
OZZ: Identifying Kernel Out-of-Order Concurrency Bugs
with In-Vivo Memory Access Reordering

Dae R. Jeong†∗ Yewon Choi‡ Byoungyoung Lee§ Insik Shin‡¶ Youngjin Kwon‡
† School of Cybersecurity and Privacy, Georgia Tech

‡ School of Computing, KAIST
§ Department of Electrical and Computer Engineering, Seoul National University

¶ Fluiz

Abstract
Kernel concurrency bugs are notoriously difficult to identify,
while their consequences severely threaten the reliability and
security of the entire system. Especially in the kernel, develop-
ers should consider not only locks but also memory barriers to
prevent out-of-order execution from breaking the correctness
of concurrent execution. Incorrect use of memory barriers
may cause non-intuitive concurrency bugs that manifest due
to out-of-order execution, which we refer to as OOO bugs.

This paper aims to identify OOO bugs in the kernel. We
devise a mechanism to emulate out-of-order execution while
kernel code is executed, called OEMU. Inspired by how a pro-
cessor reorders memory accesses, OEMU makes the subtle
and non-deterministic behavior of out-of-order execution sys-
tematically controllable. Based on OEMU, we propose OZZ,
a new testing tool designed to effectively identify kernel OOO
bugs. The key feature of OZZ is its ability to deterministically
control both out-of-order execution and concurrent execu-
tion caused by thread interleavings, enabling comprehensive
testing of their combined effects. Our evaluation shows that
OEMU is effective in reproducing previously-reported kernel
OOO bugs, demonstrating its strong capability of controlling
out-of-order execution. Furthermore, with OZZ, we identify
11 new OOO bugs in the latest version of the Linux kernel,
subsequently confirmed and patched by kernel developers.

CCS Concepts: • Computer systems organization → Re-
liability; Processors and memory architectures; • Security
and privacy → Operating systems security.

∗ This work is mostly done while at KAIST.

1 Introduction
In the multicore era, concurrency has been a paramount dri-
ver in optimizing the performance of systems. To maximize
the benefits of concurrency, system software such as the ker-
nel has employed a number of advanced techniques includ-
ing read-copy-update [45, 47], reference counters [14], and
lock-free data structures [46, 104]. The advantages of these
techniques come with an increased burden on developers. If
developers do not properly synchronize threads, concurrency
bugs can arise, compromising the reliability and security of
the system software.

This challenge is further compounded by the growing adop-
tion of machines with weak memory models, such as Apple
Silicon chipsets [107]. Kernel developers should consider
not only using locks but also employing memory barriers.
Memory barriers are instructions that prevent out-of-order
execution of memory accesses that should not be reordered.
Misusing memory barriers may cause concurrency bugs that
manifest due to out-of-order execution of concurrent threads,
which we call OOO bugs. Consequences of OOO bugs are se-
vere, such as denial-of-services [8], system crashes [60, 120],
data loss [62], or even well-known security risks such as
memory corruptions [17, 82]. Unfortunately, OOO bugs are
notoriously difficult to identify, as they manifest by the combi-
nation of two non-deterministic behaviors: thread interleaving
and out-of-order execution.

Over the decades, we have been armed with mechanisms
to address the non-determinism of thread interleaving. Be-
cause several mechanisms are proposed [9, 18, 20, 40, 44,
48, 59, 63, 64, 76, 99, 105, 111] to deterministically con-
trol thread interleaving, automated testing techniques (e.g.,
fuzzing) emerge to effectively identify concurrency bugs.
They control thread interleaving in various ways, such as
leveraging breakpoints [13, 18, 39–41, 43, 65] or temporary
suspending virtual CPUs [20, 22, 23] and show remarkable
capability in the identification of concurrency bugs.

In contrast, addressing the non-determinism of out-of-order
execution remains under-explored. While existing processor
features, such as breakpoints, can be utilized for testing thread
interleavings, testing out-of-order execution requires a com-
pletely new approach. This is because out-of-order execution
occurs internally within the processor and has traditionally

229

This work is licensed under a Creative Commons Attribution International 4.0 License.
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695944

https://doi.org/10.1145/3694715.3695944
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695944&domain=pdf&date_stamp=2024-11-15

been considered beyond external control. Furthermore, tech-
niques used to control thread interleavings can unintentionally
obscure the effects of out-of-order execution. For example, us-
ing breakpoints enforces an order on memory accesses, which
prevents the natural observation of memory access reordering
caused by out-of-order execution.

This work introduces a new way for systematically testing
OOO bugs. We propose a new mechanism to control out-of-
order execution. The important property of the mechanism
is making memory access reordering observable and con-
trollable even when using a breakpoint. Therefore, a testing
framework can utilize an existing mechanism for controlling
thread interleaving [20, 22, 23, 39], while simultaneously em-
ploying the proposed mechanism to deterministically control
the behavior of out-of-order execution. This powerful com-
bination enables the development of a bug-finding tool for
kernel OOO bugs.
In-vivo out-of-order execution emulation [§3]. Because
controlling processors’ out-of-order execution is practically
challenging during runtime, a number of previous approaches
[10, 21, 32, 33, 37, 71, 80] adopt an alternative, which collects
memory accesses after running a target program, and simu-
lates out-of-order execution through offline analysis. While
these approaches might partially expose behaviors stemming
from out-of-order execution, they fail to apply kernel run-
time contexts (e.g., a list of freed memory objects), limited in
identifying bugs such as double-free bugs [82].

Unlike previous approaches, we present an in-vivo1 out-
of-order execution emulation (shortly, OEMU). OEMU is
integrated into the kernel in the compiling time. While exe-
cuting the kernel, OEMU operates as a part of the kernel code
and reorders memory accesses explicitly during the execu-
tion of the kernel. OEMU exposes interfaces to a bug-testing
tool to specify how to reorder memory accesses in the ker-
nel. Therefore, the bug-testing tool can fully consider kernel
runtime contexts (e.g., a list of freed memory objects) and
leverage bug-detecting oracles already deployed in kernel
(e.g., sanitizers [66, 88, 93] or kernel assertions). This in-vivo
integration enables building automated bug-finding tools.
Identifying OOO bugs through fuzzing [§4]. This work
proposes OZZ, a fuzz testing tool focusing on discovering
OOO bugs. Using OEMU, OZZ is capable of testing both
out-of-order execution and thread interleaving while most
previous approaches [13, 22, 23, 39, 41–43, 96, 112, 113]
consider in-order execution only. To our best knowledge,
OZZ is the first fuzz testing to to detect OOO bugs

The key idea of OZZ is to test the necessity of a hypothet-
ical memory barrier. In each test, OZZ operates under the
assumption that a memory barrier is missing while executing
concurrent system calls. It then reorders memory accesses

1In-vivo is a Latin word meaning ‘in the living body.’ In this paper, we refer
to OEMU as an in-vivo emulation because it is transplanted to the kernel and
reorders memory accesses as a part of the kernel’s operation.

using OEMU in the scenario that the missing memory barrier
would prevent if it were present. If it causes a kernel mal-
function, OZZ concludes that an OOO bug occurs due to the
missing barrier. Additionally, after identifying an OOO bug,
OZZ provides the location of the hypothetical memory barrier,
providing a hint to developers about how to fix the bug.
Contributions. We run OZZ against mature versions of
Linux, and identified new 11 OOO bugs from popular sub-
systems such as TLS and BPF. We report them to kernel
developers, and developers confirm and fix them accordingly.
We also show that OEMU has the strong capability in repro-
ducing OOO bugs previously found in a deployed kernel.

We want to underscore that OZZ has the practical advan-
tage in its cost-saving potential. Google allocates substantial
resources to maintain continuous SYZKALLER operations
on x86-64 machines. However, OOO bugs predominantly
manifest on machines with weak memory models like ARM.
Without OZZ, Google would need to acquire numerous ARM
machines to utilize SYZKALLER for discovering OOO bugs.
Although SYZKALLER utilizes QEMU’s TCG, a dynamic
binary translation engine to execute different architectures’
instructions, on x86-64 machines to execute ARM Linux, it
is incapable of detecting OOO bugs as TCG does not reorder
memory accesses.

The contributions of this paper are threefold:

• In-vivo emulation of out-of-order execution. This paper
presents OEMU, a runtime mechanism to control out-of-
order execution. It makes out-of-order execution control-
lable and observable, enabling an automated bug-finding
tool for identifying OOO bugs.

• A testing tool for OOO bugs. OZZ is the first runtime
testing tool to identify kernel OOO bugs. OZZ determin-
istically controls both out-of-order execution and thread
interleaving, effectively disclosing OOO bugs.

• Practical contributions. We identify 11 new real-world
OOO bugs in the Linux kernel, which have been confirmed
and patched by developers. OZZ and OEMU are publicly
available at https://github.com/casys-kaist/ozz.

2 Background and Motivation
This section provides background on how out-of-order execu-
tion causes a concurrency bug if a memory barrier is omitted.

2.1 Out-of-Order Execution and Memory Barrier

Out-of-order execution. Modern processors often do not
execute machine instructions in the order written in the bi-
nary. Instead, they perform out-of-order execution [100, 109],
which may reorder memory accesses to reduce pipeline stalls
or to improve the cache utilization. Due to its huge perfor-
mance benefits [110], out-of-order execution is widely used
in most modern high-performance processors [4, 5, 15, 34].

230

https://github.com/casys-kaist/ozz

Type Memory barrier API Precedent Subsequent
accesses accesses

Full smp_mb() loads/stores loads/stores
Load smp_rmb() loads loads
Store smp_wmb() stores stores
Release smp_store_release(&a, v) load/stores store to &a
Acquire smp_load_acquire(&a) load from &a loads/stores
Relaxed READ_ONCE()/WRITE_ONCE() none none

Table 1. Examples of memory barriers provided by Linux. Each
memory barrier guarantees that precedent accesses are completed
before subsequent accesses.

1 /******* Thread A *******/
2 /* kernel/watch_queue.c */
3 void post_one_notification() {
4 buf = &pipe->bufs[head];
5 buf->len = len;
6 buf->ops = &wq_pipe_ops;
7 + smp_wmb();
8 head += 1;
9 }

10

11 /******* Thread B *******/
12 /* fs/pipe.c */
13 void pipe_read() {
14 if (head > tail) {
15 + smp_rmb();
16 buf = &pipe->bufs[tail];
17 len = buf->len;
18 buf->ops->confirm();
19 }
20 }

Figure 1. OOO bug example in the Linux kernel [31]. In this ex-
ample, pipe->bufs is a ring buffer, and head and tail denote the
head and the tail of the ring buffer. Initially, head and tail have
the same value. In the buggy implementation, memory barriers in
both functions were missing (i.e., #7 and #15).

It is worth noting that different processors can reorder mem-
ory accesses differently. For example, ARM-based architec-
tures (e.g., Apple Silicon M1 or M2) implement out-of-order
execution more aggressively than x86-64 machines. Specif-
ically, in the Apple Silicon M1 architecture, if a thread A
changes the variables x and y in order, a thread B may ob-
serve the change of y before the change of x is visible. The
x86-64 architecture, however, always ensures that the thread B
observe the change of x before the change of y is visible to
the thread B.
Memory barrier. Programs often do not want to reorder
memory accesses that have semantical ordering requirements.
For example, a program may have an ordering requirement
that a store operation x=1 should be finished and the value
of x is visible to other threads before another store operation
y=1 is executed (as shown in §2.2).

Then, memory barriers are used to enforce ordering re-
quirements. When positioned between instructions, memory
barriers ensure that preceding memory accesses (e.g., x=1)
are finished before subsequent ones (e.g., y=1). In the absence
of a memory barrier, the processor might reorder memory ac-
cesses in contrast to the ordering requirement, breaking the
correctness of the program. The Linux kernel provides a num-
ber of memory barriers (as shown in Table 1) which can be
used for various ordering constraints.

2.2 Missing Memory Barriers Cause Concurrency Bugs
A certain reordering of memory accesses can lead to con-

currency bugs, which we call out-of-order bugs (shortly, OOO

bugs). Many bug reports show that OOO bugs can cause se-
vere issues in deployed kernels such as denial-of-service [95,
115], system crashes [60, 120], data loss [62], or even well-
known security risks such as memory corruptions [17, 82].

Figure 1 shows an example of a real-world OOO bug [31]
in the Linux kernel. In this example, post_one_notificati
on() initializes an entry in the ring buffer, while pipe_-
read() reads the initialized entry if there exist items to read
(head > tail). Developers must place memory barriers for
these functions to correctly communicate data with the ring
buffer. Specifically, 1) post_one_notification() should
use a write barrier (#72) to complete the initialization of an
entry before incremented head is visible to other cores, and
2) in pipe_read(), a read barrier must be placed at #15 to
prevent a processor from executing instructions #17 and #18
before executing instruction #14.

The both barriers are necessary. Otherwise, architectures
that do not preserve the order between store operations (e.g.,
Apple Silicon M1) lead to an incorrect concurrent execution
of the two threads, causing an uninitialized pointer access to
buf in pipe_read(). If smp_wmb() is missing, it is possible
that in post_one_notification(), head increases (#8)
before the function pointer buf->ops is initialized to wq_-
pipe_ops (#6). In that case, the two functions can access
buf->ops and head in the order of (#8→ #14→ #18→ #6).
This allows pipe_read() to access the uninitialized function
pointer buf->ops, jeopardizing the reliability and security
of the kernel. Similarly, if smp_rmb() is missing in pipe_-
read(), it can speculatively read the value of buf->ops
(#18) before checking the value of head (#14). Also in this
case, pipe_read()may access uninitialized buf->ops with
the execution order of (#18→ #6→ #8→ #14).

2.3 It Is Challenging to Identify OoO Bugs
It is significantly challenging to pinpoint OOO bugs. As de-
picted in Figure 1, OOO bugs manifest when two or more
threads access shared objects concurrently. Consequently,
comprehending OOO bugs requires developers to reason
about two distinct types of non-deterministic events: thread in-
terleavings and out-of-order memory accesses. Given that this
paper aims to identify OOO bugs in the Linux kernel, which
comprises substantial lines of code, manual investigation by
developers becomes practically infeasible.

One might contemplate employing existing testing tools
(e.g., concurrency fuzzers) to identify OOO bugs. Unfortu-
nately, applying existing tools is impractical for detecting
OOO bugs because out-of-order execution inherently con-
tains a non-deterministic behavior occurring inside a pro-
cessor. Existing tools assume memory accesses happened

2In the real patch, developers used smp_store_release() and smp_-
load_acquire()which show the better performance at runtime. For brevity,
we use smp_wmb() and smp_rmb() in this paper.

231

1 // Original source code
2 x = 1;
3 r1 = y;

4 // Transformed code
5 store_value(&x, 1);
6 r1 = load_value(&y);

Figure 2. During the kernel compilation, OEMU transforms the
original source code (represented in the left) as represented in the
right). Note that r1 is a local variable on the stack.

in order [13, 22, 23, 39, 41–43, 96, 112, 113, 116]. How-
ever, to systematically explore potential out-of-order memory
accesses, a tool must explicitly govern the behavior of out-
of-order execution. To the best of our knowledge, we have
not seen an approach that offers a runtime mechanism for
controlling out-of-order execution.

Moreover, certain mechanisms for controlling thread inter-
leaving conceal the manifestation of OOO bugs. For instance,
popular methods involve using a breakpoint [39, 41, 43] or
temporarily pausing vCPUs [20, 22, 23]. Once a method is
employed to govern thread executions, it imposes an ordered
memory access for the thread, eliminating the opportunity to
observe arbitrary out-of-order memory access.
Our approach. To tame the non-determinism of out-of-
order execution, this paper introduces a mechanism called in-
vivo out-of-order execution emulation (§3) (shortly, OEMU).
OEMU presents two noteworthy properties. First, it restores
the observability of reordering of memory accesses, while pre-
serving the ability to control thread interleaving of previous
studies. For example, in Figure 1, suppose thread A stops after
running #8 due to a breakpoint. Then, OEMU allows us to ob-
serve that the value of head has been changed, but the value
of buf->ops has not (i.e., reordering of two store operations
at #6 and #8). Second, OEMU allows a userspace program to
specify which memory accesses to reorder (e.g., #6 and #8
in post_one_notification()). During runtime, OEMU
enforces the specified reordering memory accesses unless
there is a memory barrier between the memory accesses.

With mechanisms to tame non-determinisms of out-of-
order execution (i.e., OEMU) and thread interleaving (which
is borrowed from previous studies [20, 22, 39]), we propose
a fuzzer called OZZ (§4) to identify OOO bugs in the kernel.
Specifically, OZZ conducts a hypothetical memory barrier
test. By assuming a memory barrier is missing in the kernel
(e.g., #7 in Figure 1), it runs memory accesses in the order that
the memory barrier is supposed to prevent (e.g., #8→ #14
→ #18 → #6). Then, it detects if the kernel malfunctions
during the runtime with the help of bug-detecting oracles.
Furthermore, after identifying an OOO bug, OZZ provides
the location of the hypothetical memory barrier and the or-
der of memory accesses that should be prevented, helping
developers in comprehending how to fix detected bugs.

3 In-Vivo Out-of-Order Execution Emulation
In the architectural viewpoint, the processor may delay

committing the value of a store operation to memory, or run

a load operation ahead of other instructions that appear ear-
lier in the binary instructions. However, exactly emulating
processor’s behaviors requires the full architectural simula-
tion, prohibitively expensive when testing the complex kernel
code. Instead, we emulate out-of-order execution of kernel
instructions. To that end, we devise new mechanisms that
reorder store and load memory accesses explicitly: delayed
store operation (§3.1) and versioned load operation (§3.2).
In-vivo emulation. Controlling out-of-order execution ex-
plicitly and deterministically is non-trivial because the execu-
tion order of instructions is decided in a processor. Therefore,
instead of reordering instructions, we opt to regulate the or-
dering of memory accesses carried by instructions. During
compilation, OZZ replaces memory accesses with callback
function calls (as shown in Figure 2). These functions are exe-
cuted according to the sequential order of their corresponding
instructions, while they communicate with OEMU to reorder
memory accesses. OEMU is integrated into the kernel, and
reorders memory accesses while executing the kernel. We call
this approach in-vivo emulation.
Benefits of in-vivo emulation. When identifying kernel
bugs, one needs to comprehend kernel runtime contexts such
as what and when memory objects were freed, and what locks
a thread has acquired. These runtime contexts are utilized
in revealing kernel malfunctions (i.e., bugs) including slab-
out-of-bound accesses or deadlocks. As such, various bug-
detecting oracles (e.g., sanitizers [66, 69, 75, 88, 91, 93] or
lockdep [68]) also leverage runtime contexts in their design.

Previous studies [10, 32, 33, 37, 71, 80], however, are
limited in effectively utilizing runtime contexts for identifying
kernel bugs. They collect memory accesses after executing
system calls, and partially figure out behaviors stemming from
out-of-order execution through offline analysis. We call this
approach in-vitro testing. They lose runtime contexts when
analyzing behaviors induced by out-of-order execution, and
suffer in revealing kernel bugs (e.g., a double free bug) [82].
In contrast, OEMU actually reorders memory accesses while
the kernel is running, enabling use of all bug-detecting oracles
which are readily deployed in the kernel.
Scope of emulation. Generally, there are four types of out-
of-order execution: store-store3, store-load, load-load, and
load-store reordering. Among them, we exclude load-store
reordering from the scope of this paper, but support the re-
maining three types of out-of-order execution. Load-store
reordering also can cause a OOO bug theoretically. However,
a load-store reordering is rarely implemented in practice [58]4,
mainly because it barely provides a hardware optimization
chance. We leave load-store reordering as future work.

3A-B reordering means the former memory access A is performed after the
latter memory access B.
4Only two (old) implementations of ARMv8 (i.e., Qualcomm’s Snapdragon
820 and Cortex A73) [3, 58] implement load-store reordering, and none of
Power hardware [1, 86] does.

232

System call interface Description

𝑑𝑒𝑙𝑎𝑦_𝑠𝑡𝑜𝑟𝑒_𝑎𝑡 (𝐼) When an instruction 𝐼 is executed,
its store operation will be delayed.

𝑟𝑒𝑎𝑑_𝑜𝑙𝑑_𝑣𝑎𝑙𝑢𝑒_𝑎𝑡 (𝐼) When an instruction 𝐼 is executed, its
load operation will read an old value.

Table 2. Two interfaces that OEMU exports to a userspace program.
Delayed store operations (§3.1) are implemented using delay_store_-
at(I), and versioned load operations (§3.2) utilizes read_old_value_-
at(I), where I is an instruction carrying a memory access operation.

0

2

delay_store_at (I1)

I1

Userspace

Virtual store buffer

I2

syscall A ()

1

2

Memory

3

4

<I1, &X, 1, t1>

Syscall A

&X

&Y

5 Imb

OEMU

<I2, &Y, 2, t2>

...
...

...

...
...

: Y = 2

: smp_wmb()

: X = 1

Figure 3. Delayed store operation example right after time 𝑡2,
where 𝐼1 and 𝐼2 are executed at 𝑡1 and 𝑡2 respectively. Due to
𝑑𝑒𝑙𝑎𝑦_𝑠𝑡𝑜𝑟𝑒_𝑎𝑡 (𝐼1) (1), the virtual store buffer does not write 1
to &𝑋 when executing 𝐼1 (3), and holds the value even after ex-
ecuting 𝐼2 (4). Note that the value at &𝑋 will be updated when
executing a memory barrier (5).

3.1 Delayed Store Operation
For store operations, OEMU may delay writing a value of a
store operation until a few subsequent instructions are exe-
cuted. Therefore, the subsequent instructions are executed as
if the delayed store operation is not executed, effectively em-
ulating reordering of store-store and store-load instructions.
Virtual store buffer. The key component to delay store opera-
tions is a virtual store buffer, which is a per-thread, temporary
storage that holds values of store operations before commit-
ting them to memory. When a store operation is performed
to a memory location, the updated value are temporarily held
in the virtual store buffer first. The virtual store buffer defers
committing the value to memory; The updated value held in
the virtual store buffer is not visible to threads running in
other cores until it is committed to memory.

Unless specifically instructed, the virtual store buffer com-
mits values immediately, meaning it performs in-order execu-
tion by default. Two interface exist for a user-space program
(e.g., a fuzzer) to specify what operations are delayed. Using
the interfaces, one can explicitly control commit orders of
store operations to emulate store-store and store-load reorder-
ings. As shown in Table 2, OEMU provides these interfaces
as custom system calls. A userspace thread uses these sys-
tem calls to instruct OEMU to control out-of-order execution
during execution of system calls issued by the thread. The
virtual store buffer commits all delayed store operations when
it meets either of the following conditions: encountering a
store, full, or release memory barrier (refer to Table 1) or ex-
periencing an interrupt on the processor executing the thread.

1

2

Memory

&Z

&W

...
...

...

read_old_value_at (I2)

I1

Userspace thread A

I2

syscall A ()

1

2

3

6

Syscall A
7

Imb

: r2 = Z

: smp_rmb()

: r1 = W

Userspace thread B

syscall B ()

4

5

Syscall B

I1

I2 : W = 2

: Z = 1

 0 ⇒ 1,

 0 ⇒ 2,

Store history
OEMU

<&Z,

<&W,

 t4>

 t5>

Record history

Versioning window
(thread A)

(t3, tcur]

Figure 4. Versioned load operation example to reorder 𝐼1 and 𝐼2. In
this example, smp_rmb() is executed at time 𝑡3 (3). Then, before
Syscall A executes 𝐼1, Syscall B writes values to &𝑍 and &𝑊 at 𝑡4
(4) and 𝑡5 (5), as reflected in the store history. At this point, the
versioning window starts from 𝑡3 due to the smp_rmb() executed at
𝑡3, allowing subsequent load operations to read old values written
after 𝑡3. Thus, Syscall A can retrieve 0 from the store history for &𝑍
(7), while reading 2 from the memory location at &𝑊 (6).

Example of delayed store operation. Figure 3 demonstrates
how a userspace program communicates with the virtual store
buffer. Let us assume a userspace thread wants to reorder two
instructions 𝐼1 and 𝐼2 (i.e., making 𝐼2 run before 𝐼1). At first,
the thread runs the system call, 𝑑𝑒𝑙𝑎𝑦_𝑠𝑡𝑜𝑟𝑒_𝑎𝑡 (𝐼1), to request
the virtual store buffer to delay the commit of the value of the
instruction 𝐼1 (1). Now when running the target system call
(2), the virtual store buffer holds the value 1 of X, instead
of writing it to memory. Thus, the value at &X has not been
changed even after executing 𝐼1 (3), so threads running on
the other cores see the old value of 0. In contrast, the virtual
store buffer commits 2 to &Y immediately when executing 𝐼2
(4), as it is the default behavior of the virtual store buffer. At
this point, the values at &X and &Y are 0 and 2, showing the
same effect with a situation that 𝐼2 is reordered and executed
before 𝐼1 is executed. The value of 𝐼1 will be flushed into
memory when smp_wmb() is executed so the virtual store
buffer ensures that it does not reorder stores across a store
memory barrier (5).
Forwarding values to subsequent loads. After a thread runs
a store operation, subsequent load operations on the same core
should read the value from the in-flight store operation in the
virtual store buffer if they access the same memory location.
Therefore, OEMU performs the following hierarchical search.
When the processor runs a load operation, OEMU searches
the store buffer first to check that there are any in-flight store
operations that took place on the same memory location with
the load operation. If so, the load operation reads the value,
and otherwise, the load operation reads a value from memory
as it does in a normal case.

3.2 Versioned Load Operation
A versioned load operation emulates load-load reordering by
allowing a load operation to read an old version at a memory

233

location even if its value has been updated in memory. For
example, in Figure 4, if the two load operations are reordered
in the thread A such that 𝐼2 (7) is executed before 𝐼1 (6), it is
possible that the values of r1 and r2 have 2 and 0 respectively,
due to the execution order of 7 → 4 → 5 → 6 . This
instruction reordering is emulated by making 𝐼2 (7) read the
old value of 0 while making 𝐼1 (6) read the updated value.
Store history. To allow a load operation to read an old value,
OEMU constructs a store history, which records how values
are changed in the past. When the value of a store operation
is written to memory, OEMU records the store operation in
the global history. Each entry of the history contains various
information such as the address on which the store operation
writes, the previous value overwritten by the store operation,
and the timestamp of when the store operation takes place.

When reading a value, OEMU prioritizes the local store
buffer over the store history if both contain a value for the
same memory location. This happens when a value was
changed in the past, and the thread executing the versioned
load operation wrote a new value to that memory location
later. Thus, if the store buffer does not contain a value, a
versioned load operation reads a value from memory as a
default behavior. If a userspace program instructs reading an
old value using the interface presented in Table 2, OEMU
searches for the store history before reading memory.
Versioning window. OEMU maintains a versioning window,
a per-thread time window which defines valid past values. If
a versioning window is from a specific time t to the current,
versioned load operations can read values that are commit-
ted to memory after t only. Specifically, suppose 𝑡𝑐𝑢𝑟 is the
current time, and 𝑡𝑟𝑚𝑏 is the time when one of a load, full, or
acquire memory barrier was most recently executed on this
processor. Then a versioning window is defined as (𝑡𝑟𝑚𝑏, 𝑡𝑐𝑢𝑟].
Because any load operations coming after a barrier cannot be
reordered before the memory barrier, the versioning window
limits a versioned load operation to read an old value only if
it is written after the memory barrier.
Example of versioned load operation. Figure 4 demon-
strates how to reorder load operations. Suppose that a userspace
thread wants to reorder two instructions 𝐼1 and 𝐼2 executed by
syscall A(). Then, the thread calls read_old_value_at(𝐼2)
(1) before running a target system call (2). During the exe-
cution of the system call, a load memory barrier (i.e., smp_-
rmb()) is executed at time 𝑡3 (3). Thus, subsequent load
operations should not be reordered before the memory bar-
rier. To reflect this, the versioning window becomes (𝑡3, 𝑡𝑐𝑢𝑟]
after running the load memory barrier. When running 𝐼1, the
thread reads a value 1 from &𝑊 in memory according to its
default behavior (4). However, when running 𝐼2 (5), the
thread reads a value from the store history as instructed. The
store history describes that the value of 𝑍 has been changed
at time 𝑡4 by a store operation in an other core. As the ver-
sioning window is (𝑡3, 𝑡𝑐𝑢𝑟], the thread can read the old value

0 as the value of 𝑌 (imagine the processor schedules and runs
𝐼2 immediately after time 𝑡3). As a consequence, the values of
𝑟1 and 𝑟2 are 1 and 0 respectively.
Dependencies from a load operation to later operations.
Values from which load operations read may affect subse-
quent memory accesses. For example, if a thread reads a
value from &x, and write it to &y, the processor do not reorder
the two memory accesses to correctly determine the value
to write to &y. To faithfully emulate out-of-order execution,
OEMU should not reorder of a load operation and subsequent
operations if a processor would not do it. There are two types
of dependencies from a load operation to subsequent accesses:
load-store and load-load dependencies.

In the case of load-store dependencies, OEMU just does
not reorder a prior load and a subsequent store operation,
ensuring consistency with the behavior of real processors.
Load-load reordering is generally allowed between two load
operations, even when a dependency exists, unless the first
load is annotated with APIs, such as READ_ONCE(), atomic
APIs (e.g., atomic_read()), or memory barriers 5. Thus,
OEMU treats these APIs as indicating a load memory barrier
(i.e., smp_rmb()), while still allowing reordering between
unannotated loads, regardless of dependencies. Further details
can be found in §3.3 and the Appendix (§10.1).

3.3 Compliance with the LKMM
As OEMU is to emulate out-of-order execution taken place
inside a processor, it should not reorder memory accesses in
a way that a processor would never do. However, different
architectures define different rules on prohibited reordering
cases. To cope with such differences, the reordering rule
in OEMU complies with the Linux Kernel Memory Model
(LKMM) [2, 94]. LKMM is a unified memory model that the
Linux kernel implementation should obey, and provides bar-
rier APIs to prevent reordering of instructions. The LKMM
defines seven cases that a processor do not reorder two in-
structions X and Y, among which five cases are prohibited by
memory barriers and two cases are prohibited by dependen-
cies. Due to the page limit, how OEMU complies with the
seven cases are explained in the Appendix (§10.1).

4 OZZ
This work proposes OZZ, a kernel fuzzer designed to identify
OOO bugs. At its core, OZZ utilizes OEMU to control out-
of-order execution as well as adopting a thread interleaving
mechanism used in the previous approaches [20, 22, 39].

4.1 Hypothetical Memory Barrier Test
The key idea of OZZ is to test the necessity of a hypothetical
memory barrier. In other words, when analyzing two con-
current system calls, OZZ assumes a hypothetical memory

5Among all architectures supported by the Linux kernel, the Alpha architec-
ture exhibits this behavior.

234

W(a)

② Interleaving

③ Testing

W(b)

W(c)

W(d)

R(d)

R(c)

R(b)

R(a)

① Reordering

CPU1 CPU2

(a) Hypothetical store barrier test
through store-store reordering

W(x)

① Interleaving

③ Reordering
& Testing

W(y)

W(z)

W(w)

R(w)

R(z)

R(y)

R(x)

② History
construction

CPU1 CPU2

(b) Hypothetical load barrier test
through load-load reordering

Figure 5. Hypothetical memory barrier test examples. Dotted hori-
zontal lines denote locations of hypothetical memory barriers, and
solid horizontal lines denote actual memory barriers (i.e., smp_-
wmb() in (a) and smp_rmb() in (b)). Empty circles represent either
delayed store operations (W(a)) or versioned load operations (R(x)).

barrier is missing in these system calls, and enforce reorder-
ing memory accesses that would not occur if the memory
barrier exists. OZZ performs two types of hypothetical mem-
ory barrier test: The first type is called hypothetical store
barrier test. In this test, using a delayed store operation, OZZ
emulates store-store or store-load reordering that would not
occur if a memory barrier exists. Whereas, the second type
is called hypothetical load barrier test, as it tests whether a
memory barrier that prevents load-load reordering is missing
by utilizing a versioned load operation.

Figure 5a shows how OZZ performs the hypothetical store
barrier test through store-store reordering. The red dotted line
is the location of the hypothetical memory barrier (e.g., smp_-
wmb()), where this memory barrier is supposed to prevent re-
ordering between all preceding store operations (W(a), W(b),
and W(c)) against the store operation after the barrier (W(d)).
OZZ examines the impact of the absence of this hypothetical
barrier. Thus, OZZ enforces reorderings of instruction after
the hypothetical barrier with delayed store operation mecha-
nism. Specifically, 1 Reordering: OZZ instructs OEMU to
delay the three store operations before the hypothetical mem-
ory barrier. After that, OZZ requests the custom scheduler to
perform interleaving right before the actual memory barrier
(i.e., the solid line). 2 Interleaving: After reordering store
accesses, an interleaving happens from CPU1 to CPU2. Note
that at this point, the values of W(a), W(b), and W(c) have not
been committed to memory from the virtual store buffer while
that of W(d) is committed. Thus, CPU2 observes that W(d)
was performed before the preceding three store operations.
3 Testing: OZZ executes load instructions in CPU2 and mon-
itors whether an OOO bug occurs. If it happens, OZZ reports
the bug as well as the location of the hypothetical barrier.

Note that store-load reordering can be performed similarly
with store-store reordering. In Figure 5a, assume that CPU1
executes a load operation (e.g., R(d)) instead of W(d). Then,

OZZ can perform store-load reordering in CPU1 in the same
way as when doing store-store reordering.

In addition, Figure 5b shows the hypothetical load barrier
test, where a versioned load operation is used to emulate load-
load reordering. Suppose the red dotted line is the location of
the hypothetical memory barrier (e.g., smp_rmb()). 1 Inter-
leaving: In this test, OZZ first requests the custom scheduler
to perform interleaving right after the actual memory barrier
(i.e., the solid line). 2 History construction: The reason for
this interleaving is to construct the store history affecting the
execution of CPU2 (as explained in §3.2). Thus, OZZ runs all
instructions in CPU1 first. 3 Reordering & Testing: to test
the absence of the hypothetical memory barrier, OZZ reorders
R(w) and the three following load instructions, R(z), R(y),
and R(x). This reordering is done by requesting OEMU to
force them to read old values while R(w) reads the updated
value from memory. Lastly, OZZ executes instructions in
CPU2 and monitors if an OOO bug occurs.
Caveat. While OZZ can provide the location of the missing
memory barrier, it is limited in suggesting an exact type of
memory barrier to effectively fix an OOO bug. For example,
in Figure 1, the bug does not manifest if both functions adopt
strong memory barrier (i.e., smp_mb()) which unnecessarily
incur high runtime overhead. After OZZ points out a location
of a missing memory barrier, developers need to take a look
at what kind of memory barrier is proper to fix the OOO bug.
Workflow. For conducting the hypothetical memory barrier
test, the workflow of OZZ (shown in Figure 6) consists of
three steps: At the first step, OZZ generates and runs single-
threaded inputs, each of which consists of a sequential set
of system calls. In addition, OZZ profiles memory accesses
and memory barriers executed by each single-threaded in-
put (§4.2). With profiled memory accesses and memory barri-
ers, OZZ repeatedly conducts the hypothetical memory bar-
rier test. For each test run, OZZ calculates a scheduling hint,
which describes in what instructions interleaving occurs and
what memory accesses are reordered (§4.3). Lastly, OZZ con-
structs and runs multi-threaded inputs. Specifically, a multi-
threaded input is annotated with a scheduling hint as well as
a pair of two system calls to run concurrently. OZZ runs them
while performing interleaving and reordering specified in the
scheduling hint, and observes if they cause an OOO bug or
not using kernel bug-detecting oracles (§4.4).

4.2 Profiling Memory Accesses & Barriers
The first step of OZZ is similar with traditional fuzzers. It
constructs single-threaded inputs (referred to as STIs) each
of which is a sequence of random system calls (𝑆1, 𝑆2, ..., 𝑆𝑛).
In the construction, OZZ uses predefined templates written
in Syzlang [24], which is a language to describe available
system calls as well as possible values of arguments and
return values. Based on the templates, OZZ produces valid
STIs which preserve necessary resource dependencies across

235

Profiling Memory Accesses (§4.2) Calculating Scheduling Hints (§4.3) Concurrent Test to Identify OoO Bugs (§4.4)

Execute
& Profile

Construct
hints

…

Delay store at A
Interleave at B

Execute Detect
a bug

Syscall i Syscall j

C: R(b)
D: R(a)

A: W(a)
B: W(b)

Single-threaded
input (STI)

Syscall 1

…
Syscall n Reordered

memory
access log

Location of
hypothetical

barrier

Bug report

Memory
accesses &

barriers

A: W(a)

B: W(b)
Syscall i

Syscall j

…

C: R(b)

D: R(a)

…

Hypothetical
memory barrier

…

Figure 6. Workflow overview of OZZ.

system calls; e.g., get a file descriptor from open and use it
for write. OZZ expands code coverage with the support of
the kernel (i.e., KCov [67]), while monitoring whether non-
concurrency bugs occur with bug-detecting tools deployed in
the kernel (e.g., KASAN [66, 88], and lockdep [68]).

While running the STIs, OZZ dynamically profiles memory
accesses and memory barriers executed by each input. To this
end, OZZ incorporates a LLVM compiler pass, which inserts
callback function calls before memory-accessing instructions
and memory barriers. The callback function records various
information on memory accesses as five tuples: addresses of
the instruction, the accessed memory location, the size and
the type (i.e., store or load) of the memory access, and the
timestamp. When encountering memory barriers, three tuples
are recorded: the instruction address, the type of the memory
barrier (refer to Table 1), and the timestamp. This information
is recorded in a per-thread memory region, which is shared
with a userspace program through mmap(). OZZ uses this
information to calculate scheduling hints in the next step.

4.3 Calculating Scheduling Hints
After profiling memory accesses and memory barriers for a
single-threaded input (𝑆1, 𝑆2, ..., 𝑆𝑛), OZZ computes a set of
scheduling hints 𝐻𝑖 𝑗 for each pair of 𝑆𝑖 and 𝑆 𝑗 . A scheduling
hint consists of two information, a scheduling point to per-
form an interleaving, and memory accesses to reorder. In the
next phase (§4.4), OZZ will run 𝑆𝑖 and 𝑆 𝑗 concurrently while
running memory accesses according to each scheduling hint.
Search heuristic. When conducting the hypothetical memory
barrier test, OZZ adopts a greedy heuristic, which prioritizes
the test case that maximizes the number of reordered memory
accesses, the number of delayed store operations or the num-
ber of versioned load operations. The rationale behind this
heuristic is as follows: developers typically perceive mem-
ory accesses as occurring sequentially. When the degree of
deviation from this sequential execution order is significant,
developers are more likely to overlook the necessity of insert-
ing a memory barrier, as there is a discrepancy between their
intuition and the actual execution. Therefore, OZZ prioritizes
tests where as many memory accesses as possible deviate
from their sequential order. We validate that our heuristic
works empirically with our evaluation bug set. 11 out of the
19 bugs in the bug set are triggered with scheduling hints that

Algorithm 1: Calculating scheduling hints
Input :𝑆𝑖 , 𝑆 𝑗 : Sequences of memory access and memory

barriers executed by two system calls
Output :𝐻𝑖 𝑗 = {ℎ1, ℎ2, ..., ℎ𝑛}: A set of scheduling hints
⊲ Step 1: Filter out memory accesses

1 𝑆𝑖 , 𝑆 𝑗 = 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑜𝑢𝑡 (𝑆𝑖 , 𝑆 𝑗)
2 for 𝑘 ∈ {𝑖, 𝑗} do
3 for 𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 ∈ {𝑠𝑡, 𝑙𝑑} do

⊲ Step 2: Group memory accesses between

memory barriers of the same type

4 𝐺𝑡 , 𝑔 = ∅, ∅
5 for 𝑠 ∈ 𝑆𝑘 do
6 if 𝑠 is a memory access then
7 𝑔 = 𝑔 ∪ {𝑠}
8 else if s is a barrier &
9 type of s = 𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 then

10 𝐺𝑡 = 𝐺𝑡 ∪ {𝑔}
11 𝑔 = ∅

⊲ Step 3: Construct scheduling hints

12 𝐻𝑖 𝑗 = ∅
13 for 𝑔 ∈ 𝐺𝑡 do
14 if 𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡 then 𝑠𝑐ℎ𝑒𝑑 = 𝑔.𝑙𝑎𝑠𝑡

15 else 𝑠𝑐ℎ𝑒𝑑 = 𝑔.𝑓 𝑖𝑟𝑠𝑡

16 while 𝑔 ≠ ∅ do
17 ℎ.𝑠𝑐ℎ𝑒𝑑 = 𝑠𝑐ℎ𝑒𝑑

18 ℎ.𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑔 \ 𝑠𝑐ℎ𝑒𝑑
19 𝐻𝑖 𝑗 = 𝐻𝑖 𝑗 ∪ {ℎ}
20 if 𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡 then 𝑔 = 𝑔 \ {𝑔.𝑙𝑎𝑠𝑡}
21 else 𝑔 = 𝑔 \ {𝑔.𝑓 𝑖𝑟𝑠𝑡}

22 𝐻𝑖 𝑗 .𝑠𝑜𝑟𝑡 (𝑘𝑒𝑦 : 𝑙𝑒𝑛(ℎ.𝑟𝑒𝑜𝑟𝑑𝑒𝑟))
23 return 𝐻𝑖 𝑗

maximize the number of reordered memory accesses, and 6
are triggered with scheduling hints with the second largest
number of reordered memory accesses.
Algorithm description. Algorithm 1 describes an algorithm
to construct scheduling hints for two system calls 𝑆𝑖 and 𝑆 𝑗 .
The algorithm consists of three steps. The first step of the
algorithm is to filter out memory accesses that are irrelevant
to OOO bugs. Since OOO bugs are a type of concurrency bug,
memory accesses that do not access shared variables do not
contribute to the manifestation of an OOO bug. Thus, OZZ
filters out such memory accesses at its first step (#1). Since

236

this is straightforward, we leave the algorithm of filter_-
out() function in the Appendix (Algorithm 2).

Afterwards, OZZ calculates scheduling hints for four cases,
depending on which system call will reorder memory ac-
cesses (#2), and what types of hypothetical memory barrier
test OZZ will conduct (#3). For each case, OZZ performs the
second step, which groups memory accesses with boundaries
of memory barriers. While iterating over memory accesses
and memory barriers (#5 - #11), OZZ collects memory ac-
cesses into a group 𝑔 (#6 - #7). If OZZ meets a memory barrier
that has the same type (#8 & #9), OZZ finalizes 𝑔 (#10) and
starts building a new group (#11).

In the third step, OZZ computes scheduling hints for each
group (#13 - #21). If 𝑔 is for the hypothetical store barrier
test, OZZ selects a scheduling point as the last instruction
(#14), whereas the first instruction is selected as a scheduling
point if 𝑔 is for the hypothetical load barrier test (#15). Then,
OZZ constructs scheduling hints for the group 𝑔 (#16 - #21).
At first, OZZ constructs a scheduling hint that reorders all
memory accesses in the group 𝑔 (#17 - #18). After that, OZZ
moves a hypothetical barrier by one instruction. If 𝑔 is for the
hypothetical store barrier test, OZZ moves the hypothetical
barrier upward by one instruction (#20), and if it is for the
hypothetical load barrier test, OZZ moves the hypothetical
barrier downward by one instruction (#21). OZZ repeats the
construction of scheduling hints until 𝑔 becomes empty.

Lastly, OZZ sorts scheduling hints according to the number
of memory accesses that will be reordered. This is to prioritize
scheduling hints that reorder as many as memory accesses
possible, according to the search heuristic mentioned above.

4.4 Concurrent Test to Identify OoO Bugs
The last step of OZZ is to run reordered and interleaved mem-
ory accesses according to scheduling hints calculated in §4.3.
Constructing MTIs. After calculating scheduling hints, OZZ
translates STIs to multi-threaded inputs (MTIs) to identify
OOO bugs. Each STI is translated into multiple MTIs each of
which consists of the same set of system calls with the STI.
In addition, MTIs are annotated with a pair of system calls
to run concurrently, as well as a scheduling hint between the
two system calls. As shown in Algorithm 1, each hint con-
tains a scheduling point (i.e., h.sched), and a set of memory
accesses to reorder (i.e., h.reorder).
Running MTIs. After constructing MTIs, OZZ runs MTIs
to monitor whether the results of MITs are kernel OOO
bugs or not. Specifically, OZZ sends h.sched as an input
to the custom scheduler (which is explained in §4.4.1), and
h.reorder as an input to OEMU. As shown in Figure 5,
these two mechanisms take control of out-of-order execution
and thread interleaving respectively, and collaborate together
to trigger an OOO bug. During the runtime of each MTI, OZZ
leverages various bug-detecting oracles such as lockdep [68],
KASAN [66], or manually inserted assertions. If an OOO bug

is detected, OZZ files up a report of memory accesses that
were reordered as well as the hypothetical memory barrier
that was used to construct the scheduling hint. Developers
can utilize the report to comprehend in what order memory
accesses were executed in causing the OOO bug.

4.4.1 Custom Scheduler. In addition to OEMU, OZZ needs
a mechanism to deterministically control thread interleav-
ing. Thus, OZZ borrows a mechanism from previous stud-
ies [20, 22, 39, 41], which we call a custom scheduler. The
custom scheduler is implemented in the hypervisor layer to
override the guest kernel’s scheduler, and controls thread
interleaving. It accepts an input as scheduling points (i.e.,
h.sched) through hypercall interfaces. As the custom sched-
uler is not a primary focus of this paper, we leave details of
the custom scheduler in the Appendix (§10.3).

4.5 Discussions

Applicability to Rust. Linux recently adopted Rust as the
second official programming language [84, 102]. Interest-
ingly, OOO bugs can occur in kernel modules written in Rust,
and OEMU and OZZ is applicable to them. Figure 10 in the
Appendix (§10.4) shows a synthetic example of an OOO bug
written in Rust. We confirm that OEMU can trigger the OOO
bug in the example. Note that OEMU is implemented through
an LLVM pass, and it is applicable to all languages, including
Rust, that are translated to LLVM IR. Although the mainline
branch of the Linux kernel does not include modules written
in Rust at this point, we expect that Linux will increasingly in-
corporate such modules, and OZZ and OEMU will be helpful
in identifying OOO bugs in them.
Concurrent accesses with hardware. We observe that OOO
bugs can also occur between a kernel thread and hardware.
As an example, we found a patch to fix an OOO bug in the
RDMA module [85]. It addressed an issue caused by reorder-
ing of two load operations on values written by hardware.
In this case, OEMU can emulate load-load reordering in the
device driver. So, we believe that if we run the device driver
with a proper hardware, we can trigger the OOO bug with
OEMU. To this end, we may need further research, as a fuzzer
needs to know which instructions are shared with hardware
and are subjects of out-of-order execution.
Limitations. While OZZ is capable of detecting concurrency
bugs related to missing memory barriers, it has some limi-
tations. First, OZZ is limited in detecting performance bugs
caused by redundant memory barriers, as its primary focus
is on identifying missing barriers. Since these performance
bugs are also critical in highly concurrent implementations,
we leave this direction for future work.

Second, due to the OZZ ’s design, which tests a single
hypothetical memory barrier at a time, it is not effective in de-
tecting OOO bugs that manifest only when memory accesses
are reordered across two or more threads. However, we have

237

not encountered any bugs of this nature in practice, and we
believe that such cases are rare.

Lastly, OZZ and OEMU are limited in exposing OOO bugs
caused by the reordering of a prior load operation and a
subsequent store operation. While this type of OOO bugs
may happen theoretically, a recent study [58] shows that load-
store reordering is rarely implemented, making these bugs
unlikely to occur in practice.

5 Implementation
OEMU. OEMU consists of two parts, a compiler pass and
callback functions. We implement the compiler pass based
on the LLVM compiler 12.0.1 [70] with 834 LoC6 in C++.
The callback functions reside in the Linux kernel source tree
with 1797 LoC in C. These two parts automatically transplant
OEMU into the kernel binary during the kernel compilation.
OZZ. We implement OZZ based on SYZKALLER [25], a
state-of-the-art kernel fuzzer developed by Google. OZZ is
implemented with 7694 LoC in Go and 913 LoC in C++.
While the custom scheduler is not a major part of this paper,
it is implemented in QEMU [83] with 2167 LoC in C.

6 Evaluation
In order to verify the effectiveness of OZZ, we conduct several
evaluation. (1) We run OZZ to discover unknown kernel OOO
bugs (§6.1), (2) verify that OEMU can reproduce previously
reported OOO bugs (§6.2), (3) evaluate whether OZZ pro-
vides reasonable runtime overheads (§6.3), and (4) compare
OZZ to related work (§6.4).

6.1 Finding Real-world OOO bug

Experiment setup. We use a two-socket machine equipped
with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz (32 phys-
ical cores) and 512 GB of RAM. The host operating system is
Ubuntu Server 20.04.4 LTS on Linux 5.4.143 with the modi-
fied KVM module to allow hypercalls from the userspace. We
configure OZZ to launch 32 virtual machines (VMs) where
each VM is equipped with four virtual CPUs and 8 GB mem-
ory. Fuzzing performance can vary depending on the seed
used and the target being fuzzed [56]. In this evaluation, we
use Linux kernel configurations used by SYZKALLER [25]
so that SYZKALLER and OZZ explore the same kernel sub-
systems. We run OZZ in recent kernel versions ranging from
6.5-rc6 to 6.8 over a 6-week period, and we use seeds pro-
vided by SYZKALLER [26].
Newly found OOO bugs. During our evaluation, OZZ dis-
covers 61 unique crashes titles, including crashes that Syzka
ller also found. After OZZ discovers crashes, we manually
identified ones that are caused by out-of-order execution. Con-
sequently, 11 are identified as ones caused by out-of-order
execution as demonstrated in Table 3.

6We use cloc [16] to measure LoC of various languages.

1 /******* Thread A *******/
2 /* net/tls/tls_main.c */
3 int tls_init() {
4 ctx = kzalloc();
5 sk->data = ctx;
6 ctx->sk_proto =
7 READ_ONCE(sk->sk_prot);
8 + smp_wmb();
9 WRITE_ONCE(sk->sk_prot,

10 &tls_prots);
11 }
12
13 struct proto_ops tls_prots = {
14 .setsockopt = tls_setsockopt,
15 };

16 /******* Thread B *******/
17 /* net/core/socket.c */
18 int sock_common_setsockopt() {
19 struct sock *sk = sock->sk;
20 return READ_ONCE(sk->sk_prot)
21 ->setsockopt(sk);
22 }
23
24 /* net/tls/tls_main.c */
25 int tls_setsockopt() {
26 struct tls_context *ctx =
27 sk->data;
28 return ctx->sk_proto
29 ->setsockopt(sk);
30 }

Figure 7. Simplified code snippet of the OOO bug found in the TLS
subsystem (Bug #9). Developers missed the possibility of reordering
between accesses on ctx->sk_proto (#6) and sk->sk_prot (#9).
Therefore, a NULL pointer dereference bug may occur at #28 if two
memory accesses on #6 and #9 are reordered.

It is worth noting that these bugs are found in popular
subsystems such as the TLS network subsystem (Bug #5
and #9), the general notification mechanism (Bug #2), and
the BPF subsystem (Bug #6). Furthermore, we emphasize
that it is impractical to identify these bugs with SYZKALLER
unless one utilizes plenty of ARM machines. In practice,
Google invests significant computing power in continuously
running SYZKALLER with x86-64 machines. However, all
these bugs do not manifest on x86-64 machines because the
x86-64 architecture does not reorder store-store and load-load
operations (refer to the Type column). Google attempts to
identify bugs that manifest on ARM machines with the TCG
instruction emulation. However, this approach is insufficient
because TCG does not reorder memory accesses.
Case study 1: Improper adoption of memory barriers.
During the evaluation, we found a case that developers recog-
nized a buggy concurrent execution, but wrote an incorrect
patch afterwards (Bug #9). Figure 7 shows the case. In this
case, Thread A initializes the TLS context for a socket (i.e.,
calling tls_init()), while Thread B runs the setsockopt()
system call on the socket. During the initialization, Thread A
allocates ctx and initializes it (#4 ~ #7). Then, Thread A re-
places function pointers of the socket (i.e., sk->sk_prot) to
ones for TLS (#9). Thus, if Thread B sees the replaced func-
tion pointers (#20), then tls_setsockopt() is expected to
perceive initialized ctx->sk_proto at #28. However, be-
cause a store memory barrier was missing at #8, Thread A
might be replace sk->sk_prot (#9) before initializing ctx->
sk_proto (#6). As a result, tls_setsockopt() may see
uninitialized ctx->sk_proto (#28), causing the OOO bug
with the execution order of (#9 → #20 → #28 → #6).

Interestingly, developers once recognized a data race on
sk->sk_prot [36, 89]. However, they did not catch the pos-
sibility of out-of-order execution, and incorrectly fixed the
data race. Specifically, developers annotate memory accesses
at #9 and #20 with WRITE_ONCE() and READ_ONCE(), which
do not prevent reordering with other memory accesses, but

238

ID Kernel version Subsystem Summary Status

Bug #1 v6.7-rc8 RDS KASAN: slab-out-of-bounds Read in rds_loop_xmit Fixed
Bug #2 v6.5-rc6 watchqueue BUG: unable to handle kernel NULL pointer dereference in _find_first_bit Reported
Bug #3 v6.5-rc6 VMCI general protection fault in add_wait_queue Reported
Bug #4 v6.6-rc2 XDP BUG: unable to handle kernel NULL pointer dereference in xsk_poll Fixed
Bug #5 v6.6-rc2 TLS BUG: unable to handle kernel NULL pointer dereference in tls_getsockopt Fixed
Bug #6 v6.7-rc8 BPF BUG: unable to handle kernel NULL pointer dereference in sk_psock_verdict_data_ready Fixed
Bug #7 v6.5-rc7 XDP BUG: unable to handle kernel NULL pointer dereference in xsk_generic_xmit Fixed
Bug #8 v6.7-rc8 SMC BUG: unable to handle kernel NULL pointer dereference in connect Confirmed
Bug #9 v6.7-rc2 TLS BUG: unable to handle kernel NULL pointer dereference in tls_setsockopt Fixed
Bug #10 v6.8-rc1 SMC KASAN: null-ptr-deref Write in fput Confirmed
Bug #11 v6.8 GSM BUG: unable to handle kernel NULL pointer dereference in gsm_dlci_config Confirmed

Table 3. List of concurrency bugs newly discovered by OZZ.

suppress a data race detector (i.e., KCSAN) from reporting
on the data race. Consequently, this OOO bug has not been
fixed even after the patch is applied. This case underscores
that comprehending the possibility of out-of-order execution
is truly challenging and error-prone, while OZZ offers a great
potential to enhance their understanding of it.
Case study 2: Incorrect customized lock. We also found
a customized lock implementation that misses a memory
barrier, breaking the mutual exclusion (Bug #1). Figure 8
shows the incorrect lock implementation. In this example,
acquire_in_xmit() acts as a try-lock function, so a caller
checks the return value of this function to determine that it
has successfully acquired the lock. On the other hand, calling
release_in_xmit() releases the lock. These two functions
are implemented by using atomic bit operations.
clear_bit(), however, does not prevent a reordering be-

tween the bit modification of cp_flags and instructions is-
sued before clear_bit(). Consequently, when a thread is re-
leasing a lock by calling release_in_xmit(), it is possible
that memory accesses inside the critical section are reordered
to be executed after clearing the bit, breaking the mutual
exclusion. The correct implementation of the lock is using
clear_bit_unlock() in release_in_xmit(). This varia-
tion of a bit operation ensures that all memory accesses issued
before clear_bit_unlock() are finished before modifying
the bit. We figure out that this bug is hardly detectable using
existing approaches. For example, data race detectors suffer
from detecting it as the lock implementation does not contain
a data race. In contrast, OZZ can figure out the bug by actually
reordering memory accesses inside the critical section and
the bit modification on cp_flags.

6.2 Reproducing Known OOO bugs
We evaluate whether OEMU has the strong capability in
controlling out-of-order execution by reproducing previously
reported OOO bugs.
Method. There does not exist a publicly available bench-
mark for this evaluation, we adopt our best-effort approach in
building a benchmark of OOO bugs. We first collect patches
that addressed OOO bugs from the git history of Linux. From
the git history, we collect patches as follows: 1) we first filter

1 /* net/rds/send.c */
2 int acquire_in_xmit()
3 {
4 int acquired =
5 !test_and_set_bit
6 (IN_XMIT, &cp_flags);
7 return acquired;
8 }

9 /* net/rds/send.c */
10 void release_in_xmit()
11 {
12 - clear_bit(IN_XMIT, &cp_flags);
13 + clear_bit_unlock(IN_XMIT,
14 &cp_flags);
15 }
16

Figure 8. Incorrect customized lock implementation found by OZZ

(Bug #1). In release_in_xmit(), clear_bit_unlock() should
be used instead clear_bit() to prevent reordering between the bit
modification and instructions inside the critical section.

patches by keyword matching with a few keywords including
“missing.*barrier”, “reordering”, “out of order”, and “out-of-
order”, and then 2) we manually inspect that the patches are
written to fix OOO bugs by checking their descriptions and
whether they added memory barriers.

After collecting patches, we build inputs (i.e., sets of sys-
tem calls) that can potentially trigger OOO bugs if the col-
lected patches are reverted. To this end, we exploit a rich set
of inputs that has been collected by SYZKALLER for a few
years. From the dashboard of SYZKALLER [27], we check
that SYZKALLER has explored locations of memory barrier
that the collected patches added for fixing OOO bugs. If the
memory barrier is reachable from SYZKALLER, we extract
inputs from the dashboard to figure out system calls that
can reach the locations of added memory barriers, and revert
patches to introduce OOO bugs. Note that this collection step
has a similar effect with running OZZ for a long time, as the
first step (§4.2) is just a slight modification of SYZKALLER.
Lastly, by providing collected inputs as single-threaded inputs,
we checked whether OZZ can trigger OOO bugs or not.
Result. The Table 4 shows the result. As shown in this table,
OEMU can reproduce eight among nine OOO bugs. Among
eight OOO bugs that OEMU can reproduce, five OOO bugs
can be reproduced by store-store reordering, while three OOO
bugs can be reproduced by load-load reordering. In addition,
given single-threaded inputs, OZZ reproduce those bugs by
running within tens of test runs on average, showing that the
OEMU capability of controlling out-of-order execution is
strong enough to reproduce most of reported OOO bugs.

239

ID Subsystem Version Reproduced? # of tests Type

#1 [120] vlan 5.12-rc7 ✓ 342 S-S
#2 [31] watchqueue 5.17-rc7 ✓ 23 S-S
#3 [103] xsk 4.17-rc4 ✓ 47 S-S
#4 [101] xsk 5.3-rc3 ✓ 12 S-S
#5 [30] fs 6.1-rc1 ✓ 17 L-L
#6 [60] sbitmap 5.1-rc1 × - S-S
#7 [78] nbd 6.7-rc1 ✓ 17 L-L
#8 [50] tls 6.7-rc1 ✓∗ 42 S-S
#9 [106] unix 5.0-rc7 ✓ 23 L-L

Table 4. List of previously-reported OOO bugs. In the Reproduced?
column, ✓∗ (i.e., #8) means that OZZ can run the buggy reordering
case, but the symptom is not a system crash. (i.e., its consequence is
returning a wrong value to a system call).

Among all bugs, however, we faced one bug that OEMU
cannot reproduce, while it caused a kernel crash in a deployed
kernel [60]. We analyzed the reason of the reproduction fail-
ure, and figured out that this is because of thread migration,
another kernel behavior that we do not consider. Specifically,
this bug resided in the multi-queue (MQ) block layer [6]. This
bug is tricky to trigger because it is a concurrency bug on a
per-cpu variable. In our understanding, triggering this bug
requires a few conditions: 1) Initially, two threads run on the
same CPU, 2) the two threads get an address of a per-cpu
variable on the CPU, 3) one thread is migrated to another
CPU, causing the two threads to run concurrently on different
CPUs, and lastly, 4) two threads run memory accesses in a
specific order. After that, the OOO bug manifests. However,
OZZ pins concurrent threads on specific CPUs before execut-
ing system calls, limited in satisfying the above conditions.
To verify the above analysis, we slightly modified the kernel
code to satisfy the above condition. Specifically, we enforce
specific two threads to get an address of the per-cpu variable
from the same CPU even if they are running on different
CPUs, and checked whether OZZ can trigger this bug with
the manual information. Consequently, we confirmed that
OZZ can reproduce the bug successfully.

6.3 Measuring Performance Overhead of OEMU
OEMU provides an ability to control out-of-order execution
at the cost of runtime overheads. To evaluate these overheads,
we conduct two evaluations, overheads of OZZ in microbench-
marks (§6.3.1), and throughput degradation of OZZ (§6.3.2).

6.3.1 Microbenchmark. We measure runtime overheads
using LMBench [74], a benchmark suite designed for evalu-
ating various OS operations. We conduct tests on two Linux
kernels, one with OEMU instrumentation enabled and one
without, taking the average of five measurement runs for each.

Table 5 demonstrates results of measurements. As shown
in the table, OEMU incurs relatively high overheads, ranging
from 3.0× to 59.0×, mainly because of the heavy instrumenta-
tion. These high latencies directly impact on the OZZ’s perfor-
mance, as OZZ frequently invokes system calls. Nonetheless,

Tests Linux (µs) Linux w/ OEMU (µs) Overhead

null 1.74 43.3 24.9×
stat 75.64 859.6 11.4×
open/close 128 1369.2 10.7×
File create 403.3 5623.5 13.9×
File delete 207.8 3363 16.2×
ctxsw 2p/0k 23.8 71.5 3.0×
pipe 59.3 610.1 10.3×
unix 173.8 2567.6 14.8×
fork 7590 145.6k 19.2×
mmap 133.8k 7896.1k 59.0×

Table 5. LMBench microbenchmark results.

as shown in §6.1, OZZ has enough capability to find real-
world OOO bugs. We further argue that we can reduce the
runtime overheads with developers’s expertise. Since OOO
bugs mostly occur in lockless implementations (unless lock
APIs are incorrectly implemented), developers may opt to
selectively enable the OEMU instrumentation for submodules
that heavily rely on lockless implementations. This will result
in a small set of submodules in which OEMU is enabled, and
accordingly, reduced runtime overheads.

6.3.2 Throughput Measurement. To further comprehend
the impact of runtime overheads shown in §6.3.1, we measure
the fuzzing throughput of OZZ and SYZKALLER, which is a
baseline of the OZZ implementation. Because OEMU is com-
piled into the kernel, we compile another kernel binary with-
out OEMU for measuring the throughput of SYZKALLER. As
a result, we confirm that the throughput of OZZ is 0.92 tests/s,
while the throughput of SYZKALLER is 7.33 tests/s; OZZ
shows 7.9× lower throughput compared to SYZKALLER. It
is because OZZ incurs extra jobs in several layers, such as
memory copies in the userspace, and VM operations in the
hypervisor layer. Note that the runtime overheads in Table 5
only apply to the kernel under test.

This decrease in throughput can be understood from two
perspectives. First, at the expense of low throughput, OZZ
gains the ability to control out-of-order execution. Since OOO
bugs manifest only with a specific and subtle order of memory
accesses, blindly running system calls is undesirable when
identifying OOO bugs. Second, OZZ allows out-of-order ex-
ecution fuzzing with machines of stronger memory models
(e.g., x86-64 machines) to identify OOO bugs that manifest
under weaker memory models (e.g., OOO bugs that manifest
in ARM machines). Without OZZ, developers seeking for
OOO bugs in ARM machines would need to purchase a fleet
of ARM machines. Considering a huge computing power is
investigated to identify bugs, they may need to pay the high
cost. In that case, developers can take advantages of OZZ
instead to save the cost of buying new machines.

6.4 Comparing with OFence [61]
To the best of our knowledge, OFence [61] is the state-of-
the-art work to discover OOO bugs in the kernel. OFence
predefines likely-buggy patterns based on an observation

240

that memory barriers are usually used in pair. (e.g., in Fig-
ure 1, smp_wmb() and smp_rmb()). It finds out potential
OOO bugs through static pattern matching analysis.

We first evaluate whether OZZ can detect OOO bugs found
by OFence. To this end, we conduct a similar evaluation done
in §6.2. In particular, from the git history of Linux, we col-
lected patches that are annotated by the Reported-by tag
with the authors’ names of the OFence paper. We also asked
the authors for patches we missed. For those patches, we
evaluate if OZZ identifies these bugs or not. Unfortunately,
we figure out that all patches addressed submodules in which
OZZ (and SYZKALLER) is limited in generating inputs to test.
One notable reason is that a submodule requires specific hard-
ware to run, inhibiting dynamic testing in such submodules.
In addition, we also evaluate whether OFence can identify
OOO bugs found by OZZ. Since we could not access the
source code of OFence, we count the number of OOO bugs
in Table 3 that do not fall into predefined patterns of OFence.
As a result, 8 out of 11 are hardly detectable by OFence.

This comparison highlights distinct advantages and disad-
vantages of OZZ and OFence. OZZ does not rely on prede-
fined buggy patterns, providing general capability in iden-
tifying OOO bugs. However, it may face limitations when
testing device drivers that require specific hardware to run.
Conversely, OFence is a static analysis tool, which is capable
of detecting OOO bugs without the need to execute a target
implementation. Nevertheless, it relies on predefined patterns
to avoid excessive false positives, limiting its scope of bug
detection to the specific patterns.

7 Related work
In-Vitro Out-of-Order Execution Testing. It is hard to
control out-of-order execution at runtime. To workaround the
difficulty, previous approaches [10, 12, 19, 21, 32, 33, 35,
37, 49, 57, 71, 80] adopt in-vitro testing approaches, which
analyzes behaviors caused by out-of-order execution offline.
However, when applying them to the kernel, they cannot con-
sider the kernel runtime context, limiting scope of identifying
OOO bugs such as double-free bug. On the other hand, OZZ
is designed to monitor the kernel behavior according out-of-
order execution, showing significantly better capability in
identifying kernel OOO bugs.
Concurrency-aware Fuzzing. Fuzzing [28, 29, 38, 51–55,
72, 90, 92, 97, 98, 108, 114, 117] has gained the popular-
ity due to its excellent bug-finding capability in large sys-
tem software. While conventional fuzzers focus on explor-
ing execution paths, recent approaches [13, 22, 23, 39, 41–
43, 112, 113], called concurrency fuzzing, have been pro-
posed to identify concurrency bugs with the idea that thread
interleaving is a subject of exploration and is controllable [9,
20, 40, 64, 76, 77, 99]. Unfortunately, controlling thread in-
terleaving only is not sufficient to discover OOO bugs and
they often hide effects of memory access reordering by using

the breakpoint mechanism. OEMU extends previous work to
identify OOO bugs. It enables control knobs of memory ac-
cess reordering, while preserving the capability of controlling
thread interleaving.
Data Race Detector. A large body of work [7, 11, 18, 65,
73, 79, 81, 87, 105, 118, 119] has been proposed to detect
data races, which are a subset of concurrency bugs [2, 94].
While they might be helpful in identifying OOO bugs, OEMU
provides stronger benefits. For example, most of data race
detectors fall short in comprehending what memory accesses
should not be reordered and what will be the result of reorder-
ing, while OZZ controls what memory accesses are reordered
to explore the search space of kernel OOO bugs.

In the case of the Linux kernel, KCSAN [65] partially mod-
els the behavior of weak memory models. It samples memory
accesses, rather than actually reordering them, and determines
if a data race could occur under weak memory models. How-
ever, OZZ and OEMU offer notable advantages 1) KCSAN is
limited to analyzing the delay of a single memory access not
annotated with an API in Table 1, whereas OZZ can reorder
multiple loads, stores, and atomic operations, regardless of
annotations, showing the stronger reordering capability; 2)
OZZ can reorder accesses across function boundaries, while
KCSAN could not (e.g., Bug #5 in Table 3, and #3, #6 in Ta-
ble 4); and 3) KCSAN’s behavior is non-deterministic, while
OZZ and OEMU provide deterministic control over out-of-
order execution. Thus, OZZ can explicitly test and reproduce
reordered instruction sequences as needed, enabling more
efficient search and testing.

8 Conclusion
We believe this work marks the beginning of the journey
into fuzzing for OOO bugs. As cloud and mobile systems
increasingly adopt ARM-based architectures, hardening sys-
tems against OOO bugs will become increasingly important.
In response to this trend, our work presents a new and prac-
tical fuzzing approach for discovering OOO bugs through
in-vivo emulation of out-of-order execution. In evaluation,
OZZ identifies 11 previously unknown OOO bugs. In addi-
tion, we demonstrate that OEMU is effective in reproducing
previously reported OOO bugs, which are hardly detectable
with previous approaches.

9 Acknowledgment
We greatly appreciate the anonymous reviewers and our shep-
herd, Aurojit Panda, for their constructive comments and
feedback. This work was supported in part by NRF (RS-
2024-00347516 and RS-2024-00359979), IITP (RS-2023-
00232728), TIPA (TIPS 00262147), K-Startup (20144069)
and Samsung Electronics. This work also was supported by
the Korea Institute of Science and Technology Information
(KISTI) in 2024 (No.(KISTI) K24L4M2C5), aimed at de-
veloping KONI (KISTI Open Natural Intelligence), a large
language model specialized in science and technology.

241

References
[1] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling,

simulation, testing, and data mining for weak memory. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 36(2):
1–74, 2014.

[2] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern.
Frightening small children and disconcerting grown-ups: Concurrency
in the linux kernel. In Proceedings of the 23rd ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Williamsburg, VA, Mar. 2018.

[3] J. Alglave, W. Deacon, R. Grisenthwaite, A. Hacquard, and
L. Maranget. Armed cats: Formal concurrency modelling at arm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 43
(2):1–54, 2021.

[4] S. Andrew Waterman, Krste Asanovi𝑐. The RISC-V Instruction
Set Manual, 2017. https://riscv.org/wp-content/uploads/2017/05/
riscv-spec-v2.2.pdf.

[5] ARM Holdings. Arm® Architecture Reference Manual for A-profile
architecture, 2022. https://developer.arm.com/documentation/
ddi0487/latest.

[6] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux block io:
introducing multi-queue ssd access on multi-core systems. In Pro-
ceedings of the 6th international systems and storage conference,
2013.

[7] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
detection of data races. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Toronto, Canada, June 2010.

[8] N. Borisov. btrfs: Fix deadlock caused by miss-
ing memory barrier, 2019. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
6e7ca09b583de4be6c27d9d4b06e8c5dd46a58fa.

[9] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A ran-
domized scheduler with probabilistic guarantees of finding bugs. In
Proceedings of the 15th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), Istanbul, Turkey, Mar. 2010.

[10] J. Burnim, K. Sen, and C. Stergiou. Testing concurrent programs on
relaxed memory models. In Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA), Toronto, Canada, July
2011.

[11] Y. Cai, J. Zhang, L. Cao, and J. Liu. A deployable sampling strategy
for data race detection. In Proceedings of the 24th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), Seattle,
WA, Nov. 2016.

[12] M. Cao, J. Roemer, A. Sengupta, and M. D. Bond. Prescient memory:
exposing weak memory model behavior by looking into the future.
ACM SIGPLAN Notices, 51(11):99–110, 2016.

[13] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang, and Y. Liu.
MUZZ: Thread-aware grey-box fuzzing for effective bug hunting in
multithreaded programs. In Proceedings of the 29th USENIX Security
Symposium (Security), Virtual, Aug. 2020.

[14] T. W. Christopher. Reference count garbage collection. Software:
Practice and Experience, 14(6):503–507, 1984.

[15] Compaq Computer Corporation. Alpha Architecture Reference Man-
ual, 2002. https://download.majix.org/dec/alpha_arch_ref.pdf.

[16] A. Danial. cloc, 2020. https://github.com/AlDanial/cloc.

[17] E. Dumazet. tcp: add a missing barrier in tcp_tasklet_func(), 2016.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

commit/?id=0a9648f1293966c838dc570da73c15a76f4c89d6.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
Data-Race detection for the kernel. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[19] C. Flanagan and S. N. Freund. Adversarial memory for detecting
destructive races. In Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
Toronto, Canada, June 2010.

[20] P. Fonseca, R. Rodrigues, and B. B. Brandenburg. SKI: Exposing
kernel concurrency bugs through systematic schedule exploration. In
Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[21] M. Gao, S. Chakraborty, and B. K. Ozkan. Probabilistic concurrency
testing for weak memory programs. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Vancouver, Canada,
Mar. 2023.

[22] S. Gong, D. Altinbüken, P. Fonseca, and P. Maniatis. Snowboard:
Finding kernel concurrency bugs through systematic inter-thread com-
munication analysis. In Proceedings of the 28th ACM Symposium on
Operating Systems Principles (SOSP), Virtual, Oct. 2021.

[23] S. Gong, D. Peng, D. Altınbüken, P. Fonseca, and P. Maniatis. Snow-
cat: Efficient kernel concurrency testing using a learned coverage
predictor. In Proceedings of the 29th ACM Symposium on Operating
Systems Principles (SOSP), Koblenz, Germany, Oct. 2023.

[24] Google. Syscall description language, 2016. https://github.com/llvm-
mirror/llvm/blob/master/lib/Transforms/Instrumentation/
SanitizerCoverage.cpp.

[25] Google. Syzkaller - kernel fuzzer, 2022. https://github.com/google/
syzkaller.

[26] Google. Syzkaller’s initial seeds, 2023. https://github.com/google/
syzkaller/tree/master/sys/linux.

[27] Google. Syzbot, 2024. https://syzkaller.appspot.com/upstream.

[28] H. Han and S. K. Cha. Imf: Inferred model-based fuzzer. In Proceed-
ings of the 23rd ACM Conference on Computer and Communications
Security (CCS), Dallas, Texas, Nov. 2017.

[29] H. Han, D. Oh, and S. K. Cha. CodeAlchemist: Semantics-aware
code generation to find vulnerabilities in javascript engines. In Pro-
ceedings of the 2019 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[30] J. Horn. fs: use acquire ordering in __fget_light(), 2022.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=7ee47dcfff1835ff75a794d1075b6b5f5462cfed.

[31] D. Howells. watch_queue: Fix lack of barrier/sync/lock
between post and read, 2022. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
2ed147f015af2b48f41c6f0b6746aa9ea85c19f3.

[32] J. Huang, C. Zhang, and J. Dolby. Clap: Recording local executions
to reproduce concurrency failures. In Proceedings of the 2013 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Seattle, WA, June 2013.

[33] S. Huang, B. Cai, and J. Huang. Towards Production-Run heisenbugs
reproduction on commercial hardware. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa Clara, CA, July
2017.

[34] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper Manuals, 2022. https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-sdm.html.

242

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e7ca09b583de4be6c27d9d4b06e8c5dd46a58fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e7ca09b583de4be6c27d9d4b06e8c5dd46a58fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6e7ca09b583de4be6c27d9d4b06e8c5dd46a58fa
https://download.majix.org/dec/alpha_arch_ref.pdf
https://github.com/AlDanial/cloc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0a9648f1293966c838dc570da73c15a76f4c89d6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0a9648f1293966c838dc570da73c15a76f4c89d6
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/syzkaller/tree/master/sys/linux
https://github.com/google/syzkaller/tree/master/sys/linux
https://syzkaller.appspot.com/upstream
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7ee47dcfff1835ff75a794d1075b6b5f5462cfed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7ee47dcfff1835ff75a794d1075b6b5f5462cfed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ed147f015af2b48f41c6f0b6746aa9ea85c19f3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ed147f015af2b48f41c6f0b6746aa9ea85c19f3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ed147f015af2b48f41c6f0b6746aa9ea85c19f3
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

[35] M. M. Islam and A. Muzahid. Bugaroo: Exposing memory model bugs
in many-core systems. In 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), pages 178–188. IEEE,
2018.

[36] K. Iwashima. ipv6: Fix data races around sk->sk_prot., 2022.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=364f997b5cfe1db0d63a390fe7c801fa2b3115f6.

[37] R. Jain, R. Purandare, and S. Sharma. Bird: Race detection in soft-
ware binaries under relaxed memory models. ACM Transactions on
Software Engineering and Methodology (TOSEM), 31(4):1–29, 2022.

[38] J. Jang, M. Kang, and D. Song. Reusb: Replay-guided usb driver
fuzzing. In Proceedings of the 32nd USENIX Security Symposium
(Security), Anaheim, CA, Aug. 2023.

[39] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer:
Finding kernel race bugs through fuzzing. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[40] D. R. Jeong, M. Jung, Y. Lee, B. Lee, I. Shin, and Y. Kwon. Diagnosing
kernel concurrency failures with aitia. In Proceedings of the 18th
European Conference on Computer Systems (EuroSys), Rome, Italy,
May 2023.

[41] D. R. Jeong, B. Lee, I. Shin, and Y. Kwon. SegFuzz: Segmentiz-
ing thread interleaving to discover kernel concurrency bugs through
fuzzing. In Proceedings of the 44th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2023.

[42] Z. Jiang, M. Wen, Y. Yang, C. Peng, P. Yang, and H. Jin. Effec-
tive concurrency testing for go via directional primitive-constrained
interleaving exploration. In Proceedings of the 33rd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE),
Kirchberg, Luxembourg, Sept. 2023.

[43] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu. Context-sensitive and
directional concurrency fuzzing for data-race detection. In Proceed-
ings of the 2022 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Apr. 2022.

[44] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and sampling
strategies for cooperative concurrency bug isolation. In Proceedings of
the 2010 Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Reno, NV, Oct.
2010.

[45] J. Jung, J. Lee, J. Choi, J. Kim, S. Park, and J. Kang. Modular verifi-
cation of safe memory reclamation in concurrent separation logic. In
Proceedings of the 2023 Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Cas-
cais, Portugal, Oct. 2023.

[46] J. Jung, J. Lee, J. Kim, and J. Kang. Applying hazard pointers to
more concurrent data structures. In Proceedings of the 35th ACM
Symposium on Parallelism in Algorithms and Architectures, 2023.

[47] J. Kang and J. Jung. A marriage of pointer-and epoch-based recla-
mation. In Proceedings of the 2020 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Virtual,
June 2020.

[48] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data race bugs:
telling the difference with portend. In Proceedings of the 17th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), London, UK, Mar.
2012.

[49] B. Kasikci, C. Zamfir, and G. Candea. Automated classification
of data races under both strong and weak memory models. ACM
Transactions on Programming Languages and Systems (TOPLAS), 37
(3):1–44, 2015.

[50] J. Kicinski. tls: improve lockless access safety of tls_err_abort(), 2023.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=8a0d57df8938e9fd2e99d47a85b7f37d86f91097.

[51] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee. HFL:
Hybrid fuzzing on the linux kernel. In Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2020.

[52] K. Kim, T. Kim, E. Warraich, B. Lee, K. R. Butler, A. Bianchi, and
D. J. Tian. Fuzzusb: Hybrid stateful fuzzing of usb gadget stacks. In
Proceedings of the 43rd IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2022.

[53] K. Kim, S. Kim, K. R. Butler, A. Bianchi, R. Kennell, and D. J.
Tian. Fuzz The Power: Dual-role state guided black-box fuzzing for
USB power delivery. In Proceedings of the 32nd USENIX Security
Symposium (Security), Anaheim, CA, Aug. 2023.

[54] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim. Finding
semantic bugs in file systems with an extensible fuzzing framework.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Huntsville, Ontario, Canada, Oct. 2019.

[55] T. E. Kim, J. Choi, K. Heo, and S. K. Cha. DAFL: Directed grey-
box fuzzing guided by data dependency. In Proceedings of the 32nd
USENIX Security Symposium (Security), Anaheim, CA, Aug. 2023.

[56] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz
testing. In Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Toronto, Canada, Oct. 2018.

[57] M. Kokologiannakis and V. Vafeiadis. Genmc: A model checker for
weak memory models. In International Conference on Computer
Aided Verification, pages 427–440. Springer, 2021.

[58] S.-H. Lee, M. Cho, R. Margalit, C.-K. Hur, and O. Lahav. Putting
weak memory in order via a promising intermediate representation. In
Proceedings of the 2023 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Orlando, FL, June
2023.

[59] Y. Lee, C. Min, and B. Lee. ExpRace: Exploiting kernel races through
raising interrupts. In Proceedings of the 30th USENIX Security Sym-
posium (Security), Virtual, Aug. 2021.

[60] M. Lei. sbitmap: order READ/WRITE freed instance
and setting clear bit, 2019. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
e6d1fa584e0dd9bfebaf345e9feea588cf75ead2.

[61] B. Lepers, J. Giet, W. Zwaenepoel, and J. Lawall. Ofence: Pairing
barriers to find concurrency bugs in the linux kernel. In Proceedings
of the 18th European Conference on Computer Systems (EuroSys),
Rome, Italy, May 2023.

[62] B. Li. mm/filemap: avoid buffered read/write race to
read inconsistent data, 2023. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
e2c27b803bb664748e090d99042ac128b3f88d92.

[63] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye. Efficient scalable
thread-safety-violation detection: finding thousands of concurrency
bugs during testing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), Huntsville, Ontario, Canada,
Oct. 2019.

[64] C. Lidbury and A. F. Donaldson. Sparse record and replay with
controlled scheduling. In Proceedings of the 2019 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Phoenix, AZ, June 2019.

[65] Linux. The kernel concurrency sanitizer (KCSAN), 2020. https:
//docs.kernel.org/dev-tools/kcsan.html.

243

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=364f997b5cfe1db0d63a390fe7c801fa2b3115f6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=364f997b5cfe1db0d63a390fe7c801fa2b3115f6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8a0d57df8938e9fd2e99d47a85b7f37d86f91097
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8a0d57df8938e9fd2e99d47a85b7f37d86f91097
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6d1fa584e0dd9bfebaf345e9feea588cf75ead2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6d1fa584e0dd9bfebaf345e9feea588cf75ead2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6d1fa584e0dd9bfebaf345e9feea588cf75ead2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e2c27b803bb664748e090d99042ac128b3f88d92
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e2c27b803bb664748e090d99042ac128b3f88d92
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e2c27b803bb664748e090d99042ac128b3f88d92
https://docs.kernel.org/dev-tools/kcsan.html
https://docs.kernel.org/dev-tools/kcsan.html

[66] Linux. The Kernel Address Sanitizer (KASAN), 2022.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/Documentation/dev-tools/kasan.rst.

[67] Linux. kcov: code coverage for fuzzing, 2022. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/Documentation/dev-tools/kcov.rst.

[68] Linux. Runtime locking correctness validator, 2022. https://www.
kernel.org/doc/Documentation/locking/lockdep-design.txt.

[69] Linux. The Undefined Behavior Sanitizer - UBSAN, 2022. https:
//www.kernel.org/doc/Documentation/dev-tools/ubsan.rst.

[70] LLVM Project. The LLVM Compiler Infrastructure, 2021. https:
//llvm.org/.

[71] W. Luo and B. Demsky. C11tester: a race detector for c/c++ atomics.
In Proceedings of the 21st ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), Virtual, Apr. 2021.

[72] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, 47(11):2312–2331, 2019.

[73] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: Effective
sampling for lightweight data-race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Dublin, Ireland, June 2009.

[74] L. W. McVoy, C. Staelin, et al. Lmbench: Portable tools for perfor-
mance analysis. In Proceedings of the 1996 USENIX Annual Technical
Conference (ATC), Jan. 1996.

[75] J. Min, D. Yu, S. Jeong, D. Song, and Y. Jeon. Erasan: Efficient rust
address sanitizer. In Proceedings of the 45th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2024.

[76] S. Mukherjee, P. Deligiannis, A. Biswas, and A. Lal. Learning-based
controlled concurrency testing. In Proceedings of the 2020 Annual
ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), Virtual, Sept. 2020.

[77] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, CA, Dec.
2008.

[78] L. Nan. nbd: fix null-ptr-dereference while access-
ing ’nbd->config’, 2023. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
c2da049f419417808466c529999170f5c3ef7d3d.

[79] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), San Diego, CA, June 2007.

[80] B. Norris and B. Demsky. Cdschecker: checking concurrent data
structures written with c/c++ atomics. In Proceedings of the 24th
Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Indianapolis, IN, Oct. 2013.

[81] R. O’callahan and J.-D. Choi. Hybrid dynamic data race detection. In
Proceedings of the 9th ACM Symposium on Principles and Practice
of Parallel Programming (PPOPP), San Diego, CA, June 2003.

[82] N. Piggin. [PATCH] buffer: memorder fix, 2007. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
72ed3d035855841ad611ee48b20909e9619d4a79.

[83] QEMU. QEMU: A generic and open source machine emulator and
virtualizer, 2021. https://www.qemu.org/.

[84] Rust for Linux. Rust for Linux, 2022. https://rust-for-linux.com/
#rust-for-linux.

[85] S. Saleem. RDMA/irdma: Add missing read barriers, 2023.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=4984eb51453ff7eddee9e5ce816145be39c0ec5c.

[86] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Un-
derstanding power multiprocessors. In Proceedings of the 2011 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), San Jose, CA, June 2011.

[87] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: data race detec-
tion in practice. In Proceedings of the workshop on binary instrumen-
tation and applications, pages 62–71, 2009.

[88] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Ad-
dressSanitizer: A fast address sanity checker. In Proceedings of the
2012 USENIX Annual Technical Conference (ATC), Boston, MA, June
2012.

[89] J. Sitnicki. net/tls: Annotate access to sk_prot with READ_-
ONCE/WRITE_ONCE, 2020. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
d5bee7374b68de3c44586d46e9e61ffc97a1e886.

[90] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vi-
gna, C. Kruegel, J.-P. Seifert, and M. Franz. Periscope: An effective
probing and fuzzing framework for the hardware-os boundary. In Pro-
ceedings of the 2019 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[91] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz. Sok: Sanitizing for security. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[92] D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and M. Franz.
Agamotto: Accelerating kernel driver fuzzing with lightweight virtual
machine checkpoints. In Proceedings of the 29th USENIX Security
Symposium (Security), Virtual, Aug. 2020.

[93] E. Stepanov and K. Serebryany. Memorysanitizer: fast detector of
uninitialized memory use in c++. In 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 46–
55. IEEE, 2015.

[94] A. Stern. Explanation of the Linux-Kernel Memory Con-
sistency Model, 2017. https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/tools/memory-
model/Documentation/explanation.txt.

[95] A. Stern. USB: core: Fix hang in usb_kill_urb by
adding memory barriers, 2022. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
26fbe9772b8c459687930511444ce443011f86bf.

[96] B. A. Stoica, S. Lu, M. Musuvathi, and S. Nath. WAFFLE: Exposing
memory ordering bugs efficiently with active delay injection. In
Proceedings of the 18th European Conference on Computer Systems
(EuroSys), Rome, Italy, May 2023.

[97] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui.
Healer: Relation learning guided kernel fuzzing. In Proceedings of
the 28th ACM Symposium on Operating Systems Principles (SOSP),
Virtual, Oct. 2021.

[98] H. Sun, Y. Shen, J. Liu, Y. Xu, and Y. Jiang. KSG: Augmenting kernel
fuzzing with system call specification generation. In Proceedings of
the 2022 USENIX Annual Technical Conference (ATC), Carlsbad, CA,
July 2022.

[99] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency testing using
schedule bounding: An empirical study. In Proceedings of the 19th
ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), Orlando, FL, Feb. 2014.

244

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kasan.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kasan.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kcov.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kcov.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kcov.rst
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/dev-tools/ubsan.rst
https://www.kernel.org/doc/Documentation/dev-tools/ubsan.rst
https://llvm.org/
https://llvm.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c2da049f419417808466c529999170f5c3ef7d3d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c2da049f419417808466c529999170f5c3ef7d3d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c2da049f419417808466c529999170f5c3ef7d3d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=72ed3d035855841ad611ee48b20909e9619d4a79
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=72ed3d035855841ad611ee48b20909e9619d4a79
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=72ed3d035855841ad611ee48b20909e9619d4a79
https://www.qemu.org/
https://rust-for-linux.com/#rust-for-linux
https://rust-for-linux.com/#rust-for-linux
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4984eb51453ff7eddee9e5ce816145be39c0ec5c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4984eb51453ff7eddee9e5ce816145be39c0ec5c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d5bee7374b68de3c44586d46e9e61ffc97a1e886
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d5bee7374b68de3c44586d46e9e61ffc97a1e886
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d5bee7374b68de3c44586d46e9e61ffc97a1e886
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=26fbe9772b8c459687930511444ce443011f86bf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=26fbe9772b8c459687930511444ce443011f86bf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=26fbe9772b8c459687930511444ce443011f86bf

[100] R. M. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of research and Development, 11(1):25–33,
1967.

[101] B. Töpel. xsk: use state member for socket synchronization, 2019.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=42fddcc7c64b723a867c7b2f5f7505e244212f13.

[102] L. Torvalds. Merge tag ’rust-v6.1-rc1’ of https://github.com/rust-
for-linux/linux, 2022. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
8aebac82933ff1a7c8eede18cab11e1115e2062b.

[103] B. Töpel. xsk: add missing write- and data-dependency barrier, 2018.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=37b076933a8e38e72ffd3c40d3eeb5949f38baf3.

[104] J. D. Valois. Implementing lock-free queues. In Proceedings of the sev-
enth international conference on Parallel and Distributed Computing
Systems. Citeseer, 1994.

[105] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. De-
tecting and surviving data races using complementary schedules. In
Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP), Cascais, Portugal, Oct. 2011.

[106] A. Viro. missing barriers in some of unix_sock -
>addr and ->path accesses, 2019. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
ae3b564179bfd06f32d051b9e5d72ce4b2a07c37.

[107] B. Wang. Arm-based PCs to Nearly Double Market Share by
2027, 2023. https://www.counterpointresearch.com/insights/arm-
based-pcs-to-nearly-double-market-share-by-2027/.

[108] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. Abu-Ghazaleh. SyzVegas: Beating kernel fuzzing odds with re-
inforcement learning. In Proceedings of the 30th USENIX Security
Symposium (Security), Virtual, Aug. 2021.

[109] P. H. Wang, H. Wang, R.-M. Kling, K. Ramakrishnan, and J. P. Shen.
Register renaming and scheduling for dynamic execution of pred-
icated code. In Proceedings of the 7th IEEE Symposium on High
Performance Computer Architecture (HPCA), Nuevo Leone, Mexico,
Jan. 2001.

[110] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R.-M. Kling,
and J. P. Shen. Memory latency-tolerance approaches for itanium
processors: out-of-order execution vs. speculative precomputation.
In Proceedings of the 8th IEEE Symposium on High Performance

Computer Architecture (HPCA), Boston, MA, Feb. 2002.

[111] C. Wen, M. He, B. Wu, Z. Xu, and S. Qin. Controlled concurrency
testing via periodical scheduling. In Proceedings of the 44th Interna-
tional Conference on Software Engineering (ICSE), Pittsburgh, PA,
May 2022.

[112] D. Wolff, S. Zheng, G. Duck, U. Mathur, and A. Roychoudhury. Grey-
box fuzzing for concurrency testing. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), San Diego, CA, Apr.–
May 2024.

[113] M. Xu, S. Kashyap, H. Zhao, and T. Kim. Krace: Data race fuzzing
for kernel file systems. In Proceedings of the 41st IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2020.

[114] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim. Fuzzing file
systems via two-dimensional input space exploration. In Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[115] Z. Yejian. ring-buffer: Fix race while reader and writer
are on the same page, 2023. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
6455b6163d8c680366663cdb8c679514d55fc30c.

[116] M. Yuan, B. Zhao, P. Li, J. Liang, X. Han, X. Luo, and C. Zhang.
DDRace: finding concurrency uaf vulnerabilities in linux drivers with
directed fuzzing. In Proceedings of the 32nd USENIX Security Sym-
posium (Security), Anaheim, CA, Aug. 2023.

[117] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A practical
concolic execution engine tailored for hybrid fuzzing. In Proceedings
of the 27th USENIX Security Symposium (Security), Baltimore, MD,
Aug. 2018.

[118] T. Zhang, D. Lee, and C. Jung. Txrace: Efficient data race detection
using commodity hardware transactional memory. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, Apr. 2016.

[119] T. Zhang, C. Jung, and D. Lee. Prorace: Practical data race detection
for production use. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Xi’an, China, Apr. 2017.

[120] D. Zhu. net: fix a data race when get vlan device, 2021.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=c1102e9d49eb36c0be18cb3e16f6e46ffb717964.

245

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=42fddcc7c64b723a867c7b2f5f7505e244212f13
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=42fddcc7c64b723a867c7b2f5f7505e244212f13
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=37b076933a8e38e72ffd3c40d3eeb5949f38baf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=37b076933a8e38e72ffd3c40d3eeb5949f38baf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ae3b564179bfd06f32d051b9e5d72ce4b2a07c37
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ae3b564179bfd06f32d051b9e5d72ce4b2a07c37
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ae3b564179bfd06f32d051b9e5d72ce4b2a07c37
https://www.counterpointresearch.com/insights/arm-based-pcs-to-nearly-double-market-share-by-2027/
https://www.counterpointresearch.com/insights/arm-based-pcs-to-nearly-double-market-share-by-2027/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6455b6163d8c680366663cdb8c679514d55fc30c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6455b6163d8c680366663cdb8c679514d55fc30c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6455b6163d8c680366663cdb8c679514d55fc30c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c1102e9d49eb36c0be18cb3e16f6e46ffb717964
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c1102e9d49eb36c0be18cb3e16f6e46ffb717964

Dependency Description Applied to

Data A load and a store operation are linked by
a data dependency if the value obtained by
the value stored by the store operation.

load-store
reordering

Address A load operation and another memory ac-
cess are linked by an address dependency
if the value obtained by the load operation
affects the location accessed by the other
event. The second event can be either a load
operation or a store operation.

load-load &
load-store
reordering

Control A load operation X and a store operation Y
are linked by a control dependency if Y syn-
tactically lies within an arm of an if state-
ment and X affects the evaluation of the if
condition via a data or address dependency.

load-store
reordering

Table 6. Three types of dependencies defined in the LKMM.

10 Appendix
10.1 Details of How OEMU Complies with the LKMM
As explained in §3, OEMU reorders memory accesses through
a delayed store operation and a versioned load operation.
These two operations should not reorder memory accesses in
a way that none of architectures that the Linux kernel supports
would do.

However, different architectures define different rules of
out-of-order execution. Thus, instead of implementing OEMU
for all architectures, we implement OEMU to comply with
the Linux Kernel Memory Model [2, 94]. The LKMM is a
unified memory model to cope with different architectures,
and it defines reordering cases that would not occur in any
architectures that the Linux kernel supports. In other words,
if concurrent execution of the Linux kernel correctly behaves
according to the LKMM, it will not cause an OOO bug in any
architecture that the Linux kernel supports. This work aims to
comply with the LKMM, making the kernel behave correctly
even on an exotic architecture.

In the LKMM, reordering cases that should not happen are
reflected in the ppo relationship, which defines a relationship
between two instructions that a CPU is obliged to execute
them in the sequential order. The LKMM defines five cases
that a memory barrier prevents reordering of two memory
accesses x and y, where each case corresponds to a barrier
presented in Table 1 (§10.1.1). On the other hand, the LKMM
defines two cases that dependencies from a former load oper-
ation to subsequent memory accesses. Among the two cases,
one describes dependencies between a former load operation
and a later load operation (i.e., Case 6), and the other case
describes dependencies between a former load operation and
a later store operation (i.e., Case 7) (§10.1.2).

10.1.1 Reordering Cases Prohibited by Memory Barri-
ers. Case 1 describes that memory accesses of two instruc-
tions X and Y should not be reordered if a strong barrier (e.g.,
smp_mb()) exists, regardless of the types of memory accesses.
OEMU obeys this case by performing the memory access of
X prior to the memory barrier, and the memory access of Y

after the memory barrier. In particular, if X performs a load
operation, it will never be performed after the memory barrier,
as OEMU never delays a load operation. If X performs a store
operation, it will also never be performed after the memory
barrier, as OEMU commits the value of the store operation at
least right before the memory barrier. Similarly, if Y performs
a store operation, it will not be performed before the mem-
ory barrier, as OEMU only delays a store operation. In the
case that Y performs a load operation, the versioning window
restricts the load operation on Y to read a value written after
the execution of the memory barrier, ensuring that the load
operation is not performed before the memory barrier.

Case 2 describes a case that there is a store barrier (e.g.,
smp_wmb()) between two store operations X and Y. In this
case, OEMU should finish the first store operation X before
executing the second store operation Y. During the execution,
since a delayed store operation ensures that the value of X has
been committed right before a store barrier is executed, X is
always finished before executing Y.

Case 3 describes a case that there is a load barrier (e.g.,
smp_rmb()) between two load operations X and Y. In this
case, suppose smp_rmb() is executed at time 𝑡0. Then, a load
operation on X finishes reading a value before 𝑡0 (regardless
of whether it reads an old version from the store history or
the latest version from memory). Also, OEMU guarantees
that the value read by the load operation on Y is written after
𝑡0 (refer to the versioning window in §3.2). Consequently,
OEMU ensures that a load operation on X is executed before
the memory barrier, while a load operation on Y reads a value
written after 𝑡0, ensuring that it is not executed before the
memory barrier.

Case 4 is a case that the former memory access is an-
notated with an acquire memory barrier (e.g., smp_load_-
acquire(&X)). In this case, the load operation on X should
be finished before all subsequent memory accesses. To this
end, OEMU behaves as if there is a load barrier right after
the load operation on &X. In other words, if any subsequent
memory access Y is a load operation, OEMU prohibits re-
ordering of load operations X and Y as done by Case 3. If
any subsequent memory access Y is a store operation, OEMU
ensures that the load operation on &Y is executed before &Y,
as it does not emulate load-store reordering.

Case 5 is a case that the latter memory access is annotated
with a release memory barrier (e.g., smp_store_release(&Y)).
In this case, all precedent memory accesses should be fin-
ished before the store operation on Y. To faithfully emulate
this, OEMU acts as there is a store barrier (i.e., smp_wmb())
right before the store operation on &Y. Accordingly, if any
precedent memory access X is a store operation, it ensures
that the value of the store operation on X is committed before
Y because OEMU acts as if there is a store barrier between
them. Also, if any precedent memory access X is a load oper-
ation, OEMU ensures that the load operation on X is executed
before Y, as it does not emulate load-store reordering.

246

Algorithm 2: Algorithm of the 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑜𝑢𝑡 () function
Input :𝑆𝑖 , 𝑆 𝑗 : Sequences of memory accesses and

memory barriers executed by two system calls.
Output :𝑆 ′

𝑖
, 𝑆′

𝑗
: Sequences of memory accesses and

memory barriers in which irrelevant memory
accesses are filtered.

1 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚 = ∅
2 for (𝑎𝑖 , 𝑎 𝑗) ∈ 𝑆𝑖 × 𝑆 𝑗 do
3 if 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎𝑖 𝑜𝑟 𝑎 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠 then
4 continue
5 𝑜 = 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑎𝑖 , 𝑎 𝑗)
6 if 𝑜 ≠ ø then
7 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚 = 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚 ∪ {𝑜}
8 for 𝑘 ∈ {𝑖, 𝑗} do
9 for 𝑎 ∈ 𝑆𝑘 do

10 if 𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠 then
11 continue
12 if 𝑎.𝑎𝑑𝑑𝑟 ∉ 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚 then
13 𝑆𝑘 = 𝑆𝑘 \ {𝑎}
14 𝑆 ′

𝑖
, 𝑆′

𝑗
= 𝑆𝑖 , 𝑆 𝑗

15 return 𝑆 ′
𝑖
, 𝑆′

𝑗

Thread A

① Delivering
 a schedule

Thread B

Userspace program

Kernel

syscall Bsyscall A

② Executing
 syscalls

schedule_at (X)
start_first()

syscall B()syscall A ()

X
③ Performing
 interleaving

CPU 1 CPU 2

Y

Breakpoint

Figure 9. Workflow of the custom scheduler

10.1.2 Reordering Cases Prohibited by Dependencies.
In addition to cases regarding memory barriers, the LKMM
defines reordering cases that are prohibited by dependencies.
Specifically, the LKMM defines three types of dependencies,
such as address, data, and control dependencies as shown in
Table 6. As shown in the table, all three types of dependencies
restrict reordering of a load operation and a store operation
(i.e., Case 7), while only one dependency (i.e., address depen-
dency) can restrict reordering between two load operations
(i.e., Case 6).

Case 6 describes a case that there is an address depen-
dency between two load operations X and Y (e.g., X and Y
can be reading i and reading arr[i]), and X is annotated
with READ_ONCE() or an atomic operation (e.g., atomic_-
read()). Interestingly, due to the Alpha architecture, the
LKMM prohibits reordering of X and Y only if X is annotated
with READ_ONCE() or an atomic operation. In other words,
without using such APIs, the LKMM allows load-load re-
ordering even if there is an address dependency (please refer

to “18. THE PRESERVED PROGRAM ORDER RELATION:
ppo” and “19. AND THEN THERE WAS ALPHA” in [94]).
Thus, OZZ is required to respect the address dependency only
if the load operation on X is annotated with READ_ONCE or
an atomic operation. This is the reason why OEMU consid-
ers READ_ONCE() as a load memory barrier (as explained in
§3.2). In other words, if X is annotated with READ_ONCE(),
OEMU thinks that there is a load memory barrier right after X.
As a consequence, Y cannot read an old value written before
X, preventing reordering of X and Y.

Case 7 describes a case with a dependency between a
precedent load operation and a subsequent store operation.
According to the LKMM, all three dependencies can be ap-
plied in this case. Thus, if there is a dependency between a
load and a store operation, OEMU should not reorder them.
However, as we mentioned in §3, OEMU just does not reorder
a former load operation and a latter store operation regardless
of dependencies, as it is out-of-scope in this paper.

10.2 Algorithm to Filter Out Memory Accesses
Irrelevant to OOO bugs

The OZZ’s first step to calculate scheduling hints (§4.3) is
to filter out memory accesses that cannot contribute to the
manifestation of OOO bugs. As an OOO bug is a kind of
concurrency bug, OZZ excludes memory accesses that do not
access shared memory locations.

Algorithm 2 represents an algorithm of how to filter out
such memory accesses. It takes, as an input, sets of memory
accesses and memory barriers that are executed by two system
calls 𝑆𝑖 and 𝑆 𝑗 . Then, OZZ finds out memory locations shared
between the two system calls (#2 ~ #7). For each pair of
memory accesses executed by the two system calls (#2), OZZ
calculates an overlapped memory location on which at least
one of the memory accesses writes a value. OZZ collects all
such locations into a set 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚. If a memory access
does not access a memory location contained in 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚,
the memory access cannot contribute to the manifestation of
an OOO bug.

After that, for each of memory accesses of each system
call (#8 ~ #9), OZZ excludes memory accesses that do not
access a memory location contained in 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚 (#12
~ #13). After filtering out memory accesses, OZZ returns
filtered memory accesses as well as memory barriers (#14 ~
#15) to the next step (Step 2 and 3 in §4.3).

10.3 Custom Scheduler
In addition to OEMU, OZZ requires a mechanism to deter-
ministically control thread interleaving. To this end, we adopt
a mechanism from previous works [20, 22, 23, 39], which
we call a custom scheduler. The custom scheduler allows the
fuzzer to specify a scheduling point on which an interleaving
is performed. The custom scheduler is implemented in the
hypervisor layer to override the scheduler of the guest ker-
nel, and exposes hypercall interfaces to accept a scheduling

247

1 /* Initially, x = 0, y = 0 */
2 // In thread 1
3 thread_1.x.store(1, Ordering::Relaxed);
4 thread_1.y.load(Ordering::Relaxed)
5 // In thread 2
6 thread_2.y.store(1, Ordering::Relaxed);
7 thread_2.x.load(Ordering::Relaxed)
8 // In another thread running after thread 1 and thread 2
9 assert!(x == 1 || y == 1);

Figure 10. A synthetic OOO bug example written in Rust. Even in
this example, OEMU can be used to identify the assertion violation
(i.e., the values of x and y are both 0).

point as an input from a guest userspace program. During
the kernel execution, the custom scheduler suspends and re-
sumes the execution of virtual CPUs in other to control thread
interleaving.

Figure 9 shows a workflow of the custom scheduler. In this
example, suppose there are two threads to run concurrently,
and they are pinned on different CPUs. If Thread A wants to
instruct the custom scheduler to perform at an interleaving at
Y, Thread A invokes a hypercall schedule_at(Y) to deliver
a scheduling point to the custom scheduler (1). The custom
scheduler, then, installs a breakpoint on the instruction. After
delivering a scheduling point, each thread starts executing
system calls (2). When running system calls, the custom
scheduler keeps only one thread to run while the other thread
is suspended. This is done by suspending a virtual CPU on
which the suspending thread runs. In this example, Thread B
is suspended at first (see start_first() in Thread A). Dur-
ing the execution, when the running thread (i.e., Thread A)
hits the scheduling point (i.e., the breakpoint), the custom
scheduler performs an interleaving by suspending the virtual
CPU on which the thread is running, and resuminmg the

suspended virtual CPU (3). It is worth noting that when sus-
pending a virtual CPU, OEMU may reorder memory accesses.
In this figure, OEMU performs a delayed store operation on
X, so the value of the store operation has not been committed
to memory when suspending a virtual CPU (see the circle on
X is empty). Lastly, when the running thread finishes its exe-
cution, the custom scheduler resumes the suspended virtual
CPU to complete the execution of two system calls.

10.4 OoO Bug Example in Rust
Since out-of-order execution is a behavior of a processor,

OOO bugs occur in any language, including Rust, that imple-
ments low-level system software. Recently, the Linux kernel
adopted Rust as the second official programming language,
and we check that OEMU and OZZ are effective in Rust.

Figure 10 shows an example of a synthetic OOO bug writ-
ten in Rust. Rust requires all concurrent memory accesses
to be annotated with an ordering semantic. In this example,
accesses to x and y are annotated with Ordering::Relaxed,
which does not enforce any ordering between accesses. Thus,
when thread 1 and thread 2 run concurrently, out-of-order
execution may run #4 before #3, and #7 before #6. In that
case, assert!() will fail, meaning that both x and y are 0.

In this example, we confirm that OEMU can trigger the
OOO bug by reordering memory accesses between either #3
and #4, or #6 and #7. Consequently, the assertion violation
#9 can be triggered. As we said in the discussion section, we
expect that Rust will be used more in the near future, and
we also expect that OZZ and OEMU will help developers for
kernel modules written in Rust.

248

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Out-of-Order Execution and Memory Barrier
	2.2 Missing Memory Barriers Cause Concurrency Bugs
	2.3 It Is Challenging to Identify OoO Bugs

	3 In-Vivo Out-of-Order Execution Emulation
	3.1 Delayed Store Operation
	3.2 Versioned Load Operation
	3.3 Compliance with the LKMM

	4 Ozz
	4.1 Hypothetical Memory Barrier Test
	4.2 Profiling Memory Accesses & Barriers
	4.3 Calculating Scheduling Hints
	4.4 Concurrent Test to Identify OoO Bugs
	4.5 Discussions

	5 Implementation
	6 Evaluation
	6.1 Finding Real-world OoO bug
	6.2 Reproducing Known OoO bugs
	6.3 Measuring Performance Overhead of OEMU
	6.4 Comparing with OFence ofence

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References
	10 Appendix
	10.1 Details of How OEMU Complies with the LKMM
	10.2 Algorithm to Filter Out Memory Accesses Irrelevant to OoO bugs
	10.3 Custom Scheduler
	10.4 OoO Bug Example in Rust

