USENIX Security 2023

autofz:

Automated Fuzzer Composition at Runtime

Yu-Fu Fu, Jachyuk Lee, Taesoo Kim

SSLab3

@Georc;iQTech

Fuzzing Wars: A Flood of Different Fuzzers

e Fuzzing 1s all about efficiently producing input that can uniquely locate bugs

e Various fuzzing techniques = tons of different fuzzers in the wild
o Symbolic execution, Taint analysis, or even Machine Learning for fuzzing

= Google Scholar fuz

& Articles

Lost in the Fuzz: Selection Burden in Modern Fuzzing

B
réould you please I THINK THIS 15 BLAH THE BLAH BLAH BLAH
suggest fuzzers BLAH BLAH BLAH gLAHI 15 PATHOGNOLAHBLAH!

" for this binary? \V REMEMBER
————

—
{
A
—
=
—
-
—

Original Image: Carlo Jose San Juan, MD

e Okay, as a user, which fuzzer should I use to get the best result?
e Most users don’t have knowledge about details of each fuzzer

Community Solution: Fuzzing Benchmark!

Google FuzzBench s

BBBBBBBBBB

ibxmi2-v2.9.2 (24hr, 20 trialsffuzzer)
.

. 3000 I

700 g Results

% 2000 < FuzzBench

I - Service M

£ 1500

“ 1000 ; I I I Iz I

Report

* Fuzzing benchmark: creating a set of standard benchmarks for fuzzing!
* Compare the performance of fuzzers for a wide range of applications
* Choose the one performing best on average across the benchmarks

* The result 1s not always an optimal decision for every target!
* It does not guarantee the best outcome for the targets not in the benchmark (overfitting)

Ref.
FuzzBench

Reached edge coverage

Biases in Selection: Target-Dependent Performance

No universal fuzzer invariably outperforms others

The performance of fuzzers can significantly differ depending on the target
1 St lcms-2017-03-21 (23h, 15 trials/fuzzer) bloaty fuzz target (23h, 15 trials/fuzzer)
1400 6000 - 1 3th
1200 5000 -
()
1000 & 4000
(0]
3
800 - S
3000 -
()
600 - ;
& 2000
400 - =
200 | 1000 -
0 . .| ollm B8 Bmfd BN
\N
o Q,‘\g, a\ f oo? \)SQ W2 ((\36‘ &) “\&Z s ,ﬂ\r«ﬁ d(\(’((\oQ ’5‘\0& \“‘«\e@@se:(@c‘)\ ‘cqey(\«"?\w"’g\o‘“gq“ < ,g;;@'f\? o \C'\\’\?’ & \o’\\(\"&(&‘\\)ﬂ ‘(\Q\Q“‘«\’b“\)
(2 \\ WO o7 'Le(/ r(as’;\\)f;/ ;\39 : ,\\) > \(\OQ\\)Q P Q K
N\ P o 92&\9\‘) P N\

Biases in Selection: Inconsistent Performance at Runtime

libpcap_fuzz_both (23h, 20 trials/fuzzer)
rank inversion: AFL++ comes from behind and takes the lead

2000 A

——— ”____.——-i

1500 A
v — S
& I =
\O_J o /
8 /£ /
o 1000 -
o ——
ke

500 (95,

15m 2h:10m 4h:5m 6h 7h:55m 9h:50m 11h:45m 13h:40m 15h:35m 17h:30m 19h:25m 21h:20m

Time (hour:minute)

fuzzer
aflplusplus_optimal
—— entropic
aflcc
honggfuzz
lafintel
libfuzzer
—— aflplusplus_gemu
eclipser
fairfuzz
—— mopt
manul
- ankou
—— aflplusplus
— afl
fastcgs_Im
aflfast
afl_gemu
aflsmart
—— honggfuzz_gemu

* The efficiency of each fuzzer fluctuates throughout its execution
* No guarantee that initially well-performing fuzzer will be the final winner

 Rank 1s consistent in short time

5
Ref.
FuzzBench

Rule of Thumb: Past Success is No Guarantee of Future Results

« Benchmark results cannot ensure that selected fuzzer will be
effective in fuzzing user’s binary

. Using a static fuzzer selection can result in suboptimal outcomes
o performance bias & rank inversion during runtime

. Relying solely on static information 1s the cause!

Dynamic Composition of Fuzzers as a Push-button Solution

///'

List of fuzzers

aflplusplus \
fastcgs Im
aflsmart

afl

mopt
aflplusplus_optimal
aflfast
aflplusplus_gemu
honggfuzz

lafintel
honggfuzz_gemu
fairfuzz

afl_gemu

entropic

libfuzzer

manul

eclipser J

No fuzzing expertise or benchmarking is necessary.
Provide list of fuzzers and push the button! That's all!

18000 4

16000
14000

2 12000 4

o

@

o

3 10000
8000 -

- e — -

15m 2h:10m 4h:5m 6h 7h:55m 9h:50m 11h:45m 13h:40m 15h:35m 17h:30m 19h:25m 21h:20m
Time (hour:minute)

autofz automatically deploys a set of fuzzer(s)
Outperforms the best individual fuzzers in any target

Utilizing Runtime Information (Trend) in Selection

®

Novice

[
EXE

Target
Binary

autofz as a BLACK BOX to user

Utilizing Runtime Information (Trend) in Selection

autofz as a BLACK BOX to user

o All decisions are made without expert’s knowledge & efforts

o Automatically selects the best-performing fuzzer at runtime

o Automatically distributes resources to the selected fuzzers

Novice

EXE

Target
Binary

Utilizing Runtime Information (Trend) in Selection

autofz as a BLACK BOX to user

o All decisions are made without expert’s knowledge & efforts

o Automatically selects the best performing fuzzer at runtime
o Automatically distributes resources to the selected fuzzers

How? autofz utilizes runtime trend of fuzzers!

o Runtime Trend: runtime progress of fuzzers in short time

o Select well-performing fuzzer(s) based on the runtime trends
o Distribute resources to selected fuzzer(s) based on the runtime trends

Utilizing Runtime Information (Trend) in Selection

autofz as a BLACK BOX to user

o All decisions are made without expert’s knowledge & efforts

o Automatically selects the best performing fuzzer at runtime

o Automatically distributes resources to the selected fuzzers

How? autofz utilizes runtime trend of fuzzers! Expert-level
o Runtime Trend: runtime progress of fuzzers in short time Outcome

o Select well-performing fuzzer(s) based on the runtime trends
o Distribute resources to selected fuzzer(s) based on the runtime trends

sqlite3_ossfuzz (23h, 19 trials/f
°°°°° autol1z

00000

— Ind1v1dua} Fuzzers

12000
aaaaaa //
00 /

OOOOO

How to Effectively Capture/Utilize Runtime Trends?

o We use trend as feedback 1n fuzzer selection and utilization!

o Fuzzer showing strong trend 1s more likely to be good at finding more bugs

o As fuzzing progresses, the runtime trend can be changed

o Repeatedly measure the runtime trend in short time period

Two-phase algorithm: split entire fuzzing run into multiple rounds of
measurement (preparation) and execution (focus)

Time

>
[Prep . Focus Prep locus Prep Eocus e0o0 Focus]

24 hours

Preparation Phase

(Preparation Phase (@ Evaluate baseline fuzzers

I
I
I
| & }@Check |
I = Early Exit | |
M Condition I
I X X X X f
I d Resource Allocator I |
© See @ Measure Allocation Policy | [® Time |
I\ PR Contribution Selector Slicer |
Run each fuzzer for small time frame (minimal overhead in measuring trends)

Trend 1s measured by unique coverage discovered in the time window
o AFL Bitmap to measure the unique coverage

Select fuzzers and distribute resources (CPU) based on the trends

Early Exit: optimization for reducing resource waste in preparation phase
- Terminate preparation phase as soon as we find outstanding fuzzer(s)

Preparation Phase: Outstanding Fuzzer & Early Exit

*Preparation phase start

Run baseline fuzzers
for 30 seconds

<

v

Measure Trendp.,k

Trendpe.x = Trendgei-Trendyo st

CIi'ﬂ:Peak > ecur

Early Exit

TimeElapsed
>

TimePreparation

Exit preparation
phase

Preparation should run all fuzzers to measure
trends

Preparation phase early-exits when there 1s
outstanding fuzzer

o Minimize overhead incurred by running all
fuzzers

Measures peak difference of trends and
compares 1t with predefined threshold

o If peak difference > threshold, early exit

o Threshold 1s automatically configured at
runtime

Preparation Phase: Resource Assignment Algorithm

Distribute
resources to
multiple fuzzers
based on trends

NO

YES

Prioritize
the best fuzzer

« Two resource allocation strategies
o Individual fuzzer outperforms others = Assign entire resources to outperforming one

o No outstanding fuzzer = Distribute resources to multiple fuzzers based on trends

« Best strategy will be selected based on early exit (automatically)

Focus Phase

I “Focus Phase @ Run Selected Fuzzers |
| F, :EITZ T1|§E|
| Resource |
C e z_AllcﬁaticE |

e Run selected fuzzers based on allocation metadata

o Number of fuzzers executed during the focus phase can vary
o Sole individual (best) fuzzer
- Combination of multiple different fuzzers

o CPU time allocated for each fuzzer can be different
- It can prioritize specific fuzzers based on the contribution of each fuzzer

Why autotz can do better than others?

Preparatlon Phase @ Evaluate baseline fuzzers I
I - Z‘:;Z‘::‘:;:‘:Z‘: o
HOI (F; F, F, F, Icpul(-
I :..l_)..: |
| & |
<
| E |
| C Al |
Resource Allocator [. B ©) *
@ Measure Allocation Policy (® Time
|
Contribution Selector Slicer) Bad Fuzzer

nnnnnnn

Good Fuzzer

?
1®
195
&
5
-

vvvvvvv

Two-phase design captures trend accurately

o autofz can tell which fuzzer(s) perform well during specific time periods
o Can achieve optimal result by deploying the best performing fuzzer at the right time

Resource Distribution: Survival of the fittest!
o autofz gives priority to effective fuzzers while giving lower priority to less effective
o Takes beneftit of individual fuzzer and combination of different fuzzers

Evaluation Setting

e 11 fuzzers

 AFL, MOpt, FairFuzz, AFLFast, LearnAFL
* RedQueen, LAF-Intel, QSYM, Angora
 Radamsa

* LibFuzzer (only for FTYS)

e 2 benchmark
« UNIFUZZ
* Fuzzer Test Suite (FTS)

* 24 hours
* 10 repetitions

autofz vs. other fuzzers (coverage)

libarchive-2017-01-04 exiv2 imginfo tiffsplit

r“:c’ e gutofz
g —— RedQueen
@ — MOpt

freetype2-2017 pdftotext — LAF-Intel
< 10 —— LearnAFL
z 25 QSYM
g — 20 FairFuzz
g 5 M AFL
£ 15 = —— AFLFast

muijs ffmpeg boringssl-2016-02-12 — LibFuzzer
< — 100 = ... — Angora
Z 75 30 1.9 [—— Radamsa
8 20 50
g 5.0 10 E——
m
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
Time (Hour) Time (Hour) Time (Hour) Time (Hour)

Top 1n 11/12 programs

Bitmap Density(%)

Bitmap Density(%)

Bitmap Density(%)

autofz vs. other fuzzers (coverage) — pdftotext case

libarchive-2017-01-04 exiv2 imginfo tiffsplit

e gutofz
—— RedQueen
—— MOpt
LAF-Intel
—— LearnAFL
QSYM
FairFuzz
AFL
—— AFLFast
—— LibFuzzer
—— Angora
—— Radamsa

freetype2-2017
10

—————

mujs

7.5

5.0

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

Time (Hour) Time (Hour) Time (Hour) Time (Hour)

RedQueen needs to accumulate more internal states (> 12 hours) to have better performance, but this does not
reflect on its coverage, so autofz does not prioritize it by design.

It is a super rare case during our evaluation. 20

autofz vs. individual fuzzers (bugs)

Average Bug Count Across All Benchmarks

autofz
RedQueen
AFL
AFLFast
Angora
FairFuzz

LAF-Intel
LearnAFL
MOpt
QSYM
Radamsa
LibFuzzer

20

Bug Count

OO0O0DD0D0OO0OOODOOOm

10
l

—/

O_

Fuzzer

Number of bugs = (Total number of bugs found in 10 rounds) / 10

autofz finds most bugs

21

Bring More Fuzzers — Better Result

_ exiv2 ffmpeg imginfo infotocap
S 100 o s I—
.g 15 /—J it /\»/7“/\/ ’ 6 [~ ——
é 10 /, 50 5.0 /, 4 autofz-10
é o 2.5 — autofz-6
m
_ mujs nm pdftotext tcpdump
SN
< " 22.5 ' 30
2 75 =
3 r"r) 20.0 K 20 /
& 4
E 5.0 5 17.5 10
=
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
CPU Time (CPU Hour) CPU Time (CPU Hour) CPU Time (CPU Hour) CPU Time (CPU Hour)
autofz-6 = [AFL, FairFuzz, QSYM, AFLFast, LAF-INTEL, Radamsa] autofz-10 = [All baseline fuzzers except libFuzzer]

* Gains: Diversity of fuzzers can facilitate the exploration of challenging-to-reach paths

* Losses: run more (possibly bad) fuzzers to measure their trends (in preparation phase)
* minimized by resource allocation algorithm in focus phases

Gains > Losses when adding fuzzers

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

’’’’’’’
.’ AAAAAAAAAAA

REPRODUCED

COHClu Sion AVAILABLE

« Non-expert users can fully take advantage of fuzzing to make their
software more secure

« autofz can bridge the gap between developing new fuzzers and their
effective deployment (without running benchmarks first)

o Just bring more fuzzers! We will give you better results!

(N

SSLab.

@GeorqioTech

