https://github.com/sslab-gatech/SysGPT

AI agent It really captures ideas from the latest OSDI/SOSP papers 

even those it was not trained on!

https://persona0220.github.io/performance-book/
https://persona0220.github.io/performance-book/
https://persona0220.github.io/performance-book/
https://github.com/sslab-gatech/SysGPT
https://github.com/sslab-gatech/SysGPT
https://github.com/sslab-gatech/SysGPT


Questions
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