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Introduction

The recent past has seen an increasing interest in Heterogeneous Graph

Neural Networks (HGNNs), since many real-world graphs are heterogeneous

in nature, from citation graphs to email graphs.

However, existing methods ignore a tree hierarchy among metapaths,

naturally constituted by different node types and relation types.

We present HetTree, a novel HGNN that builds a semantic tree data

structure to capture the hierarchy among metapaths.

Our evaluation demonstrates superior performance and scalability of

HetTree on a variety of real-world graphs.
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Figure 1. (a) Relational scheme of a heterogeneous email graph (b) An example of the email graph.

Motivation

Metapath: an ordered sequence of composite relationships connecting

distinct or identical node types.

For example:

PO: Sender
p1_sends(O)−−−−−−→ Message

PH : Sender
s_has_domain_of (H)−−−−−−−−−−−→ Domain

POF : Sender
p1_sends(O)−−−−−−→ Message

is_sent_from(F )−−−−−−−−−→ IP

POF is intuitively more closely associated with PO than PH due to greater

overlap in node types and relationships.

This overlap can be conceptualized as a parent-child relationship, where the
parent metapath serves as a prefix to its child metapaths.

For example, PO is the parent of POF .

Consequently, these parent-child relationships naturally form a tree hierarchy

among the metapaths (semantic tree).
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Figure 2. (a) The offline process of feature aggregation. The center node is the target Sender
node and features are aggregated for all metapaths Pk up to hop k, where k = 2 in this example.
(b) The offline process of label aggregation on partially observed labels in the training set.

Metapath Feature Transformation

HetTree then transforms the aggregated features and labels for metapaths to the

same latent space. It matches and concatenates (‖) the aggregated features and
labels of the same metapath P . Specifically, for all P ∈ Pk, we compute the

metapath features M as

M = {MP =

{
MLP (XP ‖ ŶP ), if P ∈ Pk

Otgt

MLP (XP ), otherwise
}. (1)

Semantic Tree Aggregation: Subtree Attention
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Figure 3. HetTree proposes a novel subtree attention to encode both the parent and children

representation and uses it to emphasize the hierarchical correlation among metapaths.

Experiments

We conduct extensive experiments on five open graph datasets as well as a

real-world commercial email dataset (more details in the paper). The results

demonstrate that HetTree can outperform the state-of-the-art architectures on

all datasets with low computation and memory overhead.

Performance on HGB benchmark

DBLP IMDB ACM

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RGCN 91.52±0.50 92.07±0.50 58.85±0.26 62.05±0.15 91.55±0.74 91.41±0.75

HAN 91.67±0.49 92.05±0.62 57.74±0.96 64.63±0.58 90.89±0.43 90.79±0.43

HetGNN 91.76±0.43 92.33±0.41 48.25±0.67 51.16±0.65 85.91±0.25 86.05±0.25

MAGNN 93.28±0.51 93.76±0.45 56.49±3.20 64.67±1.67 90.88±0.64 90.77±0.65

HGT 93.01±0.23 93.49±0.25 63.00±1.19 67.20±0.57 91.12±0.76 91.00±0.76

HGB 94.01±0.24 94.46±0.22 63.53±1.36 67.36±0.57 93.42±0.44 93.35±0.45

SeHGNN 95.06±0.17 95.42±0.17 67.11±0.25 69.17±0.43 94.05±0.35 93.98±0.36

HetTree 95.34±0.17 95.64±0.15 68.43±0.31 70.92±0.29 94.26±0.20 94.19±0.20

Table 1. Experimental Results of HetTree and baselines on the HGB benchmark.
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Figure 4. Epoch time and memory usage on HGB datasets.

Takeaways

Existing HGNNs ignore a tree hierarchy among metapaths, which is

naturally constituted by different node types and relation types.

HetTree builds a semantic tree structure to capture the hierarchy and

proposes a subtree attention mechanism to encode the semantic tree.

A future direction is to generalize the semantic tree structure to HGNNs

with multi-layer aggregation.
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