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HETTREE Experiments

Introduction

We conduct extensive experiments on five open graph datasets as well as a
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Figure 1. (a) Relational scheme of a heterogeneous email graph (b) An example of the email graph.

Motivation

Metapath: an ordered sequence of composite relationships connecting
distinct or identical node types.
For example:

= Py Sender
= Py Sender
= Pop: Sender

pl_sends(O)

> Message

s_has_domain_of(H) _
> Domain
is_sent_from(F)

pl_sends(O)

> [P
Por is intuitively more closely associated with Py than Py due to greater

overlap in node types and relationships.

This overlap can be conceptualized as a parent-child relationship, where the
parent metapath serves as a prefix to its child metapaths.

= For example, Py is the parent of Pyr.

> Message

Consequently, these parent-child relationships naturally form a tree hierarchy
among the metapaths (semantic tree).

Hetlree then transforms the aggregated features anc
same latent space. It matches and concatenates (||) t

labels for metapaths to the
ne aggregated features and

labels of the same metapath P. Specifically, for al
metapath features M as

P € P* we compute the

MLP(Xp || Yp), if P € Py, (1)

-

Semantic Tree Aggregation: Subtree Attention
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Figure 3. Hetlree proposes a novel subtree attention to encode both the parent and children
representation and uses it to emphasize the hierarchical correlation among metapaths.
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Figure 4. Epoch time and memory usage on HGB datasets.

Takeaways

= Existing HGNNs ignore a tree hierarchy among metapaths, which is

naturally constituted by different node types and relation types.

= Hetlree builds a semantic tree structure to capture the hierarchy and
proposes a subtree attention mechanism to encode the semantic tree.
= A future direction is to generalize the semantic tree structure to HGNNSs

with multi-layer aggregation.



mailto:yours@gatech.edu

