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Fuzzing Wars: A Flood of Different Fuzzers

e Fuzzing 1s all about efficiently producing input that can uniquely locate bugs

e Various fuzzing techniques = tons of different fuzzers in the wild
o Symbolic execution, Taint analysis, or even Machine Learning for fuzzing
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Lost in the Fuzz: Selection Burden in Modern Fuzzing
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e Okay, as a user, which fuzzer should I use to get the best result?
e Most users don’t have knowledge about details of each fuzzer




Community Solution: Fuzzing Benchmark!
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* Fuzzing benchmark: creating a set of standard benchmarks for fuzzing!
* Compare the performance of fuzzers for a wide range of applications
* Choose the one performing best on average across the benchmarks

* The result 1s not always an optimal decision for every target!
* It does not guarantee the best outcome for the targets not in the benchmark (overfitting)
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Biases in Selection: Target-Dependent Performance

No universal fuzzer invariably outperforms others

The performance of fuzzers can significantly differ depending on the target
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Biases in Selection: Inconsistent Performance at Runtime

libpcap_fuzz_both (23h, 20 trials/fuzzer)
rank inversion: AFL++ comes from behind and takes the lead
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* The efficiency of each fuzzer fluctuates throughout its execution
* No guarantee that initially well-performing fuzzer will be the final winner

 Rank 1s consistent in short time
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Rule of Thumb: Past Success is No Guarantee of Future Results

« Benchmark results cannot ensure that selected fuzzer will be
effective in fuzzing user’s binary

. Using a static fuzzer selection can result in suboptimal outcomes
o performance bias & rank inversion during runtime

. Relying solely on static information 1s the cause!



Dynamic Composition of Fuzzers as a Push-button Solution
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No fuzzing expertise or benchmarking is necessary.
Provide list of fuzzers and push the button! That's all!
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autofz automatically deploys a set of fuzzer(s)
Outperforms the best individual fuzzers in any target



Utilizing Runtime Information (Trend) in Selection
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Utilizing Runtime Information (Trend) in Selection

autofz as a BLACK BOX to user

o All decisions are made without expert’s knowledge & efforts

o Automatically selects the best-performing fuzzer at runtime

o Automatically distributes resources to the selected fuzzers
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Utilizing Runtime Information (Trend) in Selection

autofz as a BLACK BOX to user

o All decisions are made without expert’s knowledge & efforts

o Automatically selects the best performing fuzzer at runtime
o Automatically distributes resources to the selected fuzzers

How? autofz utilizes runtime trend of fuzzers!

o Runtime Trend: runtime progress of fuzzers in short time

o Select well-performing fuzzer(s) based on the runtime trends
o Distribute resources to selected fuzzer(s) based on the runtime trends




Utilizing Runtime Information (Trend) in Selection

autofz as a BLACK BOX to user

o All decisions are made without expert’s knowledge & efforts

o Automatically selects the best performing fuzzer at runtime

o Automatically distributes resources to the selected fuzzers

How? autofz utilizes runtime trend of fuzzers! Expert-level
o Runtime Trend: runtime progress of fuzzers in short time Outcome

o Select well-performing fuzzer(s) based on the runtime trends
o Distribute resources to selected fuzzer(s) based on the runtime trends
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How to Effectively Capture/Utilize Runtime Trends?

o We use trend as feedback 1n fuzzer selection and utilization!

o Fuzzer showing strong trend 1s more likely to be good at finding more bugs

o As fuzzing progresses, the runtime trend can be changed

o Repeatedly measure the runtime trend in short time period

Two-phase algorithm: split entire fuzzing run into multiple rounds of
measurement (preparation) and execution (focus)
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Preparation Phase

( Preparation Phase (@ Evaluate baseline fuzzers
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Run each fuzzer for small time frame (minimal overhead in measuring trends)

Trend 1s measured by unique coverage discovered in the time window
o AFL Bitmap to measure the unique coverage

Select fuzzers and distribute resources (CPU) based on the trends

Early Exit: optimization for reducing resource waste in preparation phase
- Terminate preparation phase as soon as we find outstanding fuzzer(s)



Preparation Phase: Outstanding Fuzzer & Early Exit

*Preparation phase start

Run baseline fuzzers
for 30 seconds
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>
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Exit preparation
phase

Preparation should run all fuzzers to measure
trends

Preparation phase early-exits when there 1s
outstanding fuzzer

o Minimize overhead incurred by running all
fuzzers

Measures peak difference of trends and
compares 1t with predefined threshold

o If peak difference > threshold, early exit

o Threshold 1s automatically configured at
runtime



Preparation Phase: Resource Assignment Algorithm

Distribute
resources to
multiple fuzzers
based on trends

NO

YES

Prioritize
the best fuzzer

« Two resource allocation strategies
o Individual fuzzer outperforms others = Assign entire resources to outperforming one

o No outstanding fuzzer = Distribute resources to multiple fuzzers based on trends

« Best strategy will be selected based on early exit (automatically)



Focus Phase
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e Run selected fuzzers based on allocation metadata

o Number of fuzzers executed during the focus phase can vary
o Sole individual (best) fuzzer
- Combination of multiple different fuzzers

o CPU time allocated for each fuzzer can be different
- It can prioritize specific fuzzers based on the contribution of each fuzzer



Why autotz can do better than others?
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Two-phase design captures trend accurately

o autofz can tell which fuzzer(s) perform well during specific time periods
o Can achieve optimal result by deploying the best performing fuzzer at the right time

Resource Distribution: Survival of the fittest!
o autofz gives priority to effective fuzzers while giving lower priority to less effective
o Takes beneftit of individual fuzzer and combination of different fuzzers



Evaluation Setting

e 11 fuzzers

 AFL, MOpt, FairFuzz, AFLFast, LearnAFL
* RedQueen, LAF-Intel, QSYM, Angora
 Radamsa

* LibFuzzer (only for FTYS)

e 2 benchmark
« UNIFUZZ
* Fuzzer Test Suite (FTS)

* 24 hours
* 10 repetitions



autofz vs. other fuzzers (coverage)
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autofz vs. other fuzzers (coverage) — pdftotext case
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RedQueen needs to accumulate more internal states (> 12 hours) to have better performance, but this does not
reflect on its coverage, so autofz does not prioritize it by design.

It is a super rare case during our evaluation. 20



autofz vs. individual fuzzers (bugs)

Average Bug Count Across All Benchmarks
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Number of bugs = (Total number of bugs found in 10 rounds) / 10

autofz finds most bugs

21



Bring More Fuzzers — Better Result
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autofz-6 = [AFL, FairFuzz, QSYM, AFLFast, LAF-INTEL, Radamsa] autofz-10 = [All baseline fuzzers except libFuzzer]

* Gains: Diversity of fuzzers can facilitate the exploration of challenging-to-reach paths

* Losses: run more (possibly bad) fuzzers to measure their trends (in preparation phase)
* minimized by resource allocation algorithm in focus phases

Gains > Losses when adding fuzzers
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« Non-expert users can fully take advantage of fuzzing to make their
software more secure

« autofz can bridge the gap between developing new fuzzers and their
effective deployment (without running benchmarks first)

o Just bring more fuzzers! We will give you better results!
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