
IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

8	 May/June 2023	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/23©2023IEEE

Memory Protection Keys: Facts, Key
Extension Perspectives, and Discussions

Soyeon Park  | Georgia Tech
Sangho Lee  | Microsoft Research
Taesoo Kim | Georgia Tech, Samsung Research

Memory Protection Keys (MPK) offers per-thread memory protection with an affordable overhead,
prompting many new studies. With protection key extension, MPK provides more fine-grained protection
and better functionality. MPK can be an attractive option for memory protection in industry.

M emory safety bugs are commonly introduced
by malevolent reads or writes to an unauthor-

ized memory. For example, attackers can read a raw
pointer to break address space layout randomization
or overwrite a return address on the stack to subvert
the control flow of a victim program. These threats
lead security researchers to develop various protec-
tion schemes to ensure the integrity of control-flow-
related data such as return addresses or code pointers
on a program’s memory. The most promising tech-
niques widely deployed today are control-flow integ-
rity schemes, such as Control Flow Guard (CFG) by
Microsoft and Control Flow Integrity (CFI) in the
Google Android kernel, but they come with an inevi-
table performance overhead.

Today, researchers are pondering a memory pro-
tection technique beyond control-flow-related data.
In April 2014, the OpenSSL cryptography library
received reports that the library has a memory leak bug,

which can leak server data such as unencrypted user
requests, authentication secrets, and private keys from
millions of web servers. A lot of commercial websites
and their servers are affected by this incident. This inci-
dent shows that memory safety bugs that are not related
to control-flow-related data also can be critical. In web
browsers like Firefox, Write-xor-Execute (W ⊕ X) pro-
tection is enforced to protect just-in-time (JIT) gener-
ated code pages, which can be a source of a data-only
attack. However, existing memory protection tech-
niques are largely software based and incur unbearable
overhead to protect larger memory space because they
require expensive operations like changing the permis-
sion of memory space.

Recently, hardware-based memory protection tech-
niques have been proposed to fundamentally overcome
such performance issues. In 2016, Intel introduced
Memory Protection Keys (MPK) for the userspace,
called Intel MPK. It enables ridiculously fast permis-
sion change (that is, modifying a register) regardless
of the size of the target memory space, which makes it
practical to use in real-world applications. Combined

Digital Object Identifier 10.1109/MSEC.2023.3250601
Date of current version: 20 March 2023

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6550-0474
https://orcid.org/0000-0002-0412-7768
https://orcid.org/0000-0002-7440-2067

www.computer.org/security� 9

with the existing page-table-based protection, MPK
can even implement execute-only memory spaces on a
per-thread basis.

One caveat, however, is that MPK provides only
16 protection keys, meaning that one application can
have only 16 different groups of memory spaces for
protection. To overcome this problem, we proposed
libmpk1 as a general solution to augment the function-
ality of MPK such that an application can create an
arbitrary number of protection domains, for example,
protecting the private keys of an arbitrary number of
virtual hosts in a web server or protecting a JIT region
per each domain in a web browser. Since our initial
exploration in this space in 2019, many applications
have been proposed to adopt MPK for conventional
uses of memory protections, but rather surprisingly, we
also see various novel uses of MPK in unexpected areas
(for example, detecting race condition).2,9

In this article, we look at the current stage of MPK
research as well as industry adoptions from the perspec-
tive of MPK’s key extension. Also, we revisit some chal-
lenges in adopting MPK in real-world applications and
share our views to improve the usability and security of
Intel MPK.

MPK Architecture
MPK is a new hardware feature available from Intel
Skylake server CPUs. It is similar in concept to the
mprotect system call in changing the permissions
of memory space. However, 1) it allows fast permis-
sion changes without context switching to kernel
space, and 2) it changes the permission of a memory
region at once. Underneath, MPK keeps track of the
read and write permissions of 16 memory regions in a
user-accessible register, called a protection key rights reg-
ister (PKRU), and provides two additional instructions
to read (RDPKRU) and write (WRPKRU) the permission
of each memory region. Since two bits are used to indi-
cate read and write permission, the 32-bit PKRU register
can represent only 16 different memory regions.

With MPK enabled, access to a memory page is
first checked with the permission in a PKRU register—
the CPU looks up its permission by using a key, an
index of the PKRU register, noted in the page’s page
table entry. It enables MPK to support execute-only
memory. In conventional x86, execute and write
permissions imply read permission. Hence, when we
set the permission of a page to an executable with
mprotect (addr, len, and PROT_EXEC), the page is
also readable intrinsically. However, with MPK, if
both read and write permissions are not set in the
PKRU register, but the execute permission is set in
the page table, then we can effectively implement an
execute-only memory (see Figure 1).

It is worth noting that PKRU is a register per core,
meaning that each thread running on a different core
might have different permissions for the same memory
region, unlike mprotect, which changes the permis-
sion of each page globally (that is, for all of the cores).
This is the main source of performance overhead—
requiring a translation lookaside buffer flush and inter-
processor interrupt for all cores—in mprotect-based
solutions, which is prohibitively nonscalable in a mul-
ticore machine. Our past experiment shows that the
WRPKRU instruction takes 23.3 cycles to update the
permission of pages associated with a protection key.
However, calling an mprotect system call takes 1,094
cycles, which is the traditional way to change the per-
mission of pages.

Moreover, a protection key can be assigned to mul-
tiple pages that do not need to be contiguous; however,
in doing so, an mprotect system call has to update mul-
tiple page table entries. The only way to change the per-
mission of sparse pages with an mprotect system call
is to call it multiple times, which incurs high overhead.
In addition, permission updated by an mprotect sys-
tem call is synchronized among threads; thus, it cannot
prevent race condition attacks. However, MPK-based
memory protection does not synchronize the updated
permission with other threads with the result that it
does not suffer from race conditions caused by permis-
sion synchronization.

Challenges
We visited the hardware primitives and attributes of
MPK to protect memory. As we can see, MPK can be a
helpful method to protect diverse types of data in mem-
ory for real-world applications. However, to apply MPK
to real-world applications, a few critical usability and
security issues should be overcome.

r/w r/w r/wr/w r/oN/A N/A N/A (1) PKRU Register (32-bit)
0 1 2 15 0 1 2 15pkey:

(2) Perm.:

(4)
Effective
Page
Permission:

Thread(a) Thread(b) (3) Page Table

RDPKRU WRPKRU

Page# Page#

104

232

480

104

232

480

104

232

480

x/o

r/w

N/A

r/w/x

r/o

r/o

1

2

1

r/w/x

r/w

r/o

Perm. Perm. Page# Perm. pkey

Figure 1. An overview of the MPK architecture. MPK checks the permission of
a page per thread according to (1) the PKRU register. The intersection between
(2) MPK permissions and (3) page permissions described on the page table
determines (4) the effective permissions. Perm.: permission; N/A: not applicable;
pkey: protection key; r/w: readable and writable; x/o: executable only; r/w/x:
readable, writable and executable.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

10	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

Limited Hardware Resources
As mentioned previously, MPK supports up to 16
protection keys that are bound to the hardware limita-
tion. Since one protection key can be assigned to mul-
tiple and sparse pages, 16 protection keys can manage
the permission of more than 16 pages. However, the
pages associated with a protection key can only have
the same permission for the key, so we call the pages
a domain.

Sixteen protection keys are enough for some applica-
tions as they can build 16 domains, but others may need
additional protection keys for more fine-grained protec-
tion or just to function. Developers always have a chance
to face the lack of protection keys without the expectation
as the protection keys are a shared resource for all threads
running first-party functions or third-party libraries
under the same virtual address space. If these functions
and libraries are exclusively and simultaneously using
protection keys to prevent others from accessing their
code and data, they might need more than 16 protection
keys and exhaust the number of protection keys. Unfor-
tunately, enlarging the size of the PKRU register does not
resolve this issue magically as it requires additional bits to
mark a protection key index in the page table entry.

Threats Against MPK-Based
Memory Protection
There are a few known threats breaking the integrity of
an MPK-based memory protection system:

1.	 executing specific instructions or system calls to
change the value of the PKRU register

2.	 bypassing the protection keys when accessing the
corresponding pages with system calls that ignore
MPK permissions

3.	 exploiting unintentionally exposed memory inter-
faces that MPK does not affect.

First, an unauthorized WRPKRU instruction breaks
the integrity of MPK-based memory protection as
WRPKRU updates the value of the PKRU register in the
userspace. In addition, the XRSTOR instruction can
modify the PKRU register by setting the correspond-
ing bit in the EAX register as XRSTOR is used to restore
the previous execution state (for example, register val-
ues) during a context switch. A sigreturn system call
works similarly to XRSTOR as it restores the previous
execution state when returning from the kernel after
handling a signal. Therefore, an attacker can alter the
value of the PKRU register by locating the manipulated
state on the stack and making a sigreturn system call.
As attackers can modify the value of the PKRU register
with malicious intent, MPK-based memory protection
should consider prohibiting them.

Second, previous studies8,10 figured out that a list of
system calls is known to ignore MPK permissions when
they work and access memory.

■■ process_vm_readv, process_vm_writev, and
ptrace: These system calls allow a process to read
and write the memory area protected by MPK.
process_vm_readv and process_vm_writev
system calls were originally designed to provide
interfaces to transfer data between the calling pro-
cess and the other process. They do respect the tra-
ditional page permission of the calling process but
ignore MPK permissions so that they bypass the
MPK permission check. The ptrace system call
is used to trace and control another process so that
it can inspect and modify the execution state (for
example, memory) of the traced process. Read-
ing and writing into the memory under the trac-
ing does not check the page permissions, including
MPK permissions.

■■ madvise and userfaultfd: These system calls allow
a process to clear and write arbitrary values to the
memory area associated with MPK. madvise is
designed to notice advice to the kernel, mostly for
future possible optimization so that it can free and
clear pages. userfaultfd handles page faults in the
userspace so that attackers can manipulate released
but protection-key-assigned pages with a custom
page fault handler. As madvise frees MPK-associated
pages without checking whether or not the pages are
associated with MPK, the freed pages trigger a page
fault in future accesses and can be overwritten by the
custom page fault handler.

■■ brk and sbrk: These system calls are used to allo-
cate and reallocate memory for the heap. If the
MPK-protected memory locates in a heap area, the
memory can be deallocated and reallocated by these
system calls. In the meantime, the associated protec-
tion keys are wiped but the content is preserved, so
the memory has a chance to be leaked.

Lastly, Linux provides the proc file system, which
presents information about processes as a pseudo-
file in the file system. In particular, the mem file in the
proc file system establishes a mapping with the virtual
memory of a running process; therefore, the attacker
can manipulate the virtual memory of the currently
running process via standard file I/O operations (for
example, open, read, and write). For instance, an
attacker reads and writes a crafted payload into the file.
Then, it will be reflected in the virtual memory of the
running process without checking permissions on the
corresponding page, so it bypasses the MPK permis-
sion check.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 11

Furthermore, MPK suffers from permission vio-
lation from fundamental hardware design, known as
meltdown-pk. Like other meltdown variants, speculative
execution allows for reading data speculatively located
in MPK domains. It is mitigated by address space isola-
tion and will be mitigated by hardware support in future
processors as well.

How Has MPK Been Used in Research?
Motivated by MPK’s fast, domain-wise, and per-thread
memory protection, numerous researchers have pro-
posed interesting works, including in-process memory
isolation, concurrent garbage collection, and data race
detection. This section revisits these works and how
they can be improved from key extension perspectives.

MPK’s domain-wise memory protection naturally
enables in-process memory isolation by separating an
application’s code and/or data into multiple domains
and assigning different keys to them. Table 1 shows
the seven recent works using MPK to protect mem-
ory possessing multifarious data. ERIM3 provides
a way to isolate sensitive data such as cryptography
keys and personal information that memory corrup-
tion bugs can leak. MonGuard5 uses MPK to protect
the in-process reference monitor and shared libraries
against memory corruption bugs that can leak code
and data pages.

NoJitSu6 applies MPK to isolate code and data pages
in the memory used for the JIT compiler. In particular,
it separates core JIT data (for example, bytecode and
emitted JIT code) into multiple domains and selectively
allows a legitimate thread to access or update them
based on control flow information. This design prevents
malicious threads from corrupting the JIT data, unlike

the traditional mprotect-based mechanism. To pre-
vent code page leakage, MonGuard and NoJitSu ben-
efit from execute-only memory so that they can execute
code pages without read permission.

SGXLock12 resolves the data access asymmetry
in Software Guard Extensions (SGX). A host appli-
cation cannot access the memory of an SGX enclave,
but the SGX enclave can read and write the memory
of the host application. SGXLock leverages MPK to
prevent an untrusted SGX enclave from malicious
leaking and manipulating data in the host application.
LIGHTENCLAVE11 utilizes MPK to create isolated
light enclaves inside an SGX enclave. Both SGXLock
and LIGHTENCLAVE integrate MPK with SGX to
improve its functionality.

FlexOS14 uses MPK to isolate the compartments
of Library OS. The compartments cannot break the
integrity of each other and compromise shared data
located in the shared memory region. PKRUSafe15
provides heap isolation for safe and unsafe regions in a
memory-safe programming language such as Rust. Rust
ensures memory safety at the language level, so it guar-
antees that a safe code does not have memory corrup-
tion. However, it supports unsafe code for efficiency
and backward compatibility, which might have memory
corruption bugs to corrupt the safe heap. Hence, PKRU-
Safe disentangles the unsafe heap from the safe heap to
prevent unsafe code from accessing the safe heap region.

In addition to the in-process memory isolation,
which is the intended usage of MPK, several research-
ers repurpose MPK’s thread-local permission control
to solve two different problems: garbage collection and
data race detection. These repurposed usages would
provide insights for future research.

Table 1. A summary of MPK-based in-process isolation solutions
with their protected domains and expected threats.

Name Protected domain Possible result of attack

ERIM3 Sensitive data (for example, cryptography keys) Sensitive data leakage

MonGuard5 In-process reference monitor and library Code and data pages leakage

NoJitSu6 JIT compiler’s memory Code injection, code reuse, and data-only
attacks

SGXLock12 Host application outside of SGX enclave Read and write the memory of the host
application

LIGHTENCLAVE11 Pieces of SGX enclave memory Read and write memory of other light enclaves

FlexOS14 Compartments of libOS LibOS’s compartments and shared data
compromising

PKRUSafe15 Heap used in Rust runtime Read and write heap data owned by the
safe region

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

12	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

■■ Concurrent garbage collector optimization: A concur-
rent garbage collector was proposed to improve the
performance of a garbage collector by concurrently
running the garbage collector with a mutator so that,
ideally, it does not harm the performance of the muta-
tor. Nevertheless, it still degrades the mutator’s per-
formance because the garbage collector uses memory
barriers to prevent the mutator from accessing objects
in the collection area to ensure consistency. Platinum7
proposes barrier elimination by employing MPK,
which is the major cause of incurring overhead in a
concurrent garbage collector. Platinum focuses on the
fact that different threads can hold distinct permis-
sions on the pages associated with MPK. Platinum
splits the heap area into two pieces for the mutator
and the garbage collector by assigning them differ-
ent protection keys. Therefore, the mutator does not
require a range check to ensure that the object is not
in the collection area. The collection area is protected
by MPK and maintains distinguishable permission
between the garbage collector and the mutator, so the
garbage collector thread can write into the collection
area, but the mutator cannot access the area as the
writing attempt by the mutator will cause a page fault;
it eliminates the necessity of the software barrier.

■■ Data race detection: A data race occurs when two or
more threads are running together and trying to access
a shared object simultaneously with a read-write
or write-write conflict. PUSh2 and Kard9 use MPK
to detect a data race by locating shared objects in
the MPK domain. Using MPK, they ensure that the
thread currently holding a lock for the shared object
can exclusively access the object. As a result, other
threads that are not holding the lock trigger a page
fault when they try to access the shared object. Thus,
the systems can figure out the existence of a data race
if a page fault ensues.

Key Extension Perspectives
Although most of the studies used only a limited number
of protection keys, they can provide better isolation if
there are more protection keys with zero cost. For exam-
ple, let us assume a situation in which we want to protect
the personal information (for example, home address
and social security number) of users using ERIM. In the
current situation (using a limited number of protection
keys), we have to store all users’ personal information in
one or a few domains so that an attacker can leak all of
the information if there is a security hole in a code region
accessing a type of personal information.

However, if we have more protection keys, we can
assign one protection key per type of personal infor-
mation. Thus, even though the code region accessing
users’ home addresses has some memory leak, it does

not leak social security numbers as they are stored and
protected in different domains. For similar reasons,
NoJitSu, LIGHTENCLAVE, and FlexOS can pro-
vide more fine-grained JIT memory, SGX enclave, and
libOS’s compartment isolation, respectively, with more
protection keys.

As PUSh requires the same number of protection
keys as the sum of the number of threads and the num-
ber of locks by its design, it suffers from the lack of pro-
tection keys. To resolve this, PUSh hashes thread IDs
and lock addresses and uses the hash value to map to
the MPK domain. This can lead to a hash collision,
which hides possible data races as multiple objects are
assigned in the same MPK domain. This false negative
can be resolved if it has more protection keys.

How Has MPK Been Used in Industry?
According to existing research works, it is obvious that
memory protection benefits from MPK. MPK has been
applied slowly in industry compared to in the research
field. In this section, we examine one case in which MPK
is applied in industry: Chromium.

MPK Adaption in Chromium
Chromium is an open-sourced web browser used by
billions of users around the world. Google Chrome,
Microsoft Edge, and many other browsers build on
the Chromium project. In 2021, Chromium developers
proposed using MPK to protect code pages containing
WebAssembly-generated code.

The protection technique is known as W ⊕ X
protection, meaning that the pages conveying executable
code cannot have both write and execute permissions
at once. Such pages are mostly used for JIT compilers
or interpreters as they would emit the compiled code
into the executable pages; thus, the pages should have
both write and execute permissions. However, if a page
has both write and execute permissions simultaneously,
the page can be an attack vector as attackers can inject
crafted payloads that they would like to execute for
malicious purposes.

Chromium originally adopted mprotect-based
W ⊕ X protection to prevent code injection, but the
method incurs a high system call overhead for permission
switching as it requires invoking an mprotect system
call to obtain and revoke write permission. By replac-
ing the mprotect-based protection with MPK-based
protection, Chromium can alleviate the performance
overhead. As an unexpected beneficial effect, it can
also protect the memory from race conditions. Figure 2
shows an example in which two threads are maintain-
ing the permission of the WebAssembly memory with
MPK to prevent unexpected writing attempts. In the
example, the permission of the WebAssembly memory

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 13

will be maintained per thread. So, while thread(a) is
obtaining write permission with WRPKRU and writing the
memory, the writing attempt from thread(b) is denied as
thread(b) is unlikely to hold a write permission.

Key Extension Perspectives
The current implementation to protect WebAs-
sembly memory in Chromium spends one protection
key. Thus, one protection key can change the permis-
sion of the whole WebAssembly memory. This may
be safe if a code region that allows a write permis-
sion on the WebAssembly pages is small enough to be
trusted. However, if the code region contains mem-
ory corruption bugs, not only the page where the
code region is writing but all the WebAssembly pages
are also threatened by the bugs as all the WebAssem-
bly pages are under the same domain bound by the
same protection key.

Discussion
Unlike many trials to employ MPK in various applica-
tions in research, industry has not yet actively applied
MPK. In this section, we discuss the possible reasons
that hinder using MPK in industry and in general.

Limited Number of Protection Keys
As mentioned earlier, MPK provides up to 16 protec-
tion keys that can create 16 protection domains. This
is not enough for some applications, so there are a few
works that try to extend the number of protection keys.

libmpk1 is the first work to extend the number of
protection keys in a software-based protection key
extension. It works similarly to cache so that it assigns
a hardware protection key to the recently used domain.
If all hardware protection keys are assigned and no
more keys are available, libmpk takes a key away from
the least recently used domain. The overhead from the
software-based extension is acceptable if the applica-
tion does not need to change the domain so often but
just switches the permission of pages. To switch from
a domain for the hardware protection key to another
domain, libmpk has to call an mprotect system call
to update the protection key index located on the page
table entry, so it hurts performance.

Hardware-based protection key extension and key
extension in aid of an extended page table (EPT) are
proposed to ease the overhead from the software-based
solution. EPK13 provides scalable MPK by integrat-
ing EPT with MPK. In detail, EPK extends protection
keys by using both the EPT index and the protection
key index as domain IDs. For instance, EPK allows two
domains to have the same protection key but not to be
located in the same EPT concurrently. EPK ensures
memory isolation between domains in the same EPT

by prohibiting duplicated protection keys in an EPT.
Thus, all 512 EPTs can create 7,680 (512 × 15) domains
in total, which excludes the first protection key that is
reserved for the global domain.

Mitigation for Threats
Although MPK provides a toolset to protect mem-
ory, the responsibility to prevent attacks threatening
the integrity of MPK-based memory protection is
totally upon the developers. A number of aforemen-
tioned threats can break the integrity of MPK-based
memory protection, so we need to resolve them to
use MPK safely.

As WRPKRU can modify the value of the PKRU regis-
ter, many works using MPK-based memory protection
designed a call gate, which is the only legal way to execute
the WRPKRU instruction in the binary. WRPKRU instruc-
tions outside the call gates are considered illegal; thus,
the binary is inspected to detect unauthorized instruc-
tions (for example, WRPKRU and XRSTOR). If such instruc-
tions are found, the binary is rewritten to eliminate the
instructions. Moreover, comprehensive sandboxing to
prevent disallowed system calls is necessary as such sys-
tem calls can modify the value of the PKRU register and
bypass MPK protection. Sandboxing filtering specific
system calls is widely used, and Jenny10 proved that their
ptrace and seccomp-based sandboxing incurs afford-
able overhead (0%–5%) for Nginx.

Supported CPUs
When MPK was just announced to the world, Intel
supported MPK only in its server CPUs, excluding

Thread(a) Thread(b) VM

WebAssembly-
Generated
Code (WX)

WRPKRU (W)

WRPKRU (N/A)

WRPKRU (W)

Write

Write

Write

WRPKRU (N/A)

(1)

(1)

(3)(2)

(2)

Figure 2. An example showing how MPK works to protect
WebAssembly-generated code in Chromium. With MPK,
the only code region between two WRPKRUs can access
the WebAssembly memory; other accesses will be denied.
In the figure, (1) the first WRPKRU sets write permission to
the matching protection key, and (2) the second WRPKRU
revokes all permissions of the corresponding protection key
to prevent (3) further writing attempts. W: writable.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

14	 IEEE Security & Privacy� May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

client CPUs; therefore, only server applications could
access MPK. However, we see more value in MPK
used for client applications. Most of the aforemen-
tioned applications using MPK ran on the client side
instead of on the server side; for example, Chromium
is a web browser that runs on the user’s desktop, tablet,
and mobile phone.

When we published our software abstraction for
MPK in 2019, we received an e-mail from a Chromium
developer saying that they want to apply MPK to Chro-
mium. We thought it a good idea in terms of perfor-
mance benefit and per-thread isolation but stated our
concerns that only server CPUs supported MPK back
then, so it was not useful to end users. However, Intel
started to support MPK in client CPUs at the end of
2020, and AMD CPUs have supported MPK (for exam-
ple, hardware and instructions) since Zen 3 as well.
Thus, MPK is likely to be applied to more client appli-
cations in the near future.

I ntel MPK provides efficient per-thread permission
control on a set of pages. Understanding its hard-

ware primitives and functional characteristics is neces-
sary to fully utilize it for memory protection. Although
it suffers from limited hardware resources and possible
security threats, we are starting to see studies in research
and application in industry using MPK for memory
protection, optimizing a concurrent garbage collector,
and detecting data races. We also revisited a few stud-
ies to overcome the hardware limitations and mitigate
the possible threats incurred by specific instructions
and system calls. We hope this article encourages more
applications to utilize MPK in the real world.

Acknowledgment
We thank the anonymous reviewers for their helpful
feedback. This research was supported, in part, by the
National Science Foundation Award CNS-1749711,
the Office of Naval Research under Grant N00014
-23-1-2095, and DARPA V-SPELLS Contract N66001
-21-C-4024 and gifts from Facebook, Mozilla, Intel,
VMware, and Google.

References
	 1.	 S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “Libmpk: Software

abstraction for intel memory protection keys (intel MPK),” in
Proc. USENIX Annu. Tech. Conf., 2019, pp. 241–254.

	 2.	 D. Zhou and Y. Tamir, “PUSh: Data race detection based on
hardware-supported prevention of unintended sharing,”
in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit.,
Oct. 2019, pp. 886–898, doi: 10.1145/3352460.3358317.

	 3.	 A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte,
M. Sammler, P. Druschel, and D. Garg, “ERIM: Secure,

efficient in-process isolation with protection keys (MPK),”
in Proc. 28th USENIX Secur. Symp., 2019, pp. 1221–1238.

	 4.	 C. Canella et al., “A systematic evaluation of transient
execution attacks and defenses,” in Proc. 28th USENIX
Secur. Symp., 2019, pp. 249–266.

	 5.	 X. Wang, S. Yeoh, P. Olivier, and B. Ravindran, “Secure
and efficient in-process monitor (and library) protec-
tion with intel MPK,” in Proc. 13th Eur. Workshop
Syst. Secur., Apr. 2020, pp. 7–12, doi: 10.1145/3380786.
3391398.

	 6.	 T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and M.
Franz, “NOJITSU: Locking down javascript engines,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–17.

	 7.	 M. Wu et al., “Platinum: A CPU-efficient concurrent gar-
bage collector for tail-reduction of interactive services,” in
Proc. USENIX Annu. Tech. Conf., 2020, pp. 159–172.

	 8.	 R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard,
“PKU pitfalls: Attacks on PKU-based memory isola-
tion systems,” in Proc. 29th USENIX Secur. Symp., 2020,
pp. 1409–1426.

	 9.	 A. Ahmad, S. Lee, P. Fonseca, and B. Lee, “Kard: Light-
weight data race detection with per-thread memory
protection,” in Proc. 26th ACM Int. Conf. Archit. Support
Program. Lang. Oper. Syst., Apr. 2021, pp. 647–660, doi:
10.1145/3445814.3446727.

	10.	 D. Schrammel, S. Weiser, R. Sadek, and S. Mangard,
“Jenny: Securing syscalls for PKU-based memory isola-
tion systems,” in Proc. 31st USENIX Secur. Symp., 2022,
pp. 935–952.

	11.	 J. Gu, B. Zhu, M. Li, W. Li, Y. Xia, and H. Chen, “A
hardware-software co-design for efficient intra-enclave
isolation,” in Proc. 31st USENIX Secur. Symp., 2022, pp.
3129–3145.

	12.	 Y. Chen et al., “SGXLock: Towards efficiently establish-
ing mutual distrust between host application and enclave
for SGX,” in Proc. 31st USENIX Secur. Symp., 2022,
pp. 4129–4146.

	13.	 J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable
and efficient memory protection keys,” in Proc. USENIX
Annu. Tech. Conf., 2022, pp. 609–624.

	14.	 H. Lefeuvre et al., “FlexOS: Towards flexible OS isola-
tion,” in Proc. 27th ACM Int. Conf. Archit. Support Pro-
gram. Lang. Oper. Syst., Feb. 2022, pp. 467–482, doi:
10.1145/3503222.3507759.

	15.	 P. Kirth et al., “PKRU-safe: Automatically locking down
the heap between safe and unsafe languages,” in Proc. 17th
Eur. Conf. Comput. Syst., Mar. 2022, pp. 132–148, doi:
10.1145/3492321.3519582.

Soyeon Park is a Ph.D. candidate in the School of Cyber-
security and Privacy and the School of Computer
Science, Georgia Institute of Technology, GA 30308
USA, advised by Prof. Taesoo Kim. Her research
interests span software security, with a focus on

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

automatic vulnerability detection in real-world appli-
cations, hardware-assisted memory hardening, and
binary analysis with machine learning. Park received
a bachelor’s degree in computer science and engineer-
ing from the Pohang University of Science and Tech-
nology. Her research has been supported in part by a
Georgia Institute of Technology Institute for Infor-
mation Security and Privacy cybersecurity fellowship.
Her papers have been published in several conferences,
including ACSAC, ACM CCS, IEEE S&P, and USE-
NIX ATC. Contact her at spark720@gatech.edu.

Sangho Lee is a senior researcher at Microsoft Research
Redmond, Redmond, WA 98052 USA. Prior to join-
ing Microsoft Research, he was a postdoctoral fel-
low at the Georgia Institute of Technology, and
before that, he was a postdoctoral research associate
at POSTECH. His research interests include all
aspects of computer security, especially in systems,
hardware, and web security. Lee received a Ph.D. in
computer science and engineering from the Pohang
University of Science and Technology (POSTECH),
South Korea. He served as a program committee

member for several conferences, including ACSAC
and USENIX Security. He received the Distin-
guished Paper Award from USENIX Security 2018.
Contact him at sangho.lee@microsoft.com.

Taesoo Kim is a professor in the School of Cybersecu-
rity and Privacy and the School of Computer Science,
Georgia Institute of Technology, GA 30308 USA.
He also serves as a director of the Georgia Institute
of Technology Systems Software and Security Cen-
ter. He received a Ph.D. in electrical engineering and
computer science from the Massachusetts Institute
of Technology. Starting from his sabbatical year, he
works as a vice president at Samsung Research, Seoul
06765, South Korea, leading to the development of a
Rust-based operating system for a secure element. He
has published more than 100 papers in top systems
and security conferences. He is a recipient of several
awards, including the National Science Foundation
CAREER (2018) and Internet Defense Prize (2015),
and several best paper awards, including USENIX
Security’18 and EuroSys’17. Contact him at taesoo@
gatech.edu.

Over the Rainbow: 21st Century
Security & Privacy Podcast
Tune in with security leaders of academia,
industry, and government.

www.computer.org/over-the-rainbow-podcast
Subscribe Today

Bob Blakley Bob Blakley

Lorrie CranorLorrie Cranor

Digital Object Identifier 10.1109/MSEC.2023.3271180Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 17,2023 at 13:43:00 UTC from IEEE Xplore. Restrictions apply.

mailto:spark720@gatech.edu
mailto:sangho.lee@microsoft.com
mailto:taesoo@gatech.edu
mailto:taesoo@gatech.edu

	08_21msec03-park-3250601.pdf

