
Serenus: Alleviating Low-Battery Anxiety Through Real-time,
Accurate, and User-Friendly Energy Consumption Prediction of

Mobile Applications
Sera Lee∗

School of Computing, KAIST
Daejeon, Republic of Korea

Dae R. Jeong∗
School of Computing, KAIST
Daejeon, Republic of Korea

Junyoung Choi
School of Computing, KAIST
Daejeon, Republic of Korea

Jaeheon Kwak
School of Computing, KAIST
Daejeon, Republic of Korea

Seoyun Son
School of Computing, KAIST
Daejeon, Republic of Korea

Jean Y. Song
Department of Electrical Engineering

and Computer Science, DGIST
Daegu, Republic of Korea

Insik Shin
School of Computing, KAIST
Daejeon, Republic of Korea

ABSTRACT

Low-battery anxiety has emerged as a result of growing dependence
on mobile devices, where the anxiety arises when the battery level
runs low.While battery life can be extended through power-efficient
hardware and software optimization techniques, low-battery anxi-
ety will still remain a phenomenon as long as mobile devices rely
on batteries. In this paper, we investigate how an accurate real-
time energy consumption prediction at the application-level can
improve the user experience in low-battery situations. We present
Serenus, a mobile system framework specifically tailored to predict
the energy consumption of each mobile application and present the
prediction in a user-friendly manner. We conducted user studies
using Serenus to verify that highly accurate energy consumption
predictions can effectively alleviate low-battery anxiety by assisting
users in planning their application usage based on the remaining
battery life. We summarize requirements to mitigate users’ anxiety,
guiding the design of future mobile system frameworks.
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1 INTRODUCTION

While mobile devices are making our daily lives more convenient,
they also bring inherent discomfort behind that convenience. As
most mobile devices operate on batteries, low-battery anxiety [57,
58], the anxiety that people feel when the batteries of their devices
are low, is a common displeasing experience to mobile users. In
particular, a survey from the industry [33] reports that 90% of
mobile users have experienced anxiety when the remaining energy
of their batteries drops to 20% or lower. The consequences of low-
battery anxiety may affect users’ daily lives, distracting them from
important events and reducing their productivity at work.

As low-battery anxiety has been recognized as a critical issue
in the mobile environment, various attempts have been made to
alleviate it. Several works have strived to reduce the likelihood
of experiencing low-battery anxiety by optimizing the energy
consumption of applications (e.g., video streaming [41, 65], im-
age sensing [36], and web browsers [8]) or hardware usage (e.g.,
GPU [32, 64], GPS [10, 14], WiFi [25], and display [17]). In addition,
there have been efforts to estimate or predict the energy consump-
tion of applications [26, 29, 47, 61, 63] and utilize the estimation to
schedule threads energy-efficiently [42, 62] or to identify battery-
draining applications [37]. These studies have achieved meaningful
results such as extending battery life through efficient resource
management.

However, there is still a lack of understanding regarding how to
alleviate low-battery anxiety during the moment while mobile users

are actively experiencing it. When users are unsure whether their
battery has enough power, even if their battery does, they have no
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Figure 1: Serenus provides estimates of how much battery will remain after executing specific use case scenarios by predicting

energy consumption. In (a), the video streaming application displays the amount of battery consumed when watching each

video and also indicates whether the current battery level is sufficient to watch a given video (as shown by the red-boxed alert

in the second video). This information helps users plan their battery usage in low-battery situations, such as deciding not to

watch the second video. In (b), the navigation application shows how much battery will be left when the user arrives at their

destination. If it indicates that 5% of the battery will remain upon arrival, the user can be assured that their device will stay

powered until arrival.

choice but to refrain from using their mobile devices to conserve
battery life. This results in a deteriorated user experience. In this
work, we aim to aid mobile users to relieve low-battery anxiety in
situations where their battery is low.

The key insight to this end is that eliminating uncertainty

about future events is crucial in alleviating anxiety. In psychology,
uncertainty is commonly recognized as the root cause of anxi-
ety [11, 20, 21, 23]. In the context of low-battery anxiety, users
become anxious because of the uncertainty about how long the
battery will last and/or whether they have enough battery until
their next charge. We envision that if mobile systems assist users in
accurately determining how much energy their future application
use will consume, they will feel less anxiety and can plan their
application use based on solid information.

We design and implement Serenus 1, a mobile system frame-
work that predicts the accurate energy consumption of applications
in real-time. Using Serenus, application developers can easily im-
plement user-friendly interfaces displaying energy consumption
predictions in their applications, as represented in Figure 1. With
minimal modifications to an application, Serenus automatically
collects training data that reflect the characteristics of the device
(e.g., screen size). Using this data, Serenus constructs a device-
specific model to predict the application’s energy consumption
on the device. This allows users to obtain clear information about
how much energy is being consumed depending on their actions.
As a result, users will experience less low-battery anxiety because
they can be confident about whether they have enough battery or

1Serenus is Latin for serenity.

can plan future battery usage based on the prediction to preserve
enough battery.

Using Serenus, we conducted two independent controlled exper-
iments and a field study to evaluate its effects in low-battery situa-
tions. The first controlled experiment (n=40) was to quantitatively
and qualitatively confirm that mobile users feel less low-battery
anxiety with accurate energy consumption prediction. The second
experiment (n=88) was to observe the relationship between the level
of accuracy of energy consumption prediction and users’ behavior.
During a 7-day field study (n=7), we validated that Serenus is truly
helpful to users in real-world low-battery situations. Throughout
these experiments, we verify that Serenus’s energy consumption
prediction can not only effectively alleviate low-battery anxiety,
but also lead to users’ behavioral changes, such as using mobile
devices longer instead of stopping using it. We also evaluate various
performance characteristics of Serenus including the prediction
accuracy and latency as well as the usability of our system. As a
result, we show that Serenus is sufficiently practical for real-world
applications. Finally, we summarize our findings from our experi-
ments, including diverse forms of uncertainty causing low-battery
anxiety, and pros and cons of different user interface types. We
provide the summary in Table 1.

The main contributions of this paper are as follows:

• We design and implement Serenus, a mobile system frame-
work to predict the energy consumption of mobile applica-
tions. Using Serenus, developers can easily augment their
applications with user-friendly interfaces that display real-
time and accurate energy consumption predictions.
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Benefits of energy consumption prediction (§5)

Alleviating low battery anxiety The uncertainty regarding energy consumption is reduced.
Allowing optimization of battery usage Users gain confidence in the energy consumption of applications.

Types of uncertainty (§7.1.1) How predictions reduce the uncertainty (§7.1.2, §7.2)

Uncertainty about being able to use desired applications

with the current battery level

Users adjust settings (e.g., brightness) based on energy consumption pre-
dictions to ensure sufficient battery life.

Uncertain battery lifetime Users feel confident about future battery levels.
Unexpected future event (e.g., sudden call)

UI types to display predictions (§5.6, see §3) & Suitable usage (§7.3)

Remaining battery level (Type A) Proper to applicationswith fixed-length contents. Easy to compare contents
in an application (e.g., different YouTube videos).

Battery lifetime (Type B) Proper to applications with variable-length contents. Easy to plan overall
usage of the application (e.g., Twitch).

Energy consumption per min. (Type C) Proper to applications where individuals consume contents at different
rates. (e.g., Ebook Reader).

Table 1: Summary of findings regarding energy consumption prediction and low-battery anxiety.

• Using Serenus, we conducted two rounds of user studies
(n=40 and 88) in controlled environments and a 7-day field
study (n=7) in a real-world environment. As a result, we
show that real-time, accurate, and user-friendly energy con-
sumption prediction can not only assist users in relieving
low-battery anxiety, but also change users’ behavioral pat-
terns.

• We provide various observations from our experiments,
which provide a deep understanding and guidelines for alle-
viating users’ low-battery anxiety.

In the rest of this paper, we first provide the background and
motivation of this work (§2). Then, we present Serenus, a mobile
system framework that predicts the energy consumption of mobile
applications (§3). Using Serenus, we conducted two rounds of user
studies (§4), where results are described in §5. We also present
various performance characteristics of Serenus (§6). Lastly, we
discuss our detailed observations from our studies (§7).

2 BACKGROUND AND MOTIVATION

In this section, we explain what low-battery anxiety is (§2.1), fol-
lowed by previous approaches tomitigate low-battery anxiety (§2.2).
Then, we clarify the motivation of this paper (§2.3).

2.1 Low-Battery Anxiety

As mobile devices have become pervasive in our daily lives, the
anxiety known as low-battery anxiety, which mobile users expe-
rience when their battery level is low, has become a serious con-
cern [24, 30, 33, 48, 58]. Low-battery anxiety was first reported in a
survey conducted by LG in 2016, which found that 90% of mobile
users in the United States experienced panic when the battery level
of their smartphones dropped to 20% or lower [33]. This survey also
reveals that low-battery anxiety not only imposes psychological
pressure on mobile users, but it also leads them to exhibit irrational
behaviors. For instance, mobile users may drop everything and rush

home immediately, ask a stranger to charge their smartphones, or
even “secretly borrow” someone else’s charger.

2.2 Related Work

Due to its negative impacts on the user experience in mobile envi-
ronments, alleviating low-battery anxiety has become an important
issue in designing mobile systems.

2.2.1 Battery Usage Optimization. Intuitively, optimizing the en-
ergy consumption of mobile devices can be effective in addressing
low-battery anxiety as it extends the battery life and reduces the
likelihood of experiencing low-battery anxiety.

Researchers have proposed various techniques to reduce the
energy consumption of a wide range of software (e.g., video stream-
ing [41], downloading files [22], web interactions [34, 49], and im-
age sensing [36]) as well as hardware (e.g., CPU [5], GPU [32, 64],
GPS [10, 14], Wi-Fi/4G [8], and display [17, 35]). In addition, re-
searchers have proposed strategies to extend battery life, particu-
larly when devices enter low-battery states. For example, LPVS [57]
allows users to watch streaming video for a longer duration when
the battery is low. BPM [31] addresses unexpected shutoffs dur-
ing low-battery situations, and MixMax [30] and SDB [3] adopt
heterogeneous batteries to prolong battery life.

Although these studies have achieved meaningful results in ex-
tending battery life, they cannot completely prevent low-battery
situations (as well as low-battery anxiety) as long as mobile devices
operate on batteries. Consequently, mobile users are still suffering
from low-battery anxiety [58].

2.2.2 Energy Consumption Estimation and Prediction. Besides op-
timizing battery usage, several works aim to estimate [13, 26, 29,
44, 47, 50, 60, 61, 63] or predict [17, 43] the energy consumption of
applications to better utilize the available battery.

A common method in these approaches is to construct a power
model. A power model is a mathematical model or equation that
takes various system states (e.g., CPU utilization) and/or hardware
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states (e.g., the brightness level of the display) to estimate the energy
consumption of the system or applications. To this end, V-Edge [61]
leverages voltage dynamics via the battery interface of mobile de-
vices, Chen et al. [13] and Carroll et al. [12] rely on CPU utilization
and external power meters, and Pathak et al. [47] infers hardware
usage by tracing I/O operations via system calls. In some recent
mobile system framework-specific studies [26, 29, 63], hardware
usage and state are more precisely determined through monitoring
Android’s binder inter-process communication (IPC).

Such power models have the potential to allow users or systems
to better manage the remaining battery. For instance, estimating
the energy consumption of previously executed applications al-
low mobile users to identify battery-draining applications [37] or
mobile systems to schedule threads energy-efficiently [42, 56, 62].
Furthermore, power models can be used to predict future energy
consumption. PowerForecaster [43] predicts how much more en-
ergy a mobile device will consume after installing a given applica-
tion, and Battery+ [17] predicts the power saving of a dark mode
of applications.
Power model. Power models are mathematical equations that cap-
ture dependencies between resource usage and energy consump-
tion. In this paper, we adopt power models devised in previous
works [26, 29, 63] and used in the Android Open Source Platform.

As an example, power models for the audio and screen hardware,
𝑃𝑑𝑖𝑠𝑝𝑙𝑎𝑦 and 𝑃𝑎𝑢𝑑𝑖𝑜 , that output estimated energy consumption of
these devices can be represented as

𝑃𝑑𝑖𝑠𝑝𝑙𝑎𝑦 (𝐵, 𝑡) =


𝛽𝐵
𝑑𝑖𝑠𝑝𝑙𝑎𝑦

× 𝑡 if the display is turned on,

(0 ≤ 𝐵 ≤ 𝑀𝑎𝑥 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙)
0 otherwise.

(1)

𝑃𝑎𝑢𝑑𝑖𝑜 (𝑉 , 𝑡) =


𝛽𝑉
𝑎𝑢𝑑𝑖𝑜

× 𝑡 if the audio is playing sound,
(0 ≤ 𝑉 ≤ 𝑀𝑎𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

0 otherwise.
(2)

where 𝑡 is the time duration that the hardware is used (i.e., hardware
usage), 𝛽𝐵

𝑑𝑖𝑠𝑝𝑙𝑎𝑦
represents the power coefficient of the display

hardware when the display has a brightness level 𝐵, and 𝛽𝑉
𝑎𝑢𝑑𝑖𝑜

is the power coefficient of the audio hardware when its volume
intensity is 𝑉 . Power coefficients capture the energy consumption
rate depending on the resources’ usage, and constructing a power
model means determining values of power coefficients.

2.3 Motivation

Although low-battery anxiety has been receiving considerable at-
tention since it was first reported, we have identified two critical
issues. First, low-battery anxiety is an inherent (and inevitable)
concern when using battery-powered devices. Second, there is still
a lack of understanding regarding how to alleviate low-battery anx-
iety when users are actually experiencing it. Unlike other studies
aimed at avoiding anxiety due to low-battery situations, this work is
motivated to alleviate the extent of low-battery anxiety that mobile
users experience when their batteries are running out of charge.

To achieve this goal, we draw on findings from psychology,
which states that anxiety stems from uncertainty [11, 20, 21]. More
specifically, low-battery anxiety can be attributed to the uncertainty
surrounding a mobile device’s remaining battery when running
applications. When mobile users realize that their batteries are run-
ning out of charge, they become anxious as they are unsure about
how much energy applications will consume and whether their
batteries will last until the next charge. This uncertainty provokes
users to refrain from using their mobile devices to preserve their
battery life.

To reduce low-battery anxiety by eliminating such uncertainty,
we envision a mobile system that accurately predicts the energy
consumption of applications by using a power model. With this
system, application developers can easily integrate user interfaces
that display the predicted energy consumption into their applica-
tions. Consequently, users will feel less low-battery anxiety as they
will have a clearer idea of how long they can use the remaining
battery. Moreover, we also expect that users will be able to plan
their application usage based on the prediction as well as the re-
maining battery level. This will enable them to keep their devices
alive while using applications.

3 SERENUS: MOBILE SYSTEM FRAMEWORK

TO ACCURATELY PREDICT ENERGY

CONSUMPTION OF APPLICATIONS

In this section, we first provide the overall design of Serenus (§3.1).
And then, we explain two phases of Serenus, each of which is to
construct the power model (§3.2) and to predict the energy con-
sumption (§3.3).

3.1 Design Overview of Serenus

Here we elicit the design requirements of Serenus and the overall
architecture of Serenus to satisfy them.

3.1.1 Design Requirements. While the primary goal of Serenus is
to alleviate low-battery anxiety, we design Serenus to be practical
for real-world application development by satisfying the following
requirements.

R1: Accurate real-time prediction: The foremost factor in
making Serenus beneficial for alleviating low-battery anxi-
ety is to provide accurate prediction of energy consumption
in real-time, which makes users confident in how much en-
ergy applications will consume.

R2: User-friendly interface: When users are anxious due to
the low battery level, they will be less inclined to manipulate
their phones to explore a new interface. Serenus aims to
provide energy consumption prediction with interfaces that
are intuitive and require less cognitive load.

R3: Ease of integration: As Serenus introduces new features
to mobile applications, application developers need to make
modification to their applications. If the effort required
to adopt Serenus is significant, developers might not use
Serenus at all, regardless of the benefits it offers. Therefore,
ensuring the easy integration of Serenus is also crucial.
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Figure 2: Overall architecture of Serenus. Serenus constructs power models on-device through two phases: the power model

construction phase (§3.2) and the energy consumption prediction phase (§3.3). In the first phase, Serenus collects various data

while the application is running ( 1○), and constructs power models ( 2○). In the second phase, when a user application requests

the amount of energy consumption ( 3○), Serenus calculates the energy consumption prediction ( 4○) and returns it to the user

program ( 5○). Lastly, the user application displays the predicted energy consumption in real time ( 6○).

Application Use case scenario Power consumption (mAh/min)

Twitch [59] Broadcasting a live stream 25.7
Watching a live stream 6.7

Ulike [9] Taking a filtered video 25.3
Watching a saved video 6.0

Table 2: Various use case scenarios of real-world applications and their per-minute power consumptions. As shown in this table,

there can be significant differences in energy consumption between different use case scenarios even for a single application.

3.1.2 Overall Architecture. Figure 2 shows the overall architec-
ture of Serenus. As shown in this figure, Serenus consists of two
phases. The first phase is to construct a power model, which will
be used to predict energy consumption. In this phase, Serenus col-
lects various execution information (e.g., volume intensity of audio
and brightness of the display), and constructs a power model that
predicts the energy consumption based on execution information
using a light-weight machine learning algorithm (i.e., linear regres-
sion). The second phase is to predict the energy consumption of
applications using the power model. In this phase, Serenus collects
execution information as done in the first phase, and then returns
the predicted energy consumption to the application. Lastly, the
application displays the predicted value.
Use case scenario-based energy prediction (for R1): As shown
in Table 2, real-world applications may include multiple use case

scenarios, where each shows different energy consumption char-
acteristics. For instance, Twitch, a live streaming application, has
(at least) two use case scenarios: broadcasting a live stream and
watching a live stream. It is clear that these two use case sce-
narios consume different amounts of energy as broadcasting a
live stream uses a camera while watching a live stream does not.
Serenus is designed to differentiate multiple use case scenarios,
thereby enabling precise predictions of energy consumption for
each scenario.
In-application display (for R2): When conveying the energy
consumption prediction to users, we display the predicted en-
ergy consumption inside the existing applications’ layouts. This
approach conveys the predicted energy consumption without ad-
ditional manipulation, allowing users to obtain information with
a low cognitive load.
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On-device power model construction (for R3): Serenus is de-
signed for easy integration into applications, allowing developers
to avoid extensive data collection for different devices or signifi-
cant engineering efforts. With minimal modifications to an appli-
cation, Serenus automatically collects training data reflecting the
characteristics of the device that impact energy consumption (e.g.,
screen size) for a short period after the application’s installation.
Using the collected data, Serenus builds device-specific power
models. Although this approach requires initial data collection,
our evaluation shows that Serenus can accurately predict energy
consumption with a small amount of data (§6.1.3).

3.2 Power Model Construction

To construct a power model, Serenus needs to collect data as train-
ing samples. Thus, developers need tomake their applications notify
the Data logger of the use case scenario’s execution. During the
execution of a use case scenario, the Data logger records and stores
training samples, which will be used to construct prediction models
(e.g., the Scenario power model in Figure 2).

3.2.1 Collecting Training Samples. The first step in Serenus in-
volves data collection to create power models (represented as 1○ in
Figure 2). To differentiate between various use case scenarios within
a single application (e.g., watching a video clip or live streaming on
YouTube), Serenus collects distinct sets of training data for each
scenario. To achieve this, Serenus relies on Scenario ID, a unique
identifier for each use case scenario. Developers select Scenario
IDs arbitrarily for different use case scenarios. Subsequently, all
of Serenus’s APIs accept the Scenario ID as an argument. Upon
receiving API calls, Serenus distinguishes various scenarios us-
ing Scenario ID as well as an additional application ID, which is
uniquely assigned by a mobile system (e.g., uid in Android) and
can be read later (e.g., using getCallingUid() in Android).

To collect training data at the start and the end of each use case
scenario, developers are required to insert two Serenus API calls
for each use case scenario, one at the start and another at the end of
the scenario. In the case of the “watching a video clip” scenario of
YouTube (i.e., Figure 2), developers need to tweak the onPlaying()
and onCompleted() callbacks, which are triggered when a user
starts and finishes watching a video clip. Within these callbacks,
developers need to insert startLogging() and endLogging() re-
spectively, both with the same associated Scenario ID.

When the inserted functions are executed, the Data logger col-
lects training samples and stores them with a label of (Scenario
ID, application ID). Each training sample is a 5-tuples of (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,
𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 , 𝑣𝑜𝑙𝑢𝑚𝑒 , 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 𝛽∗) where 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 describes the time
duration between the invocation of startLogging() and endLogging(),
𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 and 𝑣𝑜𝑙𝑢𝑚𝑒 respectively represents the brightness level
of the display and the volume intensity of the audio, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 in-
dicates the amount of consumed energy in the battery during the
duration, and 𝛽∗ represents the aggregated power coefficient of
various hardware resources.
Tracking the aggregated power coefficient 𝛽∗. Instead of hold-
ing power coefficients for all hardware resources, Serenus aggre-
gates power coefficients for all hardware resources (e.g., GPS and
CPU) except display and audio devices. This is because the dis-
play and audio hardware can be manipulated regardless of the use

case scenario logic (e.g., one can turn off the display or mute the
audio while YouTube is playing a video or a music). Serenus, there-
fore, keeps three power coefficients, 𝛽𝑑𝑖𝑠𝑝𝑙𝑎𝑦 , 𝛽𝑎𝑢𝑑𝑖𝑜 (adapted from
[26, 63]) and 𝛽∗. Serenus can individually predict the energy con-
sumption of the display, audio, and remaining hardware resources
using these three power coefficients. Adding up these three predic-
tions results in energy consumption prediction of the device before
running the scenario.

To track 𝛽∗, Power tracker monitors the device’s battery capac-
ity, and when the capacity changes, Power tracker calculates and
updates 𝛽∗ as follows:

𝛽∗ = (𝐶𝑡2 −𝐶𝑡1 − 𝑃𝑑𝑖𝑠𝑝𝑙𝑎𝑦 (𝐵,𝑑) − 𝑃𝑎𝑢𝑑𝑖𝑜 (𝑉 ,𝑑))/𝑑 (3)

where 𝑡1 and 𝑡2 are the time when 𝛽∗ was lastly updated and when
𝛽∗ is being updated, and 𝑑 is (𝑡2 − 𝑡1). 𝐶𝑡 is the battery capacity
at time 𝑡 , 𝑃𝑑𝑖𝑠𝑝𝑙𝑎𝑦 (𝐵,𝑑) and 𝑃𝑎𝑢𝑑𝑖𝑜 (𝑉 ,𝑑) are power models of the
display and audio hardware (see §2.2) where 𝐵 and 𝑉 represent the
current brightness level and the current volume intensity.

3.2.2 On-Device Power Model Construction. When training sam-
ples are sufficiently collected (i.e., five by default), Power model
builder constructs a power model that calculates the additional

energy consumption incurred by running a use case scenario (see
2○ in Figure 2).
Constructing scenario power model. Power model builder finds
out a value of 𝛽𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 that also aggregates additional hardware
usage of running the scenario except the display and the audio
devices. Then, the additional energy consumption of running the
scenario excluding the display and the audio devices, 𝑃𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ,
during a specific time duration 𝑡 can be predicted as follows:

𝑃𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑡) = 𝛽𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 × 𝑡 (4)

Serenus determines the value of 𝛽𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 through the following
two steps.

Step 1: Calculating the additional energy consumption of

running the use case scenario from training samples: For
each training sample labeled with (Scenario ID, application ID),
Power model builder calculates the additional energy consumption
of the scenario, 𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 consumed when collecting the training
sample (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 , 𝑣𝑜𝑙𝑢𝑚𝑒 , 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 𝛽∗).

𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝐶 − 𝑃𝑑𝑖𝑠𝑝𝑙𝑎𝑦 (𝐵,𝑑) − 𝑃𝑎𝑢𝑑𝑖𝑜 (𝑉 ,𝑑) − 𝛽∗ × 𝑑 (5)

where𝐶 , 𝐵,𝑉 , and 𝑑 are 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 𝑏𝑟𝑖𝑔𝑡𝑛𝑒𝑠𝑠 , 𝑣𝑜𝑙𝑢𝑚𝑒 , and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
in the training sample respectively.
Step 2: Constructing the power model 𝑃𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 : After Step
1, Power model builder produces a set of two pairs (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,
𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ). Then, as Equation 4 is a linear equation, Power model
builder uses linear regression. Specifically, Power model builder
considers𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 as an output of Equation 4 and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 as an
input 𝑡 . Using the Ordinary Least Squares (OLS) [19] method, it
finds out a value of 𝛽𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 Lastly, Power model builder stores
𝛽𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 with a label of (Scenario ID, application ID).
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3.3 Energy Consumption Prediction

Once a power model is constructed, the mobile application can
display the energy consumption of a use case scenario by requesting
the predicted value from Serenus.

3.3.1 Calculating Predicted Energy Consumption. To predict en-
ergy consumption, the application starts the prediction process by
calling a Serenus API function, getPrediction(), with two pa-
rameters: Scenario ID and duration (as shown as 3○ in Figure 2).
Scenario ID is used to identify the use case scenario for which
energy consumption needs to be predicted. duration represents
the amount of time during which this use case scenario will be
executed. For instance, in the case of YouTube, duration could
correspond to the (remaining) time duration of a video clip being
watched. If developers want to predict power consumption per unit
of time, they can specify a time unit (e.g., 1 minute). In this case,
Serenus will periodically estimate energy consumption for the unit
of time.

Upon receiving a request, Serenus looks up a power coefficient
that matches the label (Scenario ID, application ID), and if it ex-
ists, retrieves 𝛽𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 , a power coefficient of this scenario (i.e.,
4○). Then, Serenus takes the current brightness 𝐵, current volume
intensity 𝑉 , and 𝛽∗. With these parameters, Serenus predicts the
battery prediction, 𝑃𝑟𝑒𝑑𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 , that the use case scenario will
consume during the duration 𝑑 with the following equation.

𝑃𝑟𝑒𝑑𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑑) =
𝑃𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑑) + 𝑃𝑑𝑖𝑠𝑝𝑙𝑎𝑦 (𝐵,𝑑) + 𝑃𝑎𝑢𝑑𝑖𝑜 (𝑉 ,𝑑) + 𝛽∗ × 𝑑

(6)

After predicting the energy consumption, Serenus lastly returns
the predicted value, 𝑃𝑟𝑒𝑑𝑠𝑐𝑛𝑒𝑎𝑟𝑖𝑜 to the application ( 5○ in Figure 2).

3.3.2 Displaying Predicted Energy Consumption. To display the pre-
dicted energy consumption, we need to modify the user interface
(i.e., 6○ in Figure 2). This modification mainly involves generating a
new visual component (i.e., View in Android) that continuously dis-
plays the predicted energy consumption in real time. In Figure 2, de-
velopers create two visual components, predView1 and predView2,
each of which is used to display the energy consumption prediction
when listing video clips and when playing a video clip. During
runtime, predView1 and predView2 display energy consumption
predictions by periodically calling the setText() function with
the values of pred1 and pred2, and energy consumption predic-
tions returned by getPrediction(). As a result, the application
can display the energy consumption prediction when displaying a
list of video clips and playing a video clip.

4 STUDY DESIGN

To understand whether predicting the energy consumption of ap-
plications can relieve low-battery anxiety and how it does so, we
outline three hypotheses as follows.

H1: If users can perceive the accurate prediction of applications’
energy consumption while using them, they will feel less
low-battery anxiety.

H2: With energy consumption prediction, users will effectively
plan their application usage, allowing them to use their de-
vices longer without needing to refrain from using them.

H3: When the accuracy of energy consumption predictions is
higher, users will be more inclined to consciously plan their
application usage.

To verify the hypotheses, we conducted two independent studies
using Serenus with realistic scenarios in controlled laboratory
environments. In the first study (§4.1), we simulated the situation of
using a smartphone when on the move outside and conducted an in-
lab controlled study to verify H1 and H2. In the second study (§4.2),
we further aimed to understand the relationship between the level
of accuracy of energy consumption prediction and users’ behavior
(H3). Therefore, we conducted a large-scale survey study where
a scenario of being on a train with a limited smartphone battery
was given. Lastly, a field study (§4.3) was conducted to validate the
usefulness of Serenus in real-world low battery situations.

4.1 Study 1: Simulation of Using a Smartphone

While on the Move Outside

Study 1 examines how much energy consumption prediction helps
alleviate a user’s low-battery anxiety when a user is in a situation
where their battery is low (i.e., verifying H1 and H2). To this end,
this study assumes that a user is trying to reach a destination using
a phone with low battery power, and we observe differences in the
user experience depending on the existence of energy consumption
prediction.

4.1.1 Participants. We recruited a total of 40 participants through
local community platforms. These individuals are regular smart-
phone users who have experienced low-battery anxiety. To incen-
tivize their participation, each participant was offered a compensa-
tion of approximately 15 USD.

4.1.2 Experimental Conditions. Conditions are divided into the
system condition and the baseline condition depending on whether
they use Serenus or not. Battery consumption prediction is pro-
vided in the system condition. Participants can check the predicted
remaining battery while using navigation, video, radio, and Rich
Site Summary (RSS) applications. In contrast, participants in the
baseline condition used the same applications, without any predic-
tions about battery consumption.

4.1.3 Tasks and Procedures. Each participant experienced the sim-
ulation of two sequential scenarios under the given condition. First,
they acted as if they went out to eat with a professor from a school.
Then, they returned to the school. We provided participants with
phones that had 16% battery power at the start of the experiment.

In the first scenario, participants moved to the destination using
the navigation application for 15 minutes. They simulated move-
ment through the console without actually moving. To be realistic,
participants chose the restaurant themselves and navigated there.
In the second scenario, participants came back from the restaurant
after eating. They used applications freely among video, radio, and
RSS applications while excluding the navigation application since
they were assumed to know the way back. The second scenario
also took 15 minutes. To simulate a more realistic situation, infor-
mation about how far they had moved was provided instead of the
remaining time. By instructing that participants should use their
phones to finish the experiment at the school, participants did not
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let their phones shut off. Then, they had to scan the barcode we
provided using a QR code application at the end of the experiment.

A five-minute tutorial was provided to get participants used to
moving with the console and Serenus’s UI. During the experiment,
participants rated their immediate anxiety each time the battery of
their phones reached 15%, 10%, and 5%. Finally, they responded to
a post-survey after the experiment asking about their experience
and thoughts on using the phones.

4.1.4 Measures and Analysis. We measured how Serenus affected
the degree of low-battery anxiety and participants’ behaviors. In
both the system condition and the baseline condition groups, ques-
tions about their anxiety and behaviors were asked equally.

To analyze low-battery anxiety, we measured anxiety during the
experiment when the battery level reached 15%, 10%, and 5%. The
six-item short-form of the state scale of the Spielberger State-Trait
Anxiety Inventory (STAI-6) [40] was adopted due to its brevity.

We collected log data on participants’ usage of each application
in the second scenario of getting back from the restaurant, as well as
the extent to which participants consumed their battery. Then, we
analyzed participants’ behaviors through the post-survey (7-point
Likert Scale and narrative questions) and user behavior logs. Each
participant answered the following:

(1) Why did you feel anxiety during the experiment?

(2) How much planning went into using the streaming application

regarding battery usage and why?

(3) How much planning went into using the radio application

regarding battery usage and why?

(4) How much planning went into using the RSS application re-

garding battery usage and why?

Additionally, to gain insights into the suitable user interface for
displaying energy consumption predictions in various applications,
we conducted an additional survey within the baseline condition
group. For each of the four specific types of applications (stream-
ing, navigation, radio, and RSS), we suggested three user interface
candidates: Type A, B, and C, as illustrated in Figure 3. Participants
were then asked to rank the three suggested UI types and provide
reasons for their rankings. To analyze the result, we computed av-
erage ranking assigning a weighted score of 3 points to the most
preferred case, 2 points to the second most preferred case, and 1
point to the least preferred case in their responses. Furthermore, to
evaluate the usability of Serenus within applications that have UI
Type A, participants in the system condition group answered the
System Usability Scale [6].

4.2 Study 2: Large-Scale Simulation of a

Scenario of Being on a Train

Study 2 further investigates the relationship between the accuracy
of energy consumption prediction and user experience through a
large-scale survey. In this study, survey participants were assumed
to be on a train with a phone with low battery power. With energy
consumption predictions provided, we asked how user experience
changes depending on their accuracy.

4.2.1 Participants. We collected a total of 88 responses from partic-
ipants through community platforms. Participants were informed
that it was a survey experiment simulating a smartphone-using

situation. Since it was conducted as an online survey, participants
answered their own survey questions individually.

4.2.2 Experimental Conditions. Each participant went through a
single condition among seven, one baseline condition and six sys-
tem conditions, where the conditions were randomly assigned. As
in Study 1, participants in the baseline condition were not provided
with the energy consumption prediction. Unlike Study 1, however,
Study 2 had six system conditions according to the error rate of
energy consumption prediction. These six system conditions are
labeled as S-X%, where X denotes the error rate, such as S-0%, S-10%,
S-20%, S-30%, S-40%, and S-50%. Participants in these conditions
were provided with the predicted energy consumption with corre-
sponding errors during the simulation.

4.2.3 Tasks and Procedures. The simulation was conducted
through a survey experiment. Participants acted as if they were
on a train to meet friends and chose whether to watch video clips
through YouTube or not until they arrived. The scenario assumed
that it would take 150 minutes for the participants to reach their
destination by train, and they wanted to watch six preferred videos
sequentially. When participants decided whether to watch a video
or not, the remaining time decreased based on the duration of the
video. The battery level started at 48% and participants were in-
structed not to let their phones die so that they can contact their
friends after getting off the train.

Participants decided whether to watch each of the six videos
based on the given information: current battery level, remaining
time to arrival, and video duration. The predicted battery level after
watching a video was only provided in system conditions, with
the error rate varying among conditions. Each time participants
made a decision on whether to watch a video, and we asked them
to provide reasons for their decisions, encouraging them to make
deliberate choices from a set of sample options (e.g., “I thought the
battery was enough to watch a video”, or “I trusted the prediction of

the system” ).
The survey began with a tutorial prior to the experiment. This

tutorial helped participants understand how and what informa-
tion was provided by the system. By going through the system
several times during the tutorial, they could notice the inaccuracy
of the prediction of battery consumption. After the experiment,
participants were asked to rate their experience using the system.

4.2.4 Measures and Analysis. We measured how participants be-
haved depending on the accuracy of the system through the survey
questions and behavior logs. The following question was asked to
measure how they felt during the experiment in every condition:

(1) How much planning went into your application usage regard-

ing battery usage?

Additionally, the following questions were asked only in system
conditions to measure the usability of the system:

(2) How helpful was the system?

(3) Are you willing to use the system?

To analyze the actual user behavior, we also recorded how many
videos participants chose to watch during the experiment.
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Figure 3: Possible UI designs to display energy consumption predictions. In Type A, Serenus predicts and displays the remaining

battery level after the application runs. Type B displays the predicted time one can use the application before the battery runs

out. In Type C, the amount of battery that the application will consume per unit of time (e.g., minute) is displayed.

4.3 Field Study: Validating the Usefulness of

Serenus in Real-World Low-Battery

Situations

As Study 1 (§4.1) and Study 2 (§4.2) are conducted in controlled lab-
oratory environments, we lastly verify the usefulness of Serenus in
real-world situations by deploying it to mobile users and surveying
user experiences of using Serenus.

4.3.1 Participants. We recruited 7 participants through local com-
munity platforms, where all participants have experienced low-
battery anxiety before and were using Android-based mobile de-
vices. To incentivize their participation, each participant was offered
a compensation of approximately 70 USD (i.e., 10 USD per day).

4.3.2 Task and Procedures. As Serenus constructs power models
inside a mobile platform (refer to Figure 2), these participants were
required to use mobile phones equipped with the Serenus platform.
Thus, we provided Pixel 6 phones equipped with Serenus to the
participants for use instead of their own phones during the study.
Each participant had three days to get used to their provided phone
and then started the experiment with the phone for seven days.

Each participant used a phone equipped with Serenus in their
daily lives to experience whether the energy consumption predic-
tion of Serenus helps alleviate low-battery anxiety. Participants
were asked to use and charge their phones as usual while Serenus
provided energy consumption predictions for four types of appli-
cations, video streaming, radio, RSS, and naviation applications.
At the end of each day, they answered online survey questions

regarding their user experiences that day. After finishing the study,
they answered survery questions about the overall user experience
of using Serenus.

4.3.3 Measures and Analysis. In this study, we did not use STAI-6
for two main reasons: 1) STAI-6 is suitable for measuring anxiety
levels at the moment when participants are experiencing anxiety,
and 2) it was not feasible to ask participants to answer survey
questions for STAI-6 whenever they felt anxious in their daily lives.
Consequently, instead of comparing anxiety levels of two groups
based on STAI-6, we chose to measure the improvement of user
experience of each participant with Serenus compared to their
previous experiences.

In the daily survey, we first asked whether participants experi-
enced low battery situations and low-battery anxiety:

(1) Did your battery level drop below 20% today?

(2) When it happened, did your feel anxious because of the low

battery level?

Then, the following questions (7-point Likert scale) were asked
each day to measure whether Serenus was helpful in alleviating
low-battery anxiety that day:

(3) When the battery level is lower than 20%, compared to the

existing Android system, was energy consumption prediction

helpful or hindering in alleviating low-battery anxiety?

(4) When the battery level is lower than 20%, compared to the

existing Android system, was energy consumption prediction

helpful or hindering in planning application usage?
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(5) When the battery level is enough (i.e., more than 20%), com-

pared to the existing Android system, was energy consumption

prediction helpful or hindering in alleviating low-battery anx-

iety?

(6) When the battery level is enough (i.e., more than 20%), com-

pared to the existing Android system, was energy consumption

prediction helpful or hindering in planning application usage?

Possible answers were: strongly hindering, hindering, somewhat
hindering, neither hindering nor helpful (i.e., equal to the existing
Android system), somewhat helpful, helpful, and strongly helpful.

At the end of the study, one 7-point Likert scale question and
one descriptive question were asked to measure the overall im-
provement of the user experience and analyze negative impacts of
Serenus:

(1) Overall, compared to the existing Android system, how helpful

or hindering was the system that provides energy consumption

predictions?

(2) Have you had an experience where energy consumption pre-

diction was caused discomfort or inconvenience when using

the mobile device?

Possible answers for the first question were the same as the above
questions. We also required users to provide descriptive reasons
for their answers.

5 USER STUDY RESULTS

This section provides the details of how our user studies verify
the three hypotheses described in §4. Specifically, we first explain
how we filter out noisy data in Studies 1 and 2 (§5.1). Then we
explain how Study 1 verifies H1 (§5.2) and H2 (§5.3), followed by
how Study 2 verifiesH3 (§5.4). Additionally, §5.5 demonstrates that
users feel Serenus is helpful in real-world low-battery situations,
while §5.6 and §5.7 provide additional findings on preferences of
different UI types and the usability of Serenus respectively.

5.1 Filtering

Before conducting any analysis on the collected user study results,
we reviewed responses in Study 1 and Study 2 and filtered out
noisy data based on consistent criteria, such as doing unsolicited
behaviors or not performing the given tasks properly.

In Study 1, we excluded five participants, resulting in 18 partici-
pants in the system condition and 17 participants in the baseline
condition for analysis. Among the participants in the system con-
dition, two used features that were not provided (e.g., flashlight),
which could alter the usage pattern compared to other participants.
Additionally, three participants in the baseline condition used ap-
plications that we did not provide, corrupting the experiment.

In Study 2, 17 participants were excluded out of 88 total partic-
ipants, resulting in 13 participants for the baseline condition, 13
participants for the S-0% condition, 10 participants for the S-10%
condition, 13 participants for the S-20% condition, 14 participants
for the S-30% condition, 12 participants for the S-40% condition,
and 11 participants for the S-50% condition. Among 17 excluded
participants, five participants submitted the responses irrelevantly
to the questions such as choosing personal preferences on the video.
Additionally, 12 participants had inconsistencies in their responses.
For example, they indicated trust in the system’s predictions in

one answer, but in another response to the question regarding the
prediction error rate, they answered it was higher than 80%.

(a) STAI-6 scores when the battery reached each battery level (the

lower is better).

The frequency of the keyword

“uncertainty” and “unpredictable”

SC (N=18) 7
BC (N=17) 15

(b) The frequency of the keywords mentioned as a reason for the

anxiety.

Figure 4: Quantitative results from the survey in Study 1

(N=18 for SC, N=17 for BC). Participants felt less anxiety in

the system condition. Especially, when the battery reached

15% and 5%, there were significant decreases in anxiety. Ad-

ditionally, participants in the baseline condition mentioned

the keywords “uncertainty” and “unpredictable”, which are

well-known as a root cause of low-battery anxiety, more than

the system condition.

5.2 H1: Users Feel Less Low-Battery Anxiety

When Energy Consumption Prediction is

Provided in Low-Battery Situations

In Study 1, we analyzed survey responses from the system con-
dition (SC) and baseline condition (BC) groups. By a numerical
comparison of anxiety levels (i.e., STAI-6 scores [40]) between the
two groups, we verified H1 and demonstrated the effectiveness of
energy consumption prediction in alleviating low-battery anxiety.

We also found that the energy consumption prediction reduced
uncertainty, which is the root cause of anxiety [11, 20, 21], by
analyzing the frequency of keywords such as “uncertainty” and
“unpredictability” in responses to narrative questions from the two
groups.
STAI-6 scores analysis. As shown in Figure 4a, participants in the
SC group experienced lower levels of anxiety compared to the BC
group when the battery level dropped to 15% (U=286.5 and p<.001)
and 5% (U=203.5 and p<.05). Specifically, the average STAI-6 scores
at 15% battery level stood at 32.59 (SD=11.7) for the SC group and
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Figure 5: Average scores for answering “How much planning

went into your application usage regarding battery usage?”

for each application (higher is better). Participants answered

this question only if they had used that specific application

during the experiment. Participants in the system condition

rated higher than those in the baseline condition. Notably,

there was a significant difference in the streaming applica-

tion.

56.47 (SD=8.62) for the BC group. At the 5% level, the scores were
60.37 (SD=10.7) for the SC group and 66.27 (SD=12.85) for the BC
group.

In contrast, we did not observe significant differences at the
10% battery level (U=165.0 and p>.05), even though the SC group
members experienced marginally lower anxiety levels than the
BC group. The corresponding STAI-6 averages at 10% were 60.93
(SD=6.65) for the SC group and 61.96 (SD=12.1) for the BC group.
We attribute this small difference at the 10% battery level to the
absence of a notification alert upon reaching this battery level.
Unlike at 15% and 5%, the lack of such system alerts might have
made participants less aware of their battery situation, resulting in
an insignificant statistical difference in their anxiety levels.
Content analysis regarding anxiety-related keywords. We
observed a significantly lower frequency of “uncertainty” and “un-

predictability” keywords in the SC group compared to the BC group.
As shown in Figure 4b, only 38% (7 out of 18) of the participants
in the SC group mentioned these keywords as a reason for their
anxiety. In contrast, 88% (15 out of 17) participants in the BC group
mentioned those keywords in their responses. This result aligns
with the psychological knowledge that anxiety stems from uncer-
tainty. In other words, Serenus effectively addresses the root cause of
low-battery anxiety, leading users to feel less low-battery anxiety.

5.3 H2: Users Can Consciously Plan Their

Application Usage Based on Energy

Consumption Predictions

In addition to alleviating low-battery anxiety, we expected that
Serenus helps users optimize their application usage so they will
use their mobile devices longer instead of stopping using devices

prematurely. We verified this H2 through two analyses with 1)
participants’ responses to the post-survey and 2) various log data,
including total energy consumption and application usage time,
collected throughout the experiment.
Post-survey analysis. As shown in Figure 5, we observed that par-
ticipants in the SC group planned their application usage more than
those in the BC group. We statistically compared their responses re-
garding the degree of planning for each application between the SC
and BC groups. For the streaming application, which was the most
frequently used by both groups, we found statistical significance
(U=137.0 and p<.01). For other applications, we could not establish
statistical significance due to the insufficient number of samples,
although the averages were noticeably different. In the responses
regarding the planning of streaming application usage, the average
scores were 5.62 (N=13 and SD=1.33) for the SC group and 4.00
(N=14 and SD=1.92) for the BC group. For the radio application, the
average scores were 4.67 (N=6 and SD=2.01) for the SC group and
2.86 (N=7 and SD=2.34) for the BC group. For the RSS application,
the average scores were 4.23 (N=13 and SD=1.79) for the SC group
and 2.86 (N=7 and SD=2.04) for the BC group.
Log data analysis. Based on the log data from participants, we
evaluated how effectively they planned their application use to
optimize usage until the end of the experiment. To this end, we
compared the total energy consumption of the participants until
the end of the experiment. As a result, participants in the SC group
consumed significantly more energy than participants in the BC
group (U=103.0 and p<.01). Participants in the SC group used 612.86
mAh (SD=32.61) on average, while participants in the BC group
used 570.44 mAh (SD=34.71) on average.

Furthermore, to evaluate how effectively the participants
planned their application usage, we compared application usage
time. We inquired about participants’ preferred application through
a pre-survey before the experiment and then evenly assigned them
to the BC and SC groups based on their responses. Then, we com-
pared the application usage time of the streaming applications be-
tween the two groups. We could not compare other applications be-
cause most of the participants preferred the streaming application,
and very few participants preferred the RSS and radio applications.

In the comparison of application usage time of the streaming
application, we observed that participants in the SC group used the
streaming application longer than those in the BC group. Specifi-
cally, participants in the SC group used the streaming application
for 8.25 minutes (SD=4.73) on average, while participants in the BC
group used it for 4.88 minutes (SD=4.1) on average.

Overall, we verified H2 from both users’ responses to the post-
survey and the log data. We found that users planned and optimized
their application usage to use devices longer with the provided
prediction of energy consumption.

5.4 H3: The Accuracy of Energy Consumption

Prediction Positively Affects Users’

Application Usage Planning

Throughout our large simulation study in Study 2, we found that
there is a significant difference in users’ behaviors when the accu-
racy of prediction is above and below 15%, which supports our last
hypothesis, H3.
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Figure 6: Trends of four metrics, across six system condition groups. We applied min-max normalization to the average values

of these four metrics to analyze the trend. Generally, the lower the error rate, the more effective the system. Notably, when the

error rate increased from 10% to 20%, the degree of planning on video watching decreased remarkably.

Users’ tendency according to error rates. As a reminder of
subsubsection 4.2.4, from seven groups, we gathered data of four
metrics:m1) degree of planning on videowatching,m2) helpfulness
of the predicted energy consumption, m3) proportion of partici-
pants who are willing to use Serenus, andm4) number of videos
watched. To analyze tendencies with respect to error rates, we em-
ployed min-max normalization on the gathered data. While the raw
data is available in the Appendix (Table 5 in §8), our discussion in
this section is based on the normalized data.

As shown in Figure 6, we can observe that the four metrics
commonly tend to decrease as the error rate increases. In particular,
we can observe three notable points: t1) the degree of m2 decreased
sharply at 50%, t2) the S-10% group exhibited a remarkably higher
degree of m1 compared to the S-20% group, and t3) the degree of
m1 significantly increases at the 30% prediction error rate.

Among those notable points, we focused on t2, the significant
difference in the degree of planned video watching between S-
10% and S-20%. This is mainly because, as shown in §5.3, how
participants plan application usage is highly affected by low-battery
anxiety. Additionally, we did not consider t3 because the standard
deviation at 30% is too large, and t3 is possibly observed due to this
high standard deviation. With t2, we realized that only participants
in two groups S-0% and S-10% planned their application usage better
than the baseline condition group, while participants in the other
system condition groups (S-20%, S-30%, S-40% and S-50%) planned
their application usage worse than the baseline condition group.
From this, we deduced an error rate of 15% is meaningful, and we
studied more details.
Significant differences between above and below 15%. To fur-
ther study the accuracy of 15%, we reclassified participants into two
groups: a group, called SU-15%, that experienced error rates under
15% (i.e., S-0% and S-10%) and the other group called SO-15%, which
experienced error rates over 15% (i.e., from S-20% to S-50%). We

found that participants in the SU-15% group benefited significantly
more than those in the SO-15% group in all aspects.

Results are described in Figure 7. In particular, regardingm1, the
SU-15% group planned significantly better than the SO-15% group
(U=787.0 and p<.01), with the average scores on the degree of
planned video watching of 5.22 (SD=2.15) for the the SU-15% group
and 4.00 (SD=1.96) for SO-15% group. Form2, the SU-15% group felt
the predicted energy consumption was significantly more helpful
than the SO-15% group (U=772.0 and p<.01), with the average scores
on how helpful the predicted energy consumption of 5.78 (SD=1.24)
for SU-15% group and 4.84 (SD=1.58) for SO-15% group. For m3, a
higher proportion of participants in the SU-15% group were willing
to use the system (U=695.5 and p<.05). Specifically, 87% of the SU-
15% group (20 out of 23 participants) answered they wanted to
use Serenus. In contrast, 66% of the SO-15% group (33 out of 50
participants) answered so. Lastly, regarding m4, the SU-15% group
watched 3.57 (SD=1.31) videos out of six while the SO-15% group
watched 3.14 (SD=1.13), indicating the SU-15% group watched more
videos than the SO-15% group (U=722.0 and p<.05).

Considering the significant differences between the accuracy
above 15% and under 15%, we conclude that 15% accuracy is notably
meaningful, supporting our last hypothesis H3.

5.5 Helpfulness of Serenus in Real-World

Low-Battery Situations

Frequency of low-battery situations and low-battery anxiety.

First, we examined how many times participants experienced low-
battery situations (i.e., the battery level dropped below 20%) during
the evaluation. According to answers to the daily questions, six out
of seven participants (i.e., 86%) experienced low-battery situations
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Figure 7: Average values and standard deviations of metrics from the two participant groups regrouped based on the 15% error

rate: SU-15% and SO-15% (higher is better). Participants in the SU-15% group showed significantly higher values in all four

metrics than those in the SO-15% group, implying energy consumption prediction with an error rate under 15% outstands

compared to others.

Figure 8: Preferences for UI types in Figure 3 by application

among participants in the baseline condition group of Study1.

For the navigation application, participants have a similar

preference for both Type A and Type B. Meanwhile, partici-

pants prefer Type B for the rest of the applications.

during the experiment. In addition, among 45 answers 2 to the daily
question, 11 (i.e., 24.4%) reported that they experienced a low battery
situation that day. This means that participants underwent a low-
battery situation once or twice a week on average. Furthermore,
out of those 11 daily answers, 10 reported that participants felt
anxious because of the low battery level.
Helpfulness in alleviating low-battery anxiety. Next, we in-
spected how much Serenus can improve the user experience in
low-battery situations. To this end, we analyzed answers to two
questions regarding low-battery situations from the daily survey.
As a reminder, the two questions are “When the battery level is lower

than 20%, compared to the existing Android system, was energy con-

sumption prediction helpful or hindering in alleviating low-battery

anxiety?” and “When the battery level is lower than 20%, compared

2Seven participants performed the experiment over seven days, while four participants
did not answer daily survey questions of one day.

to the existing Android system, was energy consumption prediction

helpful or hindering in planning application usage?”.
As shown in Figure 9, we observe that participants thought

that Serenus is helpful in alleviating low-battery anxiety and in
planning their application use. In particular, among the 11 daily an-
swers where participants underwent low battery situations, 10 were
positive regarding alleviating low-battery anxiety (i.e., somewhat
helpful, helpful, and strongly helpful). In other words, participants
reported that using Serenus has more advantages in alleviating
low-battery anxiety compared to the existing system (i.e., Android).
Additionally, participants’ answers were close to “helpful” on aver-
age. This result supports our claim on H1 (§5.2) by demonstrating
participants feel that Serenus is more helpful than a system with-
out energy consumption prediction (i.e., Android) in real-world
low-battery situations.

Regarding the improvement of planning for application use, we
found that 7 out of the 11 daily answers reported positive reponses,
and the average was in the middle of “somewhat helpful” and “help-
ful.” These answers also support our claim on H2 (§5.3) to some
extent, but fewer participants provided positive feedback than in
the case of H1. We analyzed descriptive reasons to understand the
reason. As a result, we found out that a few participants did not
change how they use applications, although they reported energy
consumption predictions were somewhat helpful in alleviating low-
battery anxiety. For example, one participant mentioned that “Since
I mainly watch videos from channels I subscribe to, I kept watch-

ing videos I wanted to see regardless of the prediction. [FS06]” In
such cases, Serenus is of limited help, only giving users confidence
about battery consumption.
Additional benefits in situations where the battery is suffi-

cient. Surprisingly, we found that one participant answered that
on three days out of a week, Serenus was helpful even when the
battery power of the device was enough. As a recall, the question
wasWhen the battery level is enough (i.e., more than 20%), compared

to the existing Android system, was energy consumption prediction

helpful or hindering in alleviating low-battery anxiety?
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Figure 9: During the field study in §4.3, we surveyed the effects of Serenus in low-battery situations on the degree of alleviation

of anxiety and the planning and usage of applications. The survey was conducted daily using a 7-point Likert scale. The

questions within this scale were specifically designed to compare Serenus against the existing Android system. The responses

consistently indicated that Serenus performs comparably to or surpasses the current Android system.

We analyzed descriptive reasons for the above answers and found
that the participant did not even want to experience a low-battery
situation. Specifically, the participant gave the reason as the follow-
ing reason: “By looking at the current device’s battery level (approx-

imately 30-50%) and the predicted value, I took care to ensure that

the remaining battery capacity did not fall below the psychological

Maginot line (i.e., 20%).” Based on this participant, We conjecture
that Serenus can be helpful in situations even where the battery
level is sufficient if a user is very sensitive to battery draining, and
we leave a further study in such situations as future work.

5.6 Preferences for Different Types of UI for

Energy Consumption Prediction

Through responses from participants of Study 1 who did not use
Serenus, we analyzed preferences for UI types for energy consump-
tion prediction. As shown in Figure 8, we observed that participants
preferred Type A, showing the remaining battery, and Type B, show-
ing available time, across most applications compared to Type C,
energy consumption per minute. In the navigation application, the
preference for Type A was the highest, while the preference for
Type B was the highest in the streaming, radio, and RSS applica-
tions. However, the difference in preferences between Type A and
Type B was very marginal.

5.7 System Usability

Using the System Usability Scale (SUS) [6] in Study 1, we confirmed
that Serenus offers high usability to users. Since Serenus provides
energy consumption predictions just before users decide on appli-
cation execution, we surveyed participants in the system condition
(SC) group who experienced Serenus during Study 1, using SUS to
validate its usability.

As a result, participants in the SC group gave positive scores
regarding the usability of Serenus. The average usability score
of Serenus was 76.67 (SD=11.3). In general, a SUS usability score
of 70 or above is considered to indicate positive usability [4, 6, 7].
Notably, the average score for “I thought the system was easy to use.”

was 4.39 out of 5, and for “I would imagine that most people would

learn to use this system very quickly.”, it was 4.32 out of 5.

6 SYSTEM EVALUATION

In this section, we evaluate various system characteristics of
Serenus. In particular, we show that Serenus achieves high ac-
curacy in energy consumption prediction (§6.1); Serenus incurs
small runtime overhead and negligible energy consumption (§6.2);
and the engineering effort to adopt Serenus is minimal (§6.3).
Experimental setup. All our experiments were conducted on a
Pixel 6 device equipped with Google Tensor (S5P9845) SoC, and
we implement a prototype of Serenus on Android 12.1 (Software
version: SP2A.220505.002). The evaluation to measure the accu-
racy (§6.1) were additionally conducted on Pixel 3 and Pixel 4 XL,
both are equipped with Qualcomm Snapdragon 855, to confirm that
Serenus shows high accuracy on various mobile device models.

6.1 Accuracy of Energy Consumption

Prediction

We first evaluate the prediction accuracy, an important characteris-
tic of Serenus.Wemeasure the accuracy across different real-world
use case scenarios under diverse execution environments on var-
ious devices. In this evaluation, power models assume the use of
WiFi and GPS, while §7.5 discusses how Serenus can handle cases
where this assumption does not hold.

For all evaluations for the accuracy, we compare the predicted
energy consumption with the actual energy consumption, which
can be read from the battery monitoring interface [18, 27], a hard-
ware unit built in smartphones. Additionally, we repeat each mea-
surement 30 times to calculate all average values unless otherwise
mentioned.

6.1.1 Prediction Accuracy for Various Applications Across Different

Device Models. In order to see the prediction accuracy of Serenus
across various applications and use case scenarios, we evaluate 12
free and open-source software (FOSS) [15] Android applications [1,
2, 28, 38, 39, 45, 46, 51–55] in different categories as shown in
Table 3. For this evaluation, wemodified the 12 applications to apply
Serenus. To construct power models for these applications on each
device, we repeatedly execute each application in our laboratory
and collect data samples. For each use case scenario, 20 data samples



Serenus: Alleviating Low-Battery Anxiety Through Accurate Energy Consumption Prediction of Mobile Applications UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Application Category Use case scenario

MAPE (%)

Pixel 3 Pixel 4XL Pixel 6

AntennaPod [1] Podcast & Audio Book Player Listen radio 6.3 7.4 8.6

ReadYou [2] RSS readers Read articles with scrolling 7.6 6.3 7.8

organicmaps [46] Maps & Navigation Search & Navigate routes 9.4 10.2 8.2

NewPipe [45] Media Frontends Watch a video clip 11.8 8.6 8.5

BinaryEye [39] Barcode Scanner Capture a bar-code using camera 8.7 8.2 9.1

FreeDcam [28] Camera Take a video 8.4 8.2 9.4

Simple-Voice-Recorder [55] Voice-Record Record using a microphone 9.6 7.4 9.5

Simple-Flashlight [53] Flashlight Turn on the flashlight 6.7 8.9 9.6

Simple-Gallery [54] Image Viewer Watch saved videos 6.8 5.8 8.8

Simple-Calculator [51] Calculator Calculate mathematical expression 5.6 6.2 8.5
Calculate in widget mode 5.3 6.2 7.6

Simple-Clock [52] Clock & Time Run stopwatch 7.1 6.2 7.6
Run timer 7.0 4.2 7.6

simplytranslate_mobile [38] Translator Translate English sentences into Korean 7.6 7.1 8.4

Table 3: List of use case scenarios and Serenus’ prediction error (MAPE) for each use case scenario.

are collected, and the data is partitioned into training and testing
datasets at an 8:2 ratio. The training dataset (i.e., 16 samples) and
testing dataset (i.e., 4 samples) are used to construct Serenus and
measure its average prediction accuracy.

As shown in Table 3, Serenus demonstrated high accuracy
across various applications and their use case scenarios on each
device. To evaluate the regression-based power models on each
device, we applied the power model to the test data set and calcu-
lated the mean absolute percentage errors (MAPE) to verify the
accuracy of the power model. As a result, Serenus shows MAPE
of 7.7%, 7.2%, and 8.5% on average in Pixel 3, Pixel 4XL, and Pixel 6,
respectively. All these MAPE values are under the 15% accuracy
derived from Study 2 in §5.4.

6.1.2 Prediction Accuracy Under Different Environments. We also
evaluate whether Serenus can predict energy consumption accu-
rately even if the environment differs from when data samples are
collected. In this evaluation, we change the execution environment
by 1) adjusting screen brightness and volume levels, and 2) running
different applications in the background.
Different screen & audio settings. When users use their phones,
they often change the brightness or audio volume, which signifi-
cantly impacts energy consumption. To investigate the impact of
these changes on prediction, we select the “watch a video clip” sce-
nario of NewPipe because it is affected by both screen brightness
and audio volume. We measure the accuracy of predicting the en-
ergy consumption of the scenario over a total of four experiments
using two screen brightness levels and two audio volume levels.
The evaluation results show that the average adjusted R2 andMAPE
values are 0.86 and 9.5%, respectively.
Applications running in the background. Users often use multi-
ple applications simultaneously such as “video calling while watch-
ing a video”. In this experiment, we measure the accuracy of predict-
ing the energy consumption of a scenario when another application

Figure 10: Prediction error (MAPE) of Serenus when vary-

ing the number of training data samples. As the amount of

training data increases, the error decreases. The prediction

error converges when the number of samples exceeds 16.

is running in the background. We select “watch a video clip” as
the target scenario and measure the accuracy of predicting its en-
ergy consumptin when a camera application is operating in the
background. On average, the target scenario consumes 0.23% of the
battery per minute, while the camera application running in the
background uses 0.11% per minute. Under this condition, the accu-
racy of Serenus yields an adjusted R2 value of 0.85 and a MAPE of
10.6%.
Overall results. From the two usage environments, we confirm
that while Serenus’s accuracy decreases slightly, it still remains
within acceptable ranges. The increased error rates (i.e., MAPE
values) for both experiments are 9.5% and 10.6% respectively. These
values are still below the threshold of accuracy to be helpful in plan-
ning application usage (discussed in §5.4), showing that Serenus
can predict the energy consumption even under environments that
are different from when collecting training data samples.



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Sera Lee, Dae R. Jeong, Junyoung Choi, Jaeheon Kwak, Seoyun Son, Jean Y. Song, and Insik Shin

6.1.3 Prediction Accuracy According to the Number of Training Data.

Because Serenus constructs power models after installing applica-
tions, it undergoes the “cold start” problem, which is characterized
by low accuracy when the number of training data samples is small.
To determine how much data should be collected to achieve accept-
able accuracy, we measure the accuracy of predicting the energy
consumption of the “watch a video clip” scenario according to the
number of training samples.

As depicted in Figure 10, Serenus shows a small error even when
the number of data samples is small. Serenus achieves meaningful
prediction accuracy with as few as seven training samples, indi-
cating that Serenus does not require a long time to construct the
power models. In the case of video streaming applications, Serenus
can provide accurate predictions of energy consumption after users
watch seven videos.

6.2 System Overhead of Serenus

We further evaluate the system overhead of Serenus for two pri-
mary purposes: 1) to confirm that Serenus ensures low latency
for real-time prediction, and 2) to demonstrate that the storage
overhead of Serenus is negligible.

6.2.1 Additional Energy Consumption of Serenus. Tomeasure how
much energy Serenus consumes, we compare the total energy con-
sumption of two Pixel 6 devices running a video streaming appli-
cation for 2.5 hours. One of the devices is equipped with Serenus,
while the other runs the unmodified Android platform. We choose
a video streaming application because it is an application that users
may run for a long time and that may degrade the user experience
significantly if Serenus consumes a lot of energy.

We repeat the measurement 30 times and obtain the average of
energy consumption on each device. As a result, we confirm that
Serenus consumes 1.3% more energy compared to the unmodified
Android platform. Translating the additional consumption into
video-watching time, if a user can watch a video for 2.5 hours on
the unmodified Android platform with a given amount of energy,
they can watch the same video 115 seconds less (i.e., they can watch
the video for 2 hours and 28 minutes) on Serenus. Although the
additional energy consumption shortens the video-watching time,
we believe that the shortened time is negligible and does not have
a significant impact on the user experience.

Furthermore, it is worth noting that the additional energy con-
sumption can be easily reduced. The current implementation of
Serenus ’s APIs invokes RPC calls excessively frequently, caus-
ing extra energy use. During measurements, RPC calls were made
whenever a video frame was updated, which is dozens of times per
second. To reduce energy consumption, we can modify Serenus
’s API to make an RPC call only once per second. One call per sec-
ond should be sufficient, as the remaining battery power does not
change drastically within one second. This modification does not
require additional changes to applications.

6.2.2 API Invocation Latency. We measure the latency of API in-
vocations required to integrate Serenus into applications. This is
because if the latency is too high, users may notice a delay while us-
ing applications, which can degrade the user experience. We chose

NewPipe, a video streaming application, to measure the latency
and took the average latency of 1,000 measurements.

As a result, API invocations incur a latency of tens of millisec-
onds, where the main source of the latency is inter-process com-
munication (IPC) between an application and the system frame-
work. In particular, the API invocations of startLogging() and
endLogging() (i.e., APIs to collect data samples described in
§3.2) take 3.92ms (SD=1.12) and 3.76ms (SD=1.29) respectively,
which is negligible. On the other hand, the API invocation of
getPrediction() to retrieve the predicted energy consumption
takes 10.48ms (SD=1.98). Given that the refresh rate of the most
recent smartphone, the iPhone 15, is 60Hz (i.e., 16ms per frame),
the prediction API has such low latency that it can update every
frame without users noticing any delays in prediction.

6.2.3 Storage Overhead. Serenus incurs storage overhead as it
collects data on mobile devices and stores power models in storage.
According to our measurement, collecting training data samples
consumes 140 bytes per data sample while Serenus needs to col-
lect data samples for each use case scenario. Considering Serenus
achieves prediction accuracy with approximately 30 training sam-
ples, Serenus needs to collect 30 times the number of use case
scenarios, resulting in a total storage overhead of 140 bytes multi-
plied by 30 times the number of use case scenarios. On the other
hand, storing power models consumes around 100 bytes per model.
Therefore, the total amount of storage usage is approximated to
100 bytes times the number of use case scenarios that a user is
using. In both cases of collecting data samples and storing power
models, Serenus consumes less than 1MB even if a user uses 100
applications.

6.3 Engineering Efforts to Integrate Serenus

into Applications

To quantitatively assess developers’ efforts in integrating Serenus
into their applications, we count the required lines of code (LoC)
for applying Serenus in the four open-source applications from
User Study 1: Newpipe, Organic Maps, AntennaPod, and ReadYou.
As mentioned in §3, developers need to adjust their applications for
two reasons: 1) to notify when a scenario begins and ends (§3.2) and
2) to retrieve and display the predicted energy consumption (§3.3).
Table 4 shows the LoCs 3 to integrate Serenus into the applica-
tions. As shown in this table, integrating Serenus requires small
engineering efforts, which are approximated to an average of 5.5
lines of code. This source code modification simply involves calling
APIs to communicate with Serenus (see Figure 2) and creating
layout components (i.e., Android’s View), and it does not involve
any complicated algorithm or implementation.

7 DISCUSSION AND LIMITATION

In this section, we discuss various observations from our exper-
iments, which provide a deep understanding and guidelines in
alleviating low-battery anxiety.

3We measure LoCs using cloc [16].
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Application name Programming language

Lines of Code (LoC)

Power model Energy consumption

construction (§3.2) prediction (§3.3)

NewPipe Java & Kotlin 2 4
ReadYou Kotlin 2 4

organicmaps Java 2 3
AntennaPod Java 2 3

Table 4: List of Serenus-integrated open source applications. For each application, we count the lines of code needed for APIs

to communicate with Serenus.

7.1 How Energy Consumption Predictions

Alleviate User’s Low Battery Anxiety

7.1.1 Diverse Forms of Uncertainty. While uncertainty is com-
monly recognized as the root cause of anxiety, responses from
participants in the baseline condition group of Study 1 (§4.1) re-
vealed that diverse forms of uncertainty arise when the battery
level is low. We identified these types of uncertainty to provide a
deep understanding of low-battery anxiety, which can guide the
future development of mobile system framework as follows.

The first is the “uncertainty of the device’s remaining battery
life.” Five out of 17 participants felt anxious because they did not
know when their battery would run out: “I was anxious because
I didn’t know when my phone would run out of battery [B01, B03,

B04, B07, B10].” The second is the “uncertainty about whether it is
okay to use the desired application”. Nine out of 17 participants felt
anxious about whether they could use their desired applications.
Examples include “I was anxious that I might not be able to scan

the final assignment QR code when I return to school” and “I was

afraid of not reaching my desired destination using the navigation

application [B04, B07, B08, B09, B11, B12, B14, B16, B17].” And the
third is “uncertainty about unpredictable future situations”. Two
out of 17 participants expressed anxiety about not being able to
use applications due to unpredictable situations in the future: “I
was worried about missing important calls later on [B06]” and “I

was concerned about not receiving important phone calls or messages

[B02].”

7.1.2 Detailed Observations on How Prediction Alleviates Uncer-

tainty. To ascertain the reasons for the reduction of low-battery
anxiety by Serenus, we thoroughly examined responses related to
overall anxiety during the whole experiment and the application-
specific anxiety from participants in the system condition group of
Study 1.

First and foremost, we observed that confidence in the accuracy
of the application’s energy consumption prediction alleviated their
anxiety. Specifically, 22% (4 out of 18) of the participants explicitly
expressed reduced anxiety levels attributed to the accuracy of the
battery predictions “The certainty that the energy consumption pre-

diction is precise alleviated my anxiety [S05, S08, S09, S10].” Further,
28% (5 out of 18) of the participants diminished their anxiety by
managing future battery levels based on the predicted energy con-
sumption of the application, thereby strategizing for potentially
unpredictable situations. Examples include “The ability to intuitively
manage the battery based on the application’s energy consumption

prediction reduced my anxiety”, and “Considering the possibility of

unpredictable situations, like needing to make a call, I preserved bat-

tery by prediction value [S03, S07, S09, S10, S04].”

7.2 Improvements in User Experience

We observed that Serenus enhanced the user experience by provid-
ing energy consumption predictions. Participants of Study 1 com-
mented in the post-survey that their user experience had improved
after receiving energy consumption predictions from Serenus, even
though Serenus was primarily designed for alleviating low-battery
anxiety.

By recognizing the energy consumption predictions of various
use case scenarios, participants had more options regarding which
application to use and what content to play. Specifically, some par-
ticipants became more flexible in their decision-making based on
each use case scenario’s predicted energy consumption. One partici-
pant shared, “I was initially watching a video, but since I checked that
the remaining battery was not enough to keep watching videos until

arrival, so I switched to reading the news which consumes less battery

[S07, S11].” Another participant commented, “I was reading a news
article because the battery did not have much charge left. But later, I

noticed that my phone wouldn’t turn off, so I strategically watched

the video [S15].” Some participants used the predicted energy con-
sumption to decide which contents within applications to play. For
instance, “To keep my phone on, I watched short videos because I was

reassured by the low energy consumption of short videos [S12].” Also,
some participants adjusted settings such as screen brightness or au-
dio volume in specific use case scenarios to manage the remaining
battery. We observed responses such as “Initially, when watching

videos, I viewed them normally. But as the battery decreased, I found

myself lowering the screen brightness [S08, S10].” These observations
reveal that Serenus helped users make informed decisions and
improved their experience.

7.3 Guidelines for Application Developers in

Designing User Interfaces

There is no dominantly preferred UI type for energy consumption
prediction among the three types, Type A, B, and C (shown in
Figure 3). While Types A and B are generally more favored than
Type C, there are still situations where Type C is chosen. After
closely examining the reasons for their preferences, we categorized
them into the following three categories.
Intuitive user interface. For most applications, participants pre-
ferred Type A and Type B more than Type C, because those types
are more intuitive to understand and easier to plan their application
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usage. They reasoned that, unlike Type C, there was no need for
additional calculations to determine the available usage time or
battery when selecting the desired applications or content. Some
participants commented, “We need to calculate additionally to know

total battery consumptions of all contents when using Type C [B14,

B01, B02, B03, B16].”

Application-specific usage patterns. We observed that UI pref-
erences could vary according to application-specific usage patterns.
For instance, users typically have a predetermined destination in
mind when using a navigation application. In such a scenario, users
were more interested in the remaining battery after they arrive
(Type A) rather than others. One participant mentioned, “For map

apps, what’s important is whether I can reach my destination with

the current battery state or not [B05].” Participants preferred Type
A for applications that normally have a fixed-length of scenario
(e.g., navigation application, YouTube), while Type B is preferred
for applications with a fluctuant length of scenario (e.g., Twitch).
Diversity in individuals’ characteristics for each application.

In a single application, preferences for UI can vary depending on
an individuals’ characteristics. For the streaming application, pref-
erences for Type A and Type B varied based on individuals’ diverse
selection criteria. Some participants who preferred Type B, consid-
ered it was more important to decide how long to watch the video
than which video to watch: “Being able to see the available viewing
time before watching helps in planning the app usage [B00, B03, B04,

B13].” Other participants who favored Type A mentioned that they
selected contents to watch based on a relative comparison of the en-
ergy consumption prediction of each content: “It allows for a relative
comparison by content [B05, B06, B10, B16].” For some applications
that can have various characteristics according to users, preference
for Type C may increase. For example, for the RSS application, since
the reading speed varies from person to person, some participants
answered that they preferred Type C: “Everyone reads at a different
pace [B07, B10].”

7.4 Additional Cognitive Burden due to Energy

Consumption Prediction

As Serenus provides users with more information, mobile users
who are robust to low-battery anxiety might perceive the energy
consumption prediction as unnecessary or even as an additional cog-
nitive burden. In order to confirm how many users think Serenus
negatively, we analyzed answers to narrative questions from our
user studies.

As a result, 2 among 40 participants of Study 1 (§4.1) provides
negative feedbacks on Serenus. Specifically, we observed the fol-
lowing comments: “It was annoying because energy consumption

kept being displayed on the screen.” [S01] and “It was hard to use

the application freely because the amount of battery decreasing is

displayed in real time.” [S06]. Despite this negative feedback, we be-
lieve that Serenus holds value from two perspectives. First, based
on our user studies, most of users found Serenus and its energy
consumption predictions useful without being disruptive. Second,
energy consumption prediction can be easily configured to be invis-
ible or hidden. Since energy consumption predictions are displayed
through Android’s View, they can be easily removed from the dis-
paly with a few lines of code. With some engineering efforts from

developers, we believe that users who prefer not to use Serenus
will not experience significant inconvenience, as they can simply
hide the energy consumption prediction.

7.5 Various Factors that Affect the Accuracy of

Energy Consumption Prediction

While our evaluation was conducted with the assumption that WiFi
and GPS are used, the hardware users employ affects the accuracy
of energy consumption predictions. For example, WiFi and LTE
modules consume different amounts of energy [26, 63], and a user
can decide whether to turn GPS on or off while using Google Maps.

Serenus can address these factors by recognizing which hard-
ware component is being used and selectively applying power
models accordingly. For example, Serenus may choose a model
based on whether LTE or WiFi is used. Power models for var-
ious hardware components have been well-studied in previous
works [26, 29, 47, 61, 63]. In addition, although the current im-
plementation shows high accuracy, improving power models is
orthogonal to the findings of this paper. Future improvements to
Serenus can be achieved by incorporating more precise models as
they are developed. We leave the development of more accurate
power models as future work.

8 CONCLUSION

In this paper, we conduct in-depth study on how to alleviate low-
battery anxiety. The key insight to this end is that low-battery anx-
iety stems from the uncertainty around the energy consumption
of applications. To eliminate the uncertainty, we propose Serenus,
a mobile system framework to accurately predict the energy con-
sumption in real-time. With Serenus, we conducted two rounds of
user studies. From these studies, we demonstrated that 1) the real-
time, accurate, and user-friendly energy consumption prediction
can significantly alleviate low-battery anxiety, 2) with the predic-
tion, users can plan their application usage to use mobile devices
longer, and 3) the accuracy of the prediction affects users’ appli-
cation usage plans. Lastly, we summarize our findings from our
experiments, which provides deep understanding and a guideline
in alleviating users’ low-battery anxiety.
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APPENDIX

Groups m1 m2 m3 m4

Baseline (N=13) 4.46 (1.94) - - 3.08 (1.19)
0% (S-0%) (N=13) 5.23 (2.24) 6.23 (1.01) 12 3.77 (1.17)
10% (S-10%) (N=10) 5.2 (2.15) 5.2 (1.32) 8 3.3 (1.49)
20% (S-20%) (N=13) 4.08 (1.85) 5.08 (0.86) 11 3.46 (1.13)
30% (S-30%) (N=14) 4.79 (2.15) 5.14 (1.79) 9 3.00 (0.88)
40% (S-40%) (N=12) 3.5 (1.73) 5.17 (1.19) 9 3.33 (1.15)
50% (S-50%) (N=11) 3.45 (1.97) 3.81 (2.04) 4 2.73 (1.35)

Table 5: Averages of responses in Study 2 for the baseline

group and the six system condition groups. Three columns,

m1, m2, and m4, demonstrate averages scores of the degree of

planning on video watching (m1), helpfulness of the predicted

energy consumption (m2), and number of videos watched (m4)

respectively. Numbers in parentheses are standard deviations.

The m3 column represents the number of participants who

are willing to use Serenus. For the baseline group, partici-

pants did not answer the questions for m2 and m3, because

they did not use Serenus. When analyzing these results, we

employedmin-max normalization as represented in Figure 6.

https://github.com/SimpleMobileTools/Simple-Clock
https://github.com/SimpleMobileTools/Simple-Flashlight
https://github.com/SimpleMobileTools/Simple-Gallery
https://github.com/SimpleMobileTools/Simple-Voice-Recorder
https://play.google.com/store/apps/details?id=tv.twitch.android.app
https://play.google.com/store/apps/details?id=tv.twitch.android.app

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Low-Battery Anxiety
	2.2 Related Work
	2.3 Motivation

	3 Serenus: Mobile System Framework to Accurately Predict Energy Consumption of Applications
	3.1 Design Overview of Serenus
	3.2 Power Model Construction
	3.3 Energy Consumption Prediction

	4 Study Design
	4.1 Study 1: Simulation of Using a Smartphone While on the Move Outside
	4.2 Study 2: Large-Scale Simulation of a Scenario of Being on a Train
	4.3 Field Study: Validating the Usefulness of Serenus in Real-World Low-Battery Situations

	5 User Study Results
	5.1 Filtering
	5.2 H1: Users Feel Less Low-Battery Anxiety When Energy Consumption Prediction is Provided in Low-Battery Situations
	5.3 H2: Users Can Consciously Plan Their Application Usage Based on Energy Consumption Predictions
	5.4 H3: The Accuracy of Energy Consumption Prediction Positively Affects Users’ Application Usage Planning
	5.5 Helpfulness of Serenus in Real-World Low-Battery Situations
	5.6 Preferences for Different Types of UI for Energy Consumption Prediction
	5.7 System Usability

	6 System Evaluation
	6.1 Accuracy of Energy Consumption Prediction
	6.2 System Overhead of Serenus
	6.3 Engineering Efforts to Integrate Serenus into Applications

	7 Discussion and Limitation
	7.1  How Energy Consumption Predictions Alleviate User's Low Battery Anxiety 
	7.2 Improvements in User Experience
	7.3 Guidelines for Application Developers in Designing User Interfaces
	7.4 Additional Cognitive Burden due to Energy Consumption Prediction
	7.5 Various Factors that Affect the Accuracy of Energy Consumption Prediction

	8 Conclusion
	Acknowledgments
	References

