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Abstract
Fuzzing has gained in popularity for software vulnerability
detection by virtue of the tremendous effort to develop a di-
verse set of fuzzers. Thanks to various fuzzing techniques,
most of the fuzzers have been able to demonstrate great per-
formance on their selected targets. However, paradoxically,
this diversity in fuzzers also made it difficult to select fuzzers
that are best suitable for complex real-world programs, which
we call selection burden. Communities attempted to address
this problem by creating a set of standard benchmarks to
compare and contrast the performance of fuzzers for a wide
range of applications, but the result was always a suboptimal
decision—the best performing fuzzer on average does not
guarantee the best outcome for the target of a user’s interest.

To overcome this problem, we propose an automated, yet
non-intrusive meta-fuzzer, called autofz1, to maximize the
benefits of existing state-of-the-art fuzzers via dynamic com-
position. To an end user, this means that, instead of spending
time on selecting which fuzzer to adopt (similar in concept to
hyperparameter tuning in ML), one can simply put all of the
available fuzzers to autofz (similar in concept to AutoML),
and achieve the best, optimal result. The key idea is to monitor
the runtime progress of the fuzzers, called trends (similar in
concept to gradient descent), and make a fine-grained adjust-
ment of resource allocation (e.g., CPU time) of each fuzzer.
This is a stark contrast to existing approaches that statically
combine a set of fuzzers, or via exhaustive pre-training per
target program—autofz deduces a suitable set of fuzzers
of the active workload in a fine-grained manner at runtime.
Our evaluation shows that, given the same amount of com-
putation resources, autofz outperforms any best-performing
individual fuzzers in 11 out of 12 available benchmarks and
beats the best, collaborative fuzzing approaches in 19 out
of 20 benchmarks without any prior knowledge in terms of
coverage. Moreover, on average, autofz found 152% more
bugs than individual fuzzers on UNIFUZZ and FTS, and 415%
more bugs than collaborative fuzzing on UNIFUZZ.

1autofz is available at https://github.com/sslab-gatech/autofz
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Figure 1: Performance of autofz and baseline fuzzers presented
with coverage ratio of fuzzing exiv2 and ffmpeg during 24 hours.
Each graph is generated with an arithmetic mean and 80% confidence
interval for 10 fuzzing rounds. Coverage ratio is a percentage of
branches explored by each fuzzer. We carefully selected two test
suites from Figure 3 to highlight the motivation of autofz.

1 Introduction

Complications in modern programs inevitably entangle
the manual analysis of software and further reduce the
chance of discovering software defects. To overcome this,
researchers and industry have conducted extensive studies on
discovering software vulnerabilities with automation, called
fuzzing [5, 33, 36]. Fuzzing generates input expected to
trigger the defects in the program with feedback retrieved
from multiple rounds of execution and monitors for any
anomalies. To enhance the performance of fuzzing, a great
deal of research using different techniques has been pro-
posed [1, 4, 6, 7, 9, 10, 18, 25–27, 29, 32, 39, 41, 43, 44, 48–
52]. As a result, fuzzing has demonstrated its effective-
ness in disclosing vulnerabilities from off-the-shelf bina-
ries [15, 21, 40, 45, 52]. Motivated by convincing empirical
evidence for the practicality of fuzzing, Google [19, 20] and,
recently, Microsoft [35] have deployed scalable fuzzers.

However, the remarkable enhancement and diversity of
fuzzers create a selection burden, paradoxically, that re-
quires another significant engineering effort to select the best-
performing fuzzer(s) per target (similar in concept to hyper-
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parameter tuning). Note that fuzzer selection is a dominant
factor that contributes to vulnerability detection and its effi-
ciency. As shown in Figure 1, the outcome significantly varies
depending on which fuzzer is selected. For example, with the
same amount of resources, Redqueen outperforms Radamsa
by more than 10 times in fuzzing exiv2 (left graph).

A handful of research efforts have tried to mitigate the se-
lection problem [28]. Fuzzing benchmarks [13, 16, 22, 24,
30, 34, 37] enumerate well-suited fuzzers for each benchmark
target. The evaluation of the benchmark helps users to un-
derstand which fuzzers are favorable for fuzzing different
types of binaries. Recently, collaborative fuzzing [11, 23, 54]
has showcased that cooperating different combinations of
fuzzers sometimes outperforms individual fuzzers thanks to
their corpus sharing. However, this still imposes the burden of
selecting what fuzzers to put into an ensemble. Moreover, the
selection of fuzzers generally requires significant computing
and human resources because it relies on static information.

Unlike previous works, autofz automatically deploys a
set of fuzzer(s) per workload, not per program. The goal of
autofz is to completely automate the selection problem via
the dynamic composition of fuzzers as a push-button solution.
Therefore, when end users select a set of baseline fuzzers,
autofz automatically devises the best performance utilizing
runtime information.
autofz is largely motivated by the following observations:

1) No universal fuzzer invariably outperforms others.
As shown in Figure 1, a particular fuzzer cannot persis-
tently achieve optimal performance independent of the work-
load. For example, LearnAFL is demonstrated to be the best-
performing fuzzer for fuzzing the ffmpeg binary. However,
when the target is changed to exiv2, LearnAFL is relegated
to sixth place, which shows the lack of consistency in the per-
formance of fuzzers against different binaries. Unfortunately,
this inconsistency is not uncommon [30, 34]. Therefore, to
achieve better performance, significant engineering effort is
required to handpick the fuzzers whenever the target binary
is changed or a new fuzzer is introduced.

2) The efficiency of each fuzzer is not perpetual through-
out. As shown in Figure 1, initially, Angora significantly
outperforms the others in fuzzing the exiv2 binary. However,
LAF-INTEL and Redqueen come from behind and take the
lead after about two hours. We call this rank inversion. Note
that another inversion occurs after 12 hours have elapsed.
LAF-INTEL initially slightly outperforms Redqueen, but
Redqueen becomes the best in the end result. Moreover, we
found that rank inversion occurs more frequently when seed
synchronization is introduced to share the interesting input
among multiple fuzzers (§6.8). This result indicates that stick-
ing to the initially chosen fuzzer during the entire execution
cannot achieve optimal performance.

3) Naive resource allocation results in inefficiency. Unfor-
tunately, all collaborative fuzzing approaches have focused

only on selecting the best combination of fuzzers and running
the fuzzers assigned with equally partitioned resources. How-
ever, in addition to fuzzer selection, the resource distribution
among the selected fuzzers can severely affect the perfor-
mance of fuzzing. To achieve better results, the performance
of each fuzzer should be assessed and considered to distribute
resources among the selected fuzzers.
4) Randomness in fuzzing prevents reproductions. More
important, note that this trend will not invariably be captured
in different fuzzing executions because fuzzing is inherently
a random process. Therefore, even though experts put a lot
of effort into locating the best combinations of fuzzers and
associated guidance information such as appropriate time to
switch fuzzers and resource allocation, this statically analyzed
information may not be consistent across subsequent fuzzing
runs, even for the same target binary. Consequently, statically
prearranging those configurations might result in losing the
benefits of promptly dealing with a different workload with
most suitable fuzzers.

2 Our Approach: Using Trend Per Workload

Given the aforementioned challenges, timely locating the
best performing fuzzer(s) is non-trivial, as the workload
changes during the fuzzing execution. In this paper, we pro-
pose autofz, an automated meta-fuzzer that outperforms the
best individual fuzzers in any target without implementing
any particular fuzzing algorithm. The key idea of autofz is
to dynamically deploy a set of, or possibly all, of fuzzers
along with efficient utilization guidance, such as resource
allocation, per workload, not per program. We call the run-
time progress of baseline fuzzers a trend. Specifically, autofz
switches fuzzers and adjusts resources as the trend changes,
instead of adhering to a particular set of fuzzers, during an
entire execution.
autofz splits its execution into two different phases, prepa-

ration and focus phases (Figure 2), to monitor the trend
changes. The preparation phase captures the runtime trend of
target binaries and deploys fuzzers that illustrate strong trends.
Based on the captured trend and the guidance information,
the focus phase tries to achieve the optimal performance with
the selected fuzzers. Also, the dynamic resource adjustment
of autofz utilizing guidance information allows it to enjoy
the best of both an individual fuzzer and a combination of
different fuzzers. On the one hand, it can prioritize a particular
fuzzer, significantly outperforming others by allocating all
resources to the selected fuzzer. On the other hand, autofz
takes advantage of multiple fuzzers by distributing resources.

More important, unlike previous approaches that utilize
benchmark and offline analysis to select well-suited fuzzers
beforehand, autofz does not require significant engineering
effort or hindsight because it dynamically adopts the trends
and automatically configures the best fuzzer set at runtime.
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Therefore, autofz can devote additional resources that were
previously spent on offline analysis to the actual fuzzing cam-
paign. Moreover, such an approach bridges the gap between
developing a fuzzer and its utilization and provides unprece-
dented opportunities. For example, even non-expert users,
without any knowledge about the selected fuzzers and target
binaries, can achieve better fuzzing performance on any target
program. Furthermore, we integrate autofz into Fuzzer Test
Suite and UNIFUZZ, which support the most efficient and
widely used fuzzers. Therefore, autofz can readily benefit
from any fuzzer that will be integrated into those benchmarks.

We evaluate autofz on Fuzzer Test Suite and UNIFUZZ
to demonstrate how autofz can efficiently utilize multiple
different fuzzers. Our evaluation demonstrates that autofz
can significantly outperform most of the individual fuzzers
supported by the benchmarks regardless of the target binaries.
Moreover, we expand autofz to support a multi-core envi-
ronment and compare it with collaborative fuzzing, such as
ENFUZZ and CUPID. We found that the resource allocation
strategy and fine-grained fuzzer scheduling of autofz help it
to achieve better performance in most of the target binaries.
This paper makes the following main contributions:

• A dynamic fuzzer composition per workload. Ex-
isting approaches aim to find a static group of fuzzers
that work best for each target program. However, careful
consideration of per-workload dynamic trends allows
autofz to avoid benchmark-based decisions biased to a
specific target program. Therefore, autofz does not need
to utilize one static group of fuzzers during the entire
fuzzing campaign. In essence, as well as consistently
selecting well-performing fuzzers, autofz can give a
second chance to fuzzers that have not been selected but
turn out to be suitable for a particular workload later.

• Automatic and non-intrusive approach. For end
users, autofz is a push-button solution that automati-
cally selects the best suitable fuzzers for any given tar-
get. For fuzzer developers, each fuzzer can be integrated
to autofz with minimal engineering effort: 126 LoC
changes on average are required in the 11 fuzzers we
support initially (§5). We call autofz a meta-fuzzer be-
cause it implements no fuzzing algorithm internally.

• Efficient resource scheduling algorithm. autofz mea-
sures the performance of individual fuzzers and effi-
ciently distributes computational resources to the se-
lected fuzzers. This helps autofz take advantage of the
strong trend of individual fuzzers while maximizing
the collaboration effects of multiple different fuzzers.
Moreover, autofz first highlights the resource schedul-
ing as another important factor affecting the efficiency of
the collaboration. The collaboration effect can be maxi-
mized when the resources are properly assigned among
the selected fuzzers.

3 Related work

Fuzzing benchmark. The lack of metrics and representa-
tive target programs in fuzzing research prevents their re-
sults from being reproducible, making it difficult for users
to decide which fuzzers are suitable for fuzzing specific tar-
get programs. To mitigate this problem and provide a stan-
dardized test suite for various fuzzers, several fuzzing bench-
marks have been proposed. LAVA-M [16] provides a set
of benchmark programs that contain syntactically injected
out-of-bounds memory access vulnerabilities. The Cyber
Grand Challenge [13] benchmark consists of various target
binaries having a wide variety of synthetic software defects.
Fuzzer Test Suite (FTS) [22] evaluates fuzzers against real-
world vulnerabilities. FuzzBench [34] improved FTS and pro-
vide the frontend interface that allows smooth integration of
new benchmarks and fuzzers. Moreover, UNIFUZZ [30] and
Magma [24] provide benchmarks that have real-world vul-
nerabilities together with their ground truth to verify genuine
software defects from random software crashes.
Collaborative fuzzing. Collaborative fuzzing attempts to im-
prove the performance of a fuzzing campaign by orchestrating
multiple different types of fuzzers with seed synchronization
(see below). ENFUZZ [11] first demonstrated that deploying
various types of fuzzers together allows it to achieve better
code coverage. Recently, CUPID [23] showcased that offline
analysis with a training set, including empirically collected
representative branches, is able to predict target-independent
fuzzer combinations. In addition to fuzzer selection, COLLAB-
FUZZ [54] illustrates the importance of test case scheduling
policies in seed synchronization among the selected fuzzers.

ENFUZZ CUPID autofz

Number of selected fuzzers user-configured user-configured automatic
(2-4) (2-4) (1-11)

Fuzzer switches at runtime? ✗ ✗ ✓
Require prior knowledge? ✓ ✓ ✗
Cost of pre-training low high none
Target-independent decision? ✗ ▲ ✓
Cost of adding new fuzzers? ✓ ✓ ✗
Resource allocation static static dynamic
Resource distribution policy equal equal proportional

Table 1: Comparison of ENFUZZ, CUPID, and autofz.

Table 1 provides comparisons between autofz and collab-
orative fuzzing. The most noticeable difference is that autofz
utilizes the runtime information in the fuzzer selection and
resource adjustment, which results in subsequent differences.
Seed synchronization. Seed synchronization [19, 31, 52] al-
lows the sharing of interesting seeds generated by different in-
stances of the same fuzzer. Moreover, it helps various modern
fuzzers utilize multi-core processors [4, 7, 10, 29, 32, 50, 52].
It has been extended by [11, 54] to share unique test cases pro-
duced by different fuzzers. In essence, seed synchronization
introduces interesting inputs borrowed from other fuzzers to
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a particular fuzzer that consistently fails to make progress.
AFL bitmap. Various numbers of fuzzers adopt AFL
bitmap to measure the performance of their fuzzing tech-
niques [1, 7, 8, 29, 32, 50, 52]. Recently, Angora [10] and
AFL-Sensitive [46] adopted AFL bitmap in addition to call
contexts to implement a context-sensitive bitmap. In essence,
AFL bitmap records the path explored during a fuzzing cam-
paign, measuring code coverage [53]. Also, the bitmap can
be utilized as feedback to generate next round inputs.

4 Design

We explain the design of autofz to realize a meta-fuzzer that
allows fine-grained and non-intrusive fuzzer selection.

4.1 Overview of autofz
autofz aims to solve the selection problem. The key idea is
to dynamically deploy different sets of fuzzers per workload
based on the fuzzer evaluation at runtime. To this end, autofz
is composed of two important components, preparation phase
(§4.2) and focus phase (§4.3). In essence, the preparation
phase periodically monitors the progress of individual fuzzers
at runtime, called a trend, and utilizes it as feedback in its
decision to select the next set of fuzzers. Since the workload
changes during fuzzing (§6.8), the preparation phase helps
autofz adapt to the changed trend. Thanks to the preparation
phase, the focus phase can prioritize the selected fuzzers and
achieve an optimal result for any target binaries.

An overview of the two-phase design is presented in Fig-
ure 2. For a fair trend comparison among the baseline fuzzers,
autofz synchronizes the seeds of all fuzzers in every round of
the preparation phase ( 1 ). Also, it assigns the same amount
of resources to all baseline fuzzers. Then, each fuzzer takes its
turn to run in a very short time interval until it encounters exit
conditions ( 2 , 3 ). The details of the exit conditions are de-
scribed in §4.2. Then, autofz utilizes the evaluation result of
the baseline fuzzers, AFL bitmap, to measure the trend of all
fuzzers. Considering the trend, autofz selects a subset of the
baseline fuzzers along with the resource allocation meta-data,
deciding how each fuzzer should be prioritized against the
current workload ( 4 ). Note that this projection exploits the
fact that the depicted trend will be highly maintained during
the focus phase (see §6.8 for detailed analysis).

Based on the resource allocation data, autofz time-slices
allocated CPU core(s) ( 5 ). autofz can support single-core
and multi-core modes. Single-core mode allows autofz to be
integrated into the fuzzing benchmarks. As a consequence,
autofz can take advantage of all fuzzers supported by the
FTS and UNIFUZZ. Moreover, autofz supports multi-core
implementation (§5), and a different number of cores can
be assigned to each fuzzer based on the resource allocation
meta-data. Even though the preparation phase is designed to
evaluate baseline fuzzers, note that it can make some progress
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Figure 2: Architecture overview of autofz. F1 to Fn are the baseline
fuzzers. bitmap1−n captures the trend of the baseline fuzzers. The
darker yellow colored region indicates that more paths have been
discovered, which means strong trends. Based on the captured trends,
autofz allocates resources to the selected fuzzers (F1,F2,F3). For
example, F1 is allocated more resources compared with F3, presented
in time-sliced window T1 and T3 respectively.

because it actually runs the fuzzers. Therefore, seed synchro-
nization before a transition to the focus phase ( 6 , 7 ) allows
the selected fuzzers to share unique test cases produced during
the preparation phase.

Then, the focus phase runs the selected fuzzers one by
one following the resource allocation meta-data. Each fuzzer
is allocated a specific CPU time window to make progress
( 8 ). In the focus phase, the goal is to achieve maximum per-
formance, not a fair comparison. Therefore, after one fuzzer
executes, we synchronize the seeds to allow the remaining
fuzzers to explore undiscovered paths by other fuzzers. When
the entire allocated resource is consumed, it goes back to the
preparation phase and measures the trend ( 9 ). This flow of
execution between the two phases continues until the fuzzing
execution terminates (e.g., 24 hours). A formal definition of
the two-phase algorithm can be found in Algorithm 3.

AFL bitmap as a unified metric. Baseline fuzzers in autofz
internally use their original algorithms and metrics (e.g.,
context-sensitive coverage of Angora, block coverage of lib-
Fuzzer) to evaluate progress and memorize interesting seeds
and inputs during both phases. However, fairly measuring
their trends is difficult when the metrics are incompatible; it
is difficult to tell that Angora outperforms libFuzzer by com-
paring the context-sensitive coverage with block coverage.
Therefore, autofz adopts AFL bitmap as a unified criterion
to compare the progress of individual fuzzers (i.e., trends).
In detail, autofz runs the AFL-instrumented target with the
interesting input found by each individual fuzzer’s internal al-
gorithm to retrieve AFL bitmap of all baseline fuzzers during
preparation phases (refer to §5 for detailed implementation).
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4.2 Preparation Phase

Algorithm 1 Preparation Phase
1: Output
2: Exitearly← Did preparation phase exit early?
3: Tremain ← Remaining time of preparation phase
4: function DYNAMIC_PREP_PHASE(F, B, Tprep, θcur, C)
5: Tremain← Tprep
6: while Tremain > 0 do
7: Trun← min(Tremain,30)
8: if C == 1 then
9: for each f ∈ F do

10: RUN_FUZZER( f , Trun)
11: else ▷ multi-core implementation
12: RUN_FUZZERS_PARALLEL(F, Trun, C

|F| )

13: Tremain← Tremain−Trun
14: di f fpeak← FIND_BEST(B) - FIND_WORST(B)
15: if di f fpeak > θcur then
16: return (Exitearly = True, Tremain)

17: return (Exitearly = False,Tremain)

The goal of the preparation phase is to appropriately se-
lect the fuzzers that illustrate strong trends to help the focus
phase achieve maximum performance. We describe how the
preparation phase measures the trends of baseline fuzzers and
automatically selects a subset based on the trends. We also in-
troduce our novel approach, which tries to minimize the waste
of resources caused by unfruitful runtime evaluation. Last,
we explain how to efficiently distribute resources among the
fuzzers based on our novel strategy, which can take advantage
of both individual fuzzers and collaborative fuzzing.
Dynamic time in preparation phase. To adapt to the
changed workload and locate the best suitable fuzzers, the
preparation phase should evaluate all baseline fuzzers until
strong trends can be captured. However, if the time spent for
the preparation phase is too long, it can waste valuable re-
sources for the measurement. Although autofz can also lever-
age the preparation phase to make progress, it can achieve
better performance by prioritizing the selected fuzzers ear-
lier and longer. On the contrary, if the preparation time is
too short, capturing explicit trends of the fuzzers is difficult.
This makes autofz inappropriately prioritize a suboptimal set
of fuzzers by precipitously assigning valuable resources to
them. As a consequence, the trends cannot be sustained or
might be defeated by other fuzzers during the focus phase.
In summary, although the time allocated for the preparation
phase is essential to achieve optimal performance, there is no
oracle foretelling how long the preparation phase should per-
sist. Instead of introducing another manual effort to determine
the proper time budget, autofz introduces dynamic prepara-
tion time, inspired by an Additive-Increase/Multiplicative-
Decrease (AIMD) algorithm [12].
Early exit and threshold. To enable the dynamic time in

the preparation phase, autofz allows the preparation phase to
exit before the assigned time budget is completely consumed.
In essence, if autofz can locate the fuzzers that have strong
trends earlier, the remaining resources can be delegated to
the focus phase. However, to avoid the drawback of reducing
the preparation time, a premature decision, autofz requires a
clear indicator of strong trends. As described in Algorithm 2,
we utilize the peak difference of the bitmap (di f fpeak), the
difference between the best- and worst-performing fuzzer.
After the early exit condition is detected, autofz immediately
enters the focus phase. Note that the remaining time resulting
from an early exit will be delegated to the focus phase so that
it can execute the selected fuzzer longer and earlier. We intro-
duce a threshold, presented as θ, that allows the preparation
phase to exit early if the peak difference is greater than θ.

AIMD inspired threshold adjustment. The threshold can
be initially configured by users (θinit). However, autofz au-
tomatically adjusts the initial configuration and locates the
optimal threshold per target, which eliminates another manual
effort. As shown in Algorithm 3, the threshold is calibrated
at every round after preparation phases. In detail, if an early
exit happens, autofz increases the threshold (θcur) by θinit .
Otherwise, it divides θcur by two. The rationale behind this
design is that the progress of the fuzzing campaign decreases
as it continues in general. In its early phases, due to the legiti-
mate seeds provided as its initial input, the selected fuzzer(s)
generally produces a fair amount of progress. Thus, if the
threshold is too small, it will be easily passed, and autofz can
make a suboptimal decision. On the contrary, as the fuzzing
campaign continues, the progress generated by each fuzzer
is easily saturated and exploring new paths becomes difficult.
Thus, di f fpeak is frequently less than the threshold θ even
if the best fuzzer performs much better than the others. We
show that autofz can automatically configures θ (§6.3).

Trend evaluation. As described in Algorithm 2, we utilize
bitmap operations to measure the trend of individual fuzzers.
To this end, autofzmeasures the unique paths that each fuzzer
has explored during the preparation phase. Owing to seed
synchronization before the preparation phase, unique entries
in the bitmap of each individual fuzzer can represent its own
contribution. We present the common paths that have been
explored by all individual fuzzers during the preparation phase
as b∩ (Line 5). It is subtracted from the bitmaps of individual
fuzzers so that the contribution of each fuzzer can be measured
based on the unique paths discovered in the preparation phase.

Resource assignment. If some fuzzers perform well, more
resources will be allocated to them temporarily. Therefore,
autofz can accelerate well-performing fuzzers and relegate
the others. autofz introduces novel strategies that allow effi-
cient resource distribution among the selected fuzzers. Thanks
to the diversity in resource distribution, autofz can take ad-
vantage of both worlds of individual fuzzers and collabora-
tive fuzzing. Currently, autofz supports two resource allo-

5



Algorithm 2 Resource Assignment Algorithm
1: Output
2: RA← {r1,r2, ...,rn}, rn is resource assignment for fn
3: function RESOURCE_ALLOCATOR(F, B, Exitearly)
4: RA[ f ]← 0, ∀ f ∈ F
5: b∩←

⋂n
i=1 bi

6: b f ← b f −b∩,∀ f ∈ F
7: if Exitearly = True then
8: for each f ∈ F do
9: if COUNT(b f )> max_count then

10: max_count← COUNT(b f )
11: max_ f uzzers←{ f}
12: else if c = max_count then
13: max_ f uzzers← max_ f uzzers∪{ f}
14: RA[ f ]← 1

|max_ f uzzers| , ∀ f ∈ max_ f uzzers
15: else if Exitearly = False then
16: RA[ f ]← COUNT(b f )

∑
n
i=1 COUNT(bi)

, ∀ f ∈ F

17: return RA

cation policies. The first one prioritizes the best, allocating
all resources to the top-ranked fuzzer(s). This policy is acti-
vated only when a fuzzer significantly outperforms the rest
of all the baseline fuzzers. Therefore, the Exitearly signal is
utilized to detect this condition. As described in Algorithm 2,
when the early exit occurs, it first locates the set of fuzzers
(max_ f uzzers) that discovered the most unique paths (Line
8-13). Note that multiple fuzzers can be selected when there
is a tie, but most of the time, a sole fuzzer is selected. There-
fore, by assigning all resources to the best-performing fuzzer,
autofz can exploit the benefits of an individual fuzzer. The
other policy is to proportionally distribute resources based on
the trends of each fuzzer. Note that each contribution of base-
line fuzzers is evaluated based on the unique paths that each
fuzzer has discovered. Therefore, if multiple strong trends
are captured during the preparation phase, this highly indi-
cates that the preparation phase found multiple fuzzers that
are favorable to fuzz different parts of the program. In that
case, we proportionally distribute resources to the fuzzers
based on their contribution (Line 16) and achieve the benefits
of collaborative fuzzing. Note that, unlike previous works,
autofz can distribute resources among the selected fuzzers
and achieve better performance.

Putting them all together. As described in Algorithm 1,
every round of the preparation phase requires baseline fuzzers
(F), their bitmaps (B), time budget assigned for the current
round (Tprep), and threshold to detect early exit events (θcur).
As a result, the preparation phase returns Exitearly indicating
whether the early exit occurs and a non-zero value of Tremain
when an early exit occurs. Also, it returns the RA resource
allocation meta-data. Each fuzzer belonging to F takes a turn
to run in a very short time interval, 30 seconds or Tremain. Af-
ter evaluating all fuzzers in F, the preparation phase checks
whether the peak difference is greater than θcur and early exits

if the condition is met. However, if the difference is still under
the threshold θcur, the preparation phase runs each fuzzer for
another short time interval. The preparation phase will repeat
this process until either observing a large coverage differ-
ence or spending all the predefined time budget (Tprep). We
found that the short time interval assigned per fuzzer does not
significantly change the performance of autofz. Therefore,
we heuristically determine 30 seconds as the short interval.
However, if the interval is too short, it will incur unnecessary
context switches between fuzzers. For multi-core implemen-
tation (Line 12), we run all fuzzers in parallel and distribute
CPU resources equally. RUN_FUZZERS_PARALLEL(F, T, c) runs
all fuzzers f ∈ F for T seconds, and each fuzzer is assigned
with c CPU cores.

4.3 Focus Phase
Algorithm 4 describes how the focus phase of autofz runs
the selected fuzzers utilizing the information generated by
the preparation phase of the same round. Note that the list of
fuzzers (F) and resource allocation meta-data (RA) are passed
to the focus phase. Because the time budget of each fuzzer
allowed to be consumed in this round is measured based on
the RA, no resources will be assigned to the fuzzers that were
not selected in the preparation phase. Also, the focus phase
requires Tf ocus, which varies every round depending on when
the preparation phase exits in this round. Note that when the
early exit occurs in the preparation phase, the remaining time
budget will be assigned to the focus phase to allow it to uti-
lize the strong trends longer. The focus phase first calculates
the total time budget (Line 3) and sorts the fuzzers based on
the RA to run the well-performing fuzzers first (Line 4). Af-
ter that, it computes the time budget for the baseline fuzzers
(Line 6) and runs the fuzzer if the assigned budget is non-zero
(Line 7-8). Note that for every execution of one fuzzer, the
focus phase synchronizes the seed and bitmap (Line 9) to ac-
cumulate the progress of all selected fuzzers. When multiple
fuzzers are selected in the preparation phase, the seed syn-
chronization allows each fuzzer to discover unique paths that
have not been explored by others. For the multi-core version,
we first calculate how many cores c should be allocated to
each fuzzer based on resource assignment RA (Line 11), and
then run all fuzzers in parallel based on the result (Line 12).

5 Implementation

autofz consists of 6.2K lines (4.8K for the main framework,
1.4K for fuzzer API) of Python3 code. We implement our sys-
tem as a Docker instance, including benchmarks and fuzzers,
which makes autofz more portable and its evaluation repro-
ducible. To restrict the resource usage of selected fuzzers
according to the resource allocation, we utilize cgroups [38],
which can manage processes in hierarchical groups and limit
the resource usage per group.
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AFL bitmap measuring coverage of fuzzers. In autofz,
each baseline fuzzer utilizes a fuzzing algorithm of its original
design, which does not involve any implementation changes.
Therefore, during the two phases, each fuzzer can generate
different interesting inputs based on its internal metrics and
algorithms. However, as described in §4.1, autofz needs to re-
trieve AFL bitmap of all baseline fuzzers to fairly compare the
trends. Specifically, autofz invokes the AFL-instrumented
binary with different inputs found to be interesting by each
individual fuzzer. Each fuzzer can maintain the interesting in-
puts as files in different directories. Therefore, when the new
fuzzer is integrated into autofz, this information should be
known to autofz. For example, Angora configures "queue",
"crashes", and "hangs" as interesting input directories. There-
fore, autofz invokes the AFL-instrumented target with new
input and measures AFL bitmap coverage of Angora when-
ever a new file is created in one of the specified directories
during the preparation phase.
API for integration. Any individual fuzzer implementing the
following python APIs can be integrated into autofz. 1. Start
/ Stop 2. Scale up / down (for parallel mode). Each fuzzer
requires different arguments and file directories to initiate the
fuzzing. The Start and Stop API makes autofz understand
how to initiate and stop each fuzzer with a proper argument.
Also, each fuzzer should implement the Scale Up and Down
API to take advantage of multi-core resources. For example,
AFL has master and slave modes. Therefore, the user needs to
implement the Scale Up API to launch more slave instances
instead of master instances.
Multi-core support. autofz is able to utilize multiple cores.
For the multi-core implementation, we concurrently run the
fuzzers in the preparation phase and the focus phase. For
example, if we have N cores, autofz instantiates ⌈N×RA[ f ]⌉
processes using the Scale Up API for fuzzer f . After that,
autofz utilizes cgroups to limit the exact total CPU resources
allocated to the generated fuzzer instances as N×RA[ f ].

6 Evaluation

We evaluate autofz by answering the following questions.
• Target independent fuzzer selection. How can autofz

effectively achieve better code coverage against different
target binaries compared with individual fuzzers? (§6.2)
Does the runtime information allow autofz to exceed
collaborative fuzzing with manual analysis? (§6.5)

• Non-intrusive fuzzer selection. Does the initial con-
figuration for preparation and focus time affect the ef-
ficiency of autofz? (§6.3) How do the early exit and
AIMD allow autofz to locate a suitable set of prepara-
tion and focus time at runtime? (§6.4)

• Dynamic Resource allocation strategy. How can
autofz’s resource allocation prioritize the well-
performing fuzzers based on the trends compared with

previous works? (§6.6)
• Number of bugs found. Higher coverage does not nec-

essarily lead to more bugs. Can autofz outperform other
fuzzers in terms of bug finding? (§6.7)

• Accuracy of decisions made by autofz. How accurate
is the decision of autofz? Does the resource allocation
decision allow autofz to achieve optimal results? (§6.8)

Because of space limitation, a part of result is only available
in the extended version [2].

6.1 Experimental Setup

Host environment. We evaluated the following experiments
on Ubuntu 20.04 equipped with AMD Ryzen 9 3900 having
24 cores and 32 GB memory. To compare autofz with CUPID
and ENFUZZ, we assign multiple CPU cores to a Docker
container. The rest of the evaluations comparing autofz with
individual fuzzers are executed with a container to which one
CPU core is assigned without a memory limit. All containers
run Ubuntu 16.042 because of compatibility.
Baseline fuzzers. For the evaluation, autofz employs all
fuzzers supporting seed synchronization from UNIFUZZ and
FTS. Also, autofz supports all the fuzzers adopted in CUPID
and ENFUZZ for a fair comparison. All the fuzzers supported
by autofz are AFL [52], AFLFast [7, 8], MOpt [32], FairFuzz
[29], LearnAFL [50], QSYM [51], Angora [10], Redqueen
[4], Radamsa [25], LAF-INTEL [1], and libFuzzer [42]. We
utilize the modified version of libFuzzer excerpted from [23]
because it does not support seed synchronization. Also, we use
the implementation provided by [18] for Radamsa, Redqueen,
and LAF-INTEL. Note that autofz can adopt any fuzzer sup-
porting seed synchronization, and no fundamental obstacles
prevent their integration. Therefore, autofz can truly enjoy
the benefit of increasing diversity of the fuzzers.
Target binaries and seeds. We integrate autofz into UNI-
FUZZ [30] and FTS [22] so that we can evaluate autofz on
various real-world programs. We excluded targets that cannot
be compiled by all fuzzers and targets of which coverage sat-
urates very early. We believe that diversities in the targets are
enough to demonstrate the versatility of autofz. We adopt
the default seeds provided by the benchmarks.

6.2 Comparison with Individual Fuzzers
To evaluate the efficacy of autofz, we measure the AFL
bitmap coverage on FTS and UNIFUZZ benchmarks. We
configure all parameters described in Algorithm 3 as follows:
Tprep = 300, Tf ocus = 300 and θinit = 100. See §6.3 to un-
derstand how different parameters affect the performance
of autofz. The coverage graphs are depicted in Figure 3.
autofz ranks best in almost all benchmarks and only loses

2We chose Ubuntu 16.04 because it is the latest version that successfully
builds all fuzzers and benchmarks used in the evaluation.
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Figure 3: Evaluation of autofz on UNIFUZZ and FTS. Each line plot is depicted with an arithmetic mean and 80% confidence interval for 10
times fuzzing executions. Coverage ratio is the percentage of branches explored by each fuzzer.
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Figure 4: Critical Difference for the targets in UNIFUZZ. Each
number indicates the average rank of fuzzers. Each bold line indi-
cates that there is no statistical difference in performance among the
fuzzers grouped by that line in terms of the Nemenyi post-hoc test.

to Redqueen on pdftotext, which proves that autofz outper-
forms individual fuzzers.

To understand how frequently autofz can outperform in-
dividual fuzzers across various targets, we introduce Critical
Difference (CD) diagrams [14] used in [34]. Figure 4 and
Figure 12 depicts the critical difference based on the averaged
ranks of individual fuzzers and autofz on UNIFUZZ and FTS,
respectively. On average, autofz ranks 1.22 and 1.2 in UNI-
FUZZ and FTS, respectively. This evaluation demonstrates
that the runtime trend allows autofz to outperform all individ-
ual fuzzers regardless of the targets. This result is important
because the user does not need to spend valuable computation
power to understand which fuzzers are suitable for fuzzing
particular binaries.

In addition to the average ranks, we report the detailed
coverage of individual fuzzers and autofz in Table 6 in [2] to
further highlight how significant the differences are. Further-
more, we provide the Mann–Whitney U Test [3, 28] between
autofz and other individual fuzzers one by one in Table 7 in
[2]. This evaluation demonstrates that autofz is statistically
differentiated from most individual fuzzers (p-value < 0.05)
on overall benchmark suites.

6.3 Elasticity of autofz
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Figure 5: The graph shows the coverage distribution of all configu-
rations. σ is the standard deviation.

As described in Algorithm 3, autofz requires the user to
configure three parameters: Tprep, Tf ocus, and θinit . With the
initial configuration, autofz automatically locates subsequent
parameters such as a suitable set of fuzzers, corresponding
resource allocation, and the proper time to switch the fuzzers.
In this evaluation, we argue that the design of autofz is elastic
enough to achieve good performance in general independent
of the initial configurations. Our evaluation includes multiple
combinations of three variables as specified in the following.

• Tprep: 300; Tf ocus: 300, 600, 900
• θinit : 10, 100, 200, 300, 400, 500

We compare the average rank of 18 different configurations
of autofz (enumerated in Figure 11 in [2]) for the five targets
presented in Figure 5. The evaluation demonstrates that the
different configurations do not result in noticeable contrast
in performance. Note that the standard deviation, σ, is very
small in all targets, indicating there is a very small numerical
difference in bitmap-wise comparison. Moreover, we ran-
domly select a subset of benchmark targets to further prove
that autofz performs well on any targets, independent of the
configurations. As shown in Figure 3, we deploy autofz with
the best configuration found in Figure 11 in [2] (Tprep = 300,
Tf ocus = 300, θinit = 100) and observed that the selected con-
figuration allows autofz to perform well for most of the
benchmark targets that have not been selected in evaluating
this configuration.
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6.4 Resource Distribution in Actions

Round Winner di f fpeak θ Tprep Tf ocus
1∗ Angora 857 100 30 570
2∗ Redqueen 234 200 150 450
3 None 116 300 300 300

* asterisk mark after the round numbers means that Exitearly is true.
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Figure 6: Resource distribution decision of autofz for exiv2. The
first table shows how the parameters associated with the early exit
change during the first five rounds of autofz. Tprep indicates a prepa-
ration time actually spent in a particular preparation round, not the
time initially allotted to a preparation phase. The graphs in the sec-
ond row depict captured trends of some baseline fuzzers during the
preparation phases. Note that it does not start with y = 0 to highlight
the difference between fuzzers. The heat map in the last row shows
resource allocation decision made by each preparation round. Refer
to Figure 13 for remaining rounds.

In this section, we demonstrate how autofz can trans-
form runtime trends of different baseline fuzzers into a re-
source allocation decision. Furthermore, we explain how the
early exit events (§4.2), together with the resource allocation,
helps autofz take advantage of the strong trend of individual
fuzzers while maximizing the collaboration effects of mul-
tiple different fuzzers. We depict the first three rounds of
evaluation of autofz to highlight different aspects of resource
allocation on exiv2 target.

In the first preparation phase, most of the individual fuzzers
can discover a fair amount of unique paths thanks to the
provided initial seeds. However, Angora significantly out-
performs others. As shown in Figure 6, the first preparation
phase exits very early (Tprep,30) because it found that the
di f fpeak, measured as 857, exceeds the initial threshold value
(θ, 100). Therefore, autofz allocates all resources to Angora
following the Algorithm 2 in the hope that the strong trend
of Angora would continue during this focus phase. Because
the preparation phase exits early, the remaining time is as-
signed to the focus phase (Tf ocus,570). In the second prepa-
ration round, as the θ is increased to 200 due to early exit
in the first round (following Algorithm 3), autofz did not
exit early even though LAF-INTEL started to perform well

compared to the others (di f fpeak, ≊ 100). Therefore, autofz
continued the preparation phase until (Tprep,150) the best
(Redqueen) surpassed the lowest by the θ, 200 (see the graph
for prep round2). This result demonstrates that autofz pre-
vents it from choosing the suboptimal set of fuzzers. In the
third preparation phase, QSYM exhibits reasonably good per-
formance compared to the others (di f fpeak,116). However,
most of the baseline fuzzers achieve similar coverage during
the preparation phase (see the graph for prep round 3), and it
cannot exceed the threshold (θ,300) to exit early in the third
preparation phase. Therefore, autofz decides to allocate the
resources proportionally based on the trends of each individ-
ual fuzzer, unlike the first two rounds dedicating all resources
to a sole fuzzer.
Slow but gradually improving fuzzers. Depending on the
complexity of the baseline fuzzers, the time assigned for
preparation phases might not be sufficient to build internal
metrics. For example, QSYM requires a long initialization
time for its concolic executor to build up internal states. More-
over, the concolic executor is designed to solve hard branches,
so it might not be efficient to explore easy branches, which
causes the other lightweight fuzzers to be selected until easy
branches are resolved. As a result, fuzzers like QSYM can be
treated as relatively underperforming, especially in the first
few rounds or when the early exit occurs frequently, which
causes it not to be selected in the focus phase and further pre-
vents it from building up an internal state. However, thanks
to the dynamic nature of autofz, it will allocate more time
resources for preparation phases when other fuzzers become
saturated (i.e., resolving all easy branches) and naturally take
care of such slow but gradually improving fuzzers. As shown
in Figure 13, QSYM has not been selected in most of the early
rounds, but all resources are assigned to it in later rounds (i.e.,
12 and 15).

6.5 Comparison with Collaborative Fuzzing
In this section, we compare autofz with collaborative fuzzing
such as ENFUZZ and CUPID for UNIFUZZ and FTS targets.
We describe the result of UNIFUZZ to demonstrate that the
prior knowledge utilized in collaborative fuzzing can be a
major hindrance to efficient and automatic fuzzer selection.
We also present the comparison for FTS targets in §A.2.
CPU hours. We utilize the multi-core implementation of
autofz because collaborative fuzzing concurrently deploys
multiple fuzzers. To further achieve fairness in comparison,
we fixed the total CPU time to 24 hours. The CPU time
represents the total time resources consumed by all cores in
each configuration. For example, autofz-6 and CUPID utilize
six and four cores each; if we execute both configurations in
physical 24 hours, each configuration spends 6*24 and 4*24
CPU hours, respectively, which is unfair to CUPID. Therefore,
we make all evaluations run 24 CPU hours in total. If one
configuration utilizes N cores, each core can run 24

N hours.
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Figure 7: Comparison among autofz, ENFUZZ, and CUPID on UNIFUZZ. Each line plot is depicted with an arithmetic mean and 80%
confidence interval for 10 times fuzzing runs. The coverage ratio is the percentage of branches explored by each fuzzer. X-axis is elapsed CPU
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CUPID-4 and ENFUZZ-Q = [AFL, FairFuzz, QSYM, AFLFast ], autofz-10 = [All baseline fuzzers described in §6 except libFuzzer ]

Fuzzer selections for UNIFUZZ Since the evaluations and
fuzzer selection of CUPID and ENFUZZ target FTS, we cannot
directly adopt the set of fuzzers depicted as the best in their
works. Note that their best configurations include libFuzzer,
and UNIFUZZ does not support it. Therefore, instead of lib-
Fuzzer, we selected LAF-INTEL for autofz-6 and CUPID-4
in addition to five fuzzers utilized as the baseline in both
works. For CUPID, we additionally retrieve its artifact and se-
lect the best four-fuzzer combination reported by the artifact.
The detailed list of fuzzers and evaluation results is illustrated
in Figure 7. We used the same set of fuzzers depicted as the
best in their works in comparison for FTS targets (refer to
Figure 11) because FTS supports libFuzzer.

No prior knowledge, but a promising result. The set of
fuzzers selected by CUPID-4 is derived from the baseline
fuzzers used by autofz-6, relying on offline analysis. How-
ever, autofz-6 outperforms CUPID-4 by 83.63% without any
prior knowledge (see Table 4 in [2]). Considering that autofz-
6 and CUPID-4 achieves similar result for FTS targets (see
Figure 11), we can infer that prior knowledge used in fuzzer
selection is not diverse enough to represent real-world bina-
ries. Note that the training set used by CUPID is generated
as a result of running a subset of FTS targets; thus it can be
biased toward FTS and cannot reduce the chance of overfit-
ting when fuzzing UNIFUZZ targets. Our evaluation empiri-
cally demonstrates that, when relying on prior knowledge in
fuzzer selection, results can be suboptimal and cannot guar-
antee the best outcome independent of the targets. Moreover,
autofz makes evident that runtime trends are more reliable
and cost-effective than well-established prior knowledge in
fuzzer selection. Also, note that the selected set of fuzzers for
CUPID-4 is the same as ENFUZZ-Q, one of the configurations
handpicked by the ENFUZZ authors. This further indicates
that expert-guided, target-specific combinations are unreliable
and do not yield the best outcomes.
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Figure 8: Evaluation of autofz and autofz- on different numbers of
baseline fuzzers. The target is libarchive. The X-axis indicates the
number of fuzzers included to the baseline. The bar plots represent
the average bitmap density across 10 executions. The accompanied
error bars are generated with an 80% confidence interval. At x = 1,
autofz and autofz- are identical. It is included as a baseline to be
compared with different configurations.

6.6 Effects of the number of baseline fuzzers

As shown in Figure 11 and Figure 7, both autofz-11 and
autofz-10 outperform autofz-6 in all benchmarks suites, ex-
cept boringssl. This implies that adding more fuzzers will
achieve better coverage in general due to the different na-
tures induced by various fuzzers. However, the relationship
between the number of fuzzers and their performance is not
straightforward. This relationship can also be affected by
how effective the resource scheduling algorithm of autofz
is. Therefore, we introduce an autofz-, a variant of autofz,
which equally allocates resources to all baseline fuzzers in
round-robin fashion. In this section, we evaluate autofz and
autofz- with various numbers of baseline fuzzers to provide
a profound understanding of how this number can affect their
performance in accordance with the underlying resource allo-
cation algorithm. Also, we provide two thorough case studies.
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Evaluation compositions. In evaluating delta induced by
having another baseline fuzzer, what fuzzer will be included
to the baseline is important. For example, introducing a well-
performing fuzzer gives a high chance of performance in-
crease, but adding a bad fuzzer will not guarantee an improve-
ment as much as the good one. Therefore, we test autofz
and autofz- with four different sequences in fuzzer addi-
tion: top, bottom, alternative, and alternative reverse. We
explain the differences of these four different sequences using
libarchive as an example. We evaluate each fuzzer’s perfor-
mance based on Figure 3. The top sequence introduces fuzzers
in descending order of performance: Redqueen, LAF-INTEL,
libFuzzer, QSYM, Angora, MOpt, LearnAFL, FairFuzz, AFL,
AFLFast, and Radamsa. Conversely, the bottom brings in new
fuzzers in ascending order (from the least coverage). For alter-
native, it selects one in the best and the next one in the worst,
alternatively. For example, it selects Redqueen (1st), Radamsa
(11th), LAF-INTEL (2nd), AFLFast (10th) · · · . The alternative
reverse, selects the one in the worst and the next one in the
best one by one. Therefore, the order will be Radamsa (11th),
Redqueen (1st), AFLFast (10th), LAF-INTEL (2nd) · · · .
autofz versus autofz-. The comparison between autofz
and autofz-, described in Figure 8, highlights the importance
of resource allocation. It demonstrates that autofz can out-
perform autofz- in most of the cases if both utilize the same
fuzzer set. With the top and bottom cases, we see that the
performance difference between autofz and autofz- is not
very large initially but increases as more fuzzers are intro-
duced. The performance gap between autofz and autofz- is
much larger in the alternative and alternative reverse cases in
almost all cases. Remember that autofz- equally distributes
resources to all baseline fuzzers, but autofz can redistribute
resources based on the trends of individual fuzzers per work-
load. Therefore, fewer resources will be assigned to well-
performing fuzzers as more fuzzers are introduced in autofz-.
This shows that autofz can prioritize well-performing fuzzers
and relegate poorly performing fuzzers automatically on ac-
count of its clever resource allocation algorithm. We present
further evaluations on nm and exiv2 in Figure 15 in [2].
Case study: adding good fuzzer (5-fuzzers). In the follow-
ing case studies, we further explain how autofz can exfiltrate
well-performing fuzzers from various fuzzer sets. When it
comes to 4-fuzzer and 5-fuzzer cases in the alternative order
setting in Figure 8, we see huge coverage increases in autofz
and autofz- as a result of introducing one more good fuzzer,
libFuzzer (ranked at 3rd). However, autofz experiences a
much higher performance increase compared to autofz-. We
provide a reasonable explanation with Figure 9a focusing
on the resource allocation details of autofz. First, autofz
rarely allocates resources to poorly performing fuzzers (i.e.,
Radamsa and AFLFast). Note that autofz consumed only
6% and 2% of resources for the bad fuzzers during the en-
tire focus phases. Even after taking the preparation phases
into account, autofz spent only 22% resources total for the

(a) 5-fuzzers (Redqueen, Radamsa, LAF-INTEL, AFLFast, libFuzzer)

(b) 6-fuzzers (5 fuzzers in Figure 9a plus AFL)

Figure 9: Each pie chart presents the aggregated results across all
rounds of the focus phases and overall fuzzing campaign (includ-
ing preparation phases), respectively. The heat map describes the
resource allocation determined by every round of the preparation
phase. All figures are populated with data presented in Figure 8 with
the alternative order setting. All data unit is %. (total 100%).

two bad fuzzers. However, autofz- equally distributed the re-
sources, 20% for each fuzzer, regardless of their performance.
Therefore, autofz- spent 18% more resources on the poorly
performing fuzzers. Second, autofz allocated more resources
toward three well-performing fuzzers (i.e., Redqueen, LAF-
INTEL, libFuzzer), which boosts the performance. The first
pie chart shows that autofz respectively allocated 35%, 30%,
and 27% of resources to them during the entire focus phases.
Note that more resources were allotted to better-performing
fuzzers even though autofz does not have any prior knowl-
edge about which fuzzers are in what ranks. However, autofz-

equally assigns 20% of resources to each of the three fuzzers.
For total resources spent for those three fuzzers, autofz and
autofz- consumed 78% and 60%, respectively.

Case study: adding bad fuzzer (6-fuzzers). Contrary to the
previous case study, we explain how autofz and autofz- react
when a poorly performing fuzzer is introduced to their base-
line. As described in Figure 9, we added one more fuzzer AFL
(ranked at 9th) and captured how the coverage changes. Af-
ter the addition, both autofz and autofz- had a performance
drop. The resource allocation detail is shown in Figure 9b.
autofz allocates only 2% of resources to AFL during the
entire focus phase, which demonstrates that it can exfiltrate
poorly performing fuzzers properly. However, when it comes
to overall resources spent for AFL, it increases to 8%, which
is the major reason for the slowdown. In this example, autofz
spent 6% of resources to capture possible trend changes dur-
ing the preparation phases. Note that this cost is unavoidable.
Therefore, as more fuzzers are introduced, the resources spent

11



for the preparation phases can become a burden for autofz.
However, the captured runtime trend more than compensates
for the slowdown incurred by the preparation phases. As a
consequence, autofz still outperforms autofz- after introduc-
ing AFL, which demonstrates that the resource allocation
algorithm of autofz can highlight good fuzzers.

6.7 Bug Discovery Evaluation

To compare the number of bugs found by autofz and individ-
ual fuzzers, we run ASan-instrumented FTS and UNIFUZZ
targets and collect generated crashes. We triage the crashes
and measure deduplicated bugs by taking the top three stack
frames and using them as unique identifiers for the bugs.
autofz found the most bugs on average compared to indi-
vidual fuzzers, CUPID, and ENFUZZ. Moreover, when we
aggregate the results of all 10 fuzzing repetitions, autofz still
uncovered the most bugs, some of which are not found by any
individual fuzzer. The detailed results are in §A.3.

6.8 Evaluation of autofz decision

In this section, we evaluate how accurate the decisions of
autofz are in terms of resource allocation . Resource alloca-
tion is the essence of autofz because it reflects the trends of
baseline fuzzers and makes a subset of baseline fuzzers to
be online predicted to be efficient for the current workload.
If prediction about runtime trends is inaccurate and does not
continue, less coverage will be explored. Therefore, we can
estimate the continuity of measured trends as the end result
achieved as a result of deploying specific resource allocation
per round. However, it is not practical to compare autofzwith
all possible resource allocation decisions because it is infinite.
To this end, we carefully design the following evaluation.

1. For each round, record when the preparation phase ended
(timeprep_end) and total time budget assigned for the fo-
cus phase (time f ocus_total). Note that the value of these
two variables can be different in every round based on
when the early exit occurs.

2. Collect all output corpus created earlier than timeprep_end .
We call it snapshot. The snapshot restores the full status
of the fuzzing campaign to the state right before the
focus phase.

3. For the number of baseline fuzzers, repeat the below
procedures.

3.1. Select one fuzzer and update resource allocation
so that all resources are assigned to that fuzzer.

3.2. Run the fuzzer for time f ocus_total and measure the
coverage. Note that each individual fuzzer run rep-
resents synthetic decisions made for comparison.

3.3. Restore the current state to right before the focus
phase using the snapshot.

4. Lastly, run fuzzers selected by the resource allocation of
autofz for time f ocus_total and measure the coverage.

The evaluation results on libarchive and exiv2 are pre-
sented in Figure 10a and Figure 10b, respectively. As shown
in Figure 10a, the decision made by autofz allows it to take
first place eight times over 14 rounds and rank 2.64 on aver-
age. The exiv2 target, presented in Figure 10b, ranks 3.5 on
average and took first place four times over 15 rounds. This
result demonstrates that the decision of autofz is effective
compared with others and proves that the captured trends
maintain until the next measurement.
Saturation and effectiveness of autofz The result shows
that the allocation decisions of autofz become less efficient
as the number of new coverage reported by the baseline fuzzer
saturates. Although autofz ranks higher on average in fuzzing
libarchive compared to exiv2, note that AFL bitmap count
saturates faster in exiv2 than in libarchive. In detail, after
round 4 in exiv2, all different decisions including autofz do
not exhibit meaningful bitmap coverage increases. Therefore,
no matter which fuzzers are activated as a result of different
resource allocations, it is difficult to make progress after round
4. For example, autofz ranked 11 in round 15, but the bitmap
density difference between LAF-INTEL (the best) and autofz
(the worst) is only 0.07%.
Noise introduced by inherent randomness. Although we
carefully designed our evaluation so that all different deci-
sions have identical starting lines using snapshot every round,
it is impossible to completely prevent introducing noise due
to the inherent randomness in fuzzing campaigns. For exam-
ple, in Figure 10a, autofz allocates all resources to libFuzzer
at the first round, making autofz’s decision identical to the
libFuzzer case. However, the result of following autofz’s de-
cision (ranked 1st) slightly outperforms the libFuzzer decision
(ranked 2nd), as shown in Figure 10a. We believe that the in-
herent randomness, such as in input mutations, causes this
difference, which we call noise.
Seed synchronization might change the trends. We can
explain why the captured trends sometimes will not be sus-
tained in two aspects. First, the preparation phase was not long
enough to capture the trends properly. Second, autofz cap-
tured the trends accurately, but the seed synchronization after
the preparation allows the other individual fuzzers to report
strong trends. For example, we can observe that Redqueen
does not perform well compared to Angora when each fuzzer
runs individually, highlighted in §6.4. The first round of
the preparation on exiv2 reports that Angora exhibits the
strongest trend, which follows the observations. Therefore,
autofz allocates all resources to Angora (see the heatmap
presented in Figure 10b). However, our evaluation revealed
that Redqueen performed the best during the first round of
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Figure 10: Comparison between resource allocation decision of autofz (Algorithm 2) and decisions allocating entire resources to each baseline
fuzzers. The bump chart compares the ranks of all decisions in terms of AFL bitmap coverage. We highlight decisions that have ranked top
at least once. The line plots illustrate bitmap counts of different decisions at each round. The heatmap presents autofz’s detailed resource
allocation decisions. Note that the allocation reflects runtime trends of different fuzzer at each round.

the focus phase (see the second graph of Figure 10b). Note
that this result does not follow our initial observation. We
believe that this happens because the first round of the prepa-
ration phase explored paths that used to be challenging for
Redqueen to resolve. Therefore, after the seed synchroniza-
tion, Redqueen does not need to spend its resources to reach
those paths anymore and exhibit the strongest trends during
the focus phase. However, note that Angora still performs
well in the first focus phase even though it cannot be ranked
on top. This demonstrates that runtime trends captured in
the preparation phase are strong enough to allow autofz to
achieve good performance.

7 Discussion

We discuss the limitations and future works of autofz.

Metric diversity. autofz utilizes AFL bitmap to compare
runtime trends, which favors the fuzzers that seek to maximize
path coverage. While the coverage is the most popular and
explicit indicator of progress in fuzzing, relying on a single
metric can potentially lead to unfair comparison with various
fuzzers utilizing metrics other than the coverage [17, 39, 46–
48]. Therefore, supporting multiple metrics besides path cov-
erage can achieve fairness and better efficiency in terms of
resource allocation. For example, different metrics can be
used to break the tie, especially when one metric is saturated.

Bad fuzzer elimination. A particular fuzzer might not per-
form well throughout the fuzzing for specific targets (e.g.,
Radamsa on exiv2 shown in Figure 3). autofz automatically
prevents poorly performing fuzzers from being online during
the focus phase through resource allocation. However, the
same amount of resources are allocated to all baseline fuzzers
during the preparation phase to measure runtime trends. If
poorly performing fuzzers can be eliminated from the baseline
timely, autofz can achieve better resource utilization.

8 Conclusion

This paper presented autofz, a meta-fuzzer providing fine-
grained and non-intrusive fuzzer orchestration. Our evaluation
result illustrates that automated fuzzer composition without
any prior knowledge is effective. By observing the trends of
fuzzers at runtime and distributing the computing resources
properly, autofz has not only beat the individual fuzzers but
also the state-of-the-art collaborative fuzzing approaches. We
expect that autofz can bridge the gap between developing
new fuzzers and their effective deployment.
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A Appendix

Algorithm 3 Two Phase Algorithm
1: Input
2: F←{ f1, f2, ..., fn}, fn is instance of nth baseline fuzzer
3: B←{b1,b2, ...,bn}, bn is bitmap of fn
4: Tprep, f ocus← Time budget for preparation/focus phase
5: θinit,cur← Initial and current threshold
6: C← How many CPU cores are assigned
7: function AUTOFZ_MAIN(F, Tprep, Tf ocus, θcur = θinit , C)
8: while NOT timeout do
9: SEED_SYNC(F)

10: Exitearly, Tremain ← PREP_PHASE(F, B, Tprep, θcur, C)
11: RA← RESOURCE_ALLOCATOR(F,B,Exitearly)
12: θcur← (Exitearly) ? θcur +θinit : θcur ∗0.5 ▷ AIMD
13: SEED_SYNC(F)
14: FOCUS_PHASE(F, RA, Tf ocus +Tremain, C)

Algorithm 4 Focus Phase
1: function FOCUS_PHASE(F, RA, Tf ocus, C)
2: if C == 1 then
3: Tf ocus_total ← Tf ocus×NUM_OF_FUZZERS(F)
4: F← SORT_FUZZERS(F, key = RA, order = descending)
5: for each f ∈ F do
6: Trun← Tf ocus_total ×RA[ f ]
7: if Trun > 0 then
8: RUN_FUZZER( f ,Trun)
9: SEED_SYNC(F)

10: else ▷ multi-core implementation
11: c←C×RA[ f ]
12: RUN_FUZZERS_PARALLEL_SEED_SYNC(F, Tf ocus, c)
13: SEED_SYNC(F)

A.1 Queue Size Statistics And Observation

Queue size measurement. We collect files in queue output
directories to measure changes in queue size over 24 hours.
Whenever an interesting seed is found, each fuzzer stores the
seed as a file in the queue directory. Each fuzzer has a different
guideline to determine which seed is interesting, for exam-
ple, based on whether a seed explores new coverage. autofz
has no clear definition of interesting seeds, so it collects all
interesting seeds from the queue directories of all baseline
fuzzers and deduplicates the same seeds by comparing their
hash. Figure 14 presents the queue size change over 24 hours
for autofz and individual fuzzers on UNIFUZZ and FTS.
Observation. We found that Angora significantly outper-
forms other fuzzers, including autofz, in terms of queue size
on freetype2, pdftotext, mujs, and tcpdump. However, An-
gora embarrassingly underperforms in terms of line and edge
coverage on those targets except tcpdump. We analyzed the
logs of Angora and found that, especially when the cover-
age saturates, it generated lots of new seeds contributing a
tiny fraction of the context-sensitive coverage bitmap. For ex-
ample, in mujs, Angora generated around 80,000 interesting
seeds and achieved 99.98% bitmap coverage. However, it re-
quires around 90,000 interesting seeds to cover the remaining
0.02% bitmap coverage.
Possible interpretation. We speculate that abundant seeds
hinder Angora from mutating the seeds that could be meaning-
ful in terms of other metrics. For example, such high bitmap
density can lead to a higher rate of hash collision and pre-
vent interesting seeds in terms of different metrics from being
generated. As a result, Angora underperforms on freetype2,
pdftotext, mujs in terms of AFL bitmap density, edge cov-
erage, and bug-finding because the context-sensitive cover-
age bitmap of Angora saturates early. On the other hand, for
tcpdump, Angora outperforms others not only in queue size
but also in bug finding. This result implies that considering
multiple metrics in autofz could be beneficial in terms of
finding bugs.
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A.2 Comparison of autofz and collaborative fuzzing on FTS targets
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Figure 11: Comparison among autofz, ENFUZZ, and CUPID. Each line plot is depicted with an arithmetic mean and 80% confidence interval
for 10 times fuzzing runs. The coverage ratio is a percentage of branches explored by each fuzzer. X-axis is elapsed CPU time. Below is the list
of fuzzers used by different configurations: autofz-6 = [AFL, FairFuzz, QSYM, AFLFast, libFuzzer, Radamsa ], CUPID-4 = [AFL, FairFuzz,
QSYM, libFuzzer ], ENFUZZ-4 = [AFL, FairFuzz, Radamsa, libFuzzer ] which is reported to be the best in [11], autofz-11 = [All baseline
fuzzers described in §6]

A.3 Unique Bug Count among autofz, individual fuzzers, and collaborative fuzzing

Average number of unique bugs. The unique bugs represent all deduplicated bugs found by a specific fuzzer. We compare the
average number of unique bugs of autofz and others in 10 repetitions (Table 2, Table 4, and Table 6). The result shows that
autofz can outperform individual fuzzers and collaborative fuzzing such as ENFUZZ and CUPID for bug finding.
Aggregated unique bug counts. In addition to the average number of unique bugs, we also aggregate all unique bugs found by
each fuzzer in 10 repetitions. We present the numbers in three different categories per individual fuzzer: the number of unique
bugs, the number of exclusive bugs, and the number of unobserved bugs (Table 3, Table 5, and Table 5). The exclusive bugs
means the bugs that cannot be found by other fuzzers, but only by this fuzzer. The unobserved bugs are the bugs that cannot be
found by this fuzzer, but are reported by the others.
Bug report. We could not find a new bug because UNIFUZZ and FTS consist of old versions of programs, and most of the bugs
have been already reported and fixed. We reproduced the found bugs on the latest version of the targets and confirmed that all of
the bugs we found are not present in the latest version.

benchmark autofz AFL AFLFast Angora FairFuzz LAF-Intel LearnAFL MOpt QSYM Radamsa RQ Lib
exiv2 13.10 2.50 1.50 7.10 3.10 5.60 2.70 4.30 0.00 0.10 6.40 -
ffmpeg 0.20 0.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.00 0.80 -
imginfo 0.80 0.00 0.00 0.00 0.20 1.00 0.60 0.30 0.00 0.00 1.00 -
infotocap 5.50 2.50 2.70 0.00 3.60 2.30 3.90 3.60 0.00 0.30 3.20 -
mujs 3.00 0.00 0.50 0.00 0.30 2.00 0.60 0.80 0.00 4.20 0.70 -
nm 0.50 0.00 0.00 0.70 0.00 0.10 0.00 0.10 0.00 0.00 0.20 -
pdftotext 3.70 1.50 1.60 1.20 1.40 6.80 6.50 1.90 0.00 2.30 9.10 -
tcpdump 1.90 0.00 0.00 2.30 0.00 1.50 1.00 1.50 0.00 0.00 0.70 -
tiffsplit 6.20 2.90 2.90 3.50 3.50 3.80 4.70 3.90 0.00 1.40 3.50 -
boringssl 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20
freetype2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
libarchive 0.40 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.70 0.40
SUM 35.70 9.40 9.20 14.80 12.10 24.20 20.20 16.40 0.00 8.30 26.30 0.60

Table 2: The average number of unique bugs found by autofz and individual fuzzers in 10 repetitions. The RQ and LIB indicate Redqueen and
libFuzzer, respectively.
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benchmark autofz AFL AFLFast Angora FairFuzz LAF-Intel LearnAFL MOpt QSYM Radamsa RQ Lib
exiv2 31/4/11 8/0/34 8/0/34 20/3/22 9/0/33 23/3/19 13/1/29 16/0/26 0/0/42 1/0/41 17/1/25 -
ffmpeg 2/0/2 0/0/4 0/0/4 0/0/4 0/0/4 2/0/2 2/1/2 0/0/4 0/0/4 0/0/4 3/1/1 -
imginfo 1/0/0 0/0/1 0/0/1 0/0/1 1/0/0 1/0/0 1/0/0 1/0/0 0/0/1 0/0/1 1/0/0 -
infotocap 9/0/1 3/0/7 3/0/7 0/0/10 7/1/3 5/0/5 7/0/3 5/0/5 0/0/10 1/0/9 6/0/4 -
mujs 6/0/4 0/0/10 1/0/9 0/0/10 1/0/9 3/0/7 1/0/9 2/0/8 0/0/10 9/4/1 1/0/9 -
nm 2/1/8 0/0/10 0/0/10 6/4/4 0/0/10 1/0/9 0/0/10 1/1/9 0/0/10 0/0/10 2/2/8 -
pdftotext 11/1/28 2/0/37 3/0/36 2/0/37 2/0/37 16/2/23 19/10/20 4/0/35 0/0/39 4/0/35 23/11/16 -
tcpdump 6/0/9 0/0/15 0/0/15 11/5/4 0/0/15 7/2/8 3/0/12 3/0/12 0/0/15 0/0/15 1/0/14 -
tiffsplit 8/0/3 5/0/6 6/1/5 6/0/5 6/0/5 6/1/5 8/1/3 5/0/6 0/0/11 3/0/8 8/0/3 -
boringssl 1/0/0 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 1/0/0
freetype2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
libarchive 1/0/2 0/0/3 0/0/3 0/0/3 0/0/3 1/0/2 0/0/3 0/0/3 0/0/3 0/0/3 1/0/2 2/2/1
SUM 78/6/68 18/0/128 21/1/125 45/12/101 26/1/120 65/8/81 54/13/92 37/1/109 0/0/146 18/4/128 63/15/83 3/2/1

Table 3: Unique bug count of autofz and individual fuzzers aggregated over 10 fuzzing repetitions, corresponding to Figure 3. Each number in
A/B/C indicates the following. A: the number of unique bugs. B: the number of exclusive bugs. C: the number of unobserved bugs.

benchmark autofz-10 autofz-6 CUPID-4 &
ENFUZZ-Q

exiv2 16.70 5.80 2.70
ffmpeg 0.00 0.00 0.00
imginfo 0.70 0.10 0.00
infotocap 5.90 4.70 2.40
mujs 3.50 3.60 0.20
nm 1.20 0.00 0.00
pdftotext 4 3.80 1.10
tcpdump 1.00 0.50 0.00
SUM 33 18.5 6.4
IMPROVE +415% +189% -

Table 4: Unique Bug Count of autofz, CUPID, and ENFUZZ-
Q (same as CUPID-4, omitted) on UNIFUZZ corresponding to
Figure 7. Each number represents the average bug count across
10 fuzzing repetitions.

benchmark autofz-10 autofz-6 CUPID-4 &
ENFUZZ-Q

exiv2 33/16/4 20/4/17 6/0/31
ffmpeg 0/0/0 0/0/0 0/0/0
imginfo 1/0/0 1/0/0 0/0/1
infotocap 7/1/2 8/2/1 5/0/4
mujs 6/1/2 7/2/1 1/0/7
nm 8/8/0 0/0/8 0/0/8
pdftotext 9/0/0 9/0/0 2/0/7
tcpdump 5/4/0 1/0/4 0/0/5
SUM 69/30/8 46/8/31 14/0/63
IMPROVE +392% +228% -

Table 5: Aggregated unique bug count of autofz, CUPID, and
ENFUZZ-Q (same as CUPID-4, omitted) across 10 fuzzing repe-
titions on UNIFUZZ corresponding to Figure 7. Please refer to
Table 3 for the meaning of cells.

benchmark autofz-11 autofz-6 CUPID-4 ENFUZZ-4
boringssl 0.00 0.00 0.20 0.40
freetype2 0.00 0.00 0.00 0.00
guetzli 1.10 1.10 0.60 1.10
json 1.00 1.00 1.00 1.00
lcms 0.00 0.00 0.00 0.00
libarchive 0.40 0.00 0.00 0.00
libjpeg 0.00 0.00 0.00 0.00
libpng 0.00 0.10 0.00 0.00
re2 0.30 0.00 0.10 0.30
woff2 0.50 0.30 0.20 0.40
vorbis 0.00 0.00 0.00 0.10
wpantund 0.00 0.00 0.00 0.00
SUM 3.3 2.5 2.1 3.3

Table 6: Unique Bug Count of autofz, CUPID, and ENFUZZ on
FTS corresponding to Figure 11. Each number represents the
average bug count across 10 fuzzing repetitions.

benchmark autofz-11 autofz-6 CUPID-4 ENFUZZ-4
boringssl 0/0/2 0/0/2 1/0/1 2/1/0
freetype2 0/0/0 0/0/0 0/0/0 0/0/0
guetzli 2/0/0 2/0/0 1/0/1 2/0/0
json 1/0/0 1/0/0 1/0/0 1/0/0
lcms 0/0/0 0/0/0 0/0/0 0/0/0
libarchive 3/3/0 0/0/3 0/0/3 0/0/3
libjpeg 0/0/0 0/0/0 0/0/0 0/0/0
libpng 0/0/1 1/1/0 0/0/1 0/0/1
re2 1/0/0 0/0/1 1/0/0 1/0/0
woff2 1/0/0 1/0/0 1/0/0 1/0/0
vorbis 0/0/1 0/0/1 0/0/1 1/1/0
wpantund 0/0/0 0/0/0 0/0/0 0/0/0
SUM 8/3/4 5/1/7 5/0/7 8/2/4

Table 7: Aggregated unique bug count of autofz, CUPID, and
ENFUZZ across 10 fuzzing repetitions on FTS corresponding to
Figure 11. Please refer to Table 3 for the meaning of cells.
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A.4 Different metric other than AFL bitmap
To facilitate comparisons between autofz and existing results in the literature, we represent the results in three different metrics:
edge coverage (Figure 12), line coverage (Figure 13), and queue size (Figure 14). We adopt the same configuration of autofz
used in Figure 3. Each line plot is depicted with an arithmetic mean and 80% confidence interval for 10 times fuzzing executions.
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Figure 12: Evaluation of autofz on UNIFUZZ and FTS in terms of edge coverage.
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Figure 13: Evaluation of autofz on UNIFUZZ and FTS in terms of line coverage.
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Figure 14: Evaluation of autofz on UNIFUZZ and FTS in terms of queue size.
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