
SENSE: Enhancing Microarchitectural Awareness
for TEEs via Subscription-Based Notification

Fan Sang1, Jaehyuk Lee1, Xiaokuan Zhang3, Meng Xu4,

Scott Constable2, Yuan Xiao2, Michael Steiner2, Mona Vij2 and Taesoo Kim1

1Georgia Institute of Technology, 2Intel, 3George Mason University, 4University of Waterloo

Abstract—Effectively mitigating side-channel attacks (SCAs)
in Trusted Execution Environments (TEEs) remains challenging
despite advances in existing defenses. Current detection-based de-
fenses hinge on observing abnormal victim performance character-
istics but struggle to detect attacks leaking smaller portions of the
secret across multiple executions. Limitations of existing detection-
based defenses stem from various factors, including the absence
of a trusted microarchitectural data source in TEEs, low-quality
available data, inflexibility of victim responses, and platform-
specific constraints. We contend that the primary obstacles to
effective detection techniques can be attributed to the lack of direct
access to precise microarchitectural information within TEEs.

We propose SENSE, a solution that actively exposes under-
lying microarchitectural information to userspace TEEs. SENSE
enables userspace software in TEEs to subscribe to fine-grained
microarchitectural events and utilize the events as a means to
contextualize the ongoing microarchitectural states. We initially
demonstrate SENSE’s capability by applying it to defeat the
state-of-the-art cache-based side-channel attacks. We conduct
a comprehensive security analysis to ensure that SENSE does not
leak more information than a system without it does. We prototype
SENSE on a gem5-based emulator, and our evaluation shows that
SENSE is secure, can effectively defeats cache SCAs, and incurs
negligible performance overhead (1.2%) under benign situations.

I. INTRODUCTION

The ever-growing complexity and ubiquity of modern
computing systems [1] have opened a Pandora’s box of security
challenges. One such challenge, microarchitectural side-channel
attacks (SCAs) [2]–[12], has emerged as a threat to the confi-
dentiality and integrity of sensitive information. These attacks
exploit shared resources, such as cache memory, to covertly
extract secret data from seemingly secure systems. Modern
Trusted Execution Environments (TEEs) (e.g., Intel Software
Guard Extensions (SGX) [13] and Trust Domain Extensions
(TDX) [14], AMD Secure Encrypted Virtualization (SEV) [15],
and ARM TrustZone [16]) aim to provide architectural protec-
tion against privileged attackers (e.g., OS and hypervisor) and
consider some SCAs to be addressable by software, e.g., using
constant-time programming techniques [6], [8], [17]–[26].

Although disabling resource sharing entirely at the
hardware level (e.g., strict cache partitioning) mitigates many
SCAs in TEEs, it is not practical and detriments utility.
Constant-time programming is also challenging to deploy at

scale. Sub-optimal hardware resource isolation techniques [27]–
[31] try to find a balance between performance and security
by allowing restricted resource sharing and dynamically
partitioning a hardware structure (e.g., cache) among multiple
security domains. However, hardware-based mitigations,
designed with existing knowledge and fixed at hardware
level once deployed, cannot be easily upgraded and adapted
to defend future SCA strategies. Recent studies [32] even
show that dynamic hardware resource partitioning still leaks
information and accurately quantifying the leakage is hard.

To be more flexible as well as potentially catch the missed
leakage, various detection mechanisms [33]–[41] for TEEs have
been proposed. Detection-based mitigations rely on observing
the impact of SCAs on the victim’s performance (e.g., excessive
cache misses) and detect ongoing attacks when anomalous
performance characteristics are identified. Unfortunately,
recent studies demonstrate that attackers can effectively
bypass detection by leaking smaller portions of secrets (e.g.,
1 bit) across multiple victim executions instead of inferring
most secrets within a single execution [42]. Consequently,
abnormal performance behaviors are amortized across multiple
executions, preventing detection tools from differentiating
between benign and potentially malicious executions. In
fact, any detection tool relying on the victim’s performance
characteristics is likely to fail [42]. As long as information
leakage persists, adversaries can compensate for the scarcity
of information by adopting more computationally intensive
strategies, as demonstrated by formal SCA models [43].

It is indeed an irony that in microarchitectural SCAs
against TEEs, attackers have the freedom to collect various
microarchitectural signals, including those from the kernel
space, while victim programs running in TEEs are constrained
in their ability to reliably gather SCA signals and lack runtime
awareness of the microarchitectural context, since the OS
cannot be trusted. More specifically, detection-based techniques
under TEEs encounter a number of limitations: 1) missing
trusted data sources, exacerbated in TEEs due to untrusted OS
mediation [34]–[38]; 2) low-quality data, leading to imprecise
attack detection and allowing stealthy attacks [34]–[40]; 3)
inflexibility, as victims have limited contextual awareness
and can only make coarse-grained decisions [34]–[41]; and
4) platform constraints, where techniques rely on platform-
specific features, limiting extensibility and applicability to
other architectures or future generations [33], [39]–[41].

Inspired by the practice of security through transparency (in
contrast with security through obscurity), we believe that open-
ing direct access to microarchitectural events with caution for
TEEs can help to enable more complete forms of SCA defense

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24176
www.ndss-symposium.org

strategies as well as facilitate use cases beyond just preventing
SCAs. As history has proven, providing more transparency to
the public with careful mediation (e.g., open-source projects
such as the Linux kernel and Kerckhoff’s principle in crypto-
graphic systems [44]) can contribute to the overall robustness of
the system. To build a timely, accurate, flexible, and trustworthy
technique that may fundamentally thwart microarchitectural
SCAs, we argue that it is necessary to turn a side channel that
can only be crafted by skilled attackers into a high-fidelity
direct channel only accessible to victims in TEEs at runtime.
This approach not only provides an immediate, effective, and
future-proof response to potential attacks but also challenges
the very foundation of existing SCA strategies, which relies
on the information gap between the attacker and the victim.

SENSE. In this paper, we present SENSE, a paradigm-shifting
hardware-software co-design solution that directly exposes
events at microarchitectural level to userspace TEEs. SENSE is a
general architectural extension that provides a reliable source of
precise microarchitectural information and a flexible method for
feeding microarchitectural events directly to TEEs. It achieves
this by directly notifying userspace software in TEEs about
microarchitectural events, allowing users to proactively defend
themselves against SCAs using actions specified in the event
handler, such as enforcing security invariants (e.g., pinning
secret-dependent cache entries). As SENSE inevitably becomes
part of the attacker’s arsenal, we also conduct an in-depth
security analysis of the SENSE architecture, SENSE handlers,
and potential attack surfaces, and demonstrate that SENSE does
not leak more information than a system without SENSE does.

While SENSE is designed to be a generic framework,
in this paper, we enable SENSE specifically for thwarting
cache-based SCAs for TEEs, as they are the most widely
researched SCAs against TEEs. We prototype SENSE on a
cycle-accurate gem5-based [45] emulator (§VI). Evaluation
results show that SENSE can successfully defeat cache SCAs
and incurs negligible overhead (1.2%) on reasonable TEE
workloads under benign situations.

SENSE has more use cases than detecting SCAs. For
example, secure software that typically incur high performance
overhead (e.g., constant-time cryptographic algorithms) can
be dynamically loaded (i.e., dynamic switching) in TEEs
by SENSE handlers upon sensitive events, ensuring the
performance penalty is only paid when necessary. SENSE
can also be utilized to audit the faithfulness of an untrusted
OS by verifying whether the contracts between the OS and
userspace (e.g., cache coloring) are honored, owing to the rich
microarchitectural information provided by SENSE.

SENSE serves as the first advocate for a transparent and trust-
worthy source of high-fidelity microarchitectural information
dedicated to TEEs. SENSE is publicly available as an open-
source project1, allowing communities to test and contribute to-
wards a more transparent microarchitectural paradigm for TEEs.

Contributions. This paper makes following contributions:

• New approach. We propose a novel approach to counteract
microarchitectural SCAs in TEEs by actively exposing mi-
croarchitectural states to TEEs through notifications, turning
a side channel that can only be crafted by skilled attackers

1https://github.com/sslab-gatech/Sense

into a high-fidelity and trustworthy direct channel accessible
to victims within TEEs at runtime. We present our solution
SENSE, an architectural extension that provides prompt, ac-
curate, and trustworthy microarchitectural event notifications
to userspace TEEs for flexible handling of potential SCAs.

• SENSE for cache-based SCAs. We provide a comprehensive,
platform-agnostic description of SENSE architecture for
addressing cache SCAs in TEEs, detailing the necessary
processor architecture extensions and additional cache
components to facilitate SENSE.

• Security analysis of SENSE. As SENSE inevitably falls into
the attacker’s arsenal as well, we conduct a comprehensive
security analysis of the SENSE interface and possible attack
scenarios to demonstrate its security.

II. BACKGROUND

A. Microarchitectural Events

Microarchitecture comprises hardware components that
are not directly accessible to software, as they are typically
abstracted by the Instruction Set Architecture (ISA) and
function (e.g., accelerate certain operations) transparently from
the software layer. Microarchitectural events are generally
related to instruction executions and memory operations.
Instruction-related microarchitectural events include overall
instruction fetch, issue, dispatch (execution) and retirement.
Memory-related microarchitectural events include load and
store operations on various memory components, such as CPU
cache hit and miss, Translation Lookaside Buffer (TLB) hit
and miss, and Page Table Walks.

However, while not directly accessible to the software
layer, microarchitectural events can be inferred indirectly
by carefully controlled software execution, hence, leaking
information about software activities in unexpected ways.
Furthermore, as all programs running on a machine share
the same set of hardware components (i.e., microarchitectural
states), attackers who can perform controlled execution of
one program can leverage the observed microarchitectural
events to infer the behavior of other programs. This forms the
theoretical basis of side-channel attacks (SCAs).

B. Cache-based Side-Channel Attacks (SCAs)

Among a diverse set of SCAs, cache-based SCAs [2]–[5],
[46]–[53] present a risk to secure computing across a variety
of platforms and architectures, including TEEs such as Intel
SGX [17], [24], [25], [54] and ARM TrustZone [52], [55].
These attacks can disclose both fine-grained and coarse-grained
private data and operations, including bypassing address space
layout randomization (ASLR) [48], [51], deducing keystroke
patterns [49], [50], leaking sensitive information from human
genome indexing computations [17], and exposing RSA [3],
[53] and AES decryption keys [4], [56].

Cache-based SCAs exploit the time difference between
cache hits and misses to infer secrets by learning whether
specific cachelines have been accessed by the victim program.
Commonly used techniques include Prime+Probe [2]–[4],
[46]–[48] (to monitor cache set access patterns), and
Flush+Reload [5], [49]–[51] (to evict shared target cachelines)
while other variations have been proposed as well.

2

https://github.com/sslab-gatech/Sense

Detection-based defenses. To counter the aforementioned
attacks, researchers have proposed various detection-based coun-
termeasures [42]. A detection-based solution aims to identify
ongoing attacks by monitoring program performance charac-
teristics, such as cache miss rates and number of interrupts, to
determine suspicious processes [33]–[38], [40], [41]. We cover
detection-based techniques in depth in related work (§VIII).

Limitations. Detection-based strategies [33]–[38], [40], [41]
are based on heuristics and face numerous challenges:

1) Missing trusted data sources in TEEs. Although the scarcity
of data sources also applies to defending SCAs without
TEEs, it is significantly exacerbated under TEEs. While
direct information about microarchitectural events (e.g., cache
events) is available through native interfaces (e.g., performance
counters), the reliance on untrusted OS mediation (e.g., by
registering a signal handler) renders these information sources
inapplicable under TEEs [34]–[38], and no alternative sources
for direct microarchitectural information exist.

2) Low quality of available data. The statistical and noisy
nature of performance characteristics (e.g., number of page-
faults or interrupts), along with existing microarchitectural
information primarily intended for performance tuning and
runtime profiling purposes (e.g., the number of cache misses),
often leads to delayed and imprecise detection of attacks. This
limitation allows for more “stealth” attacks [26], [47], [57] and
leaves victims vulnerable to continued exploitation [34]–[40].

3) Inflexible. Due to the lack of detailed microarchitectural
information in the userspace, victims have limited contextual
awareness about underlying microarchitectural events and can
only make coarse-grained decisions based on impressions.
Existing techniques either terminate or retry the workload
until success, restricting the flexibility of actions that victims
can take [34]–[41].

4) Platform specific. In exchange for sacrificing the
effectiveness of defending SCAs in TEEs, detection-based
techniques gain practicality by avoiding hardware modifications
and using existing platform-specific features (e.g., Intel
Transactional Synchronization Extensions (TSX) [33], [39]–
[41]) to collect abnormal performance characteristics and thwart
SCAs for TEEs on the corresponding platforms (e.g., Intel
SGX [33], [39]–[41]). However, relying on platform-specific
hardware features makes these techniques non-extensible and
inapplicable to other existing architectures or future generations,
not to mention the potential risk of deprecation (e.g., TSX
deprecation [58], [59]), limiting the generality of the solutions.

Reflection: It is ironic that TEEs, which are designed
to shield a program from external inferences, are now
blocking the program from using detection-based SCA
countermeasures proactively. Even when the program inside
a TEE has perfect knowledge on how it might be attacked
(i.e., what microarchitectural signals to watch for), the victim
lacks trusted medium to gather these signals, not to mention
the performance penalties it has to pay for even coarse-
grained data. In contract, attackers, not bounded by TEEs,
have the freedom to gather all kinds of microarchitectural
signals even from the kernel space.

III. OVERVIEW

While SENSE can be a generic mechanism for feeding mi-
croarchitectural events directly to userspace TEEs, in this paper,
we initially demonstrate how to thwart cache-based SCAs—the
most prominent type of SCAs in TEEs—with SENSE.

A. Targeted Platforms

SENSE targets platforms with a TEE component deployed
and a modern cache architecture implemented.

Cache architecture. We assume a standard modern cache
architecture, featuring multiple cache levels, including core-
exclusive (L1 and L2) and shared (LLC) caches. Core-exclusive
caches undergo flushing during context switches (which is
aligned with most recent TEE architectures [31], [60], [61]).
Additionally, we assume the cache controller is configured
and only configured via dedicated registers, which is also
consistent with common platforms.

Types of TEEs. SENSE is designed to accomodate both
process-based TEEs (e.g., Intel SGX [13]) and guest-user
processes within VM-based TEEs (e.g., AMD SEV [15] and
Intel TDX [14]). From an architectural perspective, memory
accesses differ between processes and VMs in that the latter
must additionally traverse the extended page tables (EPTs).
Leakage from EPT walks are out of scope for this work,
and consequently the SENSE ISA extension (§IV-B) remains
consistent across both processes and VMs. SENSE is not
applicable to ARM TrustZone [16], which is a root TEE.

Trusted TEE component. TEEs provide established mecha-
nisms to safeguard sensitive code within secure execution con-
texts known as enclaves. A trusted software component enforces
access control mechanisms to maintain separation between
secure enclaves and untrusted domains [13], [31], [60], [61]. Ad-
ditionally, in the case of SENSE, the trusted software component
handles other security-sensitive operations, such as determining
the TEE status (i.e., whether the thread is under TEE or not) and
setting up cache event monitoring and notification mechanisms,
as detailed in Section §IV. We assume that security-critical
metadata containing the TEE status is transmitted alongside
memory requests. These assumptions align with current aca-
demic [31], [60]–[62] and industrial solutions [13], [63], [64].

Characteristics of TEE programs. We assume that the portion
of isolated execution constitutes a minority of the application
workload, as TEEs are most effective when the isolated execu-
tion is minimized to reduce the attack surface. This aligns with
the intended usage of TEEs, where only small, sensitive code
components are allocated to the TEE [27], [29], [30]. Although
SENSE operates correctly even if the majority of the workload
is isolated, the performance of isolated execution may be
impacted [13], [27]. In addition, we assume that sensitive code
uses writable shared memory solely for I/O, if at all, and access
patterns to this shared memory do not leak information. Isolated
code should focus on processing local data, limiting I/O needs
to copying input and output data in and out of the component.

B. Threat Model

We adopt a robust adversary model aligned with
hardware/firmware-defined TEE architectures [23], [39], [41],

3

where both the OS kernel and hypervisor are considered un-
trusted. The adversary can execute access-based [5], [49]–[51]
and conflict-based [2]–[4], [46]–[48] cache SCAs to extract in-
formation from a sensitive execution domain (i.e., enclave). The
adversary can initiate attacks from all privilege levels (excluding
the highest level containing the trusted software component),
access precise timing measurements and eviction instructions,
and launch attacks from the same or a different CPU core.

Out of scope. We do not consider physical attacks on
caches [65], fault injection attacks [66], or hardware flaw
exploitation [67]–[69]; nor do we consider denial-of-service
attacks from a security perspective. We assume that the
adversary cannot compromise the trusted software component.

C. High-level Approach

The core of SENSE is an architecture-agnostic processor
extension that features a new CPU SENSE mode, which notifies
a running thread inside TEEs of the events it subscribes to.
Only threads operating under TEEs run in SENSE mode and
can subscribe to relevant microarchitectural events.

SENSE assumes that any TEE that is leveraged is in compli-
ance with its original design intent, meaning that the majority of
the execution workload is not security-critical and only a smaller
portion is security-critical and isolated within TEEs (§III-A).

SENSE consists of three modules organized by
functionalities. The Subscription Module (SM) (§IV-A) enables
the subscription of cache-related microarchitectural events (e.g.,
cache evictions) for threads running in TEEs and monitors
the occurrence of these events. The Notification Module (NM)
(§IV-B) manages the CPU SENSE mode and provides the
architectural interface of delivering microarchitectural events
(e.g., cache events) to userspace TEEs for handling. The
Action Module (AM) (§IV-C) allows the occurred events to
be handled by a userspace event handler within TEEs.

The benefit of SENSE. SENSE is a novel interface for
userspace applications in TEEs to listen to fine-grained
microarchitectural events and take corresponding actions.
Compared to detection-based defenses against SCAs (§II-B),
SENSE has the following benefits:

1) Trusted native information source. By letting the hardware
directly notifying the TEEs, SENSE bypasses the untrusted
privileged software to provide microarchitectural information,
fitting the threat model of TEEs. The control flow transition
to the userspace handler is enforced by the CPU without
changing privilege levels, ensuring that the handler operates
within the same enclave of the program.

2) Prompt and precise notifications. SENSE notifies the
userspace program about the events of the exact subscribed
cache entries as soon as they occur, guaranteed by the existing
communication channels of memory requests. By receiving
instant notifications about cache events, victims can react
promptly to potential cache SCAs, reducing the window of
opportunity for attackers to leak secrets.

3) Versatility and extensibility. The subscribe-notify-act
mechanism empowers victims with the ability to dynamically
adapt their defenses based on real-time cache events, leveling
the playing field with attackers who continuously evolve

Fig. 1: SENSE high-level workflow.

Fig. 2: SENSE in action.

their strategies. SENSE also supports custom event handlers.
If necessary, developers can define their own handlers that
suit their own applications best. Moreover, by exposing
microarchitectural events, many applications beyond SCA
defenses are made possible (§IV-E).

4) Compatibility and generality. SENSE is compatible with
any existing partitioning and randomization-based cache
SCA defenses without incurring significant extra hardware
overhead. Besides, the NM is orthogonal to specific processor
architectures, while the SM is cache organization agnostic.
Moreover, SENSE is backward compatible and does not affect
programs running without TEEs (§IV-D).

5) Security. As SENSE also falls into the attacker’s arsenal,
SENSE should not open new attack surfaces (§V).

D. SENSE in Action

A closer look at the SENSE notification flow and the
collaboration among the three modules at runtime is shown
in Fig. 1 and Fig. 2.

1) Initialization (NM): The enclave thread enters SENSE
mode at the beginning of the enclosed security-critical block
(1). The address of the event handler trampoline inside the
enclave is registered with the CPU for event notification. The
trampoline is an address within the enclave where a userspace
event handler will be invoked.

2) Subscription (SM): Cache microarchitectural events (e.g.,
cache evictions) for the memory resources within the enclave
are subscribed under SENSE monitoring (2).

3) Notification (from SM to NM): During the execution of an
instruction at RIP, a subscribed event occurs (e.g., a monitored
cache entry is evicted). The SENSE mode pauses and the
microarchitectural states related to subscribed events are cleared
(e.g., flush the cache) (3). The control flow will be transferred
by the CPU to the provisioned event handler trampoline inside
the enclave (4). If the event is an interrupt or exception, the

4

control flow will be transferred to the event handler trampoline
after the interrupt or exception is served by the OS. Detailed mi-
croarchitectural information about the event that occurred (e.g.,
the thread identity that causes the event) is also supplied to the
enclave. The trampoline pushes the RIP onto the user stack for
later return and jumps to the SENSE handler within the enclave.

4) Action (from NM to AM): The SENSE handler saves the
interrupted context, including the volatile registers and flag
states to the enclave stack, and reenters SENSE mode. The
handler then handles the event and restores the saved context
before returning to RIP (5). If another event occurs during
the handling of the current event (6), nested handling occurs
by repeating steps 3 – 5 .

Finally, the enclave thread resumes at RIP after the event is
handled (7). The enclave thread exits SENSE mode completely
when it finishes, and then all subscriptions are canceled (8).

IV. SENSE DESIGN AND IMPLEMENTATION

In this section, we provide design details of the three
modules in SENSE, as summarized in the architectural overview
in Fig. 3. Different implementations can be adopted for the
SENSE design. To demonstrate the practicality of SENSE, we
detail the prototype implementation of SENSE on a cycle-
accurate gem5-based [45] x86 emulator with its out-of-order
(O3) CPU model and the default Classical Memory System.

A. Subscription Module (SM)

Extensions to the existing cache architecture are required to
precisely locate a specific cache event and promptly deliver the
notification. In this section, we discuss two SENSE cache ex-
tensions: precise subscription, for locating the exact subscribed
events, and prompt delivery, for initializing immediate notifi-
cations. The extended SENSE cache entry is shown in Fig. 3
and the cache controller logic for SM is depicted in Fig. 4.

Precise subscription of events. Precise subscription allows
users to subscribe to the occurrence of events at the exact
cache entry monitored by SENSE, instead of monitoring the
entire cache component.

Requirements. Cache entries to be monitored should be
precisely annotated when they instantiate in the cache.
Depending on the structure of the cache, the SENSE annotation
could appear as an extra bit indicating whether the cache entry
is monitored under SENSE or as a hash map that records the
information, for instance.

Design. An entry in cache will be annotated for SENSE
status, preferably using an unused reserved bit to avoid extra
hardware overhead. When a cache event of interest involves
an SENSE-annotated entry, the cache component should raise a
notification flag, indicating the need for the CPU under SENSE
mode to deliver the notification for handling.

Prompt delivery of events. Prompt delivery ensures that the
CPU under SENSE mode will immediately start delivering the
notification to the enclave when a subscribed event occurs.

Requirements. An information channel needs to be established
to promptly inform the NM about the raising of a notification
flag in the SM. Fitting such a channel into the existing CPU
microarchitecture is non-trivial. The channel should be close to

Fig. 3: SENSE architecture: Subscription Module (SM) (§IV-A),
Notification Module (NM) (§IV-B), and Action Module (AM) (§IV-C).

the occurrence of the event, both temporally and spatially, to
promptly relay the raised notification flag in a timely fashion.
Meanwhile, the addition of the channel should not affect
the correctness of existing microarchitectural components or
impose too much performance overhead.

Design. When executing a memory instruction (i.e., load or
store), the CPU Load-Store Unit (LSU) first consults the TLB
for address translation and then sends a load or store request to
the cache. The status of the notification flag will be embedded
in the existing responses sent back to the CPU LSU from
the cache using reserved data space to avoid extra hardware
overhead. When finalizing the memory responses, the CPU
will start delivering the notification if the notification flag
is set. Such a signal piggybacked onto the existing memory
communication channel is aligned with the real-time workflow
of the memory microarchitectural components and thus can
immediately start delivering the notification as soon as a
memory request triggers a monitored cache event.

Implementation. Achieving precise subscription and prompt
delivery of events in the gem5-based x86 emulator incorporates
five major tasks. Note that the tasks are not specific to gem5
but applicable to general modern CPU architecture.

1) Adding extra SENSE status bits in each cache entry. SENSE
chooses to extend cache entries with extra bits. Specifically,
each cache entry is extended with two SENSE status bits: SS
bit and SS_FAULT bit (Fig. 3). The SS bit indicates whether
the cache entry is monitored under SENSE mode, while the
SS_FAULT bit represents whether the cache entry has been

5

Fig. 4: SENSE cache controller logic.

evicted when monitored under SENSE. Both SENSE status bits
are off (i.e., 0x0) for all cache entries when booting up.

2) Initializing cache event subscriptions. In SENSE, subscribing
to microarchitectural events occurs at the beginning of the
enclave process. For cache eviction events, monitoring relevant
cache entries under TEEs is realized by prefetching the entries
into memory and turning on the SS bit. Therefore, similar to
the prefetch macro-op, the subscription request boils down
to a load (ld) CPU micro-op and is additionally extended with
a PREFETCH_SS memory request flag to indicate the intention
of event subscription under SENSE. At the beginning of the
enclave process (e.g., enclave initialization), the cachelines
corresponding to the sensitive data are prefetched into all
levels of the cache hierarchy.

3) Marking the cache entries under SENSE monitoring. Load
(ld) instructions enter the Load-Store Queue in the CPU
execution engine when pipelined, and are executed by the
CPU LSU. After the CPU LSU forwards the memory loading
request to the corresponding microarchitectural component,
i.e., cache, PREFETCH_SS flag is checked while performing
the memory loading operation. If the PREFETCH_SS flag of the
memory request is set (i.e., due to the memory prefetching
under SENSE), the SS bits of the prefetched cachelines are
turned on (i.e., 0x1) (Fig. 4), meaning they are watched under
SENSE mode. The set of cachelines under watch for the
current TEE thread is called the watch set.

4) Signaling the occurrence of a subscribed eviction. Tradition-
ally, during the eviction of a cache entry, either due to active
flush (e.g., by using clflush instruction) or Least-Recently-
Used (LRU) status caused by entry conflicts, the entry will be
cleared and invalidated. If any member in an enclave thread’s
watch set (i.e., SS bit is set for the cache entry) is evicted
while the enclave thread is executing under SENSE mode, the
SS_FAULT bit will be set for the entry (Fig. 4), indicating an
event of interest has occurred and the NM should be informed
to immediately deliver a notification. When responding to the
load/store request from the CPU LSU, the cache will check
the SS_FAULT bit of the entry corresponding to the request.

5) Promptly informing the NM. If the SS_FAULT bit is set, the
cache will flush all entries to eliminate cache microarchitectural

Instruction Description

ssbegin [addr] Start SENSE mode with trampoline at addr
ssend Terminate SENSE mode
sstramp [addr] Push rip and transfer to addr after preparation
sssub [addr][type] Subscribe to [type] event of resource at addr
ssunsub [addr][type] Unsubscribe to [type] event of resource at addr

TABLE I: SENSE new ISA instructions.

traces and add an additional SS_FAULT flag to the memory re-
quest response. As soon as the CPU LSU receives the response,
if the response has the SS_FAULT flag set, the CPU will enter the
NM and trigger an SENSE notification (detailed in §IV-B) to the
enclave thread using the information in the response. Eventually,
the event handler trampoline starts execution, indicating a cache
eviction event has occurred. When the enclave process finishes
execution, the SENSE status bits of the entries in the watch set
are turned off, and the watch set is reset.

B. Notification Module (NM)

CPU SENSE mode and new ISA instructions. A user-level
enclave program under SENSE mode will get notified if a sub-
scribed microarchitectural event has occurred. Upon notification,
the CPU will supply detailed microarchitectural information to
the enclave and jump to a registered event handler trampoline,
where a userspace event handler will be invoked. By default,
under SENSE mode, all interrupts and exceptions will be
notified. An enclave process is also allowed to subscribed to
cache microarchitectural events (e.g., cache evictions) related
to specific memory resources in the enclave. The SENSE archi-
tecture provides several new ISA instructions, shown in Table I.

SENSE block and event notification. Any sequence of enclave
instructions executed under SENSE mode is referred to as
an SENSE block. If any subscribed event occurs during the
execution of the SENSE block, the enclave thread will be
notified. Specifically, an enclave thread is notified of subscribed
SENSE events by noticing the control flow transfer to the event
handler trampoline. This occurs when one of the following
two conditions is met:

• A subscribed event is detected on the logical processor where
the SENSE-protected enclave thread is executing;

• The enclave thread invokes an instruction that makes the
SENSE architecture unable to track events for the thread
(e.g., SYSCALL).

Upon a notification, the SENSE mode will pause (i.e.,
temporarily suspend delivery of SENSE notifications), and the
microarchitectural states of the subscribed events will be cleared
(e.g., flush the cache), which aligns with the strategies adopted
by existing TEEs [31], [60], [61]. Pausing SENSE mode when
an event occurs is necessary to safeguard the interrupted context
information from being overwritten. This precaution prevents
potential issues arising from an immediate subsequent event
landing at the beginning of the handler, which is responsible
for preserving and restoring the execution context (§IV-C). If
an enclave thread running under SENSE mode is interrupted
or triggers an exception, execution will resume at the event
handler trampoline after the interrupt/exception has been
serviced by the OS. This feature of SENSE is essential because
microarchitectural events for the enclave thread cannot be
handled by userspace handlers under untrusted kernel context.

6

Therefore, when a thread resumes execution, the event handler
should reset the microarchitectural state for all events that
were being tracked at the time the notification was delivered.

Modes of monitoring. As SENSE does not track the identity of
the subscribing enclave in the cache entries, when enclaves on
different cores monitor the same event, the event notification
will be broadcast by default, i.e., delivered simultaneously
to all subscribing enclave threads. This broadcasting strategy
provides the convenience of sharing information about an event
that might be of interest to multiple enclaves, while it may open
up the attack surface due to improper synchronization and inter-
action among different event handlers (discussed in §V). To ease
the effort of designing SENSE applications, SENSE offers the
option to enforce exclusive monitoring of events in a first-come,
first-served manner, which can be useful for applications that
emphasize security. If an event is being exclusively monitored,
only the enclave thread that subscribes to the event first will re-
ceive SENSE notifications; the subsequent subscription requests
from other threads are aborted (e.g., exception), thus thwarting
any potential interference among different event handlers.

Implementation. We implement the NM in our prototype
by integrating extended control registers and modifying the
existing interrupt controller logic, enabling hardware interrupts
without privilege level changes, providing a streamlined and
efficient mechanism for event notifications.

SENSE control registers (CRs). We equip each CPU logical
core with a CR.SS_MODE control register bit and a CR_SS_TRAMP
control register (Fig. 3). Implementing this upgrade incurs
zero hardware overhead when utilizing unused bits (e.g., CR4
bit 26-63 in x86) and reserved control registers (e.g., CR5-7 in
x86), if available. The CR.SS_MODE bit holds the status about
whether the CPU core is currently under SENSE mode. When
an event occurs, the CPU will check the CR.SS_MODE bit and
decide whether to deliver a notification. The CR_SS_TRAMP
register hosts the address of the userspace event handler
trampoline (§IV-B), the location where the control flow lands
after the CPU decides to deliver the notification. We implement
the new ISA instructions (Table I) as follows:

• ssbegin: This instruction is invoked by the trusted software
component of the TEE at the beginning of the enclave
program. The CR.SS_MODE bit will be set to indicate that the
CPU enters SENSE mode if and only if the running thread
is under TEEs (e.g., determined by the trusted software
component), and the address of the reserved event handler
trampoline will be loaded into the CR_SS_TRAMP register.

• ssend: This instruction is invoked by the trusted software
component of the TEE at the termination of the enclave
program. The CR.SS_MODE bit will be unset to stop the
delivery of notifications if the finishing thread is under TEEs,
and the CR_SS_TRAMP register will be cleared, terminating
the SENSE mode completely.

• sstramp2: This instruction is invoked inside the trampoline.
It pushes the current rip for later return and transfers control
to the user handler.

2entramp is extendable for custom prepossessing operations before jumping
to the handler, such as those inserted by the compiler but omitted by the
hardware control flow transfer. For example, entramp can be extended to
optionally decrementing RSP for n bytes to protect the stack red zone [70].

1 void handler(int ss_info) {
2 /* Implement policies.*/
3 if (ss_info == 1) {
4 /* Handle accordingly */
5 }
6 }
7

8 /* _ssbegin(handler) by TEE
9 at enclave entry */

10 void enclave_program() {
11

12 /* watch resource at ptr
13 with size and type */
14 _sswatch(ptr, size, type);
15 ...
16 /* Event occurs */
17 /* Resuming point */
18

19 /* unwatch resource at ptr */
20 _ssunwatch(ptr);
21 }
22 /* _ssend() by TEE
23 at enclave termination */

Fig. 5: An example of SENSE in an
enclave application.

1 /* Pseudo code
2 of _ssbegin() */
3 __inline void _ssbegin() {
4 __asm {
5 trampoline:
6 // landing point
7 sstramp sshandler
8

9 sshandler:
10 call save_cpu_states
11 ssbegin trampoline
12 mov $rdi, $rax
13 call g_handler
14 restore cpu states
15 ret
16

17 entry:
18 // Update the ptr
19 g_handler = handler
20 // save trampoline
21 ssbegin trampoline
22 }
23 }

Fig. 6: Pseudo code of
_ssbegin() function.

• sssub: This instruction emits a subscription request detailed
previously in §IV-A. The cacheline corresponding to addr
is prefetched into all levels of the cache hierarchy.

• ssunsub: This instruction clears the monitoring status set
by sssub.

Event notifications in the form of SENSE Faults. The delivery
of a notification takes in a form of a dedicated hardware
exception triggered by the CPU using NM, minimizing the
modification to the existing hardware architecture. We define
such a hardware exception as SENSE Fault (#SS), which
occupies an unused interrupt/exception vector (e.g., 20 under
x86) of the CPU. Supplemental information can be included
in the fault and passed to the handler for handling, such as
the thread identity that causes the event.

SENSE Fault control logic. When an SENSE Fault occurs,
instead of vectoring into a preregistered hardware exception
handler in the interrupt vector table, the SENSE thread is
trapped into a dedicated piece of SENSE Fault handling logic
in the CPU control unit (Fig. 3). The SENSE Fault control
logic performs the following decisions and operations. Under
SENSE mode, indicated by the CR.SS_MODE bit, the CPU will
first pause SENSE mode by unsetting the CR.SS_MODE bit. Then,
the CPU will check whether the the CR_SS_TRAMP register
holds a valid address by testing the address. Finally, the CPU
will extract the supplemental information corresponding to
the event supplied in the SENSE Fault, push the data to the
enclave stack, and transfer the control flow to the address
specified in the CR_SS_TRAMP register. Note that the control
flow transition to the userspace handler is enforced by the
CPU without changing privilege levels, ensuring that the
handler operates within the same enclave of the program.

Software support. We provide wrapper functions with function
signature _func() for SENSE ISA instructions for ease of use.
A code snippet for basic software usage is shown in Fig. 5. The
SENSE block is defined by wrapping the enclave code section
with a pair of _ssbegin() and _ssend() functions by the trusted
software component of the TEE at the enclave entry and termina-
tion, respectively. _ssbegin() is a wrapper function for ssbegin
and sstramp ISA instructions. The pseudo code of _ssbegin()

7

is shown in Fig. 6. _ssbegin() first saves the event handler’s ad-
dress and starts SENSE mode with an event handler trampoline
using the ssbegin ISA instruction. The trampoline and the han-
dler then follow the semantics defined by SENSE. _sswatch()
is a wrapper function for the sssub ISA instruction to subscribe
to data or instruction at address ptr for eviction event cache_ev.
When an event occurs, the program control flow is transferred to
the trampoline, followed by the preparation and the invocation
of the handler. The CPU states are then restored before
resuming the process. _ssunwatch() is a wrapper function for
the ssunsub ISA instruction to unsubscribe the eviction event at
address ptr. Finally, the _ssend() terminates the SENSE mode.

C. Action Module (AM)

The event handler first saves the interrupted context,
including volatile registers and flag states, onto the enclave stack.
Then, the handler reenters the paused SENSE mode and handles
the event accordingly. Finally, the handler restores interrupted
context and invokes RET to resume the interrupted program exe-
cution. An example is provided in Fig. 6. We assume the event
handler is a part of the trusted software component of the TEE.

SENSE provides default handlers, i.e., ABORT, INVARIANT,
and THRESHOLD, for common handling of the events (Fig. 3).

ABORT. The ABORT handler simply aborts the enclave process
upon the occurrence of the event, a pessimistic strategy
adopted by various existing detection techniques [34]–[41]. It
provides the most constrained security policy for an enclave
process that forbids any subscribed events. It targets events
defined by the user that are absolutely forbidden from the
normal execution of the enclave, such as writes to data from
a malicious process during an atomic operation.

Implementation. Upon the eviction of members in the watch
set, the ABORT handler will simply halt the enclave process by
invoking exit(0).

INVARIANT. The INVARIANT handler aims to preserve a safety
property as an invariant for the enclave process. When the
safety property is tampered with due to an SENSE event, the
event handler could reestablish the property. Therefore, from
the enclave perspective, the safety property is never broken.
For example, a cache residency invariant for the enclave (i.e.,
retain the specified cachelines in the cache) can be preserved
by refetching the evicted cacheline in the event handler.

Implementation. To maintain the cache residency of the watch
set during enclave operations, the INVARIANT handler will re-
subscribe to all of the cache entries in the watch set so that the
entries are prefetched again and stay in cache after eviction.
Upon eviction on monitored cache entries under SENSE mode,
the watch set is re-fetched by subscribing to all watch set mem-
bers again, thus preserving the cache residency of the enclave
process. From the application’s perspective, the cachelines in
the watch set are effectively pinned into the cache. A detailed
example of the INVARIANT handler is shown in Appendix §A.

THRESHOLD. The THRESHOLD handler keeps a thread-local
counter that is incremented each time the handler is invoked.
The user could define a termination policy in terms of this
counter, such as terminate after n events are detected. As
there is not a universal threshold, the developer can tailor a
custom threshold for each application. For example, a security

policy for the AES T-table will likely differ from one for a
data-intensive function, e.g., a machine-learning algorithm.

Implementation. The threshold can be determined according
to the watch set size and eviction times under normal
circumstances. For instance, an AES-256 encryption key
may be monitored under the watch set as four cachelines of
64 bytes. During encryption, if the key is evicted k times
under normal conditions, a user might set the threshold at
2k, allowing for a small amount of noise while terminating
upon detecting suspicious actions by invoking exit(0).
Recent studies [32] have proposed more precise methods
for automatically determining the optimal threshold value by
systematically modeling and quantifying information leakage.

Custom event handlers. Besides the default event handlers,
SENSE allows developers to design and register custom event
handlers tailored for other needs. However, they should follow
the assumptions of proper enclave workloads (§III-A) as
handlers handle events within the enclave.

D. Compatibility

Backward compatibility. Similar to supplementary processor
features like Page Attribute Tables (PATs) and Memory Type
Range Register (MTRR), SENSE offers on-demand cache event
notifications while maintaining backward compatibility. SENSE
effectively provides cache event notifications during execution
only when processes are running under TEEs, which are indi-
cated by the SENSE status bit of each cache entry and communi-
cated with each cache request. Otherwise, from a perspective of
software outside TEEs, a CPU with SENSE functions identically
to one without SENSE. If the trusted hardware is not initialized
and deployed for processes, SENSE is designed to not turn on
the SENSE status bit by default to incoming cache requests,
treating all executions as not under TEEs with cache event
notifications disabled. Only when trusted hardware or firmware
support is provided, do CPUs with SENSE differentiate for
TEEs and offer its microarchitectural notification capabilities.

Synergistic compatibility. SENSE is compatible with all
existing partitioning and randomization-based defenses against
cache-based SCAs in TEEs [27]–[31], which attempt to address
such SCAs at their root cause (i.e., cache organization). This
compatibility is due to the SENSE architecture-agnostic design,
which does not rely on platform-specific hardware features and
is independent of cache organizations (e.g., set-associativity).
Furthermore, when combined with existing partitioning-based
techniques, SENSE can reduce additional hardware overhead
to near zero. Existing partitioning and randomization-based
solutions already extend cache entries with multiple bits (e.g., 4
bits [27], [29]) for information tracking and verification, which
can be shared with SENSE for tracking its status. Additionally,
these solutions also extend cache controller logic [27]–[31]
to enforce resource allocation and isolation, allowing SENSE’s
cache controller logic to be integrated with minimal additions.

Architectural compatibility. SENSE aims to offer ISA abstrac-
tions (Table I) that are sufficiently generic to be implementable
on diverse architectures (e.g., x86, ARM, RISC-V, etc.) to
enable microarchitectural event notifications. However, the mi-
croarchitectural implementation will likely vary across different
chip designs. For example, the presence of a cacheline is gener-
ally easier to establish in an inclusive cache hierarchy than in a

8

non-inclusive one. SENSE is also designed to minimize side ef-
fects on an existing CPU execution pipeline, making it realistic
on real-world hardware. We describe how we align SENSE mod-
ules with the existing CPU execution pipeline, including out-
of-order execution and speculative execution, in Appendix §B.

E. SENSE for General Hardening

As SENSE provides notifications on finer-grained
microarchitectural events, more advanced defense mechanisms
are made possible with such capabilities.

Case 1: On-demand loading of secure libraries under attack.
Software-based SCA mitigation techniques generally incur
heavy performance overhead in order to hide secret-dependent
microarchitectural traces with extra operations. For example,
constant-time cryptographic algorithms can effectively defeat
timing-based SCAs but incur performance overhead that
largely hinders their adoption in applications. During normal
executions, the performance overhead paid for constant-time
cryptographic operations is unnecessary; on the other hand,
with the concern of SCAs, it is insecure to rely on optimized
but vulnerable libraries all the time. Ideally, applications want
to benefit from the optimized performance in the less-secure
libraries and pay the overhead of the secure libraries only
when under attack, which is difficult to achieve.

SENSE can be utilized to reach this goal. The application
can first execute using an optimized but potentially vulnerable
library (e.g., vulnerable OpenSSL). When malicious microarchi-
tectural states are discovered under SENSE (e.g., an excessive
number of cache evictions), the more secure version of the
library (e.g., constant-time OpenSSL) can be loaded on demand
by the event handler, replacing the potentially vulnerable one.
We present the evaluation of such an application in §VI-E.

Case 2: Verifying contracts with the OS. The OS is in charge
of managing system resources with a higher privilege than
applications. To this end, there is a hidden contract between
applications and the OS: the OS will fulfill the requests from
applications with due diligence and perform privileged tasks
on behalf of applications faithfully. However, an untrusted OS
does not always honor such contracts. To verify the contracts
with the OS, applications can implement a verification logic
in a trusted way using SENSE.

To illustrate, a concrete use case is whether the OS enforces
cache coloring [71], [72] as it claims to be, i.e., physical
addresses that belong to a particular color are only accessible
(i.e., read, write, evict) by the threads assigned the same color.
When using cache coloring to isolate cache accesses in SCA
mitigations, one cache color can be assigned to at most one
thread, thus preventing cache sharing between the victim thread
and malicious threads. When a security-critical cacheline in the
enclave application’s watch set is evicted, the handler should
therefore verify whether the cacheline is evicted by the enclave
thread itself. If not, the OS is not following the contract and
might be unfaithful. Further actions such as terminating the pro-
cess can be enforced to protect the process from the malicious
OS. We present the evaluation of such an application in §VI-F.

V. SECURITY ANALYSIS

Each existing side-channel defense aims to mitigate a well-
defined vulnerability and thus does not worry about increasing

the attack surface. In contrast, SENSE, being a non-traditional in-
terface that explicitly exposes microarchitectural information to
TEEs, faces various unpredictable situations. We first introduce
the security guarantees enforced by the SENSE architecture.
Then, we analyze possible attack surfaces and show that SENSE
does not empower attackers more than the system without it.

A. Security Guarantees

1) Delivery of SENSE notifications is guaranteed. The delivery
of the notification is enforced by the trusted hardware (CPU).
The SENSE Notification Module ensures that the control flow
will be directed to the event handler trampoline when an
event occurs under CPU SENSE mode. The trampoline in the
enclave then guarantees the execution of the event handler.

2) SENSE handlers are inaccessible from other threads. As
SENSE is core specific, SENSE handlers are only accessible by
the enclave thread that sets the trampoline. When an event oc-
curs or the SENSE thread is suspended, the SENSE mode pauses
and the control flow is transferred to the SENSE trampoline
(§IV-B). The SENSE trampoline directs to the event handler, and
the address of the trampoline is registered in the SENSE control
registers at the start of the enclave process; thus it is specific
to the thread. Therefore, the event handler is only invokable by
the enclave thread that registers the trampoline and no one else.

3) Microarchitectural states are cleared when SENSE
mode pauses/exits. When an event occurs, the monitored
microarchitectural states (e.g., the watch set) are cleared (e.g.,
flushed) before jumping to the trampoline to avoid leaving
microarchitectural traces when events are not monitored, which
is aligned with the strategy of existing TEEs.

4) Security of event handlers. SENSE guarantees only the
execution of the userspace handler when the event occurs,
while SENSE does not make any assumption about the security
of the handler. Default handlers provided by SENSE (i.e., ABORT,
INVARIANT and THRESHOLD) can be used directly if they already
meet the functionality requirement; however, SENSE does not
verify whether custom handlers are secret-independent, audit
the custom handlers for potential vulnerabilities, or prevent the
custom handlers from intentionally leaking the secret, which
should all be prevented when designing a new custom handler.

B. Attacker’s Exploitation of SENSE

We examine whether the attacker can utilize SENSE to
acquire extra information about the victim that is not available
otherwise. We assume that there are two threads running, i.e.,
one victim thread and one attacker thread. Within the TEE
threat model, the victim thread typically operates inside a
TEE, whereas the attacker can be any other thread outside of
that TEE. Additionally, there’s the potential risk of an attacker
deploying a rogue TEE to subscribe to SENSE events, thereby
monitoring the victim’s behavior.

Same logical core. When running on the same core with
the victim, the attacker cannot monitor events in the victim
thread, as they cannot run at the same time. However,
the attacker is able to learn about the absence of cache
microarchitectural states, which is cleared after the SENSE
process is context-switched out (e.g., a timer interrupt). This
does not leak information about the program activity since

9

the cache microarchitectural states appear all as cleared (e.g.,
all cache misses in cache) to the attacker.

SMT and different physical cores. When the attacker and the
victim are located on different cores, they can interfere with
each other through shared microarchitectural resources such as
L1/L2 cache under SMT or the Last Level Cache (LLC) shared
by different physical cores. There are three attack scenarios
when SENSE is available to both the attacker and the victim.

1) Only the victim is using SENSE. That is, the attacker
is not a TEE thread. The attacker can maliciously trigger
an SENSE event (e.g., evict the watch set) and invoke the
corresponding handler registered by the victim. The attacker
can also choose to invoke a specific handler that is less
desired by the victim thread (e.g., triggering abort instead of
preserving an invariant) by targeting the corresponding enclave
thread. The attacker can learn about the victim’s watch set,
which is the set of the memory objects in the enclave. It does
not reveal useful information since the enclave memory is
already managed by untrusted privileged software. The attacker
cannot infer cache activities, as any cache probing will be
notified to and handled by the enclave (e.g., pin the cache).

2) Only the attacker is using SENSE. That is, the attacker
is a malicious TEE thread targeting the OS and userspace.
By requesting notifications on specific cacheline evictions,
the attacker can infer the victim’s cache access behavior
with lower noise and delay, hence boosting the efficiency of
an attack. More specifically, with SENSE, a malicious TEE
thread can probe victim cache accesses without a traditional
coarse-grained timing measurement phase, as SENSE promptly
delivers notifications to the attacker. This reduces the overhead
to launch an attack (as evaluated in §VI-B). However, SENSE
does not expose new information to a malicious TEE thread
through notification delivery. The cacheline access information
an attacker can subscribe to using SENSE can already be
obtained without SENSE [3]–[5], [73].

Furthermore, an OS possesses alternate defense mechanisms
to shield itself and its user processes from a potentially
malicious TEE. For example, the OS can mitigate SMT
attacks (e.g., L1, L2 cache attacks) by leveraging Linux’s core
scheduling to ensure that threads belonging to a potentially
malicious TEE are not co-scheduled on the same physical core
with another process’s threads [39], [74]. Cache partitioning
strategies [27]–[31] (or coloring techniques [75]–[77]) can
be employed to combat cross-core attacks (e.g., LLC). By
designating a specific partition, an OS can isolate a potentially
malicious TEE, and this approach can seamlessly integrate with
SENSE as discussed in §IV-D.

3) The attacker and the victim are both using SENSE.
That is, both the attacker and the victim are TEE processes. In
this case, the attacker has extra capability due to simultaneous
handling of the event. We give an example security caveat
under such a circumstance. Suppose that both the attacker and
the victim monitor a shared data region (e.g., AES T-table),
each with an SENSE handler registered. Two of the cachelines
monitored by the victim, A and B, map to the same cacheline
in the LLC. The victim’s THRESHOLD handler checks the cache
eviction events and aborts the process if it exceeds a preset
threshold, while the attacker’s INVARIANT handler waits and
refetches the evicted entry. Upon cache eviction, the attacker

and the victim will thus both get notified simultaneously,
followed by the invocation of corresponding handlers.

Suppose that the victim program touches A and B in a
sequence, and originally B is in the LLC. The initial threshold
counter (tc) of the victim is 0. When the victim visits A, B is
evicted from the LLC and replaced by A, which triggers both
handlers. The victim handler increases the counter (tc = 1);
the attacker handler refetches B into the LLC. When the victim
visits B, since B is already in the LLC, no eviction is needed.
However, if there is no attacker, B will not be present in the
LLC; thus, one more eviction is needed to replace A with B
(tc = 2). In this case, the attacker earns one eviction quota,
which can be used to perform malicious evictions (e.g., prime
the eviction set) while avoiding detection by the victim handler.

The root cause of such a problem lies in a lack of enclave
identity when monitoring cache entries. As a result, the
notification cannot be sent to only the monitoring thread but to
all enclave threads under SENSE. This causes the unpredictable
interaction and synchronization among handlers from different
sources. Such a hidden interaction of cache microarchitectural
events among different handlers is difficult to prevent, as both
the method of interaction and the number of interacting parties
are unknown.

This unpredictable interference among handlers can be
mitigated by integrating the enclave identity into the monitored
cache entries so that the event notifications can be demultiplexed
according to the enclave identity. However, this approach in-
creases the hardware overhead, while using such an interference
to collect meaningful microarchitectural traces is only theoreti-
cally possible. Nonetheless, the hardware overhead of tracking
enclave identities of the monitored cachelines can be eliminated
if SENSE is deployed together with other partitioning-based
mitigation techniques for TEEs that are already tracking the en-
clave identities at the cacheline level ([27], [30]). When SENSE
is deployed alone on vanilla processors instead, to minimize the
likelihood of such a threat, it should be configured with the ex-
clusive monitoring feature (§IV-B) offered by the SENSE archi-
tecture while sacrificing the functionality of event broadcasting.

VI. EVALUATION

Experiment setup. We implement and perform our evaluation
on SENSE using a cycle-accurate gem5-based [45] x86 emulator
with its out-of-order (O3) CPU model at 4 GHz and the default
Classic Memory System. The server for our gem5 emulation
is running Linux kernel version 4.8.1 and is equipped with a
4-core Intel i7-6700K CPU (Skylake) operating at 4 GHz, and
64 GiB of RAM. Each evaluation experiment conducted is run
10 times and we calculate the average values as the final results.

A. Security Evaluation

Harden AES T-Tables. To evaluate SENSE on closing timing-
based cache SCAs, we showcase the Prime+Probe attack against
the the vulnerable AES T-table implementation with and without
the protection of SENSE. Although the T-table is disabled by
default in OpenSSL, it is still widely used to evaluate new
and existing SCAs. The attack implementation is based on
strategies from previous works [78]. During encryption, the
T-table entries are used together with the secret key k to
compute the ciphertext from the plaintext p. Specifically, the

10

Fig. 7: Color matrices showing cache
hit patterns of the first AES T-Table
(k0 = 0x00) under Prime+Probe attack.
Left: attack without SENSE; Right: attack
with SENSE cache INVARIANT handler.

Fig. 8: Cache hit pat-
terns using SENSE notifica-
tions for probing. The sig-
nal is stronger compared
with Fig. 7 Left.

102

103

104

105

106

102 103 104 105E
ve

nt
s

de
te

ct
ed

pe
r

se
co

nd

Victim accesses per second

SENSE
timing

Fig. 9: Cache access detection rates using the timing channel and using
SENSE notifications. The y = x line indicates perfect performance, i.e.,
all events are detected without false positives. Being more congruent
to the y = x line means lower false positive rate.

key bytes and plaintext bytes are used as indexes to access the
T-table entry Tj [pi ⊕ ki], where i ≡ j mod 4. An attacker
is able to use Prime+Probe to leak the access patterns of the
T-table entries, which reveals the values of pi ⊕ ki. As a
result, ki can be computed when pi is chosen by the attacker.

Each cacheline (i.e., 64B) can hold 16 T-table entries. We
launch the attacks against the first line of the first T-table Te0 (i.e.
k0 = 0x00) to leak its access patterns for demonstration [49].
First, we run the attacks without SENSE protection. Then, we
monitor cache eviction events of the encryption operation using
SENSE, assuming the encryption operation is typically the
critical section executing under TEEs. The INVARIANT handler
refetches the evicted cacheline, as described in §IV-C, to
effectively pin it in the cache throughout the attack so that the
timing side channel is concealed from the attacker. We show
the sampled cache access patterns of the first line in T-table
Te0 in Fig. 7. The T-table without SENSE protection reveals
a clear cache hit pattern under the Prime+Probe attack, while
the T-table protected by SENSE does not leave useful microar-
chitectural traces for the attacker to infer secret key bits. The
same experiment for Flush+Reload is shown in Appendix §C.

B. Attacker’s Exploitation of SENSE

We evaluate the efficiency benefits brought by SENSE to a
malicious TEE (§V-B). On average, identifying a single cache
access via SENSE notifications is ∼8× faster than probing
using a traditional timing channel (i.e., 576000 vs. 4649000
emulated CPU cycles, respectively), allowing the attacker to
carry out more probing attempts within the same timeframe.
Fig. 9 represents the success rates of detecting victim memory
accesses through both techniques. For this experiment, the
victim consistently accessed a single memory location while the
attacker aimed to monitor these accesses. The results highlight
that while both methods can identify victim accesses, SENSE
notifications have a reduced false positive rate compared to

0

0.4

0.8

1.2

2mm
3mm

adi
bicg

cholesky

correlation

covariance

doitgen

durbin
fdtd-2d

gemm
gemver

gesummv

gramschmidt

lu ludcmp

mvt
seidel-2d

symm
syr2k

syrk
trisolv

trmm

O
ve

rh
ea

d
ra

tio

Fig. 10: Performance overhead of the Subscription Module (SM).
Average overhead is 1.2% of the overall execution.

the conventional timing channel. This improved accuracy
stems from SENSE’s immediate hardware callback upon cache
evictions, obviating any requirement for a potentially error-
prone timing measurement phase as in traditional cache attacks.

We further show the efficiency benefits during an actual
attack using the same Prime+Probe attack outlined in §VI-A.
The primary segment of Prime+Probe utilizing SENSE mirrors
the prime phase of a regular Prime+Probe attack, except that it
primes by subscribing the eviction set to cache eviction events
first. Once the prime phase is completed, the attacker simply
waits for a SENSE notification, from which the attacker can
conclude that another program has accessed an address in the
target cache set. This is similar to the information leaked by
a regular Prime+Probe attack. As shown in Fig. 8, assisted
by both the faster execution speed and the lower false positive
rate of SENSE notifications, the signal is stronger when using
SENSE for Prime+Probe.

C. Performance Evaluation

We first evaluate the performance of each SENSE module,
i.e., Subscription Module (SM), Notification Module (NM), and
Action Module (AM), using benchmark PolyBenchC ([79]).
Next, we evaluate the overall performance of SENSE when
protecting AES encryption from attack.

Benchmark performance of SENSE without attacks present.
The overhead of SM comes from prefetching the secret data
into cache and marking cache entries as SENSE monitored.
The overhead from NM lies in the extra CPU control logic that
relays the cache event information, microarchitectural state
cleaning upon notification, and control transfer to the trampoline.
The overhead of AM solely depends on the handling logic.

We use PolyBenchC [79] to conduct the performance
evaluation. Each benchmark in PolyBenchC has a small
matrix function, which we treat as the minimal critical section
(§III-A) executing inside a TEE and thus monitored by SENSE,
in our experiment. The functions behave similarly to how
look-up tables are used in AES encryption. We then launch
the programs and measure the execution time of each module
by the CPU cycles emulated in gem5.

1) Performance of Subscription Module (SM). The SM
prefetches all security-critical memory objects by iterating
through the objects as cacheline-size data blocks (i.e., 64B) to be
put under SENSE monitoring. The results are shown in Fig. 10.
On average, the SM incurs a 1.2% overhead compared to the
execution time of the original program, which is negligible.

2) Performance of Notification Module (NM). The result is
shown in Fig. 11. Under normal cases, as the monitored data
size is smaller than the cache size, cache evictions on the

11

1.02

1.05

1.08

1.11

24 25 26 27 28 29N
M

ov
er

he
ad

ra
tio

Cache size (kB)

gramschmidt
gesummv

correlation
covariance

Fig. 11: Performance overhead of the
Notification Module (NM).

0

40

80

120

105 106 107A
M

ov
er

he
ad

ra
tio

Loop count

doitgen
durbin

Fig. 12: Performance over-
head of the Action Module
(AM). The cache size used is
32kB to incur more evictions.

monitored data do not occur often, and thus the performance
impact is negligible. Up to a cache size of 256kB, the
overhead incurred by NM on PolyBench kernel functions is
imperceptible. As a showcase of extreme scenarios, we also
radically reduce the size of cache of the gem5 emulation
configuration to as low as 16kB to intentionally increase cache
contention so that more events can be triggered. As shown,
the smaller the size of cache, the more performance overhead
NM incurs, as the cache evictions due to cache conflicts
occur more often under a smaller cache, which matches our
initial speculation. In conclusion, with a realistic cache size
and a minimal enclave program, the NM incurs negligible
performance overhead, while under extreme cases where the
cache size is impractically small to serve the enclave program,
extra overhead will be caused by increased notifications.

3) Performance of Action Module (AM). To analyze the perfor-
mance overhead of AM, we use dummy handlers that perform
busy waiting inside a loop. By increasing the size of the loop
variable, we can simulate the increase of handler complexity
and analyze the correlation between performance overhead and
complexity of the handler. To make the behaviors of the handler
more observable, we use a cache size of 32 kB, which is shown
to trigger the event quite often in the previous experiment. The
result is shown in Fig. 12. Not surprisingly, as the handler
becomes more complex, the AM incurs more performance
overhead. Overall, the performance of the handler dominates
the overhead of SENSE. Note that this is only to showcase the
overhead of the AM under extreme cases with particularly small
cache size and over-complicated handler logic. With practical
cache size and minimal enclave programs, events are rarely ob-
served, as shown in the previous experiment, and the complexity
of default handlers is much simpler than the ones in the exper-
iment. Therefore, the AM also incurs negligible performance
overhead under practical use cases without attacks in place.

Performance of SENSE under attack. We compare the
performance impact of SENSE when protecting AES encryption
under attack by using the INVARIANT handler. The results are
shown in Fig. 13, where the red dotted line indicates the baseline
performance of AES encryption without attack. The AES en-
cryption is typically fast without inducing self-evictions. When
under attack, T-table entries are intentionally evicted from the
cache (e.g., using prime phase) for launching cache SCAs such
as Prime+Probe. We observe a minor and negligible decrease of
performance when experiencing (potentially malicious) cache
evictions on T-table entries during AES encryption without
SENSE. When protected by SENSE, the performance of AES
encryption quickly decreases as the number of experienced

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16

baseline(no attack)

C
PU

cy
cl

es

Number of evictions on T-tables

SENSE
w/o SENSE

Fig. 13: Performance of AES encryp-
tion w/ and w/o SENSE under attack.
The red dotted line indicates the base-
line performance of AES encryption
without experiencing attacks.

0

2000

4000

6000

8000

10000

0 4 8 12 16 20

Number of encryptions

SENSE
TSX

Fig. 14: Performance of AES
encryption under SENSE and
TSX without attack.

evictions increases. The performance degradation is mainly
caused by the SENSE notifications and the event handling by
the INVARIANT handler to fetch the evicted T-table entries back
into the cache. As a reference, the Intel TSX-based mitigation
technique [33] against cache SCAs is reported to reduce the
performance of AES encryption with T-table to 23.7% (∼4.22×)
of the baseline performance under a Prime+Probe attack. The
lower performance while experiencing evictions is justified
given that the timing channel is eliminated. Besides, the attacker
has to heavily load the whole CPU to launch the attack, which
occupies a significant amount of hardware resources and largely
slows down the performance already [33].

D. Comparing with TSX

SENSE is influenced in part by Intel TSX [80], which was
deprecated recently [58], [59]. TSX has been used to address
SCAs [33], [40], [41] with noteworthy caveats. The developer
will need to partition the program into sections that are small
enough to fit within a TSX transaction, which is inflexible and
difficult to achieve. Additionally, each TSX transaction must be
restarted from the beginning after a transactional abort, while
executions can be resumed at the point where the event was de-
tected under SENSE. Furthermore, TSX is only available on In-
tel platforms and was not originally motivated by SCAs, thus not
applicable for monitoring microarchitectural events other than
cache evictions, while SENSE, being agnostic to processor ar-
chitecture and microarchitecture, can be easily extended to other
cache events or events of other microarchitectural components.

Despite the limitations of TSX, we consider TSX as an
existing technique to compare with SENSE on mitigating
cache SCAs. We conduct rounds of AES encryption both
under SENSE protection and within TSX transactions and
compare the performance overhead. The results are shown
in Fig. 14. Due to the higher chance of evictions induced by
more encryptions, more TSX aborts and SENSE notifications
are triggered, thus the decreased performance. However, the
performance of SENSE decreases more slowly than that of
TSX. One reason is that instead of retrying from the beginning
after a TSX abort, SENSE handles the event in place and
restores the operation at the interrupted location. This makes
SENSE more scalable than TSX to mitigate cache-based SCAs.

E. On-demand Loading of Cryptographic Functions

We demonstrate that upon a notification, the event handler
is able to replace the functions that are optimized but vulnerable

12

AES T-table Function switch AES no T-table

2443 76 5195

TABLE II: Performance impact of replacing cryptographic functions.
Values are in CPU cycles. The switching overhead is around 1.46%
compared to encryption operations, and is only paid once.

0
0.3
0.6
0.9
1.2

2mm
3mm

adi
bicg

cholesky

correlation

covariance

doitgen

durbin
fdtd-2d

gemm
gemver

gesummv

gramschmidt

lu ludcmp

mvt
seidel-2d

symm
syr2k

syrk
trisolv

trmm

O
ve

rh
ea

d
ra

tio

Fig. 15: Performance overhead of the Action Module (AM), when
verifying cache coloring. Cache size is 32kB to incur more events.

to SCAs with the secure versions for subsequent operations
while only paying a small overhead to perform the switching.
We first collect the execution time of two OpenSSL AES
encryption implementations (i.e., with and without T-table), as
well as the overhead of replacing the vulnerable one with the
one without the T-table, which is considered secure. As shown
in Table II, compared to the execution time of the library
functions, the overhead of function switching is negligible.

The performance of AES encryption with the T-table
protected by SENSE becomes comparable to that of AES
encryption without the T-table (i.e., 5195 cycles) when ex-
periencing about seven malicious evictions on T-table entries,
extrapolated in Fig. 13. Therefore, to maintain good security and
performance levels, the event handler can perform the function
switch when observing more than seven evictions on the
protected entries, thus only paying the performance overhead of
the secure version when handling events becomes too expensive.

F. Verification of cache coloring

We enable the event handler that verifies cache coloring
on PolyBenchC programs as well to analyze the performance
overhead of such a verification. The identity of the thread evict-
ing the monitored cacheline is supplied to the enclave stack by
the CPU. Then, the handler reads the corresponding data from
the stack and checks whether the thread that caused the cache
eviction matches its own thread identity. Similar to previous
experiments, we use a cache size of 32kB to make the behaviors
of the handler more observable. The performance overhead of
cache color verification is negligible, as shown in Fig. 15.

G. Hardware and Memory Overhead

We implemented the RTL [81] for SENSE and evaluated
its hardware overhead for cache events, following previous
works [27], [30]. The hardware logic overhead mainly stems
from the SENSE cache controller logic in SM and the SENSE
Fault interrupt controller logic in NM. Compared to an 8-core
Xeon Nehalem [82] of 2,300,000,000 transistors, the logic
overhead of SENSE is minor, estimated at 0.1%. The logic
overhead can be further reduced if the target platform support
updating the interrupt controller by firmware or microcode,
which do not incur hardware modifications. The memory
overhead includes the additional register components per
logical core and two bits per cache entry for tracking SENSE

status. When targeted platforms possess unused reserved
registers and register bits, which is a common case in modern
processors, the SENSE register hardware overhead can be
eliminated. When combined with existing isolation-based
techniques, SENSE can significantly reduce additional hardware
overhead even further, as discussed in §IV-D.

VII. DISCUSSION

Limitations. First, the size of the monitored data is bounded
by the size of the underlying microarchitecture. For example, if
the size of data monitored for cache eviction events exceeds the
size of the cache, prefetching the cachelines under SENSE will
always evict another cacheline, causing a deadlock. Therefore,
knowledge of the target platform is needed when deploying
SENSE applications. Second, interaction between SENSE blocks
and code outside SENSE blocks may introduce side effects. For
example, SENSE will not track the memory event when the
monitored memory is copied into another memory region. That
is, SENSE applies only to the original instance of the memory in
the microarchitecture. Taint-based approaches might be adopted
to propagate the monitoring status outside SENSE blocks.

Defending other SCAs. SENSE is most practical for side chan-
nels that are stateful, such as TLBs and caches (in this paper),
which are the most widely researched side channels. SENSE
could also be adapted to detect controlled-channel (i.e., archi-
tectural) SCAs such as A/D-bit assists [57] and page faults [23].
There is currently no way for an SGX enclave, for example, to
detect when an A-bit assist has occurred. We leave those events
for future work. We admit that port contention [83], [84], on the
other hand, is challenging for SENSE to mitigate as it occurs at
very high frequency, and thus the event notifications might hap-
pen so frequently that software cannot make forward progress.

Updating SENSE. To update SENSE, developers only need to
extend the Subscription Module (SM) for new microarchitec-
tural events and handler designs, as the Notification Module
(NM) is not specific to microarchitectural components and all
notifications are reprsented as SENSE Faults. Developers should
first identify event paths in microarchitectural components and
incorporate them into the SM. For instance, adding a speculative
execution event requires including branch predictors and caches.
Developers must then insert a SENSE status marker in the
component to indicate SENSE monitoring and ensure correct
notifications. This may involve extending branch predictors
and caches with an extra bit for monitoring status. Developers
should also follow event paths to implement monitoring status
propagation and define detailed event information to create ef-
fective handlers in userspace TEEs. For example, providing han-
dlers with branch prediction history and prediction results can
help users detect signs of malicious branch predictor training.

VIII. RELATED WORK

We categorize cache side-channel defenses into two broad
classes: 1) isolation-based and 2) detection-based. In this
section, we focus only on the most relevant works to SENSE.

A. Isolation-based Defenses

Partition-based defenses. The partitioning-based defenses
propose new cache architectures that allocate cache resources
(cachelines or ways) exclusively to protected domains (e.g.,

13

TEEs) [28]–[31], [61], [85], [86]. These defenses can result
in cache underutilization when assigned cache ways are not
evenly used by a protected domain, as the unused cachelines
are blocked for all other domains on the system. Other
approaches [27], [87] are more flexible, as they partition the
cache on a cacheline basis. However, they still do not provide
strong security guarantees against occupancy-based attacks, as
they do not enforce strict partitioning. In memory page-coloring
schemes [55], [60], [75], [88], the mapping from physical
memory addresses to cachelines ensures that cachelines used
by sensitive applications do not overlap. One issue with page-
coloring is its reliance on OS or hypervisor, which are untrusted
under TEEs. Furthermore, the assignment of cachelines is
static. SENSE, on the other hand, offers flexible monitoring
on exact cache entries that is satisfied upon TEE initialization
at runtime. SENSE bypasses the untrusted privileged software
as a native interface and does not affect the memory layout.

Randomization-based defenses. Randomization-based
defenses employs randomized mapping tables to randomize
the mapping of memory lines [87], [89], [90]. Cryptographic
randomization techniques [91]–[95] aim to circumvent the
storage overhead of large randomized mapping tables by
depending on cryptographic primitives to consistently generate
randomized mappings. These methods can only diminish the
bandwidth of cache attacks rather than completely eradicate
them. Attackers can still execute eviction operations when
they access a sufficient number of lines across a vast array
of cache sets. Furthermore, some strategies may experience
significant performance decline when implemented on the
considerably larger last-level cache. SENSE, on the other hand,
fundamentally eliminates the aforementioned unreliability
and inflexibility by providing timely, accurate, and flexible
notifications directly to userspace TEEs.

B. Detection-based Defenses

Detection-based defenses can be primarily divided into
two categories: signature-based [35], [50], [96]–[99] and
anomaly-based [100]–[102]. Some methods [34], [38], [103]
utilize a combination of both signature- and anomaly-based
detection techniques.

Signature-based. Demme et al. [96] employ L1 hits events in
Hardware Performance Counters (HPCs) to detect malware and
cache SCAs. Allaf et al. [97] suggest another signature-based de-
tection technique to identify Prime+Probe and Flush+Reload at-
tacks using machine learning (ML) models and HPCs while run-
ning an AES cryptosystem. The hardware events utilized include
core cycles, reference cycles, and core instructions. NIGHTs-
WATCH [98] can detect access-driven cache SCAs using various
ML models that leverage LLC misses and CPU cycles in HPCs.
This method trains the model under specific system loads, but it
is unclear whether it performs well under unknown system loads.
Mushtaq et al. [99] apply linear and non-linear ML classifiers to
detect Prime+Probe attack variants running under the AES cryp-
tosystem. HexPADS [35] uses cache miss rates and page fault
values to detect Flush+Reload and cache template attacks [50].

Anomaly-based. CacheShield [100] is an anomaly-based
detection mechanism for legacy software (victim application)
that monitors LLC cache misses using HPCs. Bazm et
al. [101] detect cross-VM cache SCAs by utilizing hardware

fine-grained information provided by Intel Cache Monitoring
Technology (CMT) and HPCs, following the Gaussian
anomaly detection method. SpyDetector [102] can identify
Flush+Reload, Flush+Flush, and Prime+Probe attacks running
on RSA, AES, and ECDSA cryptosystems by monitoring L3
cache and L1 data cache through HPCs.

Signature and anomaly-based. Chiappetta et al. [34]
propose a machine learning-based detection mechanism for
Flush+Reload attacks on AES and ECDSA cryptosystems,
monitoring L3 access to detect attacks. CloudRadar [38] is
a signature and anomaly-based detection system that detects
attacks in two steps. The first step involves identifying
cryptographic applications using branch instructions and
dynamic time warping. The second step defines a criterion
for distinguishing between benign and malicious programs.
CloudRadar considers an attack to have occurred when the
detected value exceeds this criterion. Alam et al. [103] present
a multi-layer detection approach based on machine learning,
which collects microarchitecture events (e.g., branch misses,
LLC accesses, and LLC misses) during attacks. They train
machine learning models based on these events to detect attacks.

The aforementioned works rely on microarchitectural
events as feature vectors for detection. However, due to the
limited capacity of microarchitecture components, they are
highly susceptible to interference from system loads. These
heuristic approaches lack robustness and tend to experience
high false positives and false negatives. In contrast, SENSE
detects potentially malicious behaviors at their exact locations
and promptly notifies userspace TEEs, preventing the delayed
awareness of potential attacks experienced in signature
and anomaly-based strategies. Furthermore, SENSE enables
flexible responses to suspicious behaviors, thanks to the rich
microarchitectural information it provides.

IX. CONCLUSION

Current side-channel attack (SCA) detection techniques
within Trusted Execution Environments (TEEs) exhibit various
limitations due to the absence of direct access to precise
microarchitectural information and the lack of flexible methods
to respond to potential SCAs inside TEEs. In this paper, we
introduce SENSE, an innovative interface that empowers TEE
programs to directly subscribe to microarchitectural event
notifications and actively manage these events using userspace
handlers. We present a comprehensive design of SENSE for
cache and conduct an in-depth security analysis to demonstrate
its robustness. Our evaluation reveals that SENSE effectively
mitigates side-channel attacks while maintaining minimal
performance overhead.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and our
shepherd for their helpful feedback. This research was funded
by a research gift from Intel.

14

REFERENCES

[1] B. W. Lampson, “Lazy and speculative execution in computer systems,”
in Proceedings of the 13th ACM SIGPLAN international conference
on Functional programming, 2008, pp. 1–2.

[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of aes,” in Cryptographers’ Track at the RSA
Conference, 2006.

[3] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May
2015.

[4] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing—and its application
to AES,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

[5] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low noise,
L3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Security Symposium (Security), San Diego, CA, Aug. 2014.

[6] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic,”
in Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, Canada, Oct. 2018.

[7] W. He, W. Zhang, S. Das, and Y. Liu, “Sgxlinger: A new side-channel
attack vector based on interrupt latency against enclave execution,” in
2018 IEEE 36th International Conference on Computer Design (ICCD).
IEEE, 2018, pp. 108–114.

[8] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in Proceedings of the 23st ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, Mar. 2018.

[9] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazalch, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Taipei, Taiwan, Oct. 2016.

[10] ——, “Covert channels through branch predictors: A feasibility study,”
in Proceedings of the 4th Workshop on Hardware and Architectural
Support for Security and Privacy (HASP), 2015.

[11] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2019.

[12] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in Proceedings
of the 27th USENIX Security Symposium (Security), Baltimore, MD,
Aug. 2018.

[13] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, http://eprint.iacr.org/2016/086.pdf.

[14] Intel, “Intel Trust Domain Extensions (TDX),” https:
//www.intel.com/content/www/us/en/developer/articles/technical/intel-
trust-domain-extensions.html.

[15] AMD, “AMD Secure Encrypted Virtualization (SEV),” https://developer.
amd.com/sev/.

[16] ARM, “Building a Secure System using TrustZone Technology,” 2009.

[17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in Proceedings of the 11th USENIX Workshop on Offensive
Technologies (WOOT), Vancouver, BC, Canada, Aug. 2017.

[18] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“Stealing intel secrets from sgx enclaves via speculative execution,”
in Proceedings of the 4th IEEE European Symposium on Security and
Privacy (EuroS&P), 2019.

[19] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
Proceedings of the 12th USENIX Workshop on Offensive Technologies
(WOOT), Baltimore, MD, Aug. 2018.

[20] D. Moghimi, J. V. Bulck, N. Heninger, F. Piessens, and B. Sunar,
“CopyCat: Controlled Instruction-Level attacks on enclaves,” in Pro-
ceedings of the 29th USENIX Security Symposium (Security), Virtual,
Aug. 2020.

[21] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution,” in Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

[22] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load Value
Injection,” in 41th IEEE Symposium on Security and Privacy (S&P’20),
2020.

[23] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Determin-
istic Side Channels for Untrusted Operating Systems,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2015.

[24] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems, 2017.

[25] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2017.

[26] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX,” in Proceedings
of the 24th ACM Conference on Computer and Communications
Security (CCS), Vienna, Austria, Oct.–Nov. 2016.

[27] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “HybCache: Hybrid
Side-Channel-Resilient caches for trusted execution environments,” in
Proceedings of the 29th USENIX Security Symposium (Security), Virtual,
Aug. 2020.

[28] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke cache enclaves:
Fine-grained and scalable isolation from cache side-channels via flexible
set-partitioning,” in 2021 International Symposium on Secure and
Private Execution Environment Design (SEED), 2021.

[29] D. Townley, K. Arıkan, Y. D. Liu, D. Ponomarev, and O. Ergin,
“Composable cachelets: Protecting enclaves from cache Side-Channel
attacks,” in Proceedings of the 31st USENIX Security Symposium
(Security), Boston, MA, Aug. 2022.

[30] G. Dessouky, A. Gruler, P. Mahmoody, A.-R. Sadeghi, and E. Stapf,
“Chunked-cache: On-demand and scalable cache isolation for security
architectures,” in Proceedings of the 2022 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Apr.
2022.

[31] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, “CURE: A security architecture with
CUstomizable and resilient enclaves,” in Proceedings of the 30th
USENIX Security Symposium (Security), Virtual, Aug. 2021.

[32] Z. N. Zhao, A. Morrison, C. W. Fletcher, and J. Torrellas, “Untangle: A
principled framework to design low-leakage, high-performance dynamic
partitioning schemes,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Vancouver, Canada, Mar. 2023.

[33] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and Efficient Cache Side-Channel Protection using Hardware
Transactional Memory,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, Canada, Aug. 2017.

[34] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware performance
counters,” Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1568494616304732

[35] M. Payer, “Hexpads: A platform to detect "stealth" attacks,” in
Engineering Secure Software and Systems, 2016.

[36] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing
channels on shared processor hardware,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Cambridge, UK, Dec. 2014.

15

http://eprint.iacr.org/2016/086.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.sciencedirect.com/science/article/pii/S1568494616304732
https://www.sciencedirect.com/science/article/pii/S1568494616304732

[37] M. Yan, Y. Shalabi, and J. Torrellas, “Replayconfusion: Detecting
cache-based covert channel attacks using record and replay,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Taipei, Taiwan, Oct. 2016.

[38] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118–140.

[39] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting SGX Enclaves from Practical Side-Channel Attacks,” in
Proceedings of the 2018 USENIX Annual Technical Conference (ATC),
Boston, MA, Jul. 2018.

[40] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privi-
leged side-channel attacks in shielded execution with Déjá Vu,” in
Proceedings of the 12th ACM Symposium on Information, Computer
and Communications Security (ASIACCS), Abu Dhabi, UAE, Apr. 2017.

[41] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Proceedings
of the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb.–Mar. 2017.

[42] J. Jiang, C. Soriente, and G. O. Karame, “On the challenges of detecting
side-channel attacks in sgx,” Oct. 2022.

[43] F.-X. Standaert, T. Malkin, and M. Yung, “A formal practice-oriented
model for the analysis of side-channel attacks,” 2006.

[44] M. S. Taha, M. S. M. Rahim, S. A.-S. Lafta, M. M. Hashim, and H. M.
Alzuabidi, “Combination of steganography and cryptography: A short
survey,” IOP Conference Series: Materials Science and Engineering,
vol. 518, 2019.

[45] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[46] O. Acıiçmez and W. Schindler, “A vulnerability in rsa implementations
due to instruction cache analysis and its demonstration on openssl,” in
Cryptographers’ Track at the RSA Conference. Springer, 2008, pp.
256–273.

[47] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+abort:
A timer-free high-precision l3 cache attack using intel tsx,” in
Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, Canada, Aug. 2017.

[48] B. Gras and K. Razavi, “Aslr on the line: Practical cache attacks on
the mmu,” Feb.–Mar. 2017.

[49] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A
fast and stealthy cache attack,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721, ser. DIMVA 2016. Berlin, Heidelberg:
Springer-Verlag, 2016, pp. 279–299.

[50] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in Proceedings of
the 24th USENIX Security Symposium (Security), Washington, DC,
Aug. 2015.

[51] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR,” in Proceed-
ings of the 23rd ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct. 2016.

[52] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: Cache attacks on mobile devices,” in Proceedings of the
25th USENIX Security Symposium (Security), Austin, TX, Aug. 2016.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in Proceedings of the
19th ACM Conference on Computer and Communications Security
(CCS), Raleigh, NC, Oct. 2012.

[54] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security, 2017.

[55] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices,”
2016.

[56] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,”
in Cryptographic Hardware and Embedded Systems (CHES). Berlin,
Heidelberg: Springer, 2006, pp. 201–215.

[57] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, Canada, Aug. 2017.

[58] Intel, “Deprecated technologies — 12th generation intel® core™
processors,” [Online; accessed 2-Oct-2022]. [Online]. Available:
https://edc.intel.com/content/www/us/en/design/ipla/software-
development-platforms/client/platforms/alder-lake-desktop/12th-
generation-intel-core-processors-datasheet-volume-1-of-
2/009/deprecated-technologies/

[59] ——, “Performance monitoring impact of intel transactional
synchronization extension memory ordering issue,” 2021. [Online].
Available: https://cdrdv2.intel.com/v1/dl/getContent/604224

[60] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in Proceedings of the 25th
USENIX Security Symposium (Security), Austin, TX, Aug. 2016.

[61] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys’20, 2020.

[62] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf,
“Sanctuary: Arming trustzone with user-space enclaves,” Proceedings
2019 Network and Distributed System Security Symposium, 2019.

[63] D. Kaplan, “{AMD} x86 memory encryption technologies,” 2016.
[64] S. Pinto and N. Santos, “Demystifying arm trustzone,” ACM Computing

Surveys (CSUR), vol. 51, pp. 1 – 36, 2019.
[65] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,

dss, and other systems,” in Annual International Cryptology Conference,
1996.

[66] I. Biehl, B. Meyer, and V. Müller, “Differential fault attacks on elliptic
curve cryptosystems,” in Annual International Cryptology Conference,
2000.

[67] A. Tang, S. Sethumadhavan, and S. Stolfo, “Clkscrew: Exposing the
perils of security-oblivious energy management,” in USENIX Security
Symposium, 2017.

[68] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi,
“V0ltpwn: Attacking x86 processor integrity from software,” in USENIX
Security Symposium, 2019.

[69] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “Voltjockey: Breaching
trustzone by software-controlled voltage manipulation over multi-core
frequencies,” Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[70] “Stack frame layout on x86-64,” 2011, https://eli.thegreenplace.net/
2011/09/06/stack-frame-layout-on-x86-64.

[71] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: A dynamic cache
partitioning system using page coloring,” in 2014 23rd International
Conference on Parallel Architecture and Compilation Techniques
(PACT), 2014.

[72] S. Perarnau, M. Tchiboukdjian, and G. Huard, “Controlling cache
utilization of hpc applications,” in International Conference on Super-
computing (ICS), 2011.

[73] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” https:
//github.com/0xADE1A1DE/Mastik.

[74] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H.
Lai, and D. Lin, “Racing in hyperspace: Closing hyper-threading side
channels on SGX with contrived data races,” in Proceedings of the 39th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[75] T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem: System-
level protection against cache-based side channel attacks in the cloud,”
in Proceedings of the 21st USENIX Security Symposium (Security),
Bellevue, WA, Aug. 2012.

[76] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in 2011
IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W), 2011, pp. 194–199.

16

https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/deprecated-technologies/
https://cdrdv2.intel.com/v1/dl/getContent/604224
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64
https://github.com/0xADE1A1DE/Mastik
https://github.com/0xADE1A1DE/Mastik

[77] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” ser. CCSW ’09. New York,
NY, USA: Association for Computing Machinery, 2009.

[78] D. Gruss, “flush_flush,” 2019, https://github.com/IAIK/flush_flush.
[79] “PolyBench,” 2015, http://web.cse.ohio-state.edu/~pouchet.2/software/

polybench/.
[80] W. Kim, “Fun with Intel Transactional Synchronization Ex-

tensions,” 2013, https://software.intel.com/en-us/blogs/2013/07/
25/fun-with-intel-transactional-synchronization- extensions.

[81] Pulp-Platform, “Cva6 risc-v cpu,” https://github.com/openhwgroup/
cva6.

[82] Intel, “Intel xeon processors,” 2009, https://www.intel.com/content/
www/us/en/products/details/processors/xeon.html.

[83] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García, and
N. Tuveri, “Port contention for fun and profit,” May 2019.

[84] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “Microscope: Enabling microarchitectural replay attacks,” Jun.
2019.

[85] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“Secdcp: Secure dynamic cache partitioning for efficient timing channel
protection,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[86] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[87] Z. Wang and R. B. Lee, “New cache designs for thwarting soft-
ware cache-based side channel attacks,” in Proceedings of the 34th
ACM/IEEE International Symposium on Computer Architecture (ISCA),
San Diego, CA, Jun. 2007.

[88] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in Proceedings of the 22nd IEEE Symposium on High
Performance Computer Architecture (HPCA), Barcelona, Spain, Feb.
2016.

[89] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, pp. 8–16, 2016.

[90] F. Liu and R. B. Lee, “Random fill cache architecture,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 203–215.

[91] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-
channel attacks and time-predictability in high-performance critical
real-time systems,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 2018, pp. 1–6.

[92] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp.
775–787.

[93] ——, “New attacks and defense for encrypted-address cache,” in
Proceedings of the 46th ACM/IEEE International Symposium on
Computer Architecture (ISCA), Phoenix, AZ, Jun. 2019.

[94] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss,
and S. Mangard, “Scattercache: Thwarting cache attacks via cache
set randomization,” in Proceedings of the 28th USENIX Security
Symposium (Security), Santa Clara, CA, Aug. 2019.

[95] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “Phantomcache: Obfuscating
cache conflicts with localized randomization,” in Proceedings of the
2020 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2020.

[96] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[97] Z. Allaf, M. Adda, and A. E. Gegov, “A comparison study on
flush+reload and prime+probe attacks on aes using machine learning
approaches,” in UK Workshop on Computational Intelligence, 2017.

[98] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapôtre,
and G. Gogniat, “Nights-watch: a cache-based side-channel intrusion

detector using hardware performance counters,” Proceedings of the 7th
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2018.

[99] M. Mushtaq, A. Akram, M. K. Bhatti, R. N. B. Rais, V. Lapôtre, and
G. Gogniat, “Run-time detection of prime + probe side-channel attack
on aes encryption algorithm,” 2018 Global Information Infrastructure
and Networking Symposium (GIIS), pp. 1–5, 2018.

[100] S. Briongos, G. I. Apecechea, P. Malagón, and T. Eisenbarth,
“Cacheshield: Detecting cache attacks through self-observation,” Pro-
ceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, 2018.

[101] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Südholt, and J.-M.
Menaud, “Cache-based side-channel attacks detection through intel
cache monitoring technology and hardware performance counters,” 2018
Third International Conference on Fog and Mobile Edge Computing
(FMEC), pp. 7–12, 2018.

[102] Y. Kulah, B. Dinçer, C. Yilmaz, and E. Savaş, “Spydetector: An
approach for detecting side-channel attacks at runtime,” International
Journal of Information Security, pp. 1–30, 2019.

[103] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance counters to rescue: A machine learning based safeguard
against micro-architectural side-channel-attacks,” IACR Cryptol. ePrint
Arch., vol. 2017, p. 564, 2017.

17

https://github.com/IAIK/flush_flush
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon.html

APPENDIX A
IMPLEMENTATION DETAILS OF THE INVARIANT HANDLER

An example of the INVARIANT handler is shown in Fig. 16.
By calling the _sswatch() function with the security-critical
data mem and an event type cache_ev, mem is put into the
watch set for cache eviction events. Upon eviction on mem
under SENSE mode, the watch set is refetched by calling the
_sswatch() on all watch set members, thus preserving the
cache residency of mem.

APPENDIX B
MINIMIZING IMPACT OF SENSE ON

CPU EXECUTION PIPELINE

Out-of-order execution. An SENSE Fault takes place in
the form of a hardware fault (§IV-B). Whenever a hardware
fault (e.g., x86) is detected, the commit stage in the CPU
execution pipeline squashes the instructions fetched under the
mispredicted speculative execution or when executed out of
order. Related hardware resources such as the instruction queue
and load/store buffers are cleaned up afterward. Therefore, no
additional hardware logic is required to clean up microarchi-
tectural execution states while handling SENSE Faults. The
adoption of SENSE to modern processors thus does not incur
major hardware changes on the out-of-order execution pipeline.

Speculative execution. The security guarantee of SENSE is
provided by the fact that the enclave process is notified as soon
as the subscribed cache entries are evicted during execution
of the instruction under CPU SENSE mode. However, when
SENSE-monitored cache entries are evicted under incorrect
speculations, the incurred SENSE Fault (i.e., a CPU hardware
fault) will be squashed at the commit stage and the event handler
will not be invoked, leaving the microarchitectural trace in the
cache. This allows an attacker to speculatively evict SENSE-
monitored entries without causing SENSE notifications.

To protect SENSE from the above-mentioned attacks, we
perform an instruction serialization when the CPU enters
SENSE mode, which is a common feature in modern CPU
architectures. Instruction serialization forces the processor to
complete all prior instructions and drain all buffered writes
to memory before the next instruction is fetched and executed.
Therefore, instructions issued before the SENSE block cannot
speculatively evict the cache entries in the SENSE block. Gem5
allows one to define a serializing instruction by setting the
serializingBefore flag using the .serialize_after micro
operation. To enable the serializingBefore flag for ssbegin,
we insert the .serialize_after micro operation at the begin-
ning of the ssbegin instruction. When the serializingBefore
flag is encountered, the rename stage of the CPU execution
pipeline stalls until the reorder buffer becomes empty, i.e., all
prior instructions are committed. After ssbegin is finished, the
CPU executes under SENSE mode without further serialization
constraints, allowing the enclave process to be executed with
performance optimizations. As a result, instruction serialization
effectively prevents speculative execution SCAs within SENSE
blocks, while maintaining good performance.

1 void _sswatch(void *ptr, size_t size, ss_t type) {
2 /* Add [ptr, size, type] tuple
3 to the watch set if not found. */
4 watch_set.add([ptr, size, type]);
5 sssub(ptr, size, type);
6 }
7

8 void _ssunwatch(void *ptr) {
9 /* Remove ptr in the watch set if found. */

10 watch_set.remove(ptr);
11 ssunsub(ptr, size, type);
12 }
13

14 void handler(int ss_info) {
15 _ssbegin(handler);
16 for (t in watch_set)
17 _sswatch(t->ptr, t->size, t->type);
18 }
19

20 /* _ssbegin(handler) by TEE
21 at enclave entry */
22 void enclave_program() {
23

24 char mem[80];
25 /* Subscribe to target memory. */
26 _sswatch(mem, 80, cache_ev /* event type */);
27 ...
28 _ssunwatch(mem);
29

30 }
31 /* _ssend() by TEE
32 at enclave termination */

Fig. 16: An example of state-pinning model.

Fig. 17: Color matrices showing cache hit patterns of the first AES
T-Table (k0 = 0x00) under Flush+Reload attack. Left: attack without
SENSE; Right: attack with SENSE cache INVARIANT handler.

APPENDIX C
HARDEN AES T-TABLES UNDER FLUSH+RELOAD

Fig. 17 shows that the T-table without SENSE protection
reveals a clear cache hit pattern under Flush+Reload attacks,
while the T-table protected by SENSE does not leave useful
microarchitectural traces for the attacker to infer secret key
bits.

18

	Introduction
	Background
	Microarchitectural Events
	Cache-based Side-Channel Attacks (sca)

	Overview
	Targeted Platforms
	Threat Model
	High-level Approach
	Sense in Action

	Sense Design and Implementation
	Subscription Module (SM)
	Notification Module (NM)
	Action Module (AM)
	Compatibility
	Sense for General Hardening

	Security Analysis
	Security Guarantees
	Attacker's Exploitation of Sense

	Evaluation
	Security Evaluation
	Attacker's Exploitation of Sense
	Performance Evaluation
	Comparing with TSX
	On-demand Loading of Cryptographic Functions
	Verification of cache coloring
	Hardware and Memory Overhead

	Discussion
	Related Work
	Isolation-based Defenses
	Detection-based Defenses

	Conclusion
	References
	Appendix A: Implementation Details of the [0.5]INVARIANT Handler
	Appendix B: Minimizing Impact of Sense on CPU Execution Pipeline
	Appendix C: Harden AES T-Tables under Flush+Reload

