y

Principles and Methodologies for
Serial Performance Optimization

Sujin Park Mingyu Guan Xiang Cheng Taesoo Kim

Georgia Institute of Technology

Performance: long-standing goal in systems community

10 Years of
OSDI/SOSP papers

2

Why this paper may feel different

 This is not a paper about building a new system

 Instead, we ask a meta question:

- “Can we systematize how sequential performance is optimized in practice?”

* We reviewed 477 OSDI/SOSP papers over the past decade
* Distilled a unified framework of recurring optimization methodologies

* It's not a solution to one problem - It's a guide to solve many

You found a bottleneck. Now what?

Throughput

of threads

* Profiled to find a cause... and it turns out the bottleneck is lock contention!

* So how do you optimize this?

Parallelism helps... but not everything can be parallelized

Amdahl’s Law

Throughput

+«—— Sequential ——

Parallelism

parallelism Time

The speedup is limited by the sequential portion of the program.

Sequential optimization remains crucial
e 2

o Concurrent threads are running Threads join Only one thread
lock waiting queue . can enter critical section

Sequential E —>

DRIVE-THRUY

1.1
Or

Critical Section

Sequential optimization remains crucial
e 2

o Concurrent threads are running Threads join Only one thread
lock waiting queue . can enter critical section

Sequential

Critical Section

To achieve higher throughput :

* Reorder waiting queue for faster progress (shfllock, SOSP'19)

« Batch threads to better utilize underlying cache (cnA, Eurosys19)

* Allow dynamic custom policy for reordering (syncord, 05D1'22) /

How to optimize sequential execution

Deferring
Speculative execution

e, LAZY €Valuatio n..
Pipelining

rrefetcingLO@d balancing,,.
Pipelining Prefetchi NQgze

Readahead Lookahead Deferring

vemoization ME€MOry poolinggsiching

eeeeeeeeeeeeeeeeeeee

Streaminggarly terminationmdesng

Early termination Early termination Throttling

MemoizatiopB uffering Leckahead

Caching Zerocopy , Prefetching . '
rasanead Deferring Batchin (Throttling
Indexing Speculative execution®iPelining

2~ ThrottlingCgchi ng Indexing

Buffering £€70 C°PY Memoization Lazy evaluation

CachingZero copy Loo ka head Streaming

Throtding, Memory pooling

Buffering Readahead i

Caching b e o
Lazy evaluation yPp Memoizanong

Deferring Prefetching

aaaaaaaaaaaaaaaa

Buffering Batchin g

Load balancing
Zero copy

Speculative exec

1.

2.

3.

@ Our questions

Can we systematize sequential optimization?
How many distinct approaches?

When to use each of them?

Three principles of sequential execution

To optimize existing sequence,

1. Remove a task

From principles to practice: The eight methodologies

Batching Caching Precomputing Deferring

Relaxation Contextualization Hardware Layering

A set of common optimization patterns for sequential performance
Each methodology is derived from the three principles
Together, a unified way to understand and explore sequential optimization

Check our paper for definitions, visualizations, and real examples from OSDI/SOSP papers

Are they enough to cover common patterns?

Yes, we manually reviewed 10 years of OSDI & SOSP papers

(477 papers)

Not
performance
papers
(271)

Performance
optimization

papers
(206)

Total (477)

Batching Caching

(52) (25)

o .
. .
. .

Layering Precomputing
&) | - (35)
(62) = (20)
Hardware ™. Deferring
(75) (36)
Contextualization Relaxation

Batching

epoch

Before: 1. Fewer tasks after batched

batched

After: [a]c]e 2. Batched task is shorter

1. Coalesced calls remove replace
* When each task incurs expensive cost every time it’s called

2. Discard stale tasks at the time of batched request remove
« Batching inherently defers earlier tasks to make a batch
* E.g.,group commit, write buffer

3. Maximize spatial and temporal locality reorder

Deferring

1. Fewer tasks for the sequence

Before: n b J u ¢
After a, c, e moved out of the sequence; 2. Deferred task is shorter
(Case 1):

(Case 2): a, e move backward; ¢ removed

1. Move tasks out of a sequence and use later resources remove

2. Reorder tasks within a sequence for better decision or locality reorder

3. Based on two types of speculation

. (1) the task might not be needed later, (2) it might be handled more efficiently if delayed

Contextualization

Before: | a [i B s

Overhead < Later optimization
arer: [P < I < N - G
collecting data better decision later

1. Collect runtime context and make workload-specific decision replace

2. Move the runtime analysis off the critical path if possible

Applying methodologies to a real problem

critical section

Applying methodologies to a real problem

. lock
To maximize throughput, ' r
threads can be reordered based on different policies ‘.'

S @ o BB B

critical section

SynCoxrd (OSDI "22)

Applying methodologies to a real problem

. lock
To maximize throughput,
threads can be reordered based on different policies :.:

8 = @ &9

&5

critical section

SynCoxrd (OSDI "22)

& Deferring - move T2 later in the queue

& Contextualization - collect runtime context

Applying methodologies to a real problem

lock
To maximize throughput, @
threads can be reordered based on different policies ‘ r
y

B @& &S o

batched

critical section

SynCoxrd (OSDI "22)

& Deferring - move T2 later in the queue
& Contextualization - collect runtime context

Q Batching — group threads from same socket

Applying methodologies to a real problem

lock

To maximize throughput, ‘ r @
threads can be reordered based on different policies
y

B @& &S o

batched

critical section

SynCord (OSDI "22)

More optimization!

Q- Caching ——> +23.8% throughput

cache auxiliary data into per-thread cache line

& Deferring - move T2 later in the queue

& Contextualization - collect runtime context |
‘O Delayering —> +14.4% throughput

@ Batching - group threads jrom same socket Directly run policy code once it passes the verifier

Conclusion

* Sequential tasks are basic building blocks for performance optimization

* A systematic framework to guide sequential optimization

(% https://persona0220.qgithub.io/performance-book/

Human

.

https://github.com/sslab-gatech/SysGPT
\ It really captures ideas from the latest OSDI/SOSP papers

even those it was not trained on!

Al agent

https://persona0220.github.io/performance-book/
https://persona0220.github.io/performance-book/
https://persona0220.github.io/performance-book/
https://github.com/sslab-gatech/SysGPT
https://github.com/sslab-gatech/SysGPT
https://github.com/sslab-gatech/SysGPT

Questions

	Slide 1: Principles and Methodologies for Serial Performance Optimization
	Slide 2: Performance: long-standing goal in systems community
	Slide 3: Why this paper may feel different
	Slide 4: You found a bottleneck. Now what?
	Slide 5: Parallelism helps… but not everything can be parallelized
	Slide 6: Sequential optimization remains crucial
	Slide 7: Sequential optimization remains crucial
	Slide 8: How to optimize sequential execution
	Slide 9: Three principles of sequential execution
	Slide 10: From principles to practice: The eight methodologies
	Slide 11: Are they enough to cover common patterns?
	Slide 12: Batching
	Slide 13: Deferring
	Slide 14: Contextualization
	Slide 15: Applying methodologies to a real problem
	Slide 16: Applying methodologies to a real problem
	Slide 17: Applying methodologies to a real problem
	Slide 18: Applying methodologies to a real problem
	Slide 19: Applying methodologies to a real problem
	Slide 20: Conclusion
	Slide 21: Questions

