
autofz:
Automated Fuzzer Composition at Runtime

Yu-Fu Fu, Jaehyuk Lee, Taesoo Kim

USENIX Security 2023

Fuzzing Wars: A Flood of Different Fuzzers

● Fuzzing is all about efficiently producing input that can uniquely locate bugs
● Various fuzzing techniques ⇒ tons of different fuzzers in the wild

○ Symbolic execution, Taint analysis, or even Machine Learning for fuzzing

1

Lost in the Fuzz: Selection Burden in Modern Fuzzing

2

● Okay, as a user, which fuzzer should I use to get the best result?
● Most users don’t have knowledge about details of each fuzzer

Original Image: Carlo Jose San Juan, MD

Community Solution: Fuzzing Benchmark!

3

• Fuzzing benchmark: creating a set of standard benchmarks for fuzzing!
• Compare the performance of fuzzers for a wide range of applications
• Choose the one performing best on average across the benchmarks

• The result is not always an optimal decision for every target!
• It does not guarantee the best outcome for the targets not in the benchmark (overfitting)

Magma

Google FuzzBench

Biases in Selection: Target-Dependent Performance

● No universal fuzzer invariably outperforms others
● The performance of fuzzers can significantly differ depending on the target

Ref.
FuzzBench

13th
1st

4

Biases in Selection: Inconsistent Performance at Runtime

rank inversion: AFL++ comes from behind and takes the lead

5

• The efficiency of each fuzzer fluctuates throughout its execution
• No guarantee that initially well-performing fuzzer will be the final winner
• Rank is consistent in short time

Ref.
FuzzBench

Rule of Thumb: Past Success is No Guarantee of Future Results

● Benchmark results cannot ensure that selected fuzzer will be
effective in fuzzing user’s binary

● Using a static fuzzer selection can result in suboptimal outcomes
○ performance bias & rank inversion during runtime

● Relying solely on static information is the cause!

6

Dynamic Composition of Fuzzers as a Push-button Solution

7

autofz automatically deploys a set of fuzzer(s)
Outperforms the best individual fuzzers in any target

List of fuzzers

autofz

Individual Fuzzers

No fuzzing expertise or benchmarking is necessary.
Provide list of fuzzers and push the button! That's all!

Utilizing Runtime Information (Trend) in Selection

8

Novice

Target
Binary

autofz as a BLACK BOX to user

Utilizing Runtime Information (Trend) in Selection

● All decisions are made without expert’s knowledge & efforts
○ Automatically selects the best-performing fuzzer at runtime
○ Automatically distributes resources to the selected fuzzers

9

Novice

Target
Binary

autofz as a BLACK BOX to user

Utilizing Runtime Information (Trend) in Selection

● All decisions are made without expert’s knowledge & efforts
○ Automatically selects the best performing fuzzer at runtime
○ Automatically distributes resources to the selected fuzzers

● How? autofz utilizes runtime trend of fuzzers!
○ Runtime Trend: runtime progress of fuzzers in short time
○ Select well-performing fuzzer(s) based on the runtime trends
○ Distribute resources to selected fuzzer(s) based on the runtime trends

10

Novice

Target
Binary

autofz as a BLACK BOX to user

Utilizing Runtime Information (Trend) in Selection

● All decisions are made without expert’s knowledge & efforts
○ Automatically selects the best performing fuzzer at runtime
○ Automatically distributes resources to the selected fuzzers

● How? autofz utilizes runtime trend of fuzzers!
○ Runtime Trend: runtime progress of fuzzers in short time
○ Select well-performing fuzzer(s) based on the runtime trends
○ Distribute resources to selected fuzzer(s) based on the runtime trends

11

Novice

Target
Binary

autofz as a BLACK BOX to user

Expert-level
Outcome

How to Effectively Capture/Utilize Runtime Trends?

● We use trend as feedback in fuzzer selection and utilization!
○ Fuzzer showing strong trend is more likely to be good at finding more bugs

● As fuzzing progresses, the runtime trend can be changed
○ Repeatedly measure the runtime trend in short time period

● Two-phase algorithm: split entire fuzzing run into multiple rounds of
measurement (preparation) and execution (focus)

12

Preparation Phase

● Run each fuzzer for small time frame (minimal overhead in measuring trends)

● Trend is measured by unique coverage discovered in the time window
○ AFL Bitmap to measure the unique coverage

● Select fuzzers and distribute resources (CPU) based on the trends

● Early Exit: optimization for reducing resource waste in preparation phase
○ Terminate preparation phase as soon as we find outstanding fuzzer(s) 13

Preparation Phase: Outstanding Fuzzer & Early Exit

● Preparation should run all fuzzers to measure
trends

● Preparation phase early-exits when there is
outstanding fuzzer
○ Minimize overhead incurred by running all

fuzzers

● Measures peak difference of trends and
compares it with predefined threshold
○ If peak difference > threshold, early exit
○ Threshold is automatically configured at

runtime
14

Preparation Phase: Resource Assignment Algorithm

● Two resource allocation strategies
○ Individual fuzzer outperforms others ⇒ Assign entire resources to outperforming one
○ No outstanding fuzzer ⇒ Distribute resources to multiple fuzzers based on trends

● Best strategy will be selected based on early exit (automatically)
15

Focus Phase

● Run selected fuzzers based on allocation metadata

● Number of fuzzers executed during the focus phase can vary
○ Sole individual (best) fuzzer
○ Combination of multiple different fuzzers

● CPU time allocated for each fuzzer can be different
○ It can prioritize specific fuzzers based on the contribution of each fuzzer

16

Why autofz can do better than others?

● Two-phase design captures trend accurately
○ autofz can tell which fuzzer(s) perform well during specific time periods
○ Can achieve optimal result by deploying the best performing fuzzer at the right time

● Resource Distribution: Survival of the fittest!
○ autofz gives priority to effective fuzzers while giving lower priority to less effective
○ Takes benefit of individual fuzzer and combination of different fuzzers

Good Fuzzer

Bad Fuzzer

Evaluation Setting

• 11 fuzzers
• AFL, MOpt, FairFuzz, AFLFast, LearnAFL
• RedQueen, LAF-Intel, QSYM, Angora
• Radamsa
• LibFuzzer (only for FTS)

• 2 benchmark
• UNIFUZZ
• Fuzzer Test Suite (FTS)

• 24 hours
• 10 repetitions

18

autofz vs. other fuzzers (coverage)

19
Top in 11/12 programs

autofz vs. other fuzzers (coverage) – pdftotext case

20

RedQueen needs to accumulate more internal states (> 12 hours) to have better performance, but this does not
reflect on its coverage, so autofz does not prioritize it by design.

It is a super rare case during our evaluation.

autofz vs. individual fuzzers (bugs)

21

autofz finds most bugs

Number of bugs = (Total number of bugs found in 10 rounds) / 10

Average Bug Count Across All Benchmarks

Bu
g

C
ou

nt

0
10

20
30

autofz
RedQueen
AFL
AFLFast
Angora
FairFuzz
LAF−Intel
LearnAFL
MOpt
QSYM
Radamsa
LibFuzzer

Fuzzer

Bring More Fuzzers → Better Result

5

10

15

B
it
m

ap
D

en
si
ty

(%
) exiv2

50

100
Æmpeg

2.5

5.0

7.5

imginfo

4

6

infotocap

autofz-10

autofz-6

0 6 12 18 24
CPU Time (CPU Hour)

5.0

7.5

B
it
m

ap
D

en
si
ty

(%
) mujs

0 6 12 18 24
CPU Time (CPU Hour)

5

10

nm

0 6 12 18 24
CPU Time (CPU Hour)

17.5

20.0

22.5

pdftotext

0 6 12 18 24
CPU Time (CPU Hour)

10

20

30

tcpdump

autofz-10

autofz-6

22

• Gains: Diversity of fuzzers can facilitate the exploration of challenging-to-reach paths
• Losses: run more (possibly bad) fuzzers to measure their trends (in preparation phase)

• minimized by resource allocation algorithm in focus phases

autofz-6 = [AFL, FairFuzz, QSYM, AFLFast, LAF-INTEL, Radamsa] autofz-10 = [All baseline fuzzers except libFuzzer]

Gains > Losses when adding fuzzers

Conclusion

● Non-expert users can fully take advantage of fuzzing to make their
software more secure

● autofz can bridge the gap between developing new fuzzers and their
effective deployment (without running benchmarks first)

● Just bring more fuzzers! We will give you better results!

23codepaper

