
UTOPIA: Automatic Generation of Fuzz Driver
using Unit Tests

Bokdeuk Jeong† , Joonun Jang† , Hayoon Yi† , Jiin Moon† , Junsik Kim† , Intae Jeon† ,
Taesoo Kim†⋆, WooChul Shim†∗, Yong Ho Hwang†

bd.jeong, joonun.jang, hayoon.yi, jiin.moon, junsik1.kim, intae.jeon, tsgates.kim, woochul.shim, yongh.hwang@samsung.com

† Samsung Research, Republic of Korea
⋆ Georgia Institute of Technology, USA

Abstract—Fuzzing is arguably the most practical approach for
detecting security bugs in software, but a non-trivial extent of
efforts is required for its adoption. To be effective, high-quality
fuzz drivers should be first formulated with a proper sequence of
APIs that can exhaustively explore the program states. To alleviate
this burden, existing solutions attempt to generate fuzz drivers
either by inferring the valid sequences of APIs from the consumer
code (i.e., actual uses of APIs) or by directly extracting them from
sample executions. Unfortunately, all existing approaches suffer
from a common problem: the observed API sequences, either
statically inferred or dynamically monitored, are intermingled
with custom application logics. However, we observed that the
unit tests are carefully crafted by the actual designer of the APIs
to validate their proper usages, and importantly, it is a common
practice to write the unit tests during their development (e.g.,
over 70% of popular GitHub projects).

In this paper, we propose, UTOPIA, an open-source tool and
analysis algorithm that can automatically synthesize effective fuzz
drivers from existing unit tests with near-zero human involvement.
To demonstrate its effectiveness, we applied UTOPIA to 55
open-source project libraries, including Tizen and Node.js, and
automatically generated 5K fuzz drivers from 8K eligible unit tests.
In addition, we executed the generated fuzzers for approximately 5
million per-core hours and discovered 123 bugs. More importantly,
2.4K of the generated fuzz drivers were adopted to the continuous
integration process of the Tizen project, indicating the quality of
the synthesized fuzz driver. The proposed tool and results are
publicly available and maintained for a broader adoption among
both researchers and practitioners.

I. INTRODUCTION

Fuzzing is an effective technique for automatically discov-
ering software bugs and security vulnerabilities. For instance,
Google’s OSS-Fuzz [2], that provides continuous fuzzing for
open-source software, discovered more than 30,000 bugs in 500
projects since its announcement in 2016. The basic principle
of fuzzing is simple: it generates and feeds pseudorandom
inputs to a given program and checks if the program properly
processes the provided inputs during execution. If the program
behaves abnormally (e.g., crashes or hangs) during the exe-
cution, it provides the bug-triggering inputs as the proof of
existence of a software bug.

Essentially, two types of fuzzers exist: an end-to-end fuzzer
that aims to test an entire program as a blackbox (e.g., afl [27]),
and a library fuzzer that focuses on testing specific interfaces or

*Corresponding Author.

APIs of the library (e.g., libFuzzer [25]). As end-to-end fuzzing
can enable automatic testing without requiring considerable
efforts from the developer for adoption, it has become widely
popular, especially when the fuzzer is integrated for the first
time. In contrast, a library fuzzer requires manual and deep
integration with the library, called fuzz drivers, which describe
a sequence of API calls processing the fuzzer-provided inputs.
Upon the maturity of a project, such a deep integration is
preferred by the developers as its whitebox nature allows deeper
state exploration.

Recently, researchers have been exploring a means of
alleviating the burden of manual integration for library fuzzers
by automatically generating or synthesizing fuzz drivers [12, 16,
18, 28]. They formulate a proper sequence of APIs for fuzzing
either by stochastically inferring API dependencies from their
uses in the source code [12, 16], or from the execution traces
observed during runtime [18, 28]. More specifically, one of the
original projects, Fudge [12], focuses on directly reducing a
proper sequence of API calls from the consumer code, wherein
the API uses and the custom application logics are intermingled.
A following project, FuzzGen [16], can theoretically produce
reasonably efficient fuzz drivers (i.e., inferring a valid sequence
of API calls) by performing a whole program analysis that
reasons about the API dependencies from the multiple consumer
codes. Although these approaches are general purpose and
broadly applicable, they rely on consumer code that exhibits
fundamental limitations. In particular, the intermixed code may
end up generating simple API sequences or semantically invalid
states (e.g., allocation in one code and uses in other places).
Inferring valid API sequences and dependencies from statistical
aggregation of consumer code would render stereotypical cases
that are not ideal for fuzzers looking for invalid, uncommon
inputs.

Unlike existing projects that attempt to infer the API
dependencies, we utilized the exact sequence of API calls
in unit tests (UTs). We observed that 1) the existing UTs
explicitly convey such dependencies on APIs that a developer
cares about, 2) UTs check various facets of the functionality
provided by a library with more APIs (e.g., internal ones)
than consumer code, and 3) numerous existing projects already
have well-written UTs—73% from Github on average, Android
external and OSS-Fuzz as listed in Table I. In addition, we

2631

2023 IEEE Symposium on Security and Privacy (SP)

DOI 10.1109/SP46215.2023.00043

Category Total
#

Unit
Tested
(rate)

Fuzz
Tested
(rate)

GitHub C/C++ (Top 200) 200 143 (72%) 38 (19%)
Android External 316 224 (71%) 61 (19%)
OSSFuzz 450 347 (77%) 450 (100%)

Table I: Over 70% of popular open-source projects in GitHub contain
UTs, but approximately 20% of these projects implemented fuzz
drivers. We aim to bridge this gap by automatically converting existing
UTs to fuzz drivers.

observed that a non-trivial number of open-source projects—
nearly 80% of popular open-source projects in GitHub (Table I)
have not adopted fuzzing as a means for testing to date.

In this paper, we propose UTOPIA that employs techniques
to convert each existing UT to an effective fuzz driver in
an automated and scalable manner. The key ideas behind
UTOPIA are to 1) leverage UT specific properties to unravel
the complexity in UT analysis, 2) perform root-definition
analysis, a newly introduced technique, to trace back the
source of API arguments for proper fuzz input injection that
maintains the inter-procedural relations and data-flow intended
by the developers, and 3) reflect in fuzz input mutation,
the analysis of impacts each argument may have within the
internals of its API. This enables UTOPIA to deeply explore
the code space and avoid crashes resulting from invalid API
usage. Therefore, a push-button solution can be provided to
automatically synthesize high-quality fuzz drivers with no
human involvement.

To demonstrate the effectiveness of automatic fuzz driver
synthesis, we applied UTOPIA to 55 open-source project
libraries (25 projects from Table I and 30 from Tizen) among
projects that satisfy the following conditions: 1) written in
C/C++, 2) uses gtest [7], boost [6], or TCT [5] for UT, and
3) supports LLVM build on Linux. We selected 25 projects,
considering the diversity of their project size, building systems
and UT frameworks, to evaluate UTOPIA by testing with their
generated fuzz drivers. For the 30 Tizen projects, the generated
fuzz drivers have been adopted by the Tizen community and
are continuously executed [4], verifying the quality of the
generated fuzz drivers.

With the use of UTOPIA, we could find and report a total
of 123 bugs in popular open-source projects such as Tizen and
libaom. Among these bugs, 70 were confirmed by the project
communities, 48 are reported but await community response,
and the remaining 5 were in exposed APIs that were considered
internal by the developers and determined as not required to
be fixed.

In this paper, we make the following contributions:
• We propose a new fuzz driver synthesis approach that em-

braces the existing unit tests for automatically generating
fuzz drivers.

• We implemented a prototype of the present approach,
UTOPIA, for C/C++ libraries utilizing the gtest and
boost UT frameworks and empirically validate that it
can successfully transform 5K UTs into meaningful fuzz
drivers for 55 open-source project libraries. UTOPIA is

available publicly at https://github.com/Samsung/UTopia.
• We have reported 123 new bugs, among which 70

were confirmed during the responsible disclosure process
(Table VII).

II. CHALLENGES AND PROPOSED APPROACH

UTOPIA aims to generate high-quality fuzz drivers in a
completely automated and scalable manner. To achieve this goal,
UTOPIA should minimize the human involvement during the
entire generation process by addressing two major challenges:

C1: Synthesize valid API call sequences
C2: Synthesize valid API call parameters

This is due to the fact that, in a fuzz driver, libraries can crash
not only because a provided input hits a bug but also because
of invalid API usage caused by C1/2. Such unintended crashes,
referred to as spurious crashes, make the fuzzing process
ineffective; it diverts the fuzzer to an uninteresting state and
demands manual analysis of found crashes. In severe cases,
they can even call for manual fixing of drivers, because they
might prevent a driver from performing any meaningful fuzzing
exploration (e.g., a driver calling a dereferencing API on an
uninitialized pointer will assuredly crash with little chance of
exploration).

In §II-A and §II-B, we describe C1 and C2 with additional
difficulties related to these challenges and introduce UT as the
key enabler to UTOPIA sidestepping such problems. In §II-C,
we address that the seemingly simple idea of using UT presents
additional interesting challenges.
Running example. We describe the challenges in this section
by using a running example in Figure 1, a UT containing the
API uses for reading or writing raw data in the OpenCV library,
with which UTOPIA could generate a fuzz driver reproducing
CVE-2019-5063. Basically, UTOPIA transforms the UT into
a fuzz driver by making minor changes to the original UT
code in order to assign fuzz input to the existing variables
that are analyzed as sources of API arguments. For instance,
in Figure 1, UTOPIA respectively transforms lines 5, 9, 14, 22
into lines 6, 10, 18, 23 and inserts an assignment statement
(line 17) to provide fuzz input to variables that influence the
call parameters of APIs. Note that certain parameters of the
APIs are deliberately not fuzzed, because UTOPIA analyzes
that changing them could potentially cause severe spurious
crashes (details of exclusion criteria are elaborated in §III-D).

A. Synthesizing Valid API Call Sequences

A major challenge in fuzz driver generation is to figure
out which library APIs to call and in what order to call them
because APIs may often have strict order dependencies as ob-
served in our running example: FileStorage() → writeRaw()

→ release(). Therefore, the construction of random sequences
of APIs for fuzz drivers might simply waste the fuzzing
effort (e.g., any crash resulting from writeRaw() calls after a
release() without a constructor call would be considered a
spurious crash rather than a bug.)

22632

https://github.com/Samsung/UTopia

1 // ref. @OpenCV:modules/core/test/test_io.cpp
2 TEST(Core_InputOutput, filestorage_base64_basic_rw_XML) {
3 std::vector<data_t> rawdata;
4

5- std::string name = "test.xml";
6+ std::string name = fi1;
7

8+ // NB. a loop parameter is bounded to avoid timeout
9- const size_t rawdata_N = 40;

10+ const size_t rawdata_N = fi2;
11

12 /* a 4d mat */
13 const int dim[] = {4, 4, 4, 4};
14- Mat m(4, dim, CV_64FC4, cvScalar(0.8, 0.1, 0.6, 0.4));
15

16+ // NB. the len of dim is correctly inferred and respected
17+ for (unsigned i = 0; i < fi3_size; ++i) { dim[i] = fi3[i]; }
18+ Mat m(fi3_size, dim, CV_64FC4, cvScalar(fi4, fi5, fi6, fi7));
19

20 /* raw data */
21 for (int i = 0; i < (int)rawdata_N; i++) {
22- data_t tmp; tmp.u = 1; tmp.d = 0.1;
23+ data_t tmp; tmp.u = fi8; tmp.d = fi9;
24 tmp.i = i; rawdata.push_back(tmp);
25 }
26

27 /* write */ // NB. not fuzzing: file mode
28 FileStorage fs(name, FileStorage::WRITE_BASE64);
29 fs << m;
30 for (int i = 0; i < (int)rawdata_N; i++)
31 fs.writeRaw(data_t::signature(), &rawdata[i],
32 sizeof(data_t));
33 fs.release();
34

35 /* read */ // NB. not fuzzing: file mode
36 FileStorage fs(name, FileStorage::READ);
37 fs.readRaw(data_t::signature(), &rawdata[0],
38 rawdata.size() * sizeof(data_t));
39 fs.release();
40 }

Figure 1: Running example. Simplified UT from OpenCV tests
FileStorage by storing and reloading matrix data encoded as XML.
Based on this UT, UTOPIA generated a fuzz driver (differences marked
with -/+) that can trigger an XML parsing error, previously reported
as CVE-2019-5063 [1]. The global variables, fi{1-9}, contain the
mutated fuzzing inputs for each run.

Prior research have opted for extracting [12] or inferring [16]
valid API sequences from the general consumer code. However,
this decision introduces its own difficulties (D).
D1: Decisions for consumer code analysis. If any given
consumer code is to be accommodated, as done in prior studies,
the analysis procedure of the consumers should be decided.
A potential approach could involve an analysis across the
entire consumer code, which enables the extraction of entire
API usage patterns within the consumer. However, in case
of encountering complex consumer code with numerous API
calls scattered across complicated control flows, the extracted
patterns can become bloated. This causes a driver to call in
dozens or hundreds of API calls, which hinders the fuzzing
efforts of the driver owing to the bloated input space from the
multitude of APIs.

To avoid such a case, another approach involves limiting the
amount of consumer code considered for generating a single
fuzz driver (e.g., prior work [12, 16] implemented their work
to analyze only across the same compilation unit to extract the
usage of library API calls). Although this mitigates the earlier
problem of bloated sequences, this may cause the acquirement
of incomplete API sequences due to the necessary API calls

residing in various source files. Moreover, generating a fuzz
driver from such a sequence may yield spurious crashes.
Proposed approach. Unlike a prior research that focuses
on correctly reconstructing valid API sequences from any
given consumer, we take advantage of explicit API sequences
written in unit tests to completely sidestep the aforementioned
challenges of API sequence synthesis.

The advantages of using UT are twofold:

1) Explicit construction of the library state per test case in UT
means no burden of API pattern inference or extraction
for generating fuzz drivers

2) This is consistent with the purpose of the fuzz driver in
which each test case, and its contained API sequence, is
designed to test a specific property/invariant of the library
deemed essential by library developers

In our running example, this approach enables us to maintain
all API order relations within the code as we do not alter
any of the calls. Additionally, as the UT only contains the
required short API sequences to test specific properties of a
library, UTOPIA is not prone toward generating bloated API
sequences.

B. Synthesizing Valid API Call Parameters

Another challenge in fuzz driver generation is to understand
the intra- and inter-API logic and appropriately assign fuzz
input values according to their semantic relationships. Other-
wise, providing random fuzz values for all parameters of API
calls would cause issues with spurious crashes and wasted fuzz
input, which eventually degrades the fuzzing capability of the
driver. Therefore, the following difficulties must be addressed to
provide suitable fuzzing values for APIs and minimize spurious
crashes.
D2: Inferring inter-API semantics. Objects or values are
often shared via parameters between library APIs and contain
the information required by the APIs to perform their functions
in a consistent context. Such relations across the API parameters
should be maintained in generating fuzz drivers to ensure valid
API usage. In our running example, the FileStorage object
fs would be such the case, which the library class APIs of
FileStorage are all called on.

The primary relations between the APIs requiring valid
semantics are:

• out-to-in: an output of an API is used as an input argument
in another API;

• fixed: arguments in each APIs should be identical across
the API calls;

• relative: arguments in different APIs are derived from
the same value (e.g., x=f(y); API_1(x); z=x+g(y);
API_2(z);)

The inter-API relations cannot be accurately analyzed
from its use in general consumer code using a conventional
intra-procedural data flow analysis, because if we enter a
fuzz input without considering inter-procedural flow, the
developer’s intended data flow may be neglected (e.g., in

32633

var a=3; → b=func(a); → Target_API(b);. Conversely, rely-
ing only on intra-procedural analysis will impose the assign-
ment of the fuzz input to b instead of a). Alternatively, the
relation can be inferred via argument type aliases between the
APIs [16], but it cannot be assured whether they refer to the
same object. In these cases, the resulting fuzz driver cannot
reflect the inter-API relationships between the parameters.
D3: Inferring intra-API semantics. In addition, the
relationships between the arguments within the same API
should be considered. The most common considerations include
those regarding arrays:

• array↔length: an input parameter indicates the length of
another input array parameter;

• array↔index: an input parameter is an index of another
array input parameter;

For instance, the first argument in the Mat class constructor
(line 14 in Figure 1) demands correspondence between the
size of the arrays stated in the second and fourth argument. If
these were randomly fuzzed, the driver would mostly either
result in a segfault (size argument > actual size of array)
or wasting effort on mutating unused fuzz input bytes (size
argument < actual size of array). If the type-based pattern
matching approach of Fudge [12] is applied on this example,
it would be unable to match the logical relation between the
first and fourth parameters, because such a relation is not
explicitly exposed in the consumer code. Although, the value-
set approach of FuzzGen [16] can perform analyses on the
internals of the APIs, they are prone to failure in representing
the relationship between the three arguments because it infers
the type and value-set of the individual arguments rather than
the relationship between the arguments.
D4: Detrimental input for fuzzing. Although not considered
API misuse, we have observed that there are some arguments
that, when fuzzed without care, degrade fuzzing performance.
For instance, if an argument is used for memory allocation or
loop count, large values frequently result in out-of-memory or
timeout errors respectively. Although these are not spurious
crashes, they often similarly hinder further fuzzing exploration.
Proposed approach. To maintain valid argument semantics,
UTOPIA preserves the original data flow in UT and finds
where to inject fuzz input (i.e., fuzz target) and how they
should be mutated (API attribute) through static analysis. To
recognize the suitable locations to inject the fuzz input, we
defined a new concept of root definition that is an assignment
statement in which a variable is defined with a constant. By
assigning fuzz input at only root definitions, we can preserve
the original data flow and naturally adhere to the existing inter-
API semantics because the flow between the parameters of
APIs is uninterrupted. In Figure 1, UTOPIA delivers fuzz input
to the third argument rawdata in the writeRaw() API (line 31)
by assigning fuzz input to the root definition (line 23) where
each element of the vector rawdata is assigned with constant.

Upon locating the root definitions, UTOPIA injects the fuzz
input according to the attributes analyzed by UTOPIA for the
API parameters that receive their values from the root definition

(static analysis of APIs determining the attributes is detailed
in §III-B). For instance, in the constructor for the Mat class (line
18 in Figure 1), UTOPIA infers the array↔length relation, and
assigns the size of dim (Array attribute) to the first argument
(ArrayLength attribute) on line 18 and each element with fuzz
input on line 17.

C. Unique Challenges of Utilizing Unit Tests

However, simply feeding the UTs as consumers to existing
approaches would not appropriately work because the use of
UTs introduces its own set of challenges (UT-C).

1) UT-C1: Analysis hindrance. As depicted in Figure 3, UT
frameworks such as gtest are generally defined by complex
class hierarchies intermixed with interfaces through which the
user-defined test cases are indirectly invoked. However, static
analysis, the primary tool for prior work [12, 16], suffers
from imprecision in case of analysis across indirect calls
which is further compounded by each consecutive call. The
complexity of the class hierarchies increases the challenges
to trace the control flows and identify the user-defined test
code. Therefore, the drivers generated from UT by existing
approaches may cause spurious crashes, requiring manual fixes
before meaningful fuzz testing can be conducted. Alternatively,
dynamic analysis [18] could manage the indirect calls, but it is
unsuitable because of over-approximation and the difficulties
in correlating semantics between argument values.

2) UT-C2: UT framework diversity. The diverse set of
UT frameworks further amplifies the issues in UT-C1 as the
aforementioned issues must be addressed according to the
operation of each framework. If this is addressed in a labor
intensive manner, such as manually fixing each generated driver,
the wide applicability for UT would be infeasible.

3) UT-C3: Assertion. Since the assertions in UTs not only
check for critical states but may also be used to verify results
against specific test values defined in UT, one must consider
how they would affect fuzzing and handle the assertions
appropriately as feeding fuzz input into arguments could easily
trigger assertion conditions. If all assertions are ignored, the
nullptr checks on pointers will make spurious crashes for
dereferencing nullptrs much more likely. However, if all
assertions are enforced, the test value checks will often block
fuzz drivers from executing beyond the assertion statement.

Proposed approach. To surpass the challenges of working
with UTs, UTOPIA supplements static analysis with an under-
standing of idioms used across the UT frameworks such as
common setup and macro functions for individual test bodies.
This enables UTOPIA to sidestep the challenges of analyzing
complex relationships within the UT frameworks, such as
following indirect calls, and also lightens the effort needed to
accommodate new UT frameworks. Considering the duality of
assertions, we provide the results of exploring several basic
strategies to help developers make choices when generating
fuzz drivers.

42634

(a) UT F/W Structure Analysis (b) API Attribute Analysis (c) Fuzz Target Selection (d) Fuzz Driver Syntehsis

Test F/W
SetUp()::Suite1

TestBody()::Suite1_TC1
- API_func1()
- ...

...
TestBody()::Suite1_TCM

TearDown()::Suite1

exported APIsLibrary
Binary

Library Code
API_func1((par0) {
*par0 = { ... };
...

}
API_func2(par1, par2) {
...
malloc(par2);
...

}

Attribute: Output
Attribute: AllocSize

TearDown()::Suite1
SetUp()::Suite1

TestBody()::Suite1_TC1
. . .
size = 5;
. . .
API_func1(&ctx);
. . .
API_func2(ctx, size);
. . .

RootDefinition:2nd arg of API_func2

Fuzz Driver

- size = 5;

+ size = fi1 & MASK;
API_func1(&ctx);
. . .
API_func2(ctx, size);

corpus

fi1:5

Inject Fuzz Input: fi1
Mutation Strategy: Limit range

convert

extract

Figure 2: The workflow of UTOPIA to generate fuzz drivers.

libgtest testcode
class UnitTest

Run()

class UnitTestImpl

test_cases : vector<TestCase*>

RunAllTest()

class TestCase
test_info_list : vector<TestInfo*>

Run()

class TestInfo

Run()

MakeAndRegisterTestInfo()

int main(...) {
RUN_ALL_TESTS()

}

class tesing::Test

class Suite1::Test
virtual void SetUp();
virtual void TearDown();

class Suite1_TC1::Suite1
virtual void TestBody();

static ::testing::TestInfo *
const_test_info()

(1)

(2)

(3)

(4)
(5)

(6)
(7)

(8)

Actual implementation of TestBody()

TEST_F(Suite1, TC1) {
ASSERT_EQ(API_1(x, y), NULL);

}

Direct Call

Indirect Call

Inheritance

Developer implemented test code

Figure 3: Hierarchy and Flow of Test Code. Simplified inheritance
hierarchy of google test framework and the control flow of an
implemented UT. Others including assertions and test statistics are
omitted for brevity.

III. DESIGN

UTOPIA analyzes both UT and target library code to
transform UT into effective fuzz drivers. The overall workflow
of UTOPIA is illustrated in Figure 2. (a) UTOPIA utilizes
the architectural nature of the UT framework so that it is
only required to analyze developer implemented test functions
instead of analyzing across the entire UT framework. (b)
UTOPIA analyzes the library to identify attributes of API
arguments. (c) Thereafter, UT analysis is performed to identify
root definitions in which we can inject fuzz input without
affecting valid API usage semantics. (d) Finally, driver synthesis
is performed based on the analysis results.

In this section, for clarity, our explanations assume Clang
and LLVM analyses, but our core ideas would be extendable
to other similar analysis methods as well.

A. Structure Analysis of UT Frameworks

In general, UT frameworks provide APIs that allow users
to define three functions for each test case: pre-test, test,
and post-test. In case of googletest (gtest) in Figure 3, the
UT framework exposes SetUp(), TestBody(), and TearDown()
interfaces (respectively, pre-test, test, and post-test) to each test
class. These functions implicitly ensure that 1) each test case is
only reliant on those functions and 2) test cases are independent
of each other. UTOPIA utilizes these features to construct valid
API sequences by explicitly calling these functions in order
within a fuzzing cycle to ensure the independence of each
fuzzing cycle.
Clang AST Matchers. To locate these functions, UTOPIA
utilizes clang AST Matchers to find functions with patterns
on the abstract syntax tree (AST). For instance, in Figure 3,
UTOPIA seeks a CXXRecordDecl with testing::Test class as
a CXXCtorInitializer in its child nodes. Thereafter, SetUp
can be found by searching a CXXMethodDecl with its name is
SetUp within the found CXXRecordDecl. The other methods are
similarly found. To support a new UT framework, developers
only need to specify patterns for the test functions that
the developers wrote, which minimizes engineering effort to
support diverse UT frameworks.

B. API Attribute Analysis

UTOPIA considers all exported functions of a library as
exposed APIs and analyzes each API argument to determine
its attributes. UTOPIA performs inter-procedural analysis by
leveraging def-use chains starting from API arguments to de-
termine five attributes: Output, FilePath, AllocSize, LoopCount,
and Array↔Length(index).
Def-Use (DU) chain. As the attribute analysis focuses on
argument-perspective internal behavior within the library, the
analysis follows any uses of an argument along its DU chain,
which connects definition and all uses (and uses of uses, thus,
chain) reachable from that definition, to make sure whether
the argument has certain properties. In addition, when a use is
a value operand of a store instruction, the value and pointer
operands are considered as if they have def-use relation to
follow every possible use of the stored value. Notably, the
store instruction in LLVM IR comprises value operand and

52635

pointer operand, suggesting that the value indicated by a value
operand is stored into a pointer operand.
Inter-procedural analysis. UTOPIA basically performs analy-
sis per function. If a use in a DU chain indicates an argument
of a subroutine call, UTOPIA first resolves the analysis on
the callee function and then merges the analysis results of
the corresponding argument of the callee function. In case of
external function calls, UTOPIA also supports the loading of
pre-analyzed results of other libraries to obtain more precise
results regarding external functions.
Analysis of Output. The output attribute indicates that an
argument is used for outputting some value to the caller of the
API. It is helpful to identify such parameters because fuzzing
such parameters wastes the invested effort. In LLVM IR, the
store instructions are used for writing value to memory and
load/gep instructions are used for reading value from memory.
Therefore, the output attribute can be conveniently identified
by checking if the memory to which an argument points is only
used by store instructions without any load/gep instructions.
Analysis of FilePath and AllocSize. The FilePath attribute
represents arguments used as file paths in file operations,
and the AllocSize attribute indicates arguments dictating the
allocation size. It is useful for identifying FilePath, as one
should fuzz the contents of the file indicated by the path
rather than the file path string itself as fuzzing the string
would mostly end in access errors. Upon identifying AllocSize,
UTOPIA can abstain from inputting large fuzzing values that
may trigger out-of-memory errors, which are not spurious
crashes per se but are detrimental to the overall fuzzing run. As
the processes required for identifying these attributes are mostly
identical, we explain them at the same time. To identify them,
we marked each property to well-known function parameters
such as libc functions or compiler intrinsic functions. For
instance, we mark FilePath attribute to the first parameter
of fopen and mark AllocSize attribute to the first parameter
of malloc or related compiler intrinsic functions. Thereafter,
the marked attributes are propagated to any definition through
inter-procedural analysis. To this end, if any uses of an API
argument includes a marked parameter, the argument can be
analyzed to contain attributes.
Analysis of LoopCount. The LoopCount attribute indicates
that the argument determines the counter of a loop within the
library. The identification of such arguments enables UTOPIA
to avoid inputting large fuzzing values that may cause timeouts
owing to repeating loops. If a compare instruction is detected
within the DU chain of an argument, UTOPIA uses the LLVM
LoopAnalysis to check whether the instruction is used as an
exit condition of the loop. Upon detecting any condition, the
argument can be deemed to contain the LoopCount attribute.
Analysis of Array↔Length. The Array and Length attributes
each indicate arguments used as an array and the length of
the array within library code, respectively. To identify these
attributes, UTOPIA primarily utilizes gep instructions that
access an memory with an index. A gep instruction comprises
a base memory operand and an index operand. An argument is

1 define void @array(i32* %0, i32 %1) {

2 %3 = icmp sgt i32 %1

3 br i1 %3, label %4, label %6

4 4:

5 %5 = zext i32 %1

6 br label %7

7 6:

8 ret void

9 7:

10 %8 = phi i64 [0, %4], [%10, %7]

11 %9 = getelementptr inbounds i32, i32* %0, i64 %8

12 %10 = add nuw nsw i64 %8 1

13 %11 = icmp eq i64 %10, %5

14 store i32 10, i32* %9

15 br il %11, label %6, label %7

(1) Pointer type

(2) DU chain

(3) The operand position
tells %0 is array

(1) Loop analysis reveals
the exit condition of this loop

(2) Identified unchanged
variable (=Length)

(3) UD Chain

(4) UD Chain

(5) Indentified index parameter

Array attribute
analysis sequence

ArrayLen attribute
analysis sequence

Figure 4: Analysis example. A simplified LLVM IR that has array
and length arguments. LLVM loop analysis is used to identify that
%8 is an induction variable in line 11 and the line 13 is the exit
condition of the loop.

considered to bear the Array attribute if a use in its DU chain
follows the base address of a gep instruction. After discovering
an Array attribute, UTOPIA starts to analyze for the Length
attribute only if 1) the gep instruction is in a loop and its
index operand is an induction variable, 2) exit condition is
present in the loop, and 3) exit condition remains unchanged
throughout the loop. For example, the 10 in a while(i<10)
statement would fulfill these requirements. If such an operand
exists, UTOPIA starts to check whether the operand comes
from another argument of the API by tracing its Use-Def (UD)
chain, the reverse concept of DU chain. The analysis flow of
UTOPIA is illustrated in Figure 4.

C. Fuzz Target Selection

This section describes the procedure followed by UTOPIA to
determine fuzz targets, locations in which UTOPIA may insert
fuzz input to appropriately fuzz library API call parameters (i.e.,
root definitions of parameters). In principle, this is basically
done by finding the root definitions that define the values
ultimately flowing into API parameters.
Root definition analysis. Root definition analysis is a
backward data flow analysis to obtain definitions whose r-
value is a constant value. Assuredly, constant values cannot
be derived from any other variables that may be used in
other statements in test code. Thus, the transformation of
these constant values in root definitions enable UTOPIA to
inject fuzz input without violating test code semantics. In
particular, UTOPIA performs root definition analysis from all
API arguments to gather every possible fuzz target candidate.
An example of root definition analysis for all API parameters
is presented in Figure 5. ’int A = 10’ is the only identified root

62636

void test {

int A = 10; //RootDef for all API arguments

API_1(A)

API_2(A)

int B = A * 10;

int C = API_3(B);

API_4(C)

}

Followed

by Use-Def chain
by Relative definition
by Out-to-in relation

Figure 5: Analysis flow of root definition, Only ‘int A = 10;‘ is
considered as valid fuzz input, which ensures the injection of fuzz
input without violation of any API relations.

definition for all API arguments. The variations in the r-value
of the root definition influence every API argument, while
maintaining the relationships between the APIs. To determine
all the possible definitions influencing the API parameters, the
analysis is control flow sensitive and inter-procedural to find
all possible definitions that can affect API parameters.
Inheritance of parameter attributes. To determine mutation
strategies, UTOPIA must pair root definitions with the attributes
of corresponding parameters. This is conducted by assigning
parameter attributes to the root definitions that are used by the
parameters directly. For instance, in Figure 5, Root definition
‘int A = 10‘ bears attributes of the first parameter of API_1
and API_2. However, the attributes of the first parameter of
API_4 is not inherited, because the root definition is not directly
used for that parameter. During the root definition analysis, the
tracing target is changed from C to B by ‘int C = API_3(B)‘.
Inference of external functions. UTOPIA traces all input
arguments if the tracing target is defined by external functions to
find any possible definitions. UTOPIA utilizes output attributes
analyzed by §III-B to identify input arguments only.

D. Fuzz Driver Synthesis

Fuzz input assignment. UTOPIA transforms each test case
into a fuzz driver by replacing the identified fuzz targets with
fuzz input assignment statements. Among the identified fuzz
targets, UTOPIA excludes certain root definitions if its source
code cannot be modified or an appropriate method cannot be
determined for generating fuzz inputs. The criteria for exclusion
is as follows:

• Root definitions in header files or out of project files
• Constants determined at compile time (e.g., sizeof(int))
• Assignments with return or output parameter of an external

function (non-input parameter)
• Root definitions with nullptr assignment because we do

not know how to initialize the object referenced by a
pointer

• Function pointer parameters
• Values dependent on ignored values (e.g. ArrayLen of

ignored Array)
• File proprieties (e.g., Read, Write)

After exclusion, UTOPIA replaces the r-values of the assign-
ment statements with the fuzz input according to their data
types and mutation strategies. UTOPIA adheres to the following
mutation strategies to comply with API semantics:

• FilePath: Pass fuzz input to the content of a file instead
of the file path.

• AllocSize: Limit the range of fuzz input for an argument
used as memory allocation size.

• LoopCount: Limit the range of fuzz input for an argument
used as an exit condition of a loop.

• Array: Fuzz as an array (i.e. create an array and assign
fuzz input to each element of the array).

• ArrayLength/Index: Limit the fuzz input to one less than
the size of the created array.

Fuzzing loop construction. UTOPIA constructs an entry func-
tion that is called once in each fuzzing loop. The entry function
receives fuzz input from fuzzing engines (e.g., libfuzzer), and
calls the identified and transformed test functions in order (e.g.,
SetUp(), TestBody() and TearDown() in gtest) to execute the
fuzz driver with assigned fuzz input.
Initial seed extraction. Additionally, a simple yet effective
procedure UTOPIA performs during UT analysis is to acquire
the initial seed corpora embedded in the test code, which are
the constant values in root definition statements identified as
fuzz targets. These initial seeds allows the fuzz drivers to reach
deep program state during the early stages of fuzzing and
assists the fuzzers to expand their exploration into deep paths.

IV. IMPLEMENTATION

In this study, we implemented UTOPIA with 39K lines of
code (excluding comments or blank lines), among which 37K
LoC are C/C++ code to analyze libraries and unit tests and
generate fuzz drivers, whereas the remaining 2K LoC are
Python scripts to support and streamline the entire analysis
and generation process. The code for analysis and fuzz driver
synthesis leverages the analysis framework of LLVM/Clang and
the conversion of the UT code into fuzz drivers is implemented
with Clang ASTMatcher and Libtooling.

V. EVALUATION

We evaluate UTOPIA by stating the following questions:
• Automation. How many UT-based projects can be auto-

matically converted by UTOPIA, and how effective are
the synthesized fuzz drivers compared to UT? (§V-A)

• Fuzzing effectiveness. How effective are the UTOPIA-
generated fuzz drivers compared to the manually written
drivers in terms of code coverage and bugs? (§V-B, §V-C)

• Comparison. How does UTOPIA compare with the exist-
ing approaches for the automatic fuzz-driver generation?
(§V-E)

• Design decisions. How many spurious crashes are reduced,
what is the best strategy for handling assertions, and how
well UTOPIA analyzes API attributes? (§V-D)

Experimental setup. UTOPIA is separately evaluated with
25 OSS libraries from Table I that implement UTs with

72637

gtest or boost and 30 Tizen projects implementing the UT
with Tizen TCT [5]. We made different settings for each
experimental purpose, and the detailed settings are described in
each subsection. In common, each fuzz driver ran as a single
libFuzzer worker process in a Docker container installed with
Ubuntu 18.04 base image. The container ran on Intel Xeon
Gold 6258R processor (112 cores at 2.70GHz) and 251GB
RAM.

A. Automatic Generation of Fuzz Drivers

UTOPIA could successfully synthesize the fuzz drivers from
the test cases (TCs) for all 25 OSS projects that it attempted
to generate without human intervention (listed in Table II).

Setup. We selected six popular projects from Github, 11
included in the benchmark suite of ossfuzz, seven external
libraries that Android relies on, and one external project used
by Tizen. They represent projects with various sizes (a few
thousands to a few millions LoC), building systems (e.g., cmake,
bazel, and ninja), and unit testing framework (e.g., gtest and
boost). For all 25 projects, each UTOPIA-generated fuzz driver
ran for 1 per-core hour.

Generated fuzz drivers. Among 5,523 TCs in the projects, we
excluded 1,039 TCs implemented with the macro functions not
handled in our prototype implementation, i.e., those other than
TEST and TEST_F (for gtest) or BOOST_AUTO_TEST_CASE_FIXTURE
(for boost) (Oths. in Table II). For the remaining 4,484 TCs,
UTOPIA removed 1,769 TCs (39% of the inspected 4,484 TCs)
according to our exclusion criteria in the process of determining
root definitions. In total, UTOPIA automatically produced all
2,715 fuzz drivers (100%) from the feasible candidate TCs
in these projects. For interested readers, we share the ratio of
characteristics within the removed TCs in Table VIII of the
Appendix.

The generated fuzz drivers included 2,292 functions that
the libraries export, and directly provided the fuzz input to
56% of the used functions in libraries, implying that the other
half of the library functions are utilized to construct a proper
preliminary state for testing.

vs. unit testing. The UTOPIA-generated fuzz drivers increase
the unique testing coverage of these projects by 1.4-58.2% in
comparison to the corresponding TCs in one per-core hour of
fuzzing execution of each generated driver. The coverage of
each fuzzer is significantly increased up to 60 times (column
MG in Table II). These findings highlight two interesting aspects
of UTOPIA: 1) automatically expanding the testing capability
of unit tests and 2) TCs are designed to check what developers
expected to be correct, but fuzzers focus on what they didn’t
expect. Both approaches are nicely bridged by UTOPIA.

Generation time. It took a total of 15.7 per-core hours to
analyze 4,484 TCs and libraries and generate 2,715 fuzz drivers
from them, suggesting that we can produce a piece of fuzz
driver source code every 15 per-core seconds. More specifically,
it took 15.6 per-core hours to analyze and 6 per-core mins to
synthesize the corresponding fuzz drivers, yet it is negligible

in comparison to their building time (2 hours on our 112-core
machine).
Crashes. We manually reviewed a total of 1,167 unique crashes
that occurred during the fuzzing with this setup. Among the
unique crashes, i.e., groups of crashes distinguished by the
uniqueness of stack traces included in the crash reports, 109
were bugs, 572 were normal crashes due to timeout, oom, and
abort, and 486 were spurious crashes caused by API misuse.
The normal crashes occurred even if the correct API usage is
respected, and degraded the fuzzing execution performance.
75% of the normal crashes resulted from timeout, mostly
because the testing of such APIs involved a long process
duration (e.g., image data processing). 43% of spurious crashes
were caused by the attributes that UTOPIA does not cover and
33% were caused by analysis failure. However, no spurious
crash was caused by the incorrect sequences. The detailed
statistics of spurious crashes are stated in Table X in the
Appendix.

B. Fuzzing effectiveness

The effectiveness of fuzzers can be directly explained by the
number of discovered bugs. UTOPIA discovered a total of 123
bugs: 109 bugs in a short period of trial run for a few days
with the generated 2,715 fuzz drivers for 25 OSS projects, and
14 bugs from about two weeks with 2,411 fuzz drivers for 30
Tizen native libraries.

Note that UTOPIA used exactly the same API sequences in
TCs but still discovered new bugs, some of which have existed
for years. This illustrates the benefit of UTOPIA’s approach:
leveraging TCs to find new classes of bugs that the developers
missed to capture during testing.
Setup 1 (25 OSS projects). The evaluation is based on the
results from §V-A & Table II.
Setup 2 (30 Tizen projects). We generated the fuzz driver
source code with UTOPIA for 30 projects from Tizen which
were adopted by the Tizen community [4]. Due to their internal
policy, we could not share the details of the drivers and only
evaluated their fuzzing results.
Tizen evaluation. The fuzzing run for the Tizen libraries
produced fewer bugs than the shorter trial run for the OSS
libraries, primarily because Tizen performs rigorous inspection
based on the static analysis on the new code commit. Even
so, UTOPIA found 14 confirmed bugs in 11 of the 30 Tizen
libraries tested, some of which had been latent for up to 7
years. All bugs were fixed prior to the version 6.5 release of
Tizen.

Table IX in the Appendix lists the details of the Tizen bugs. It
is notable that, despite the project policy requiring developers
to test their own code with at least 80% of test coverage,
including tests for error cases, most of the bugs found in Tizen
resulted from missing validations, such as nullptr checks and
return checks. As test code are susceptible to developer’s bias,
UTOPIA can act as a good complement as it can fuzz test what
the developers may have overlooked.

82638

Target Library Unit Tests UTOPIA-Generated Fuzz Drivers

Name SR LoC BS #eFn TF Cov. TcCov. #TC
Analyzed Test Cases Functions Time(sec)

Cov./UCov AG/MG #UC (S/N/B)
#Oths. #Ign. #Gen. #tested #w/input AT GT

Node.js O 3M gn 3,065 G 11.8% 11.5% 124 0 83 41 (100%) 63 24 1,158 21 13.6%/ 3.1% 1.2/ 2.0 7 (4/1/2)
libaom O 363K cm 5,065 G 51.5% 48.4% 682 531 36 115 (100%) 109 98 18,290 7 54.6%/ 6.2% 1.0/ 37.5 65 (27/18/20)
assimp O 356K gn 5,055 G 45.5% 23.9% 449 0 199 250 (100%) 96 56 1,019 7 36.3%/ 13.9% 1.3/ 6.5 133 (35/42/56)
libvpx O 248K cm 1,446 G 47.6% 27.7% 373 315 18 40 (100%) 42 32 4,522 6 34.3%/ 6.5% 1.1/ 2.0 28 (18/8/2)
tesseract-ocr O 158K cm 3,650 G 62.4% 57.1% 477 165 72 240 (100%) 339 187 2,294 66 59.9%/ 2.9% 1.0/ 3.2 138 (81/48/9)
openh264 O 92K cm 1,523 G 61.3% 33.6% 320 21 186 113 (100%) 133 94 4,521 8 34.3%/ 0.8% 1.0/ 1.3 82 (63/13/6)
libphonenumber O 53K cm 510 G 65.2% 63.7% 324 0 78 246 (100%) 152 97 4,675 9 65.2%/ 2.3% 1.0/ 3.0 50 (19/29/2)
wabt O 47K cm 1,034 G 24.9% 24.6% 190 0 110 80 (100%) 61 40 430 2 26.3%/ 1.8% 1.1/ 2.3 65 (27/36/2)
leveldb O 21K cm 397 G 87.1% 86.0% 218 0 43 175 (100%) 92 51 1,001 12 85.3%/ 1.0% 1.0/ 4.0 87 (25/61/1)
libhtp O 20K gn 386 G 73.6% 73.3% 339 3 0 336 (100%) 191 141 490 99 78.0%/ 5.8% 1.1/ 4.9 52 (21/29/2)
jsonnet O 13K cm 98 G 35.9% 35.9% 45 0 0 45 (100%) 6 4 16 2 41.3%/ 5.3% 1.2/ 14.9 3 (3/0/0)
uriparser G 8K cm 42 G 90.5% 88.7% 92 0 10 82 (100%) 50 50 80 2 92.1%/ 5.1% 1.0/ 14.2 10 (8/0/2)
mediapipe G 225K bz 2,237 G 47.0% 37.5% 524 4 321 199 (100%) 226 66 6,787 12 38.7%/ 1.3% 1.1/ 1.6 187 (57/130/0)
filament G 64K nj 5,948 G 32.8% 25.0% 292 0 170 122 (100%) 219 92 4,576 20 27.7%/ 2.7% 1.1/ 3.4 116 (19/97/0)
muduo G 16K cm 359 B 15.3% 9.9% 30 0 25 5 (100%) 11 5 32 1 11.0%/ 1.1% 1.3/ 1.3 0
vowpal_wabbit G 81K cm 1,383 B 20.3% 14.8% 224 0 155 69 (100%) 64 46 1,968 3 16.4%/ 1.6% 1.1/ 1.5 39 (23/13/3)
ledger G 51K cm 32 B 9.3% 9.3% 17 0 0 17 (100%) 32 10 410 1 10.5%/ 1.1% 1.2/ 1.6 11 (2/8/1)
cpuinfo A 423K cm 66 G 54.2% 15.6% 142 0 136 6 (100%) 1 1 2,068 6 16.2%/ 0.6% 1.0/ 2.3 1 (1/0/0)
minijail A 16K gn 162 G 54.1% 47.9% 189 0 30 159 (100%) 102 60 767 31 39.6%/ 1.3% 1.2/ 22.0 5 (4/1/0)
pthreadpool A 12K cm 54 G 69.3% 69.3% 291 0 1 290 (100%) 24 24 317 4 74.7%/ 5.4% 1.1/ 4.5 0
cpu_features A 6K cm 36 G 51.5% 9.43% 31 0 27 4 (100%) 5 3 23 11 9.6%/ 0.2% 1.2/ 1.7 0
puffin A 5K cm 92 G 83.6% 66.3% 44 0 17 27 (100%) 34 21 122 1 71.5%/ 5.2% 1.1/ 60.6 28 (19/8/1)
bsdiff A 4K gn 137 G 57.2% 43.4% 66 0 42 24(100%) 34 19 207 11 44.3%/ 2.0% 1.1/ 4.2 10 (8/2/0)
sfntly A 23K cm 897 G 48.7% 48.2% 23 0 7 16 (100%) 192 44 431 2 49.3%/ 1.4% 1.1/ 1.1 31 (13/18/0)
snappy T 6K gn 46 G 75.9% 75.9% 17 0 3 14 (100%) 14 12 112 1 79.5%/ 3.7% 1.1/ 2.3 19 (9/10/0)

Total - 53M - 33,720 - - - 5,523 1,039 1,769 2,715 (100%) 2,292 1,277 15.6hr 6min - - 1,167
(486/572/109)

Table II: Projects used for evaluation and results for UTOPIA-generated fuzz drivers. Target Library: SR = Source repository (O:OSSFuzz /
G:GitHub / A:Android / T:Tizen), BS = Build system (cm:cmake / gn:gnu make / nj:ninja / bz:bazel), eFn = Exported functions in a library,
Unit Tests: TF = Testing framework (G:gtest / B:boost), TcCov. = Region coverage of the target library with the test cases that fuzz drivers
are generated from (region coverage: measured with a tool from clang++ [9]), TC = Total number of test cases, UTOPIA-Generated Fuzz
Drivers: Oths. = TCs implemented with macro functions other than TEST, TEST_F or BOOST_AUTO_TEST_CASE_FIXTURE, Ign. =
TCs ignored by UTOPIA based on the exclusion criteria, AT = Per-core time to analyze library and unit test code, GT = Per-core time to
generate source code, UCov = Unique coverage of UTOPIA compared with TC Cov., AG = The ratio of the coverage with the aggregation of
unique regions across all fuzzers to that of TCs from which the fuzzers were made, MG = The individual maximum growth ratio of a single
fuzzer compared to execution with the initial seed, UC = Total unique crash (unique crashes: crash groups identified by uniqueness of stack
traces included in crash reports), S = Spurious unique crashes due to API misuses, N = Normal crashes with timeout/oom/abort, B = Crashes
reported after manual review.

20,000

30,000

40,000 35.5k (36.0%)

15.3k (15.6%)re
gi

on
s

libvpx

20,000

30,000

40,000
40.7k(49.5%)

21.7k(26.4%)

libaom

6,000

8,000

10,000

12,000

10.1k(13.7%)

5.7k(7.7%)

Node.js

0 25 50 75 100

12,000

14,000

16,000

18,000

11.3k(34.3%)

16.2k(49.5%)

hours

re
gi

on
s

openh264

0 25 50 75 100

1,600

1,800

2,000

1.7k(41.4%)

1.9k(45.5%)

hours

jsonnet

0 25 50 75 100

20,000

30,000
30.4k(59.3%)

13.8k(26.9%)

hours

tesseract
UTopia
OSSFuzz

Figure 6: Coverage over 100 per-core hours of fuzzing UTOPIA generated drivers and OSS-Fuzz drivers. The graphs show the average and
95% confidence interval of the coverage increase of 10 repeated fuzzing runs (measured in regions [9]). The total fuzzing resource consumed
by each approach for each library is matched (i.e., each fuzz driver is allotted 100/number_of_drivers hours on a single CPU). The details on
the drivers of each approach is reported in Table III.

OSS evaluation. UTOPIA discovered 109 bugs in 14 projects
among 25 OSS projects (see, Table II). We manually analyzed
all unique crashes found by UTOPIA, and reported them to
the maintainers after review. Of the 109 bugs reported so far,
56 were confirmed or fixed by the maintainers. Similar to
Tizen, these bugs were missed because of the existing areas
overlooked by TCs within the input space of their API.

Fuzzing internal APIs. UT code often directly tests the

internal APIs of libraries as developers may want to assure the
correct operation of library internals. UTOPIA can naturally
enable fuzz testing of these internals by transforming such UT
code. However, depending on the API, the bugs found from
such fuzzing may not be regarded as meaningful. In particular,
the project maintainers did not accept 5 out of 109 reported
bugs in the 25 projects, because the crashes were considered
non-security issues. For instance, UTOPIA detected a bug in a

92639

Library
OSS-Fuzz UTOPIA

#Drivers (APIs) Coverage #Drivers (APIs) Coverage Unique
Coverage

libvpx 2 (7) 15.6% 40 (43) 36.0% 23.4%
libaom 1 (5) 26.4% 115 (109) 49.5% 27.8%
Node.js 2 (32) 7.7% 42 (60) 13.7% 6.2%
openh264 1 (7) 49.5% 113 (132) 34.3% 10.3%
jsonnet 1 (5) 45.5% 45 (6) 41.4% 3.2%
tesseract 1 (9) 26.9% 240 (356) 59.3% 33.6%

Table III: Comparison of UTOPIA and OSS-Fuzz drivers. Results
are averaged over 10 fuzzing runs of 100 per-core hours.

Project Approach API Sequence

(Coverage) Original UT or Driver name

openh264

OSS-Fuzz
WelsCreateDecoder → Initialize → SetOption

→ DecodeFrameNoDelay → Uninitialize → WelsDestroyDecoder

(48.4%) decoder_fuzzer

UTOPIA
WelsCreateDecoder → Initialize → SetOption
→ WelsDecodeBs → Uninitialize → WelsDestroyDecoder

(44.4%) DecoderParseSyntaxTest-DecoderParseSyntaxTestAll

jsonnet

OSS-Fuzz
(Note: We use jsn for short form of jsonnet.)
jsn_make → jsn_import_callback → jsn_evaluate_snippet

→ jsn_realloc → jsn_destroy

(46.1%) convert_jsonnet_fuzzer

UTOPIA
jsn_make → jsn_evaluate_snippet → jsn_realloc
→ jsn_destroy

(40.6%) JsonnetTest-TestEvaluateSnippet

The red underlined text highlights different APIs between paired sequences
and the blue bold text shows additional APIs in a sequence.

Table IV: API sequences and coverage (24 cpu-hours) for driver pairs
with similar API sequences from OSS-Fuzz and UTOPIA.

libnode API, a C++ implementation of Node.js. However, the
API was not considered as an attack surface, because it was
not reachable from the interface of Node.js script as detailed
in §-A in the Appendix. Nonetheless, such findings can be
meaningful toward the reliability and robustness of a library.
Certain maintainers, such as those of Node.js and tesseract,
advised us to submit the patches to improve the robustness of
their implementation1 and accepted our patches.

C. Comparison to OSS-Fuzz drivers

We compared the sets of the fuzz drivers generated by
UTOPIA to the manually written fuzzers for six OSS-Fuzz
projects and shared the results in Table III and Figure 6. For
interested readers, the coverage comparison results of 24 hour
fuzzing runs of the remaining seven OSS-Fuzz projects are
listed in Table XI in the Appendix. As our initial tests with
these remaining seven did not provide any distinct insight than
the six projects we cover below, we omitted their details for
brevity.
Setup 1. For this evaluation, we examined the achieved code
coverage of OSS-Fuzz and UTOPIA for over 100 hours of
fuzzing, showing the effectiveness of the automatic approach
of UTOPIA in comparison with hand-tuned, best performing
fuzzers. Note that the UTOPIA driver sets for the libraries were
the same as those listed in Table II and that we matched the
total consumed resource for each approach to 100 per-core
hours (e.g., for Node.js, OSS-Fuzz’s two drivers each ran for 50
hours on single CPUs, while UTOPIA’s 41 drivers each ran for
about 2.4 hours on single CPUs). For the OSS-Fuzz drivers, we

1https://github.com/tesseract-ocr/tesseract/issues/3591

also followed the fuzzing scripts found in the OSS-Fuzz project
in order to run their drivers at their full potential (e.g., providing
their intended initial corpora and keyword dictionaries when
available). The coverage for plotting Figure 6 is aggregated by
time (e.g. libvpx has 40 generated drivers, so we aggregated
the results from generated inputs of the first 1.5 seconds of
each driver, totaling at one minute, for the results of the first
minute of fuzzing the set of drivers).

Code coverage. In regards of code coverage, UTOPIA’s fuzz
drivers outperformed 4 out of 6 projects by an average of
20.5%, and underperformed (average 9.7%) on 2 projects. The
coverage gain of UTOPIA could be considered mainly due to
it fuzzing more number of APIs. Even so, in Figure 6, we can
observe a continuous increase in UTOPIA’s coverage over time,
indicating that UTOPIA’s large number of tested APIs provide,
beyond their initial impact on coverage, valid opportunities
in further exploring each library. One interesting point is that,
as observed in Table III, even when UTOPIA underperformed
in terms of total explored coverage, it still explores unique
regions in the library that are not reached by the OSS-Fuzz
drivers.

Taking a deeper look into generated drivers. To compare
the quality of UTOPIA generated drivers to that of manually
written ones, we have searched for drivers with matching API
sequences. Though there were no exact matches, two pairs
of drivers had close resemblance. The API sequence of each
driver and the coverage after 24 hours of fuzzing is given
in Table IV. As observed, UTOPIA slightly underperformed in
comparison to the OSS-Fuzz drivers in terms of coverage. The
reason behind this phenomenon is the same as why UTOPIA
underperformed in the overall coverage of openh264 and
jsonnet as well: UTOPIA provided fuzz input to additional API
arguments which, in these cases, contribute little to coverage
exploration.

Setup 2. Drivers of OSS-Fuzz and UTOPIA with comparable
API sequences to each other are run for 10 trials of 24 per-core
hours per fuzz driver (Table IV).

For openh264, the primary reason for this is that several
UTs mocked the internal logic of the existing APIs to directly
test the inner APIs without initializing the objects required
for calling the outer API. This can impair UTOPIA drivers as
UTOPIA may detect the mocked assignments as fuzz targets
for the internal APIs and attempt to fuzz them. It would miss
out on exploring other APIs that are supposed to be called
alongside the inner API when the outer API is called. For
example, in our compared drivers (Table IV), WelsDecodeBs()
called in the UTOPIA driver is actually one of the APIs called
within the DecodeFrameNoDelay() API called from the OSS-
Fuzz driver. In the case of jsonnet, the fundamental reason is
that jsonnet APIs accept a string argument which they mainly
use for error logs. While the OSS-Fuzz driver is optimally
written to ignore this argument, the automatically generated
UTOPIA drivers have no way of determining the usefulness of
fuzzing such arguments and end up putting effort in fuzzing
the string as well as the argument fuzzed in the OSS-Fuzz

102640

driver. In our compared drivers, jsonnet_evaluate_snipper()
accepts such an argument which is given an empty string by
the OSS-Fuzz driver and fuzz input by the UTOPIA driver.

Note that, though not as optimal as the OSS-Fuzz drivers,
UTOPIA still successfully located and fuzzed the same argu-
ments that were ultimately fuzzed by OSS-Fuzz, implying that
the automatically generated drivers are capable of providing
meaningful fuzz tests.
API coverage. Additionally, we have investigated how many
APIs found in the handcrafted fuzzers were covered by UTOPIA
because APIs selected for manual fuzzers can be thought as
what developers were interested in testing. Among the 65 APIs
in the manual fuzzers, UTOPIA covered 60. It means 92% of
interesting APIs were covered by UTOPIA while it also covers
an additional 646 APIs in test code. Even though UTOPIA did
not cover all the interesting APIs, its overall coverage was
mostly higher than manual drivers and it could explore many
unique regions of code owing to the opportunities found in
fuzzing the additional APIs.

D. Evaluating UTOPIA’s Design Decisions

Setup. Generated drivers of UTOPIA satisfying certain criteria
(according to each evaluation) were executed for 10 trials of
24 per-core hours per fuzz driver (Table V) or 12 per-core
hours per fuzz driver (Figure 7).
Mitigating undesirable crashes. We experimented to in-
vestigate the influence of the analyzed attributes ArrayLength,
AllocSize, and LoopCount, which were obtained through library
analysis, on the reduction of spurious crashes and crashes
caused by the detrimental fuzz input. For evaluation, we
selected fuzz drivers from three projects that tested the API
arguments with the three attributes by removing one of the
properties for comparison. As listed in Table V, the settings
without either the ArrayLength or AllocSize attribute resulted
in a drastic increase in crashes by up to two orders of magnitude
with marginal increase in coverage. On the other hand, without
the LoopCount attribute, no differences could be observed in
crashes, but the exec/sec performance degraded significantly up
to 40%. For the assimp project, the coverage and exec/sec were
reduced to 37% and 2%, respectively compared to including
the attribute, when the AllocSize attribute was removed. In case
of the libhtp project, the crash increased by 645 times without
the ArrayLength attribute with poor coverage and exec/sec
performance. Moreover, the omission of the LoopCount in
leveldb reduced the exec/sec performance to 41%.
Assertion handling. To improve the performance of fuzzing,
UTOPIA utilizes the semantic idioms of UT’s in generating
fuzzing drivers. More specifically, we evaluated seven strategies
for handling UT assertions: i) early termination that rejects to
proceed further execution on the condition of check failure, ii)
nop that ignores all assertions, iii-v) nopNs that are derivatives
of nop), vi) nullptr check only that maintains only assertions
checking for nullptr, and vii) dependent object check only
that maintains assertions checking for objects on which the
subsequent APIs are dependent. As depicted in Figure 7, the

fuzzing results of three libraries exhibited the most significant
deviation between the strategies. In particular, the fuzz drivers
for libhtp and assimp had many assertions on nullptr check,
and the fuzz drivers for uriparser had many assertions to
compare the return values of functions to specific values.
Overall, ignoring assertion logic is detrimental to fuzzing
performance, because both coverage and execution per time
suffers significantly. Although maintaining only nullptr checks
could be more beneficial in certain cases, the other strategies
displayed comparable performance in terms of coverage or
better performance in terms of execution.

Statistics of attribute analysis. We evaluated the adequacy of
the API attribute analysis of UTOPIA for identifying the inter-
dependencies between the parameters of an API and the impact
of individual parameters on the internal behavior of the API.
Accordingly, we selected the top-most projects (assimp, libhtp,
leveldb) with such attributes that are used for crash mitigation
evaluation; the remaining projects briefed in Table VI were
randomly selected. The accuracy of the attribute analysis is
detailed in Table VI. All the analyzed attributes were correctly
identified (nearly 100% of precision), but UTOPIA missed to
identify half of the ArrayLeng/Index attributes (45% of recall).
These false negatives were estimated to account for 33% of
the aforementioned spurious crashes in §V-A.

E. Issues in Comparison to existing tools

The most appropriate method for comparing the merits
of UTOPIA against prior work would have been to generate
fuzz drivers using the same consumer. Unfortunately, neither
Fudge [12] nor Intelligen [29] is publicly available. Although
it is reported that the fuzz drivers originally generated by
Fudge made their way into OSS-Fuzz, aside from what was
reported in their paper, there is no public source that could be
reviewed to determine which OSS-Fuzz fuzzer had benefited
from Fudge. FuzzBuilder [17] could not be used to perform a
fair comparison as the quality of its drivers heavily depend on
manual configurations to specify unit test functions, and target
API arguments. FuzzGen [16] opened up its code but due to its
PoC nature, its generated drivers for UT code could not offer a
meaningful comparison despite our efforts in performing post-
generation manual fixes to make the drivers work. The main
issues that prevented FuzzGen from generating workable drivers
from the UT code was 1) analysis limitations discussed in §II-A
and §II-C, and 2) FuzzGen’s implementation decision to only
rely on primitive types and library defined compound types
prevents it from properly navigating through UT defined classes
which breaks its analysis and leaves incomplete fuzz drivers. We
share the details of our experience with the FuzzGen PoC code
in §-B in the Appendix. Alternatively, we could compare similar
UTOPIA drivers against publicly available drivers of previous
work as we conducted earlier against OSS-Fuzz in Table IV.
Nonetheless, we could not find any combination of UTOPIA
drivers that would provide meaningful comparison (similar API
sequences) against the public drivers.

112641

0 4 8 12

4,000

6,000

8,000

hours

re
gi

on
s

assimp

0 4 8 12

1,200

1,400

1,600

1,800

hours

libhtp

0 4 8 12

2,000

3,000

4,000

5,000

hours

uriparser

0 4 8 12

0

100

200

hours

ex
ec

s/
se

c

assimp

0 4 8 12

0

1,000

2,000

3,000

hours

libhtp

0 4 8 12

5,000

6,000

7,000

8,000

hours

uriparser

eterm nullchk objdepend nop nop25 nop50 nop75

Figure 7: Comparison by strategies with handling assertions: i) early termination (maintain all asserts), ii) no operation (ignore all asserts),
iii-v) nopN (N percent of nop operation from the beginning of test sequence), vi) nullptr check only (maintain asserts that check nullptr),
and vii) dependent object check only (maintain asserts that check objects on which the subsequent APIs are dependent). A single fuzz driver
per project was selected and ran 10 times for 12 per-core hours.

Project Region Coverage Crash Count Execution Count
ALL w/o Loop w/o Alloc w/o Arr ALL w/o Loop w/o Alloc w/o Arr ALL w/o Loop w/o Alloc w/o Arr

assimp 174 160 64 174 114,790 141,859 641,105 355,891 6,544 7,098 126 179
(100%) (92%) (37%) (100%) (1x) (1.2x) (5.6x) (3.1x) (100%) (108%) (2%) (3%)

libhtp 2,719 2,719 2,709 1,236 2,298 2,267 413,048 1,480,745 48,672 26,505 40,088 51,346
(100%) (100%) (100%) (91%) (1x) (1x) (180x) (645x) (100%) (105%) (82%) (54%)

leveldb 144 144 118 144 0 3,181 462,948 375,085 31,492 12,979 31,615 18,715
(100%) (100%) (82%) (100%) - - - - (100%) (41%) (100%) (59%)

Table V: Crashes, coverage, and execution performance of fuzzing with three attributes (all), without AllocSize (w/o Alloc), without
ArrayLength (w/o Arr), and without LoopCount (w/o Loop) attribute. Each fuzzer ran 10 times for 24 per-core hours without an initial seed
corpus to eliminate the seed effects.

Project FilePath AllocSize LoopCount Array ArrayLength

G P R G P R G P R G P R G P R

libhtp - - - 27 .96 1.0 10 1.0 1.0 48 1.0 .88 42 1.0 .41
assimp 2 1.0 .5 4 1.0 1.0 3 1.0 1.0 34 1.0 .94 3 1.0 1.0
jsonnet - - - 4 1.0 1.0 - - - 3 1.0 .67 - - -
Node.js - - - 2 1.0 1.0 1 - .0 5 1.0 .4 3 1.0 .33
snappy - - - - - - - - - 10 1.0 .5 8 1.0 .38
ledger - - - 1 1.0 1.0 1 1.0 1.0 2 1.0 1.0 1 - .0
leveldb 3 - .0 2 1.0 1.0 3 1.0 1.0 4 1.0 1.0 2 1.0 1.0
libphonenumber - - - - - - 7 1.0 1.0 4 1.0 .75 3 1.0 .67

Total 5 1.0 .2 40 .98 1.0 25 1.0 .96 110 1.0 .84 62 1.0 .45
G: Ground truth, P: Precision, R: Recall

Table VI: Precision and recall of analysis for each attribute.

VI. DISCUSSION & LIMITATION

A. Remaining Sources of Spurious Crashes
For practical purposes, a fuzz driver should be able to strike

a balance between state exploration (i.e., input mutation) and
avoiding spurious crashes (i.e., respecting UTs). As both these
goals are not easily complementary, UTOPIA made several
design decisions based on our experiments; however, there is
still scope for improvement:
Non-conventional relations. Our analysis can recognize five
common relation and several argument types in §III-B and
§III-C, but non-conventional or highly customized usages can
not be understood for generating fuzz drivers. For instance,
a char* type can be used as a format specifier in printf()-
like functions, but UTOPIA would likely select the parameter
as a fuzz input along with the previously used strings as a
seed corpus. Any mutated inputs that include additional format
specifiers like %n would yield in spurious crashes.
Insufficient error handling. As the UT code is used only for
testing, developers tend to hard-code non-essential parameters
and provide a fewer number of checks for error handling

unlike production code. For instance, developers commonly
skip checks for correct construction or proper allocation of an
object, which is sensible in the context of UTs using static
parameters. However, if such a UT becomes the basis for a
fuzz driver, any erroneous cases would lead to spurious crashes.
Although UTOPIA strives hard to recognize such cases (e.g.,
embracing nullptr checks), several observed cases could have
been avoided if an experienced developer provided a proper
check for handling errors in UTs.

B. Limitation in UTOPIA’s Analysis

Root definition for file paths. In certain test cases, the file path
strings are created through multiple string operations. In this
case, if UTOPIA creates a file for fuzzing and assigns its path
at the root definition of the string (prior to all the operations),
the actual path accessed by an API would be incorrect. To
avoid this, UTOPIA heuristically assigns the generated fuzz
file path to the closest string assignment/operation preceding
the API. However, due to this heuristic, UTOPIA could fail in
reflecting the original UT logic in the generated fuzz driver as
the file path assignment location is not a root definition.

122642

Constant value aliases in UT logic. When test cases directly
use constant values instead of variables, UTOPIA might struggle
to generate suitable drivers. For instance, let us assume a
simple test case: int i=5; ASSERT_EQ(decode(encode(i)),5);
API(i);. UTOPIA would generate a driver by changing the
assignment to int i=fi; but it will be unable to test the API()
with values other than fi=5 due to the assertion. We would want
to ignore the assertion in this case but, as we have evaluated
in §V-D, we cannot simply opt to automatically ignore
assertions as it could deteriorate the fuzzing performance.
Another approach might be to handle same valued variables
and constants as aliases and change the test code as follows:
int i=fi; ASSERT_EQ(decode(encode(i)),fi); API(i);.
But this would require additional careful analysis as values
coincidentally sharing the same value being treated as aliases
can lead to a new separate class of spurious crashes (e.g., in
the above case, if an unrelated array is accessed by arr[5],
aliasing all constant 5s with i and fuzzing them could lead to
an out-of-bounds access). We leave analyzing and handling
such cases as future work.

VII. RELATED WORK

UTOPIA is closely related to recent studies conducted on
fuzzing. Recently, several state-of-the-art fuzzers have been
proposed in the literature to effectively and efficiently detect
bugs. AFL [27] is a representative feedback-guided, grey-box
fuzzer. To get feedback, it measures the achieved edge coverage
via instrumentation. The feedback is used to evaluate how good
an input is. It scores each input to reuse the best one for the
next run, and mutate the selected input based on the genetic
algorithm. This process is iterative and this simple strategy
works very effectively. Therefore, several improvements [8,
11, 13–15, 19–22, 22–24, 26] have been introduced to date
on seed scheduling, input mutation, and feedback mechanism.
However, most have focused on fuzzing programs that use files
or commands as input [10].
Library fuzzing. Unlike end-to-end fuzzing, library fuzzing
requires in-depth knowledge of a target library such as correct
API usage and prerequisites for API calls when implementing
fuzz drivers that deliver fuzz inputs from a fuzzing engine
to API arguments. OSS-Fuzz [2], which mainly employs
libFuzzer [25], provides rewards to open source maintainers
when they implement fuzz drivers [3]. However, as fuzz drivers
typically require manual efforts, many open source projects
are yet to adopt fuzzing. FuzzBuilder [17], was proposed to
partially alleviate such manual effort by proposing a tool
that helps transforming UT into fuzz drivers. Though the
focus on UT conversion is similar to UTOPIA, as it requires
manual configuration to specify test functions and target API
parameters to generate fuzz drivers, the quality of the resulting
drivers heavily depend on the manual work. On the other hand,
UTOPIA enables automatic and reliable generation of fuzz
drivers by analyzing UTs, and aims to accelerate the adoption
of library fuzzing at a larger scale.
Automatic fuzz driver generation. A few auto-
mated fuzz driver generation approaches have been pro-

posed recently. Fudge [12] looks for buffer access
(uint8_t* data, uint32_t size) parameter signatures and
extracts dependent code lines to compose fuzz drivers. Fuz-
zGen [16] statically analyzes API dependency from consumer
code and merges them to have a long API call sequence for
a fuzz driver. Both work infer API usage mainly from the
consumer side, leading to invalid or less efficient fuzz drivers
(i.e., a higher chance of triggering spurious crashes). Hence,
Fudge needs humans in the loop to evaluate and update fuzz
drivers, and FuzzGen requires manual review process to repair
the generated drivers. Intelligen [29] selects a function that has
potentially dangerous operations (e.g., memory/pointer access)
to synthesize fuzz drivers. However, as it fails to consider API
relations, the generation fuzz drivers are far from complete.
Instead of inferring API relations, UTOPIA directly uses the
carved API call sequence from UT that is carefully written for
testing. This approach can greatly reduce the incorrectness of
synthesized fuzz drivers. As a result, UTOPIA’s approach is
much reliable and so applicable to a wide range of libraries in
various scales (see Table I).

Unlike these static approaches that analyze source code,
there exist two projects that attempt to infer API relation in
a dynamic manner. WINNIE [18] aims to fuzz closed-source
libraries on Windows via automatic fuzz driver generation
and fast-cloning of Windows processes. APICraft [28] targets
closed-source libraries of MacOS SDK. Both directly trace API
sequences during runtime by executing the target programs
(e.g., from manual dry run) and then, reuse the observed API
call sequences in generating new fuzz drivers. These dynamic
approaches are fundamentally inappropriate for large scale
adoption and push-button automation UTOPIA aims to achieve.

VIII. CONCLUSION

In this paper, we propose UTOPIA that automatically
generates fuzz drivers from available unit tests with no or
minimal human effort. It not only understands the semantic
constructs of the unit test frameworks, but also analyzes the
implementation of each library’s APIs under testing. As a result,
UTOPIA is able to produce numerous fuzz drivers with valid
API call sequences in a scalable manner. We show that UTOPIA
can be widely applicable by showing that UTOPIA successfully
generates fuzz drivers for 55 popular open-source projects.
Our evaluations shows that UTOPIA can achieve more code
coverage (average of 20.4%) in 4 out of 6 projects compared
to handcrafted fuzzers while containing interesting APIs for
developers. More importantly, UTOPIA found 123 new bugs
in 55 open source projects.

REFERENCES

[1] Cve-2019-5063. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-5063. Accessed: 2021-11-30.

[2] Oss-fuzz. https://github.com/google/oss-fuzz, . Accessed: 2019-02-03.
[3] Oss-fuzz integration rewards. https://google.github.io/oss-fuzz/getting-

started/integration-rewards/, . Accessed: 2021-11-23.
[4] Tizen fuzzing dashboard. https://dashboard.tizen.org/fuzz.code, . Ac-

cessed: 2021-11-16.
[5] Tizen compliance tests. https://docs.tizen.org/platform/compliance/

compliance-test, . Accessed: 2020-02-28.

132643

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5063
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5063
https://github.com/google/oss-fuzz
https://google.github.io/oss-fuzz/getting-started/integration-rewards/
https://google.github.io/oss-fuzz/getting-started/integration-rewards/
https://dashboard.tizen.org/fuzz.code
https://docs.tizen.org/platform/compliance/compliance-test
https://docs.tizen.org/platform/compliance/compliance-test

[6] Boost test library. https://www.boost.org/doc/libs/1_54_0/libs/test/doc/
html/index.html. Accessed: 2021-10-01.

[7] Google test. https://github.com/google/googletest.
[8] LAF-INTEL: Circumventing Fuzzing Roadblocks with Compiler Trans-

formations. https://lafintel.wordpress.com/.
[9] Region: The connected subgraphs of a control flow graph that has

exactly two connections to the remaining graph. https://llvm.org/doxygen/
RegionInfo_8h_source.html. Accessed: 2021-12-01.

[10] The art, science, and engineering of fuzzing: A survey. 2018.
[11] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz.

Redqueen: Fuzzing with input-to-state correspondence. In NDSS,
volume 19, pages 1–15, 2019.

[12] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux,
L. Szekeres, and W. Wang. FUDGE: Fuzz Driver Generation at Scale. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, page 975–985, 2019.

[13] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox
fuzzing as markov chain. IEEE Transactions on Software Engineering,
45(5):489–506, 2017.

[14] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 711–725.
IEEE, 2018.

[15] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. Collafl:
Path sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 679–696. IEEE, 2018.

[16] K. Ispoglou, D. Austin, V. Mohan, and M. Payer. FuzzGen: Automatic
Fuzzer Generation. In Proceedings of the 29th USENIX Security
Symposium (Security), pages 2271–2287, Boston, MA, Aug. 2020.

[17] J. Jang and H. K. Kim. Fuzzbuilder: automated building greybox fuzzing
environment for c/c++ library. In Proceedings of the 35th Annual
Computer Security Applications Conference, pages 627–637, 2019.

[18] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim. Winnie: Fuzzing
windows applications with harness synthesis and fast cloning. In
Proceedings of the 2020 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2020.

[19] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
pages 475–485, 2018.

[20] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu. Steelix:
program-state based binary fuzzing. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 627–637,
2017.

[21] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah.
{MOPT}: Optimized mutation scheduling for fuzzers. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 1949–1966, 2019.

[22] V. J. Manès, S. Kim, and S. K. Cha. Ankou: Guiding grey-box fuzzing
towards combinatorial difference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pages 1024–1036,
2020.

[23] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos.
Vuzzer: Application-aware evolutionary fuzzing. In NDSS, volume 17,
pages 1–14, 2017.

[24] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley. Optimizing seed selection for fuzzing. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pages 861–875, 2014.

[25] K. Serebryany. libFuzzer–a library for coverage-guided fuzz testing,
2015. https://llvm.org/docs/LibFuzzer.html.

[26] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su. Not All
Coverage Measurements Are Equal: Fuzzing by Coverage Accounting
for Input Prioritization. NDSS, 2020. doi: 10.14722/ndss.2020.24422.

[27] M. Zalewski. AFL: American Fuzzy Lop, 2014. http://lcamtuf.coredump.
cx/afl/.

[28] C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying, J. Wang,
and Y. Liu. APICraft: Fuzz Driver Generation for Closed-source SDK
Libraries. In Proceedings of the 30th USENIX Security Symposium
(Security 2021), pages 2811–2828, Aug. 2021.

[29] M. Zhang, J. Liu, F. Ma, H. Zhang, and Y. Jiang. Intelligen: Automatic
driver synthesis for fuzz testing. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 318–327. IEEE, 2021.

APPENDIX

1TEST(CodingPathSync, SearchForHbdLbdMismatch) {
2- const int count_tests = 10;
3+ const int count_tests = fi1;
4 for (int i = 0; i < count_tests; ++i) {
5 CompressedSource enc(i); // NB. forces count_tests to be mutated
6

7- Decoder dec_hbd(0);
8- Decoder dec_lbd(1);
9+ Decoder dec_hbd(fi2);

10+ Decoder dec_lbd(fi3);
11

12 // NB. a static loop variable, 3, is not chosen for mutation
13 for (int k = 0; k < 3; ++k) {
14 const aom_codec_cx_pkt_t *frame = enc.ReadFrame();
15 std::vector<int16_t> lbd_yuv = dec_lbd.decode(frame);
16 std::vector<int16_t> hbd_yuv = dec_hbd.decode(frame);
17

18- ASSERT_EQ(lbd_yuv, hbd_yuv);
19+ FUZZ_ASSERT_EQ(lbd_yuv, hbd_yuv); // NB. enable early

termination
20 }
21 }
22}
23

24+ DEFINE_PROTO_FUZZER(const mutation::APIArgument &mutation) {
25 /* NB. fi1 <- 0..9999 (loop variable).
26 fi2-fi11 are randomly generated based on their types */
27 /* NB. mutate the fields in 'aom_image_t' */
28+ fi4_field23 = mutation.fi4().field23().c_str());
29+ fi4.img_data_owner = mutation.fi4().field24();
30+ fi4.self_allocd = mutation.fi4().field25();
31+ fi4.img_data = fi4_field23;
32+ ...
33+ }
34

35const aom_codec_cx_pkt_t *ReadFrame() {
36 static const int kWidth = 128;
37 static const int kHeight = 128;
38

39 uint8_t buf[kWidth * kHeight * 3] = { 0 };
40

41- const int period = rnd_.Rand8() % 32 + 1;
42- const int phase = rnd_.Rand8() % period;
43- const int val_a = rnd_.Rand8();
44- const int val_b = rnd_.Rand8();
45+ const int period = fi5 % 32 + 1;
46+ const int phase = fi6 % period;
47+ const int val_a = fi7;
48+ const int val_b = fi8;
49

50 for (int i = 0; i < (int)sizeof buf; ++i)
51 buf[i] = (i + phase) % period < period / 2 ? val_a : val_b;
52

53- width_ = rnd_.PseudoUniform(kWidth - 8) + 8;
54- height_ = rnd_.PseudoUniform(kHeight - 8) + 8;
55+ width_ = rnd_.PseudoUniform(fi9 - 8) + 8;
56+ height_ = rnd_.PseudoUniform(fi10 - 8) + 8;
57

58- aom_image_t img;
59- aom_img_wrap(&img, format_, width_, height_, 0, buf);
60- aom_codec_encode(&enc_, &img, frame_count_++, 1, 0);
61+ aom_image_t img = fi4;
62+ aom_img_wrap(&img, format_, width_, height_, fi9, buf);
63+ aom_codec_encode(&enc_, &img, frame_count_++, fi10, fi11);
64

65 aom_codec_iter_t iter = NULL;
66 const aom_codec_cx_pkt_t *pkt = NULL;
67 do {
68 pkt = aom_codec_get_cx_data(&enc_, &iter);
69 } while (pkt && pkt->kind != AOM_CODEC_CX_FRAME_PKT);
70 return pkt;
71}

Listing 1: A diff between the unit test of libaom and the generated
fuzz driver of UTOPIA.

142644

https://www.boost.org/doc/libs/1_54_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_54_0/libs/test/doc/html/index.html
https://github.com/google/googletest
https://lafintel.wordpress.com/
https://llvm.org/doxygen/RegionInfo_8h_source.html
https://llvm.org/doxygen/RegionInfo_8h_source.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Library Description Status

1 assimp Infinite loop Confirmed
2-13 assimp Access pointer without nullptr check 12 Reported

14-24 assimp Free memory that is not located on the heap 11 Reported
25-44 assimp Access pointer without nullptr check 20 Patched
45-52 assimp Free memory that is not located on the heap 8 Patched
53-56 assimp OOB write due to wrong type conversion of size 4 Patched

57 ledger Divide by zero Patched
58 libaom OOB write due to wrong type conversion of size Fixed
59 libaom OOB write due to wrong type conversion of size CVE-2021-30474
60 libaom Access pointer without nullptr check CVE-2021-30475
61 libaom Access pointer without nullptr check Fixed

62-66 libaom Access pointer without nullptr check 5 Reported
67, 68 libaom Divide by zero 2 Reported

69 libaom Free memory that is not located on the heap CVE-2021-30473
70 libaom Memory access w/o boundary check Fixed

71-74 libaom Memory access w/o boundary check 4 Reported
75 libaom Memory access w/o boundary check Patched
76 libhtp OOB write due to wrong type conversion of size Fixed
77 libhtp Memory access w/o boundary check Fixed
78 libphonenumber Access pointer without nullptr check Fixed
79 libphonenumber Memory access w/o boundary check Fixed
80 libvpx frees memory that is not located on the heap Fixed (Requested CVE)
81 libvpx Memory access w/o boundary check Fixed (Requested CVE)
82 Node.js Invalid format Reported

83-85 openh264 OOB write due to wrong type conversion of size 3 Reported
86 openh264 Access pointer without nullptr check Reported
87 openh264 Memory access w/o boundary check Reported
88 openh264 Memory access w/o boundary check Fixed
89 puffin Memory access w/o boundary check Reported
90 tesseract OOB write due to wrong type conversion of size Fixed
91 tesseract Access pointer without nullptr check Reported

92-94 tesseract Memory access w/o boundary check 3 Reported
95 tesseract Memory access w/o boundary check Confirmed
96 tesseract Memory access w/o boundary check Fixed
97 tesseract Memory access w/o boundary check Patched
98 uriparser Access pointer without nullptr check CVE-2021-46141
99 uriparser Access pointer without nullptr check CVE-2021-46142

100, 101 vowpal-wabbit Divide by zero 2 Fixed
102 vowpal-wabbit Infinite loop Reported
103 wabt Infinite loop Reported
104 wabt Memory access w/o boundary check Reported

Tizen
105 libtbm Access pointer without nullptr check Fixed
106 yaca Wrong type conversion of size Fixed
107 privilege-info Access pointer without nullptr check Fixed
108 libmm-fileinfo Memory access w/o boundary check Fixed
109 alarm-manager Access pointer without nullptr check Fixed

110, 111 context Missing exception handler 2 Fixed
112 context No check on the return value causing free arbitrary memory address Fixed
113 mediatool Memory access w/o boundary check Fixed
114 pkgmgr-info Access pointer without nullptr check Fixed

115, 116 system-settings Access pointer without nullptr check 2 Fixed
117 mime-type Missing exception handler Fixed
118 sensor Access pointer without nullptr check Fixed

Rejected by maintainers
R1 Node.js Fell into an infinite loop. Directly tested internal APIs Rejected
R2 leveldb Fell into an infinite loop. Directly tested internal APIs Rejected
R3 tesseract Memory access w/o boundary check. Directly tested internal APIs Rejected

R4, R5 libaom Memory access w/o boundary check. Directly tested internal APIs 2 Rejected
Confirmed: The maintainer confirmed the bug but it has not been fixed yet.
Rejected: The maintainer didn’t accept a report as a bug (e.g., API misuse).
Fixed: The maintainer accept a report as a bug and fix the reported issue.
Patched: The bug was also noticed and patched by maintainers before we reported the bug.

Table VII: Bugs in OSS discovered by UTOPIA.

152645

Acronym Description # Defs

OOS Assign statements in header files or out of project files 735
NP Null pointer is assigned 297

EO Assignment with return or output param
of an external function (no input param) 219

FP Type is a function pointer 168
CTC Constants determined in compile time 44

RI Values depend on ignored values
(e.g. ArrayLen of ignored Array) 8

Table VIII: Definitions in excluded test cases in 25 projects.

Root cause Detail Effect Cnt

Pointer access
w/o validation

No nullptr check SEGV 7

No check on
the returned error code SEGV 1

Inappropriate
type conversion

Array index conversion
from big unsigned integer
to signed negative integer

SEGV 1

Memory access
w/o boundary check

size argument with memcpy BoF 1

struct field used as index
of a fixed-sized array BoF 1

Missing
exception handler for an error thrown Abort 3

Table IX: Bugs in Tizen discovered by UTOPIA.

Cause Detail # Count (%) Description

API
semantic

Missed attributes 78 (33.3%) Related to the accuracy
of the static analyzer

Internal object 71 (30.3%)

If parameter is stored
in an internal object and
referenced by the other API,
UTOPIA does not cover

New type
of API attribute 30 (12.8%)

UTOPIA can be
covered later
Not implemented yet

Nested loop 10 (4.3%)

The input value used as
the loop count is too large
UTOPIA can adjust it
smaller the limit of value

Etc

Related UT code 29 (12.4%) UT misses
API call validation.

Bug 8 (3.4%) Suspected as a bug,
but haven’t reported yet

No analysis 8 (3.4%)
Not enough information
contained in the log
to find the root cause

Total 234 (100%)

Table X: Statistics of spurious crashes in 5 projects with most occured
(libaom/assimp/openh264/tesseract/wabt)

A. A bug in a libnode API

A UTOPIA-generated fuzz driver for libnode (C++ implemen-
tation of Node.js) tested the URL constructor with two string ar-
guments, "/\nStrace : \n" and "file : //1h\333\207eam‘,ar",
for input and base, respectively. The member context in class
URL is initialized during parsing base, thereafter, a member
path in context is accessed during the second parsing with
input. At that instance, SEGV was triggered because path
was set to nullptr during the first parsing.

Library
OSS-Fuzz UTOPIA

#Drivers (APIs) Coverage #Drivers (APIs) Coverage Unique
Coverage

assimp 1 (4) 6.5% 250 (97) 39.9% 33.8%
libphonenumber 1 (4) 28.9% 246 (143) 62.9% 37.7%
wabt 1 (1) 22.0% 80 (61) 25.5% 13.7%
leveldb 1 (15) 61.8% 175 (91) 85.3% 23.7%
libhtp 1 (27) 58.1% 336 (191) 78.0% 22.5%
uriparser 3 (17) 88.1% 82 (24) 92.4% 4.9%
muduo 1 (3) 4.9% 5 (13) 13.7% 9.8%

Table XI: Results of a single 24 hour fuzzing run of the remaining
seven libraries with OSS-Fuzz drivers alongside their UTOPIA
counterparts.

B. Generated drivers from FuzzGen PoC code

We had applied FuzzGen to the 40 UT of libvpx that UTOPIA
transformed into fuzz drivers. However, as this process required
several manual adjustments to fix various issues but did not
provide any meaningful results, we moved on from pursuing
this line. The details of the attempts are stated herein.
Manual fixes to enable FuzzGen for UT code analysis. For
the FuzzGen PoC code to be capable of analyzing the UT code,
we required to manually discover and disintegrate the header
inclusion loops within the gtest framework headers as FuzzGen
assumed no inclusion loops and was trapped in an infinite loop
in case of encountering one (as it performed simple text parsing
of the headers, #include guards do not prevent loops). This
seemed a minor implementation detail and a straightforward
fix, and thus, we applied the fix. Next, if we run FuzzGen after
breaking the loops, it determined only 2 of the 40 UT with root
functions worth analyzing. This is because FuzzGen rejected
the functions within anonymous namespaces, as normally those
would only have internal linkage and not be a root function
because they would not be externally visible. However, a UT
code employing UT frameworks may contain their test code
within anonymous namespaces to avoid name collisions with
other test code, while still being capable of exposing their code
for the UT framework to run via registration macros. This
appeared as an implementation detail that is specific to the UT
framework, and thus, it did not seem fair to write FuzzGen off
at this point. Therefore, to expose the test code to FuzzGen, we
moved all test-related functions out of anonymous namespaces.
Subsequently, FuzzGen could examine all 40 UT codes.
Generated fuzz drivers. Among the 40 UT code, FuzzGen
could extract API sequences from 26, However, it failed to
locate library API calls in 14 of them primarily because of the
cross-source file issue discussed earlier (D1 in §II-A). If we
generated fuzz drivers from each of the 26, only 6 could be run
with straightforward fixes guided by compile errors which we
determined could be considered as minor implementation issues
due to its PoC nature (missing header inclusions, incorrect
type casts, incorrect dereferences, etc.) Among the remaining
20, 13 required compile error fixes depending on conscious
decisions (decisions on the procedure of fixing missing call
parameters, resolving function pointers to functions within the
consumer code, fixing incorrect struct member analysis, etc.),
which we could not fix without affecting the capability of

162646

the resulting fuzz driver. In contrast, the other 7 of the 20
could be eliminated of compile errors but they suffered from
severe spurious crashes (owing to incomplete initialization or
invalid API sequences), which could not be fixed fairly without
affecting their capabilities. These errors mostly stemmed from
the implementation decision of FuzzGen in not considering
the consumer (in this case UT) that defined the compound
types into account during its consumer data flow analysis,
which breaks the related API call parameters in generated
drivers. Among the 6 executable fuzz drivers, unfortunately,
none were operation worthy as none of them had been generated
to receive a fuzzing input. This is because the analysis of
FuzzGen determined that the acquired APIs did not pose
arguments that could accept random values. This was because
FuzzGen could not observe any operations performed in the
def-use chains of the arguments within the library caused by its
incapability to resolve indirect calls within the APIs, where the
necessary operation statements indicating the arguments may be
fuzzed. Among the 26 generated drivers, only two drivers were
generated to accept fuzzing input but unfortunately, fixing them
required decisions, as discussed earlier, seemed beyond the
simple implementation. Thus resolving them would invalidate
our goal of fair comparison, because the resulting drivers could
manifest drastically different capabilities, depending on the
method of resolution.
Coalescing UT-based drivers. As the individual trans-
formation of consumer code into fuzz driver is not the
fundamental concept driving FuzzGen, we tried coalescing
the UT-based drivers and examined its coalescing of the API
sequence. In case of assuming all the errors to be fixed,
the above-mentioned procedure will succeed. However, after
examination, the results revealed that it would still yield
severe spurious crash because of invalid API usage. This was
because during the coalescence of the UT API sequences,
FuzzGen coalesced two vpx_codec_decode() calls where one
of the calls was from a loop of vpx_codec_dec_init_ver(),
vpx_codec_decode(), and vpx_codec_destroy() in order. As
the call graph (CG A) for this loop contains a backward edge
from vpx_codec_destroy() to vpx_codec_dec_init_ver(),
FuzzGen has rotated the graph after coalescing the
vpx_codec_decode() call and ends up with a sub-sequence in
the order of vpx_codec_decode(), vpx_codec_destroy(), and
vpx_codec_dec_init_ver(), which caused a spurious crash
because of attempting to dereference a member of an uninitial-
ized structure. In the entire coalesced graph, this subsequence
followed a vpx_codec_dec_init_ver() call from the other call
graph (CG B) of the coalesced vpx_codec_decode() calls but
the structure that is initialized by this initialization call is used
only by the subsequence of API calls from its own original call
graph (CG B) and not by the calls in the rotated sequence (CG
A), which does not help with the spurious crash. This issue is
acknowledged in the study proposing FuzzGen and a manual
fix can probably correct the coalesced sequence. However, this
would be detrimental to the scalability, if we considered this
approach for automatic fuzz driver generation.

172647

