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Memory Protection Keys (MPK) offers per-thread memory protection with an affordable overhead, 
prompting many new studies. With protection key extension, MPK provides more fine-grained protection 
and better functionality. MPK can be an attractive option for memory protection in industry. 

M emory safety bugs are commonly introduced 
by malevolent reads or writes to an unauthor-

ized memory. For example, attackers can read a raw 
pointer to break address space layout randomization 
or overwrite a return address on the stack to subvert 
the control flow of a victim program. These threats 
lead security researchers to develop various protec-
tion schemes to ensure the integrity of control-flow-
related data such as return addresses or code pointers 
on a program’s memory. The most promising tech-
niques widely deployed today are control-flow integ-
rity schemes, such as Control Flow Guard (CFG) by 
Microsoft and Control Flow Integrity (CFI) in the 
Google Android kernel, but they come with an inevi-
table performance overhead.

Today, researchers are pondering a memory pro-
tection technique beyond control-flow-related data.  
In April 2014, the OpenSSL cryptography library 
received reports that the library has a memory leak bug, 

which can leak server data such as unencrypted user 
requests, authentication secrets, and private keys from 
millions of web servers. A lot of commercial websites 
and their servers are affected by this incident. This inci-
dent shows that memory safety bugs that are not related 
to control-flow-related data also can be critical. In web 
browsers like Firefox, Write-xor-Execute (W ⊕ X) pro-
tection is enforced to protect just-in-time ( JIT) gener-
ated code pages, which can be a source of a data-only 
attack. However, existing memory protection tech-
niques are largely software based and incur unbearable 
overhead to protect larger memory space because they 
require expensive operations like changing the permis-
sion of memory space.

Recently, hardware-based memory protection tech-
niques have been proposed to fundamentally overcome 
such performance issues. In 2016, Intel introduced 
Memory Protection Keys (MPK) for the userspace, 
called Intel MPK. It enables ridiculously fast permis-
sion change (that is, modifying a register) regardless 
of the size of the target memory space, which makes it 
practical to use in real-world applications. Combined 
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with the existing page-table-based protection, MPK 
can even implement execute-only memory spaces on a 
per-thread basis.

One caveat, however, is that MPK provides only  
16 protection keys, meaning that one application can 
have only 16 different groups of memory spaces for 
protection. To overcome this problem, we proposed 
libmpk1 as a general solution to augment the function-
ality of MPK such that an application can create an 
arbitrary number of protection domains, for example, 
protecting the private keys of an arbitrary number of 
virtual hosts in a web server or protecting a JIT region 
per each domain in a web browser. Since our initial 
exploration in this space in 2019, many applications 
have been proposed to adopt MPK for conventional 
uses of memory protections, but rather surprisingly, we 
also see various novel uses of MPK in unexpected areas 
(for example, detecting race condition).2,9

In this article, we look at the current stage of MPK 
research as well as industry adoptions from the perspec-
tive of MPK’s key extension. Also, we revisit some chal-
lenges in adopting MPK in real-world applications and 
share our views to improve the usability and security of 
Intel MPK.

MPK Architecture
MPK is a new hardware feature available from Intel 
Skylake server CPUs. It is similar in concept to the 
mprotect system call in changing the permissions 
of memory space. However, 1) it allows fast permis-
sion changes without context switching to kernel 
space, and 2) it changes the permission of a memory 
region at once. Underneath, MPK keeps track of the 
read and write permissions of 16 memory regions in a 
user-accessible register, called a protection key rights reg-
ister (PKRU), and provides two additional instructions 
to read (RDPKRU) and write (WRPKRU) the permission 
of each memory region. Since two bits are used to indi-
cate read and write permission, the 32-bit PKRU register 
can represent only 16 different memory regions.

With MPK enabled, access to a memory page is 
first checked with the permission in a PKRU register—
the CPU looks up its permission by using a key, an 
index of the PKRU register, noted in the page’s page 
table entry. It enables MPK to support execute-only 
memory. In conventional x86, execute and write  
permissions imply read permission. Hence, when we 
set the permission of a page to an executable with 
mprotect (addr, len, and PROT_EXEC), the page is  
also readable intrinsically. However, with MPK, if 
both read and write permissions are not set in the 
PKRU register, but the execute permission is set in 
the page table, then we can effectively implement an 
execute-only memory (see Figure 1).

It is worth noting that PKRU is a register per core, 
meaning that each thread running on a different core 
might have different permissions for the same memory 
region, unlike mprotect, which changes the permis-
sion of each page globally (that is, for all of the cores). 
This is the main source of performance overhead—
requiring a translation lookaside buffer flush and inter-
processor interrupt for all cores—in mprotect-based 
solutions, which is prohibitively nonscalable in a mul-
ticore machine. Our past experiment shows that the 
WRPKRU instruction takes 23.3 cycles to update the 
permission of pages associated with a protection key. 
However, calling an mprotect system call takes 1,094 
cycles, which is the traditional way to change the per-
mission of pages. 

Moreover, a protection key can be assigned to mul-
tiple pages that do not need to be contiguous; however, 
in doing so, an mprotect system call has to update mul-
tiple page table entries. The only way to change the per-
mission of sparse pages with an mprotect system call 
is to call it multiple times, which incurs high overhead. 
In addition, permission updated by an mprotect sys-
tem call is synchronized among threads; thus, it cannot 
prevent race condition attacks. However, MPK-based 
memory protection does not synchronize the updated 
permission with other threads with the result that it 
does not suffer from race conditions caused by permis-
sion synchronization.

Challenges
We visited the hardware primitives and attributes of 
MPK to protect memory. As we can see, MPK can be a 
helpful method to protect diverse types of data in mem-
ory for real-world applications. However, to apply MPK 
to real-world applications, a few critical usability and 
security issues should be overcome.
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Figure 1. An overview of the MPK architecture. MPK checks the permission of 
a page per thread according to (1) the PKRU register. The intersection between 
(2) MPK permissions and (3) page permissions described on the page table 
determines (4) the effective permissions. Perm.: permission; N/A: not applicable;  
pkey: protection key; r/w: readable and writable; x/o: executable only; r/w/x: 
readable, writable and executable.
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Limited Hardware Resources
As mentioned previously, MPK supports up to 16 
protection keys that are bound to the hardware limita-
tion. Since one protection key can be assigned to mul-
tiple and sparse pages, 16 protection keys can manage 
the permission of more than 16 pages. However, the 
pages associated with a protection key can only have 
the same permission for the key, so we call the pages 
a domain.

Sixteen protection keys are enough for some applica-
tions as they can build 16 domains, but others may need 
additional protection keys for more fine-grained protec-
tion or just to function. Developers always have a chance 
to face the lack of protection keys without the expectation 
as the protection keys are a shared resource for all threads 
running first-party functions or third-party libraries 
under the same virtual address space. If these functions 
and libraries are exclusively and simultaneously using 
protection keys to prevent others from accessing their 
code and data, they might need more than 16 protection 
keys and exhaust the number of protection keys. Unfor-
tunately, enlarging the size of the PKRU register does not 
resolve this issue magically as it requires additional bits to 
mark a protection key index in the page table entry.

Threats Against MPK-Based  
Memory Protection
There are a few known threats breaking the integrity of 
an MPK-based memory protection system:

1.	 executing specific instructions or system calls to 
change the value of the PKRU register

2.	 bypassing the protection keys when accessing the 
corresponding pages with system calls that ignore 
MPK permissions

3.	 exploiting unintentionally exposed memory inter-
faces that MPK does not affect.

First, an unauthorized WRPKRU instruction breaks  
the integrity of MPK-based memory protection as  
WRPKRU updates the value of the PKRU register in the 
userspace. In addition, the XRSTOR instruction can 
modify the PKRU register by setting the correspond-
ing bit in the EAX register as XRSTOR is used to restore 
the previous execution state (for example, register val-
ues) during a context switch. A sigreturn system call 
works similarly to XRSTOR as it restores the previous 
execution state when returning from the kernel after 
handling a signal. Therefore, an attacker can alter the 
value of the PKRU register by locating the manipulated 
state on the stack and making a sigreturn system call. 
As attackers can modify the value of the PKRU register 
with malicious intent, MPK-based memory protection 
should consider prohibiting them.

Second, previous studies8,10 figured out that a list of 
system calls is known to ignore MPK permissions when 
they work and access memory.

■■ process_vm_readv, process_vm_writev, and  
ptrace: These system calls allow a process to read 
and write the memory area protected by MPK. 
process_vm_readv and process_vm_writev 
system calls were originally designed to provide 
interfaces to transfer data between the calling pro-
cess and the other process. They do respect the tra-
ditional page permission of the calling process but 
ignore MPK permissions so that they bypass the 
MPK permission check. The ptrace system call 
is used to trace and control another process so that 
it can inspect and modify the execution state (for 
example, memory) of the traced process. Read-
ing and writing into the memory under the trac-
ing does not check the page permissions, including 
MPK permissions.

■■ madvise and userfaultfd: These system calls allow 
a process to clear and write arbitrary values to the 
memory area associated with MPK. madvise is 
designed to notice advice to the kernel, mostly for 
future possible optimization so that it can free and 
clear pages. userfaultfd handles page faults in the 
userspace so that attackers can manipulate released 
but protection-key-assigned pages with a custom 
page fault handler. As madvise frees MPK-associated 
pages without checking whether or not the pages are 
associated with MPK, the freed pages trigger a page 
fault in future accesses and can be overwritten by the 
custom page fault handler.

■■ brk and sbrk: These system calls are used to allo-
cate and reallocate memory for the heap. If the 
MPK-protected memory locates in a heap area, the 
memory can be deallocated and reallocated by these 
system calls. In the meantime, the associated protec-
tion keys are wiped but the content is preserved, so 
the memory has a chance to be leaked.

Lastly, Linux provides the proc file system, which 
presents information about processes as a pseudo-
file in the file system. In particular, the mem file in the 
proc file system establishes a mapping with the virtual 
memory of a running process; therefore, the attacker 
can manipulate the virtual memory of the currently 
running process via standard file I/O operations (for 
example, open, read, and write). For instance, an 
attacker reads and writes a crafted payload into the file. 
Then, it will be reflected in the virtual memory of the 
running process without checking permissions on the 
corresponding page, so it bypasses the MPK permis-
sion check.
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Furthermore, MPK suffers from permission vio-
lation from fundamental hardware design, known as 
meltdown-pk. Like other meltdown variants, speculative 
execution allows for reading data speculatively located 
in MPK domains. It is mitigated by address space isola-
tion and will be mitigated by hardware support in future 
processors as well.

How Has MPK Been Used in Research?
Motivated by MPK’s fast, domain-wise, and per-thread 
memory protection, numerous researchers have pro-
posed interesting works, including in-process memory 
isolation, concurrent garbage collection, and data race 
detection. This section revisits these works and how 
they can be improved from key extension perspectives.

MPK’s domain-wise memory protection naturally 
enables in-process memory isolation by separating an 
application’s code and/or data into multiple domains 
and assigning different keys to them. Table 1 shows 
the seven recent works using MPK to protect mem-
ory possessing multifarious data. ERIM3 provides 
a way to isolate sensitive data such as cryptography 
keys and personal information that memory corrup-
tion bugs can leak. MonGuard5 uses MPK to protect 
the in-process reference monitor and shared libraries 
against memory corruption bugs that can leak code 
and data pages.

NoJitSu6 applies MPK to isolate code and data pages 
in the memory used for the JIT compiler. In particular, 
it separates core JIT data (for example, bytecode and 
emitted JIT code) into multiple domains and selectively 
allows a legitimate thread to access or update them 
based on control flow information. This design prevents 
malicious threads from corrupting the JIT data, unlike 

the traditional mprotect-based mechanism. To pre-
vent code page leakage, MonGuard and NoJitSu ben-
efit from execute-only memory so that they can execute 
code pages without read permission.

SGXLock12 resolves the data access asymmetry 
in Software Guard Extensions (SGX). A host appli-
cation cannot access the memory of an SGX enclave, 
but the SGX enclave can read and write the memory 
of the host application. SGXLock leverages MPK to 
prevent an untrusted SGX enclave from malicious 
leaking and manipulating data in the host application. 
LIGHTENCLAVE11 utilizes MPK to create isolated 
light enclaves inside an SGX enclave. Both SGXLock 
and LIGHTENCLAVE integrate MPK with SGX to 
improve its functionality.

FlexOS14 uses MPK to isolate the compartments 
of Library OS. The compartments cannot break the 
integrity of each other and compromise shared data 
located in the shared memory region. PKRUSafe15 
provides heap isolation for safe and unsafe regions in a 
memory-safe programming language such as Rust. Rust 
ensures memory safety at the language level, so it guar-
antees that a safe code does not have memory corrup-
tion. However, it supports unsafe code for efficiency 
and backward compatibility, which might have memory 
corruption bugs to corrupt the safe heap. Hence, PKRU-
Safe disentangles the unsafe heap from the safe heap to 
prevent unsafe code from accessing the safe heap region.

In addition to the in-process memory isolation, 
which is the intended usage of MPK, several research-
ers repurpose MPK’s thread-local permission control 
to solve two different problems: garbage collection and 
data race detection. These repurposed usages would 
provide insights for future research.

Table 1. A summary of MPK-based in-process isolation solutions  
with their protected domains and expected threats.

Name Protected domain Possible result of attack

ERIM3 Sensitive data (for example, cryptography keys) Sensitive data leakage

MonGuard5 In-process reference monitor and library Code and data pages leakage

NoJitSu6 JIT compiler’s memory Code injection, code reuse, and data-only 
attacks

SGXLock12 Host application outside of SGX enclave Read and write the memory of the host 
application

LIGHTENCLAVE11 Pieces of SGX enclave memory Read and write memory of other light enclaves

FlexOS14 Compartments of libOS LibOS’s compartments and shared data 
compromising

PKRUSafe15 Heap used in Rust runtime Read and write heap data owned by the  
safe region
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■■ Concurrent garbage collector optimization: A concur-
rent garbage collector was proposed to improve the 
performance of a garbage collector by concurrently 
running the garbage collector with a mutator so that, 
ideally, it does not harm the performance of the muta-
tor. Nevertheless, it still degrades the mutator’s per-
formance because the garbage collector uses memory 
barriers to prevent the mutator from accessing objects 
in the collection area to ensure consistency. Platinum7 
proposes barrier elimination by employing MPK, 
which is the major cause of incurring overhead in a 
concurrent garbage collector. Platinum focuses on the 
fact that different threads can hold distinct permis-
sions on the pages associated with MPK. Platinum 
splits the heap area into two pieces for the mutator 
and the garbage collector by assigning them differ-
ent protection keys. Therefore, the mutator does not 
require a range check to ensure that the object is not 
in the collection area. The collection area is protected 
by MPK and maintains distinguishable permission 
between the garbage collector and the mutator, so the 
garbage collector thread can write into the collection 
area, but the mutator cannot access the area as the 
writing attempt by the mutator will cause a page fault; 
it eliminates the necessity of the software barrier.

■■ Data race detection: A data race occurs when two or 
more threads are running together and trying to access 
a shared object simultaneously with a read-write 
or write-write conflict. PUSh2 and Kard9 use MPK 
to detect a data race by locating shared objects in 
the MPK domain. Using MPK, they ensure that the 
thread currently holding a lock for the shared object 
can exclusively access the object. As a result, other 
threads that are not holding the lock trigger a page 
fault when they try to access the shared object. Thus, 
the systems can figure out the existence of a data race 
if a page fault ensues.

Key Extension Perspectives
Although most of the studies used only a limited number 
of protection keys, they can provide better isolation if 
there are more protection keys with zero cost. For exam-
ple, let us assume a situation in which we want to protect 
the personal information (for example, home address 
and social security number) of users using ERIM. In the 
current situation (using a limited number of protection 
keys), we have to store all users’ personal information in 
one or a few domains so that an attacker can leak all of 
the information if there is a security hole in a code region 
accessing a type of personal information.

However, if we have more protection keys, we can 
assign one protection key per type of personal infor-
mation. Thus, even though the code region accessing 
users’ home addresses has some memory leak, it does 

not leak social security numbers as they are stored and 
protected in different domains. For similar reasons, 
NoJitSu, LIGHTENCLAVE, and FlexOS can pro-
vide more fine-grained JIT memory, SGX enclave, and 
libOS’s compartment isolation, respectively, with more 
protection keys.

As PUSh requires the same number of protection 
keys as the sum of the number of threads and the num-
ber of locks by its design, it suffers from the lack of pro-
tection keys. To resolve this, PUSh hashes thread IDs 
and lock addresses and uses the hash value to map to 
the MPK domain. This can lead to a hash collision, 
which hides possible data races as multiple objects are 
assigned in the same MPK domain. This false negative 
can be resolved if it has more protection keys.

How Has MPK Been Used in Industry?
According to existing research works, it is obvious that 
memory protection benefits from MPK. MPK has been 
applied slowly in industry compared to in the research 
field. In this section, we examine one case in which MPK 
is applied in industry: Chromium.

MPK Adaption in Chromium
Chromium is an open-sourced web browser used by 
billions of users around the world. Google Chrome, 
Microsoft Edge, and many other browsers build on 
the Chromium project. In 2021, Chromium developers 
proposed using MPK to protect code pages containing 
WebAssembly-generated code.

The protection technique is known as W ⊕ X  
protection, meaning that the pages conveying executable 
code cannot have both write and execute permissions 
at once. Such pages are mostly used for JIT compilers 
or interpreters as they would emit the compiled code 
into the executable pages; thus, the pages should have 
both write and execute permissions. However, if a page 
has both write and execute permissions simultaneously, 
the page can be an attack vector as attackers can inject 
crafted payloads that they would like to execute for 
malicious purposes.

Chromium originally adopted mprotect-based  
W ⊕ X protection to prevent code injection, but the 
method incurs a high system call overhead for permission 
switching as it requires invoking an mprotect system 
call to obtain and revoke write permission. By replac-
ing the mprotect-based protection with MPK-based 
protection, Chromium can alleviate the performance 
overhead. As an unexpected beneficial effect, it can 
also protect the memory from race conditions. Figure 2 
shows an example in which two threads are maintain-
ing the permission of the WebAssembly memory with  
MPK to prevent unexpected writing attempts. In the 
example, the permission of the WebAssembly memory 
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will be maintained per thread. So, while thread(a) is 
obtaining write permission with WRPKRU and writing the 
memory, the writing attempt from thread(b) is denied as 
thread(b) is unlikely to hold a write permission.

Key Extension Perspectives
The current implementation to protect WebAs-
sembly memory in Chromium spends one protection 
key. Thus, one protection key can change the permis-
sion of the whole WebAssembly memory. This may 
be safe if a code region that allows a write permis-
sion on the WebAssembly pages is small enough to be 
trusted. However, if the code region contains mem-
ory corruption bugs, not only the page where the 
code region is writing but all the WebAssembly pages 
are also threatened by the bugs as all the WebAssem-
bly pages are under the same domain bound by the 
same protection key.

Discussion
Unlike many trials to employ MPK in various applica-
tions in research, industry has not yet actively applied 
MPK. In this section, we discuss the possible reasons 
that hinder using MPK in industry and in general.

Limited Number of Protection Keys
As mentioned earlier, MPK provides up to 16 protec-
tion keys that can create 16 protection domains. This 
is not enough for some applications, so there are a few 
works that try to extend the number of protection keys.

libmpk1 is the first work to extend the number of 
protection keys in a software-based protection key 
extension. It works similarly to cache so that it assigns 
a hardware protection key to the recently used domain. 
If all hardware protection keys are assigned and no 
more keys are available, libmpk takes a key away from 
the least recently used domain. The overhead from the 
software-based extension is acceptable if the applica-
tion does not need to change the domain so often but 
just switches the permission of pages. To switch from 
a domain for the hardware protection key to another 
domain, libmpk has to call an mprotect system call 
to update the protection key index located on the page 
table entry, so it hurts performance.

Hardware-based protection key extension and key 
extension in aid of an extended page table (EPT) are 
proposed to ease the overhead from the software-based 
solution. EPK13 provides scalable MPK by integrat-
ing EPT with MPK. In detail, EPK extends protection 
keys by using both the EPT index and the protection 
key index as domain IDs. For instance, EPK allows two 
domains to have the same protection key but not to be 
located in the same EPT concurrently. EPK ensures 
memory isolation between domains in the same EPT 

by prohibiting duplicated protection keys in an EPT. 
Thus, all 512 EPTs can create 7,680 (512 × 15) domains 
in total, which excludes the first protection key that is 
reserved for the global domain.

Mitigation for Threats
Although MPK provides a toolset to protect mem-
ory, the responsibility to prevent attacks threatening 
the integrity of MPK-based memory protection is 
totally upon the developers. A number of aforemen-
tioned threats can break the integrity of MPK-based 
memory protection, so we need to resolve them to 
use MPK safely.

As WRPKRU can modify the value of the PKRU regis-
ter, many works using MPK-based memory protection 
designed a call gate, which is the only legal way to execute 
the WRPKRU instruction in the binary. WRPKRU instruc-
tions outside the call gates are considered illegal; thus, 
the binary is inspected to detect unauthorized instruc-
tions (for example, WRPKRU and XRSTOR). If such instruc-
tions are found, the binary is rewritten to eliminate the 
instructions. Moreover, comprehensive sandboxing to 
prevent disallowed system calls is necessary as such sys-
tem calls can modify the value of the PKRU register and 
bypass MPK protection. Sandboxing filtering specific 
system calls is widely used, and Jenny10 proved that their 
ptrace and seccomp-based sandboxing incurs afford-
able overhead (0%–5%) for Nginx.

Supported CPUs
When MPK was just announced to the world, Intel 
supported MPK only in its server CPUs, excluding 

Thread(a) Thread(b) VM

WebAssembly-
Generated
Code (WX)

WRPKRU (W)

WRPKRU (N/A)

WRPKRU (W)

Write

Write

Write

WRPKRU (N/A)

(1)

(1)

(3)(2)

(2)

Figure 2. An example showing how MPK works to protect 
WebAssembly-generated code in Chromium. With MPK, 
the only code region between two WRPKRUs can access 
the WebAssembly memory; other accesses will be denied. 
In the figure, (1) the first WRPKRU sets write permission to 
the matching protection key, and (2) the second WRPKRU 
revokes all permissions of the corresponding protection key 
to prevent (3) further writing attempts. W: writable.
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client CPUs; therefore, only server applications could 
access MPK. However, we see more value in MPK 
used for client applications. Most of the aforemen-
tioned applications using MPK ran on the client side 
instead of on the server side; for example, Chromium 
is a web browser that runs on the user’s desktop, tablet, 
and mobile phone.

When we published our software abstraction for 
MPK in 2019, we received an e-mail from a Chromium 
developer saying that they want to apply MPK to Chro-
mium. We thought it a good idea in terms of perfor-
mance benefit and per-thread isolation but stated our 
concerns that only server CPUs supported MPK back 
then, so it was not useful to end users. However, Intel 
started to support MPK in client CPUs at the end of 
2020, and AMD CPUs have supported MPK (for exam-
ple, hardware and instructions) since Zen 3 as well. 
Thus, MPK is likely to be applied to more client appli-
cations in the near future.

I ntel MPK provides efficient per-thread permission 
control on a set of pages. Understanding its hard-

ware primitives and functional characteristics is neces-
sary to fully utilize it for memory protection. Although 
it suffers from limited hardware resources and possible 
security threats, we are starting to see studies in research 
and application in industry using MPK for memory 
protection, optimizing a concurrent garbage collector, 
and detecting data races. We also revisited a few stud-
ies to overcome the hardware limitations and mitigate 
the possible threats incurred by specific instructions 
and system calls. We hope this article encourages more 
applications to utilize MPK in the real world. 
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