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ABSTRACT The recovery of contextual meanings on a machine code is required by a wide range of binary
analysis applications, such as bug discovery, malware analysis, and code clone detection. To accomplish
this, advancements on binary code analysis borrow the techniques from natural language processing to
automatically infer the underlying semantics of a binary, rather than replying on manual analysis. One of
crucial pipelines in this process is instruction normalization, which helps to reduce the number of tokens
and to avoid an out-of-vocabulary (OOV) problem. However, existing approaches often substitutes the
operand(s) of an instruction with a common token (e.g., callee target → FOO), inevitably resulting in the
loss of important information. In this paper, we introduce well-balanced instruction normalization (WIN),
a novel approach that retains rich code information while minimizing the downsides of code normalization.
With large swaths of binary code, our finding shows that the instruction distribution follows Zipf’s Law
like a natural language, a function conveys contextually meaningful information, and the same instruction at
different positions may require diverse code representations. To show the effectiveness of WIN, we present
DeepSemantic that harnesses the BERT architecture with two training phases: pre-training for generic
assembly code representation, and fine-tuning for building a model tailored to a specialized task. We define
a downstream task of binary code similarity detection, which requires underlying code semantics. Our
experimental results show that our binary similarity model withWIN outperforms two state-of-the-art binary
similarity tools, DeepBinDiff and SAFE, with an average improvement of 49.8% and 15.8%, respectively.

INDEX TERMS Binary code, code representation, BERT, well-balanced instruction normalization, binary
code similarity detection.

I. INTRODUCTION
In today’s computing environment, encountering binary-only
software is common including commodity or proprietary
programs, system software like firmware and device drivers.
Accordingly, binary analysis is essential in implementing a
wide range of popular use cases [11], [13], [21], [65]: e.g.,
detecting code clone or software plagiarism to protect against
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intellectual property infringement [17], [40], [67], discover-
ing vulnerabilities in distributed software [7], [8], [14], [15],
[19], [38], [42], [51], [52], [57], [58], detecting [5], [6], [35]
and classifying [28], [34] malware, and analyzing program
repairs or patches [20], [29], [64], and establishing toolchain
provenance [48], [56] for digital forensics purposes.

However, analyzing a binary code is inherently more chal-
lenging than analyzing source code, as it requires inferring
contextual meanings from machine-interpretable code alone.
Unlike human-readable source code, binary code is a final
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FIGURE 1. Histogram for the number of matching block pairs (left label)
and the ratio of function mismatch (right label) by the number of
instructions per basic block with DeepBinDiff [67] from our evaluation
dataset (section VI). The function mismatch represents basic block pairs
with a sequence of identical instructions that do not belong to the same
function. More than eight out of 10 from the whole matching basic blocks
incorporate 5 instructions or less.

product of a complex compilation process that involves mas-
sive transformations (e.g., optimizations), including control
flow graph alteration, function inlining, instruction replace-
ment, and dead code elimination. As a result, much of high-
level semantic information useful for analysis is disappeared.
Besides, binary code generation is impacted by other major
factors such as an architecture, compiler, compiler version,
compiler option, and code obfuscation.

Recently, machine learning-based techniques [7], [11],
[13], [17], [21], [36], [38], [43], [65], [67], [68], [69], [74]
have emerged as a promising solution for addressing the
challenge of recognizing code semantics in binaries. While
traditional approaches, such as static analysis (e.g., graph
isomorphism on call graph [14], [19]) or dynamic analysis
(e.g., taint analysis [18], [51]), have demonstrated high accu-
racy in specific tasks, machine learning-based approaches
offer significant advantages in rapidly changing computing
environments. With a sufficient amount of training data, a
single model can be leveraged for multiple platforms and
architectures, and be continuously improved with an increas-
ing number of new inputs. Indeed, recent state-of-the-art
tools [17], [43], [67], [69], [74] have successfully generated
code embeddings (vectors) for semantic clone detection, even
across different architectures [69], [74], optimizations [17],
[43], [67], and obfuscation techniques [17].

However, we raise a question about the practicality and
effectiveness of code embedding to infer code semantics.
Figure 1 illustrates the matching basic block pairs and func-
tion mismatch cases from our DeepBinDiff [67] evaluation
dataset (Section VI). Our experiment reveals that 83% of
matching block pairs contain five instructions or less, indi-
cating that binary code embeddingsmay not convey sufficient
meaning for the inference of a large block. Besides, we exam-
ine function mismatch cases because matching block pairs
that consist of identical instructions can belong to a different
function body. Figure 1 (red dots) shows that by and large, the
ratio of function mismatch cases increases as a block size is
smaller: This implies that using basic blocks as a granularity
for a binary similarity task may be insufficient to deduce code
semantics, especially for block pairs containing only nop,
jmp, or call instructions.
A proper binary code representation is of significance

because it is directly fed into learning a model as raw data.

To further investigate, we analyze large swaths of binary code
including approximately 108 million machine instructions or
1.7 million binary functions. First, our findings indicate that
the instruction distribution follows Zipf’s law [73], analo-
gous to a natural language. Second, a function often conveys
contextually meaningful information. Third, word2vec [44]
lacks diverse representations for the identical instruction in
different positions.

We introduce DeepSemantic, a system that leverages the
BERT (Bi-directional Encoder Representations from Trans-
formers) architecture [16] to infer code semantics. Based
on our insights, DeepSemantic has been carefully designed
to achieve our goals in four ways: i) function-level granu-
larity; e.g., the unit of an embedding is a binary function,
ii) function embedding as a whole; e.g., each instruction
may have multiple representations depending on the location
of a function, iii) well-balanced instruction normalization
(WIN) that strikes a balance between too-coarse-grained and
too-fine-grained normalization, and iv) a two-phase training
model to support a wide range of other downstream tasks
based on a pre-trained model. DeepSemantic mainly consists
of two separate training stages. The first stage creates a one-
time generic code representation (i.e., pre-trained model or
DS-Pre) that is applicable to any downstream task requiring
code semantics inference at a pre-training stage. The sec-
ond stage generates a special-purpose code representation
(i.e., fine-tuned model or DS-Task) for a given specific task
based on the pre-trained model for fine-tuning. The first
phase employs a general dataset with unsupervised learning,
while the second phase uses a task-oriented dataset with
supervised learning. The two-stage model in DeepSemantic
allows for re-purposing a pre-trained model to quickly apply
other downstream tasks using less expensive computational
resources.

To show the effectiveness of DeepSemantic, we have
applied it to a binary code similarity task (DS-BinSim).
The empirical results show that DS-BinSim by far outper-
forms two state-of-the-art binary similarity comparison tools,
obtaining a 49.8% higher F1 than DeepBinDiff [67] (up to
69%) and 15.8% than SAFE [43] (up to 28%) on average.

In summary, we make the following contributions:

• We thoroughly investigate binary code on a large scale
to obtain fruitful insights for the inference of binary code
semantics.

• We devise well-balanced instruction normalization
(WIN) that can preserve as much contextual information
as possible while maintaining efficient computation.

• We implement a simplified BERT architecture atop our
observations and insights on binaries, which can gen-
erate semantic-aware code representations. Note that
we will release our pre-trained model1 to foster fur-
ther research on binary code representation with deep
learning.

1https://github.com/SecAI-Lab/win/
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• We experimentally demonstrate both the effectiveness
and efficiency of DeepSemantic with a binary simi-
larity (DS-BinSim) task. In particular, DS-BinSim sur-
passes the two state-of-the-art binary similarity tools
(i.e., DeepBinDiff [67] and SAFE [43]).

II. BACKGROUND
This section describes how we integrate a handful of
advanced concepts from natural language processing (NLP)
literature to develop DeepSemantic.

A. BINARY CODE REPRESENTATION
Binary code is a compressed representation of machine
instructions, expressed in 0s and 1s, after a complex com-
pilation process. As the compilation process eliminates most
high-level concepts such as variable names, structures, types,
class hierarchies, deducing contextual meanings becomes
extremely challenging.

B. RECURRENT NEURAL NETWORK
A recurrent neural network (RNN) is a specialized type of
neural network designed to process sequential data (e.g.,
text, audio, video and even code). While RNNs have demon-
strated great performance [33] on a sequence prediction task
with in-network memory, they struggle with processing long
sequences because of the vanishing gradient problem [62]. To
address this issue, gatingmodels, such as LSTM (Long Short-
Term Memory) [27] and GRU (Gated Recurrent Unit) [10],
have been proposed by devising a special cell for long-range
error propagation. However, they still suffer from i) limited
capability of tracking long-term dependencies (i.e., a single
vector from an encoder that implies all previous words may
lose partial information), and ii) disallowing parallelizable
computation due to sequentiality. These shortcomings neces-
sitate a better architecture for procssing binary functions,
which often consist of multiple instructions.

C. ATTENTION AND TRANSFORMER
The Attention [3] mechanism in NLP considers all input
words (at each time step) when predicting an output word,
with a focus on a specific word associated with the output
word for prediction. This approach captures the contextual
relationship between words in a sentence without the gradient
vanishing problem, which is widely adopted in a machine
translation domain. Transformers [59] propose a multi-head
self-attention technique for highly inferring the context of a
sentence (a binary function for our purpose) atop the Atten-
tion’s encoder-decoder architecture. Self-attention focuses on
the inner relationship between input words, and multi-head
considers multiple vectors with positional information to pre-
dict the next word (i.e., instruction). Figure 2 (b) illustrates a
single encoder layer in the Transformer architecture, which
i)takes input vectors from the previous layer for computing
an Attention matrix, ii) feeds the resulting vectors into a feed
forward neural network (FFNN) in turn, iii) applies batch
(e.g., across training examples) and layer (e.g., across feature

FIGURE 2. Simplified BERT structure. The key aspect of BERT is two
trainings: a pre-training stage for generating a generic model, and a
fine-tuning stage for a special model tailored to a downstream task. Note
that pre-training requires a one-time but costly processing, whereas
fine-tuning is computationally less expensive. E denotes an embedding
per word W, and the subscripts p, t, m, s, e, and a number represent a
position, token, [MASK], [SOS], [EOS], and a word identifier, respectively.

dimensions) normalization between the self-attention and
FFNN layers. The original Transformer [59] has six encoders
(Figure 2a) and six decoders.

D. LANGUAGE MODEL AND BERT
BERT [16], Bi-directional Encoder Representations from
Transformers, is a state-of-the-art architecture that captures
the contextual meaning of words and sentences in natural
language by adopting the encoder layer of Transformer [59].
It incorporates several advanced concepts such as ELMo [50],
semi-supervised sequence learning [12] and Transformer.
BERT consists of two training phases as illustrated in
Figure 2: a pre-training process that builds a generic model
with a large corpus, and a fine-tuning process that updates the
pre-trained model for a specific downstream task. The pre-
training process employs two strategies: masked language
model (MLM) and next sentence prediction (NSP), which are
used for building a language model that considers context
and the orders of words and sentences (through unsuper-
vised learning with an unlabeled dataset). In Figure 2 (a),
the [MASK] token represents an input word that has been
masked, and [SOS] and [EOS] are tokens for the start and
end of a sentence, respectively.2 The [UNK] token is used
for unknown words. In this example, a 256 fixed-length input
(254 words with masked ones excluding two special tokens:
start/end of a sentence at both ends) is used at a time. Once
the pre-training is complete, the pre-trained model can be re-
purposed for varying other downstream tasks with supervised

2[CLS], and [SEP] tokens in the original BERT correspond to our
[SOS] and [EOS].
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FIGURE 3. Log scale of instruction frequencies by its rank in our
vocabulary corpus. The curve closely follows Zipf’s law, akin to a natural
language. The green area illustrates a long tail that has been rarely seen
(e.g., less than 10 times). Interested readers refer to Table 8 in Appendix.

learning.We adopt BERT because its structure seamlessly fits
our objective of creating a pre-trained model that contains a
generic binary code representation and re-training that model
for a wide range of classification tasks with relatively lower
computational resources (See Section IV-C for more details).

III. BINARY CODE SEMANTICS
In this section, we discuss the definition of code semantics,
followed by highlighting a few insights of binary codes.

A. DEFINITION OF CODE SEMANTICS
Our approach considers binary representations of code
semantics as distinct from those found in source code. In par-
ticular, the equivalent semantics of a binary code can be
defined as a sequence of instructions that carries out the
identical logical function as the original source. However, a
binary function differs from a programmer-written function
due to varying transformations by a compiler toolchain. To
measure the similarity between two binary functions, we use
a cosine similarity score that ranges from −1 to 1. A higher
value indicates a closer relationship in code semantics.

B. OBSERVATIONS AND INSIGHTS
A binary code consists of a sequence of machine instructions
that is analogous to a natural language. InnerEye [74] borrows
ideas of Neural Machine Translation (NMT) to a binary func-
tion similarity comparison task by considering instructions as
words and basic blocks as sentences. For successful binary
code representation with deep neural networks, it is essential
to have an in-depth understanding its properties. Here are
several insights based on our analysis ofmachine instructions.

• Machine instructions follow Zipf’s Law. Figure 3
depicts the relationship between the rank of instructions
and the log scale of their frequencies. Our finding shows
that the curve of the instruction distribution closely fol-
lows Zipf’s law [73] like natural language, indicating
that effective techniques in the NLP domain, such as
BERT, can be useful binary tasks.

• A function often conveys a meaningful context.
We analyzed 1, 681, 467 functions (18, 751, 933 basic

FIGURE 4. CDFs and histograms with kernel density estimates (10 bins)
for the number of instructions per function (left) and basic block
(middle), and the number of basic blocks per function (right) after
removing outliers. Most basic blocks (around 80%) contain merely five
instructions or less, indicating that a larger granularity (e.g., function) is
needed to imply contextually fruitful information.

blocks or 108, 466, 150 instructions) in our corpus
(Table 3).3 We measure several statistics: i) the num-
ber of instructions per function on average (I/F) is
64.5 (median=19, std=374.7), ii) the number of basic
blocks per function on average (B/F) is 5.8 (median=4,
std=16.4), and iii) the number of instructions per basic
block on average (I/B) is 11.2 (median=3, std=95.8).
As the standard deviation is quite large, To remove
outliers, we cut off values larger than three times the
standard deviation, resulting in a mean of (I/F, B/F,
I/B)= (25.1, 3.9, 3.7). Figure 4 illustrates CDFs (upper)
and histograms (lower) without outliers, indicating that
approximately 70% of basic blocks contain five instruc-
tions or less. A binary function typically consists of
around four basic blocks with 25 instructions on aver-
age, rendering a single function granularity sufficient
to convey meaningful information. Indeed, our experi-
mental results (Figure 1) with DeepBinDiff [67] show
that quite a few matching blocks contain a couple
of instructions (e.g., jmp, call), which are highly
likely to miss surrounding contexts.4 We discuss other
cases that a fine-grained granularity becomes beneficial
(See section VII).

• Word2vec is unable to provide diverse representations
for the same instruction in different contexts. A majority
of prior works [17], [67], [74] adopt the Word2vec [44]
algorithm to represent a binary code. Word2vec is an
embedding technique that learns relationships between
words in a large corpus of text, representing each distinct
word with a vector. Figure 5 illustrates the Top 30 most
common instructions that are well associated with each

3Note that we include user-defined functions; e.g., linker-inserted func-
tions are excluded.

4Instead, DeepBinDiff considers CFGs to read underlying context.
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FIGURE 5. Visualization of a similarity matrix for the most common 30 instructions with a
Word2Vec model. The dark color represents that the relationships of how two instructions are
close to each other. For example, ret (middle-left) comes with a series of function epilogue
instructions (e.g., pop bp8 and add sp8 immval at the right-bottom corner). However, a fixed
form of instruction vectorization is not sufficient because its location can have diverse meanings;
e.g., ret at the end and ret in the middle of a function.

other. However,Word2vec cannot provide distinct repre-
sentations for the same instruction in different contexts
due to the absence of position information. For instance,
the behavior of popping a register for a function epilogue
differs from that for other computations in the middle
of the function. Nevertheless, Word2vec assigns the
identical representation (embedding) to the same word,
regardless of its contextual differences, highlighting the
need for a better embedding technique with a restricted
number of vocabularies.

Unlike natural language, the number of possible instructions
is virtually countless when each instruction is mapped into a
single word (token or vocabulary); an immediate value in a
64-bit operand of the instruction could produce 264 different
words, making further computation impractical. To address
this issue, most prior approaches that harness deep learn-
ing techniques [17], [67], [69], [74] normalize instructions
before feeding a sequence of them as input into the training
process. In particular, striking a balance is crucial so that
instruction normalization can be neither too generic nor too
specific because each token contains rich information while
minimizing the OOV problem. Therefore, a better instruction
normalization technique is needed to capture code semantics
for neural networks.

IV. DeepSemantic DESIGN
In this section, we introduce a better instruction normalization
technique, and portray DeepSemantic to show its effective-
ness in detail.

A. WELL-BALANCED INSTRUCTION NORMALIZATION
An efficient instruction normalization process is crucial to
prepare its vectorization form for a neural network as adopted
by many prior approaches [17], [43], [67], [69], [74]. In other
words, the final contextual information is determined by the
quality of word embeddings based on an individual nor-
malized instruction. However, a too-coarse-grained normal-
ization, such as stripping all immediate values [17], [67],
[74], loses a considerable amount of contextual information
whereas a too-fine-grained normalization (close to the orig-
inal instruction disassembly) raises OOV due to a massive
number of unseen instructions (tokens). We observe that the
previous approaches sorely perform mechanical conversion
of either an opcode or operand(s) without thorough consid-
eration of their contextual meanings. Figure 7 shows dif-
ferent normalization strategies taken by several approaches
for binary similarity detection. DeepBinDiff [67] considers a
register size to symbolize an n-byte register (❽); however, it
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TABLE 1. Summary of well-balanced instruction normalization (WIN) rules that target an operand for x86_64: immediates, registers and pointers. Our
strategy aims to remain as much contextual information as possible for further embedding generation.

converts all immediates into imme (❾). Meanwhile, Inner-
Eye [74] discards the size information of registers (❿) for a
64-bit machine instruction set. SAFE [43] retains immediate
values (❼). Besides, all three cases convert the destination of
a call invocation into a single notation (e.g., HIMM, imme,
or FOO), rendering every call instruction identical.

To this end, we introduce a well-balanced instruction nor-
malization (WIN) strategy that strikes a balance between
the expressiveness of binary code semantics and a reason-
able amount of tokens, preserving the semantics of instruc-
tions. For example, we consider various implications for
immediate values such as library targets, call invocations,
destinations to jump to, string references, and statically-
allocated variables. As another example, our experiments
show that the two most frequent words, mov_reg8_ptr
and mov_reg8_reg8, which account for over 20% of
appearances with coarse-grained normalization, cannot con-
vey a valid context. Our approach enhances the quality of
word embeddings to capture the semantic nuances of a code
snippet.

Table 1 summarizes three basic principles in mind to bal-
ance seemingly conflicting goals above: i) an immediate can
fall into a jump or call destination (e.g., ❷ 0 × 401d00 →

externfunc, ❻ 0 × 425530 → innerfunc), a value
itself (e.g., ❺ 0 × 38 → immval) or a reference (e.g., ❹
0 × 425530→ dispbss), according to a string literal, stati-
cally allocated variable or other data; ii) a register can be clas-
sified with a size by default (e.g.,❶ r14→ reg8,❹ eax→

reg4); but the ones with a special purpose stay intact such
as a stack pointer, instruction pointer, or base pointer (e.g., ❸
ebp → bp4); and iii) a pointer expression follows the orig-
inal format, ‘‘base+index*scale+displacement’’
(e.g., ❸ DWORD PTR [r14] → dwordptr[reg8]) so
that certain memory access information can be preserved;
moreover, the same rule applies if and only if the displace-
ment refers to a string reference (e.g., dispstr). Note that
an opcode is not part of our normalization process.

B. OVERVIEW
Equipped with WIN and our insights on binary code, we
present DeepSemantic atop BERT. Adopting the original
BERT scheme, DeepSemantic consists of two separate stages
(Figure 6): i) a pre-training stage that creates a general model
applicable to a downstream task, and ii) a fine-tuning stage
that generates a special model for a downstream task on top
of the pre-trainedmodel. In this paper, we select a binary code
similarity task because its performance predominately relies
on the inference of code semantics. The following justifies
our design choices behind DeepSemantic :

• Function-level Granularity. We determine a function
as a basic unit that can imply meaningful semantics from
our insights in Section III-B. Indeed, our experiment
shows a large portion (e.g., 83.25%) of basic block
matching results with the previous approach [67] come
from very small basic blocks (Figure 1).

• Function Embedding. Along with a function-level
granularity, DeepSemantic generates an embedding per
function as a whole, rather than per instruction (e.g.,
word2vec) to represent a code snippet. Besides, an iden-
tical instruction would have a different embedding
depending on its position and surrounding instructions
(Section 2).

• Well-balanced Instruction Normalization. We lever-
age the existing static binary analysis to normalize
instructions so that a pre-training model can naturally
embrace important features in a deep neural network.
We intentionally attempt to remain as much informa-
tion (manually engineered features from previous stud-
ies [18]) as possible (Section IV-A).

As DeepSemantic inherently generates multiple models, the
pre-training and fine-tuning models are dubbed DS-Pre and
DS-Task, respectively, depending on the task. In this work,
we build DS-BinSim for binary code similarity detection as a
downstream task.
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FIGURE 6. DeepSemantic Overview. For a pre-training phase, we use static analysis to
collect artifacts from a pre-defined binary corpus ed❶. In a pre-processing step, we tokenize
all instructions and normalize them ed❷ (Section IV-A). The entire corpus is then pre-trained
with BERT ed❸, resulting in a pre-trained model ed❹ (Section IV-C) For a fine-tuning phase,
we define a downstream task, such as binary similarity comparison ed❺, and prepare a
dataset with appropriate labels ed❻. Finally, after re-training on the downstream task ed❼,
we obtain a fine-tuned model ed❽ (Section IV-D).

FIGURE 7. Examples of the proposed WIN (Table 1) prior to code embedding generation. A slash (/) represents a token separator; e.g., In
DeepBinDiff [67] opcode and operand(s) are separate tokens. Note that too-coarse-grained normalization (e.g., DeepBinDiff [67], InnerEye [74]) may lose
contextual information; whereas too-fine-grained (e.g., SAFE [43]) normalization may suffer from OOV. We explain each case (❶-❿) in Section IV-A.

C. GENERIC MODEL FOR ASSEMBLY CODES
For NLP applications, it’s often feasible to employ a (read-
ily available) pre-trained BERT model on a large corpus
of human words (e.g., from Wikipedia) because BERT is
designed to be computationally expensive and versatile for
various downstream task. However, we cannot utilize such a
model for a human language. Thus, training DeepSemanticon
a new dataset with a different vocabulary, such as machine
instructions in our corpus, is necessary. We adopt the original
BERT’s masked language model (MLM), which probabilis-
tically masks a pre-defined portion of normalized instruc-
tions (e.g., 15%), and then predicts them within a given
function during pre-training. It is noteworthy mentioning that
DeepSemantic does not use NSP (i.e., prediction of next
sentence) because two consecutive functions often are not
semantically connected. Besides, our model takes advan-
tage of the Transformer architecture, which allows for direct

FIGURE 8. Binary similarity prediction model (DS-BinSim) as a fine tuning
task. We concatenate two hidden vectors from the two normalized
functions (NFs) and the cosine similarity of the two Bag of Signatures
(BoSes). Note that BoS offers supplementary information
(susubsection IV-D1).

connection between all instructions efficiently and highly
parallelizable computation (e.g., GPU resources).

D. SPECIAL MODEL FOR A DOWNSTREAM TASK
DeepSemantic aims to support specific downstream tasks that
require the inference of contextual information from binary
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code, and it achieves this through quick re-training based on
a pre-trainedmodel that provides generic code representation.
During fine-tuning, a separate dataset with labeled data is
required for supervised learning, adjusting a generic model
tailored to a specialized task. In this paper, we focus on
demonstrating the effectiveness of our model for a single
downstream task: binary similarity (DS-BinSim) that predicts
the similarity of two functions.

1) DS-BinSim MODEL
a: BINARY CODE SIMILARITY TASK
We define our downstream task as the estimation of similarity
between two binary functions that originate from the same
source code. To accomplish this, we create a new dataset that
comprises pairs of normalized functions (NFs) with a binary
label whether the functions are identical. Figure 8 illustrates
our binary similarity model as a downstream task. Our model
is built on top of DS-Pre, using it as a basis to obtain two
hidden vectors (of size h) from each NF.

b: BAG OF SIGNATURE (BoS)
We provide supplementary information, dubbed Bag of Sig-
nature (BoS).5 to enhance the binary similarity task. The
idea behind BoS is that even a WIN process (Table 1) loses
the information of a string or numeric constant. In essence,
we enumerate both string literals and numeric constants from
a static analysis phase, combining them into a single bag that
can be used as a unique signature afterwards. We compute a
BoS similarity score with Equation 1.

BoS(v⃗, w⃗) =
v⃗ · w⃗
|v⃗||w⃗|

=

∑n
i=1 viwi√∑n

i=1 v
2
i

√∑n
i=1 w

2
i

(1)

As a concrete example, a function (F) contains a list of
[1, 0 × 12, 8, 8, 8, ’Hello’]where function (G)
holds [0 × 12, 8, 8, ’Hello’]. Then, we can repre-
sent each vector based on counting those constants: F =

(1, 1, 3, 1) and G = (0, 1, 2, 1) whose cosine similarity
becomes 0.943.

c: VECTOR CONCATENATION
We concatenate three vectors including the two hidden vec-
tors for the functions and the cosine similarity of two BoSes,
passing them through a linear layer with inputs 2 ∗ h+ 1.

2) MODEL AND LOSS FUNCTION
For a binary similarity detection task, the logits can be calcu-
lated as following:

ŷ = Softmax(F(h)) (2)

where F(·) and h are a fully-connected layer and the hid-
den vector of the given function returned from DS-Pre,

5Prior approaches [9], [18], [58] reveal that a string or numeric constant
can be an important feature vector. The improvement of DeepSemantic with
additional information is marginal (0.09% as in Figure 8).

respectively. To obtain the optimal network parameters in the
fine-tuning layers, we use cross-entropy as a loss function;
seeking the network parameters θ that satisfy:

θ = argmin
θ

∑
c∈C

p(c|y)log(p(c|ŷ)) (3)

where C , p(c|y), and p(c|ŷ) denote a set of classes (e.g.,
decision of function similarity in DS-BinSim), the ground-
truth class distribution, and the estimated probability for the
class c by the logits ŷ from Equation 2.

V. IMPLEMENTATION
This section briefly describes the artifacts from static binary
analysis and DeepSemantic implementation.

A. BINARY ANALYSIS ARTIFACTS
With our corpus (Table 3), we extract essential artifacts from
one of the state-of-the-art static binary analysis tools, IDA
Pro [24]. We leverage IDAPython [25] (a built-in IDA
Pro [24] plugin) to build an initial database of binary analysis
artifacts including function names, libc library calls, cross
references (e.g., string literals, numeric constants), section
names and call invocations (e.g., internal calls, external calls),
which further assists the WIN process (Table 1). Although
we provide a binary with debugging symbols available to
confirm the ground truth (e.g., function boundaries) dur-
ing static analysis, it is noted that DeepSemanticdoes not
require such debugging information. Any binary analysis tool
would suffice to recognize binary functions such as angr [2],
Ghidra [46], or radare2 [54].

B. BERT HYPERPARAMETERS
We develop DeepSemantic with Tensorflow [22] and
PyTorch [53] on top of existing BERT implementations [23],
[30], [63]. As described in section IV, we have DeepSemantic
exclude NSP when building a language model from the orig-
inal BERT architecture because the semantic of a binary
function is agnostic to that of adjacent functions. We pre-
train with a batch size of 96 sequences, where each sequence
contains 256 tokens (e.g., 256 * 96 = 24,576 tokens/batch
including special tokens) using five epochs over the 1.3M
binary functions. We use the Adam optimizer with a learning
rate of 0.0005, β1 = 0.9, β2 = 0.999, an L2 weight decay
rate of 0.01 with a liner decay of the learning rate. We use
a dropout rate of 0.1 on all layers, and the ReLU activation
function. Table 2 encapsulates all hyperparameters when we
build our models for the BERT language model, optimizer,
and trainer. The number of trainable parameters is 8, 723, 914
for DS-Pre.

VI. EVALUATION
Since the approach of DeepSemantic involves a training pro-
cess twice, DS-Pre and DS-Task, we set up various experi-
ments to ensure accurate and fair evaluation. We first build a
DS-Pre model (Section VI-C), and then answer the follow-
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TABLE 2. Hyperparameters for (B)ERT, (O)ptimizer, and (T)rainer during a
training phase.

ing four research questions pertaining to effectiveness and
efficiency.

• RQ1. To what extent does DS-BinSim outperform exist-
ing cutting-edge approaches, such as DeepBinDiff [67],
SAFE [43], for a binary similarity detection task that
requires the inference of underlying binary semantics
(Section VI-D)?

• RQ2. How well does a fine-tuning task enhance binary
code representation?We assess howDS-BinSim updates
the original function embedding vectors from DS-Pre
(Section VI-E).

• RQ3. To what extent does WIN offer improvements for
the DS-BinSim model? (Section VI-F)

• RQ4. How efficient is DeepSemantic in practice
(Section VI-G)?

A. ENVIRONMENT
We evaluate DeepSemantic on a 64-bit Ubuntu 18.04 sys-
tem equipped with an Intel(R) i9-10900X CPU (with 20
3.70 GHz cores), 128 GB RAM and an NVIDIA Quadro
RTX 8000 GPU.

B. DATASET
Our dataset includes the entire corpus described in Table 3.
We generated 1, 328 binaries that were compiled with two
compilers (e.g., gcc 5.4 and clang 6.0.1) and four opti-
mization levels (e.g., O[0-3]) from three different test-
suites (e.g., GNUtils, SPEC2017, the utilities including
openssl [47], nginx [45], and vsftpd [61]. Addition-
ally, the 176 SPEC2006 binaries are borrowed from the offi-
cial release [49].

C. DS-Pre GENERATION
We pre-train DS-Pre model with the artifacts correspond-
ing to each binary from Section V. We first normalize all

FIGURE 9. CDF of varying metrics to show the performance of DS-BinSim
(See Table 6).

instructions, define tokens, and create a dataset for BERT
pre-training. In total, we obtain 17, 225 tokens from all
107.88 million instructions in our corpus, including each
(normalized) instruction token five special tokens ([SOS]:
start of a sentence, [EOS]: end of a sentence, [UNK]:
unknown token, [MASK]: mask to predict a word, [PAD]:
padding symbol to fill out an input length) for DS-Pre gener-
ation, a modified BERT model as described in Figure 2. Our
corpus contains 1, 690, 715 normalized binary functions in
total, however, we solely include around 1.3million functions
after filtering out functions that are too small (i.e., those with
five or fewer, which account for 15.4% of the dataset) or
too large (i.e., those with more than 250 instructions, which
account for 4.5% of the dataset) ones. The small functions
are excluded because they do not provide enough meaningful
semantic chunks for training, and the large functions may
hinder the performance of the pre-training model genera-
tion. However, we have not excluded identical NFs during
pre-training model generation because they can be treated
as different training data due to the probabilistic masking
mechanism in MLM. During testing, the out-of-vocabulary
(OOV) ratio is around 0.93%,with only 82 vocabularies being
unknown out of 8, 783 tokens (the number of vocabularies in
the training set is 17, 024).

D. EFFECTIVENESS OF DS-BinSim
This section demonstrates the effectiveness of DS-BinSim for
a binary similarity task by comparing it with the two state-
of-the-art deep learning tools. As illustrated in Figure 8, we
prepare a dataset that consists of pairs of two normalized
functions (NFs), and their corresponding labels. The label is
1 (true) if two binary functions come from the same source
code, and 0 (false) otherwise. With the same hyperparameters
in Table 2, we fine-tune the model (DS-BinSim) to predict
binary similarity. Figure 9 illustrates the CDF of varying
metrics, including an F1 of 0.965 and an AUC of 0.959 on
average (See other metrics in the first column in Table 6).
This means our classifier can accurately predict whether
two binary functions are compiled from the same source,
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TABLE 3. Summary of our whole corpus. FN, BB and IN represent a function, basic block and instruction, respectively. A small function indicates the
number of instructions per function (I/F) is less than or equal to 5, whereas a large function indicates I/F is greater than 250. We also investigate the
number of immediate operands, string references and libc call invocations per function to devise well-balanced instruction normalization (WIN).

TABLE 4. Precision (P), Recall (R), and F1 results of binary similarity comparison across different compiler and optimization level pairs. The leftmost
column represents a pair where C, G, O[0-3] denote clang, gcc, and an optimization level, respectively. We conduct two separate experiments:
DeepBinDiff [67] and DS-BinSim with a limited dataset (left), and SAFE [43] and DS-BinSim with a full dataset (right). This is because DeepBinDiff is
incapable of computing binary similarity scores for a certain set of binaries. DS-BinSim outperforms DeepBinDiff (e.g., around 49.8%) by a large margin,
and SAFE (e.g., 15.8%) across all pair combinations.

regardless of a wide range of code transformations from
arbitrary combinations of compilers and optimization levels.

1) COMPARISON WITH DeepBinDiff
We conducted an experiment to compare DeepSemantic with
open-sourced DeepBinDiff [70]. Unfortunately, the officially
released DeepBinDiff was not able to handle even medium-
size binaries, so we defined a limited dataset consisting of
96 executables, including part of the SPEC2006 and findutils.
6 By design, DeepBinDiff performs basic block matching by
taking two binary inputs, whereas DS-BinSim aims for com-
parisons at the function granularity. We classify each case ias
a true positive for a fair comparison with DeepBinDiff when
it discovers any pair of matching basic blocks that belong to
the same function (relaxed judgment). Notably, we extended

6astar, bzip2, hmmer, lbm, libquantum, mcf, milc, namd,
sphinx_livepretend, and findutils (find, xargs, locate).

the evaluation of DeepBinDiff to different compilers (i.e., gcc
VS clang) and optimization levels (i.e., 28 different com-
binations) to demonstrate the effectiveness of DS-BinSim.
Table 4 shows that our approach considerably outperforms
DeepBinDiff (49.8%) in all combinations of compiler and
optimization levels. Our experiment aligns with the results
across optimizations from DeepBinDiff [67].

2) COMPARISON WITH SAFE
We conducted another experiment with the full test dataset
in our corpus to compare our approach with SAFE [43].
By design, SAFE merely computes a cosine similarity value
does notmake a decision onwhether two functions are simliar
or not. Hence, we choose a threshold of 0.5 (i.e., if the value
is greater than the threshold, the decision is true), and create
a database for our whole dataset(Table 3) to query function
embeddings with the open-sourced version of SAFE [41].
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TABLE 5. Cosine similarity of similar/dissimilar function pairs on average
between DS-Pre(pre-trained model) and DS-BinSim(fine-tuned model).

TABLE 6. Various metrics to show the effectiveness of well-balanced
instruction normalization in comparison with coarse-grained instruction
normalization.

Our approach outperformed SAFE by 15.8% on the full
testset, as shown in Table 4. In particular, we observe a
substantial difference in performance when code semantics
are difficult to infer, such as when there is a high difference
in optimization level.
Answer to RQ1. DS-BinSim by far outperforms Deep-
BinDiff (50% on average; up to 69%) and SAFE (16% on
average; up to 28%) across all 28 combinations of different
compilers and optimization levels.

E. CODE REPRESENTATION WITH FINE-TUNING
We evaluate the effectiveness of a 256-dimensional embed-
ding (as shown in Table 2) that represents a function
after fine-tuning. It is worth noting that there are sev-
eral ways to extract a contextualized embedding [1],
and in this study, we use the mean of all hidden states.
To this end, we extract 179,163 unique pairs of functions
from our corpus, with approximately half being similar,
and other half dissimilar. We compute cosine similarity
scores, excluding cases where two NFs are exactly iden-
tical because the score is always 1 in such cases. For
example, the similarity score for the function embedding
pair, ngx_resolver_resend_handler between the
clang O1 (70 instructions) and gcc O2 (86 instructions) is
0.805 using the DS-Pre model. After fine-tuning with the
DS-BinSimmodel, we obtain an improved similarity score of
0.826 for the above example, indicating that the vectorized
values for the similar pair are close to 1. Table 5 briefly
shows the average cosine similarity values, and we observe
that the binary function representation has been enhanced;
i.e., the difference between the similar pairs in a vector space
becomes broader on average.
Answer to RQ2.Our empirical results indicate that a fine-
tuning process successfully enhances code representations
for a specialized downstream task (e.g., DS-BinSim).

F. EFFECTIVENESS of WIN FOR BINARY SIMILARITY
This section depicts how WIN with pre-defined rules
(Table 1) enhances DS-BinSim. To assess its effectiveness,
we compare DeepSemantic with a fine-grained model with-
out normalization. In this case, only the rule of replacing

FIGURE 10. CDF comparison of F1 and AUC metrics between
coarse-grained (dotted lines) and well-balanced instruction normalization
(solid lines).

every immediate operand with immval is applied. Our train-
ing set has 4, 917, 904 tokens, which is 207.4 times larger
than theWIN set. Training thismodel requires 283.6GBGPU
memory to update 1.38 billion trainable parameters. Putting
large resource consumption aside, the problem would be
exacerbated because most of the vocabularies (3, 716, 287 or
75.6%) appear only once, making it impossible to update
corresponding instruction vectors during training. Moreover,
in the test set, 97.8% (127, 805 out of 130, 736) of all tokens
are not present in the training set, rendering further learning
pointless due to a severe OOV problem (i.e., most of vocab-
ularies would be regarded as UNK).

To address this issue, we re-define the normalization rule
to be relatively coarse-grained, replacing, all immediates
and pointers with immval and ptr without taking any
information into account except for registers. We generate a
new dataset with 1, 174, 060 functions, reducing the number
of tokens up to 2, 022, including five special ones, from
17, 225 of the WIN set (around 88.3% reduction). We gen-
erate another DS-Pre model for coarse-grained normaliza-
tion with 2, 870, 759 trainable parameters. Then, we prepare
another DS-BinSim dataset with labels using 100K pairs (the
ratio of similar and dissimilar labels is 1:1) from our corpus.
It is worth noting that we exclude all identical NF pairs for
similar pairs (e.g., all pairs must have at least one or more
discrepancies) to compute a robust model and use negative
sampling for dissimilar pairs.

As a result, we obtain higher F1 and AUC values of
(0.965, 0.959)withWIN thanwith coarse-grained normaliza-
tion, which yield F1 and AUC values of (0.946, 0.926) (See
Table 6). Figure 10 shows the results with WIN in a 1.87%
higher F1 and a 3.30% higher AUC. Notably, WIN reduces
the false positive rate by 5.25%. Although the improvements
are not significant, we believe that this approach may be
beneficial for other contextually sensitive downstream tasks.
Answer to RQ3. We demonstrate WIN enhances code
representation by providing supplementary information.
We experimentally confirm that the normalization process
is crucial for effective learning of semantic-aware code
representation.

G. EFFICIENCY OF DeepSemantic
In this section, we exhibit the practical efficiency of
DeepSemantic. Table 7 provides a concise summary of the
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TABLE 7. Comparison of computational resources between training and
testing for DS-BinSim.

FIGURE 11. Visualization of a multi-head self-attention architecture in
Transformer with BERTViz [60]. Note that [CLS] and [SEP] correspond to
[SOS] and [EOS] in DeepSemantic.

computational resource required on average, including the
duration of pre-training, fine-tuning, and testing a model
per epoch and batch, as well as GPU memory consumption
for each job. Creating an initial DS-Pre model takes the
longest amount of time, while fine-tuning consumes rela-
tively fewer resources. Once training is complete, testing can
be performed much faster, processing at a speed that is, for
example, 194 times faster than DS-Pre generation. It should
be noted that GPUmemory consumptionmay vary depending
on different hyperparameter settings such as batch size, the
number of attention/hidden layers, and the maximum length
of input.
Answer to RQ4. DeepSemantic can be an efficient solu-
tion to be applicable for a downstream task that requires
the semantics of binary code.

H. VISUALIZATION OF NORMALIZED INSTRUCTIONS
Figure 11 illustrates an example of how the choice of head
and layer in BERT affects the model’s attention patterns,
generated by BERTViz [60]. This visualization shows six
layers, each with eight heads. In this case, the first Head of
the third Layer pays attention on tokens [CLS] and [SEP]
as keys while predicting the query add_reg8_reg4.

VII. DISCUSSION AND LIMITATION
This section discusses several cases to consider, feasible
applications for future research, and limitations of our work.

A. FUNCTION INLINING AND SPLITTING
During compilation, optimization techniques may involve
with function inlining where one function is incorporated into
another for better performance. This means that the labels in
the binary similarity classification problem may be slightly

distorted with the presence of inlining and splitting. Say,
a binary compiled with -O3 has Function A that includes
Function B where the one with -O0 has both Function A and
B separately. Although the function name A stays intact but
the actual content (i.e., instructions) may differ significantly
in the highly optimized binary. In a similar vein, a function
may be split into multiple parts during compilation

B. COMPARISON GRANULARITY
Although most of functions consist of four basic blocks or
25 instructions on average (as shown in Figure 4), there are
some functions with much large sizes (as a long tail). In such
cases, comparison at the basic block level would be more
appropriate to identify similar blocks as demonstrated in prior
work [67], [69].

C. APPLICABLE DOWNSTREAM TASKS
DeepSemanticis designed to support a wide range of other
downstream tasks that require semantic-aware code repre-
sentation, including but not limited to a special type of vul-
nerability scanning, software plagiarism detection, malware
behavior detection, malware family classification, and bug
patch detection. It can also be used to identify a function or
library in a database like IDA FLIRT [26].

D. NORMALIZATION FOR RARELY APPEARED
INSTRUCTIONS
It is important to note that instructions that appear rarely
during pre-training may have embeddings that are not mean-
ingfully updated (e.g., close to an initial value). Figure 3
shows that around 8.5% of the 17,221 normalized instructions
in our corpus only appear once. As a result, the embedding
of these instructions may not capture a meaningful context
unless the number of appearance is sufficient.

E. LIMITATIONS AND FUTURE WORK
First, the current version of DeepSemanticis designed to
merely handle benign binaries, and, hence, may not be
directly applicable malware that often ships with vari-
ous packing, obfuscation or encryption. Second, we have
yet tested the performance of DeepSemanticon cross-
architecture scenarios, which we leave as part of our future
work. Third, while we have attempted to make our cor-
pus diverse by including varying sizes, types (e.g., exe-
cutable, library), functionalities (e.g., compiler, interpreter,
compression, server, benchmark, AI-relevant code), and lan-
guages(e.g., C/C++/Fortran) of binaries, the limited number
of binaries in our corpus may impact its representativeness.
Fourth, albeit rare, it is possible for two different func-
tions to have identical instructions after normalization, which
may lead to confusion for the current DeepSemantic model.
Additionally, different corpora or hyperparameter settings
during pre-training may affect the overall performance of
DeepSemantic for a downstream task. Finally, while we have
used the BERT architecture in our work, other advanced
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architectures like RoBERTa [39] or XLNet [66], which have
demonstrated better performance in popular NLP tasks, could
be explored for future work.

VIII. RELATED WORK
Penetrating the characteristics of a machine-interpretable
binary code has a wide range of real-world applications
including i) code clone (software plagiarism) or similarity
detection [14], [15], [17], [18], [40], [43], [55], [67], [68],
[69], [71], [74], ii) malware family classification [28], detec-
tion [5], [6], [35], and analysis [32], [36], [72], iii) author-
ship prediction [31], [37], iv) known bug discovery (code
search) [7], [8], [9], [19], [38], [42], [51], [52], [57], [58],
v) patching analysis [20], [29], [64], and vi) toolchain prove-
nance [48], [56]. Most of these applications pertain to binary
similarity comparison. We categorize such efforts into two
approaches based on the use of machine learning techniques.

A. DETERMINISTIC APPROACHES
Binary code analysis can be performed using static and
dynamic techniques. Bruschi et al. [40] introduce a means
to detect code clones with the longest common subsequence
of semantically equivalent basic blocks. In a similar vein,
Esh [15] leverages data-flow slices of basic blocks to detect
binary similarity, and later extending the idea through re-
optimization [14] to improve performance. Blanket execu-
tion [18] employs dynamic equivalence testing based on
seven major features. In the context of malware analysis,
static features have been widely adopted for i) malware
classification by extracting static features [28], ii) malware
detection with structural similarities between multiple muta-
tions [35] or control-flow graph matching [5], [6], and
iii) malware authorship inference [31], [37]. Meanwhile,
varying approaches have been proposed in the field of known
bug discovery by leveraging i) a tree edit distance between
the signature of a target basic block and that of other basic
blocks [52], ii) the input/output behavior of basic blocks
from intermediate representation lifting [51], and iii) dis-
similar code filtering with manual features such as numeric
and structural information [19]. Further, Genius [58] and
FERMADYNE [9] devise another bug search engine for IoT
firmware with both statistical and structural features where
BinGo [7] supports both cross-architecture and cross-OSwith
a selective inlining technique to capture function seman-
tics. Oftentimes, static analysis can suffer from scalability
issues, such as expensive graph matching algorithms or path
explosion, and may not handle structural differences (e.g.,
optimization) well. Dynamic analysis, on the other hand, can
suffer from incomplete code coverage (e.g., relying on inputs)
and behavior undecidability.

B. PROBABILISTIC APPROACHES
Recent advancements in machine learning techniques have
received considerable attention for their applicability in
binary analysis, addressing both effectiveness and effi-
ciency. Malware analysis is one of popular applications:
i) BinDNN [36] leverages deep neural networks (e.g., LSTM)

for function matching for malware, ii) Yueduan [72] present
dynamic malware analysis with feature engineering (API
calls), and iii) Neurlux [32] proposes a system that learns
features automatically from a dynamic analysis report (i.e.,
behavioral information of malware). Code similarity detec-
tion is another active domain using a probabilistic approach.
Gemini [68] presents a cross-platform binary code similar-
ity detection with a graph embedding network and Siamese
network [4]. Lately, varying efforts to deduce underlying
semantics of a binary code have been made with deep learn-
ing. InnerEye [74] aims to detect code similarity across
different architectures, borrowing the concept of neural
machine translation (NMT) from an NLP domain. It gener-
ates vocabulary embeddings with a Word2vec Skipgram [44]
model with a coarse-grained normalization process. Simi-
larly, MIRROR [71] presents a basic block embedding means
across different ISAs that utilizes an NMTmodel to establish
connections between the two ISAs. Asm2vec [17] applies
a PV-DM model for code clone search, demonstrating that
code representation can be robust over compiler optimiza-
tion and even code obfuscation. SAFE [43] generates func-
tion embedding based on a self-attentive neural network.
DeepBinDiff [67] performs a binary similarity task at the
basic block granularity with token embeddings for seman-
tic information, feature vectors, and the TADW algorithm
for program-wide contextual information. For comparison,
our experiment includes the two state-of-the-art approaches,
SAFE andDeepBinDiff.Meanwhile, Yu et al. [55] investigate
the graph embedding network that extracts relevant features
automatically, resulting in similar performance compared to
the architecture without using any structural information.
Note that DeepSemantic use limited call graph information
(e.g., libc call).

C. COMPARISON WITH THE PREVIOUS STUDY
One of the closest work to ours in terms of adopting the BERT
architecture isOrder matters [69]. The main difference is that
Order matters focuses on seeking identical binaries by repre-
senting vectors for different binaries (i.e., identical source but
dissimilar binaries due to different platform and optimization)
as close as possible. In contrast, our proposedmodel performs
contextual similarity detection between binary functions.
For evaluation, Order matters employs rank-aware metrics
such as Top1, MRR (Mean Reciprocal Rank), and NDCG
(Normalized Discounted Cumulative Gain), and reports an
accuracy of 74%. In comparison, our evaluation employs a
classification metric. However, we were unable to compare
our results with Order matters due to the unavailability of
their source code. While we could not replicate their work,
it is worth noting that constructing an implementation based
solely on conceptual information [69] is not possible without
implementation details such as model hyperparameters.

IX. CONCLUSION
In this paper, we propose a well-balanced instruction normal-
ization technique that aims to convey as much information
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TABLE 8. Top 144 normalized instructions and their frequencies in our dataset. The last 14% of total instructions has rarely seen with a long tail of the
distribution (Figure 3). The group field indicates (C)all, (J)ump and (M)ove instructions.

as possible for a deep learning architecture. To demon-
strate the effectiveness of normalization approach, we
introduce DeepSemantic that leverages the BERT archi-
tecture, to build a pre-trained model for generic code
representation, and a downstream model that requires the
inference of code semantics. Our experimental results, specif-
ically with the DS-BinSim downstream task, show that
DeepSemanticoutperforms existing binary similarity com-
parison tools.

APPENDIX
See Table 8.
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