
PYFET: Forensically Equivalent Transformation for Python Binary Decompilation

Ali Ahad∗, Chijung Jung∗, Ammar Askar†, Doowon Kim‡, Taesoo Kim†, and Yonghwi Kwon∗
∗Department of Computer Science, University of Virginia, Charlottesville, VA, USA
†School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

‡Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
∗{aliahad, cj5kd, yongkwon}@virginia.edu †{aaskar, taesoo}@gatech.ac.kr ‡doowon@utk.edu

Abstract—Decompilation is a crucial capability in forensic
analysis, facilitating analysis of unknown binaries. The recent
rise of Python malware has brought attention to Python
decompilers that aim to obtain source code representation from
a Python binary. However, Python decompilers fail to handle
various binaries, limiting their capabilities in forensic analysis.

This paper proposes a novel solution that transforms a de-
compilation error-inducing Python binary into a decompilable
binary. Our key intuition is that we can resolve the decompila-
tion errors by transforming error-inducing code blocks in the
input binary into another form. The core of our approach is
the concept of Forensically Equivalent Transformation (FET)
which allows non-semantic preserving transformation in the
context of forensic analysis. We carefully define the FETs to
minimize their undesirable consequences while fixing various
error-inducing instructions that are difficult to solve when
preserving the exact semantics. We evaluate the prototype of
our approach with 17,117 real-world Python malware samples
causing decompilation errors in five popular decompilers. It
successfully identifies and fixes 77,022 errors. Our approach
also handles anti-analysis techniques, including opcode remap-
ping, and helps migrate Python 3.9 binaries to 3.8 binaries.

1. Introduction
Malware such as viruses and ransomware is a key

weapon leveraged by cyber attackers. Reverse-engineering
malware is a crucial capability for investigating the details of
cyberattacks. In particular, a decompiler is a highly desirable
reverse-engineering tool that can translate a malware binary
into human-readable source code representation. For many
years, various reverse-engineering tools such as decompilers
have been proposed and advanced [8–10, 21, 24, 25, 40, 42]
to target C/C++ binary programs as these languages have
been traditionally used to write the majority of malware.

We have recently seen that a large amount of malware
has been written in emerging languages [29], particularly
in Python [7]. Python is easy to learn and has significant
community support, making it an attractive language for
malware authors. Python malware is typically distributed as
a compiled binary containing Python bytecode instructions
that are challenging to analyze.

The community has responded to this problem with
Python decompilers [16, 47]. Given a Python binary, de-

compilers translate bytecode instructions to the high-level
representation (i.e., source code). Unfortunately, they have
limitations and have difficulty handling various Python bina-
ries. Specifically, when a decompiler encounters particular
sequences of instructions, it fails the decompilation process.
It either stops the decompilation process or generates incor-
rect outputs (i.e., incorrectly-decompiled code), thwarting
and misleading consequent analyses. We have also seen
Python binaries with customized opcode definitions that
are incompatible with the standard Python environment and
decompilers [5, 26], thwarting the decompilation process.

To overcome these challenges, a straightforward method
is to fix the Python decompilers. However, multiple Python
decompilers used in the wild are designed, implemented,
and maintained by different groups. They are also written
in different programming languages: Python [16, 46–48]
and C++ [17]. Each decompiler has its own strengths (e.g.,
Decompyle3 outperforms Uncompyle6 in 3.7-8 Python bi-
naries while Decompyle3 does not support other Python
versions), making it difficult to choose a decompiler to fix
as there is no clear winner amongst them. Moreover, fixing
a decompiler is time-consuming and error-prone. Based on
our experiments on fixing three decompilers (Appendix 5.1),
on average, it took an author two days to fix a single bug
in a decompiler, while 2 of 3 fixes introduced new bugs.

This paper proposes a program transformation-based
solution to the decompilation failure problem. Our approach
is based on the observation that failure-inducing instruc-
tions/structures in Python binaries can be transformed into
other forms that decompilers can successfully handle. A
challenge in such transformation is that we may not find
solutions for various decompilation errors if we only allow
semantically equivalent transformations. To this end, we
define a concept of Forensically Equivalent Transformation
(FET), which relaxes the semantic preserving restriction as
long as the transformation preserves sufficient semantics for
forensic analysis (Details can be found in Section 3). We
evaluate our approach on 17,117 Python malware binaries
(that cannot be decompiled by five decompilers [16, 17, 46–
48]) in the wild, showing that our technique resolves all the
decompilation failures. Our contributions are as follows:
• We develop a system, PYFET, that helps Python de-

compilers by transforming Python bytecode binaries with
decompilation failures to decompilable binaries.

• We propose the concept of Forensically Equivalent Trans-
formation (FET) that relaxes the semantic preserving con-
straints from semantically equivalent transformation to
resolve challenging decompilation errors.

• To the best of our knowledge, we are the first to system-
atically handle Python decompilers generating logically
incorrect code, which we call Implicit Errors.

• We evaluate PYFET on 17,117 real-world Python malware
samples with decompilation errors obtained by Revers-
ingLabs [39]. PYFET identifies 77,022 decompilation er-
rors across five decompilers and fixes all of them.

• We present two case studies to show that PYFET can (1)
handle opcode remapping, a recent anti-analysis technique
that is used by DropBox and druva binaries and (2)
migrate Python 3.9 binaries to 3.8 so that they can be
decompiled by Uncompyle6 and Decompyle3.

• We publicly release all the code and data [37].
Scope and Limitations. This paper focuses on fixing errors
in decompilers that happen during the process of recon-
structing high-level semantics from low-level representa-
tions (e.g., instructions). Decompilation errors from before
the semantic recovery process, such as errors due to incor-
rect file headers or formats, are not our focus. PYFET mod-
ifies the target binaries, meaning that decompiled program
can be different from the original binary program. While
we carefully design the transformation rules to minimize
the side effects, this may affect the forensic analysis of the
target binary. Source-level obfuscation is out of our scope.
If a binary is created from obfuscated source code, we aim
to help decompilers obtain the obfuscated source code.

2. Background and Preliminary Study

2.1. Bytecode, Disassemblers, and Decompilers

A Python program can be executed from either source
code or binary. Besides running a Python source code
program (i.e., .py file), one can also run a .pyc binary
file containing Python bytecode (a set of instructions for
Python’s virtual machine). The binaries can be generated
by the ‘-m compileall’ command. The binary format is
preferred by cyber attackers as it is challenging to analyze.
Challenges in Decompilation. At a high-level, decompila-
tion is a process of inferring a mapping between the original
source code representations from the low-level bytecode
instructions. Unfortunately, during the compilation process,
a high-level language construct can be transformed into mul-
tiple forms of low-level bytecode instructions. For example,
there can be multiple ways to implement a for loop, and the
compiler may choose one of the ways to generate a binary
program. In addition, the compiler can further optimize the
generated bytecode (e.g., reducing multiple instructions into
a simpler instruction), making it hard to infer the original
statements from the instructions. Since there can be multiple
possible mappings, decompilation is often considered an un-
decidable problem. In practice, decompilers often leverage
heuristics to choose one of the mappings based on typical
code generation patterns’ of the compilers.

30.3%
20.0%

16.9%

53.4%

33.1%

8.2%

43.8%
33.8%

12.5%

34.6%
26.9%

23.1%

36.6%
26.8%

0.0%

20.0%

40.0%

60.0%

Try/
ex

cep
t b

loc
k

Loo
p b

loc
k

Con
dit

ion
al

blo
ck

Try/
ex

cep
t b

loc
k

Loo
p b

loc
k

Con
dit

ion
al

blo
ck

Loo
p b

loc
k

Con
dit

ion
al

blo
ck
Othe

r

Boo
lea

n e
xp

res
sio

n

Try/
ex

cep
t b

loc
k
Othe

r

Con
dit

ion
al

blo
ck

Loo
p b

loc
k

W
ith

 bl
oc

k

250 500 750 1,000

M1M2

Unsupported Instructions ⎯ 240 (11.9%)

Implementation Bugs ⎯ 25 (1.2%)

M1: Conditional Block M2: Loop Block M3: with Block
M4: Boolean Expression M5: try/except Block M6: Other

Decompyle++Unpyc37Uncompyle2Decompyle3Uncompyle6

15.1%

67.2% 94.7% 90.1% 84.6% 78.5%

(a) Errors Breakdown by Root Causes

Conflicting Parsing Rules ⎯ 853 (42.4%)

Missing Parsing Rules ⎯ 896 (44.5%)

M3M2M1M6M5M4M6M1M2M5M1M2M5

(b) Top 3 Erroneous Module/Rule per Decompiler

Figure 1. Causes of Decompilation Errors.

Python Binary File Structure. The .pyc file starts with
a header containing the magic number representing the
version of the Python compiler that generated the binary
file. Then, it has a serialized code object containing the
Python bytecode including instructions and data. The file
and bytecode specifications vary between Python versions
(e.g., instructions can be newly introduced or obsoleted).
Python Bytecode Disassemblers. Python disassemblers
parse and extract the bytecode instructions while not aiming
to recover the source code representation. Their key chal-
lenge is to handle the different instruction specifications.
Python Decompilers. Uncompyle6 [47], Decompyle3 [16],
Uncompyle2 [46], Unpyc37 [48], and Decompyle++ [17]
are five popular Python decompilers. They take a Python
binary program as input and aim to generate the input
program’s source code. They first disassemble the binary
program to obtain bytecode instructions and then identify
high-level language constructs from the instructions. For
each high-level construct (e.g., a loop), they define decom-
pilation rules that map patterns of instructions to high-level
language constructs/structures. The decompilers repeat the
process of applying decompilation rules on the input binary,
until it recovers the entire source code of the target program.

2.2. Preliminary Study on Decompilation Failures
We conduct two preliminary studies. First, we analyze

the causes of decompilation errors from real-world Python
malware. Second, we study the correctness of decompilers’
results (i.e., decompiled source code).

2.2.1. Causes of Decompilation Failures. We randomly
select 150 samples from the real-world malware dataset for
our evaluation in Section 5, obtaining 2,014 decompilation
errors from the samples. We then investigate the causes of
the decompilation errors in five decompilers: Uncompyle6,
Decompyle3, Uncompyle2, Unpyc37, and Decompyle++.
As a result, we identify that most decompilation failures
stem from the following high-level causes:

2

1. Missing Parsing Rules: Decompilers do not have a
proper parsing rule for a certain pattern in a binary. It
is often a corner case of an already supported pattern.

2. Conflicting Parsing Rules: Decompilers fail to select a
correct parsing rule when there are multiple applicable
rules. Applying an incorrect rule may terminate the
decompilation process or create a wrong result.

3. Unsupported Instructions: Decompilers do not support
certain instructions (i.e., newly introduced instructions),
leading to a decompilation failure.

4. Implementation Bugs: They are caused due to internal
decompiler implementation bugs (e.g., segmentation
fault and integer overflow causing infinite loop) that
are not particularly related to the decompilers’ design.

As shown in Fig. 1-(a), the missing and conflicting
parsing rules are the two major causes. Decompilers main-
tain a large number of parsing rules (e.g., 1,408 rules in
Uncompyle6, Decompyle3, and Uncompyle2 on average),
where many of them are inter-dependent. Hence, it is chal-
lenging to add new parsing rules or identify the problematic
parsing rules to fix the error. Incorrectly added/fixed rules
can introduce errors. We elaborate more in Appendix 5.1.
Handling Control Flows. Many errors are due to mis-
handling of control flow changing instructions. Specifically,
Fig. 1-(b) shows the decompilers’ modules/rules that are
responsible for the errors. Major causes are conditional
(36.6% in Decompyle++), loop (43.8% in Uncompyle2),
and try/except (53.4% in Decompyle3) structures.
Undetected Conflicting Rules. We observe some errors
caused by conflicting rules incorrectly changing parts of the
decompiled result while not wrecking the entire decompila-
tion process. We further investigate it in Section 2.2.2.
Representativeness of Decompilation Failures. We ana-
lyze all errors in Section 5 to infer the root causes. Our
results show that errors in Section 5 follow similar distribu-
tion of that in Fig. 1. We elaborate in [35] (Section 7.1).

2.2.2. Correctness of Decompiled Source Code. Decom-
pilers may produce an incorrectly decompiled source code.
Hence, we empirically analyze the correctness of the de-
compilation results of 3,000 Python programs collected
from diverse sources (e.g., CPython Standard Library [2]
and popular projects in PyPI [4]). Specifically, we compile
the source code programs to obtain .pyc binaries and use
decompilers to get decompiled source code programs. Then,
we compare the sources and binaries of both the original
and decompiled programs illustrated in [35] (Section 7.2).
The differences indicate potential decompilation failures. We
observe the followings:

1. Incorrectly Changing Semantics: These errors essen-
tially change the meaning of the program. They typi-
cally stem from overlapping parsing rules for the same
set of instructions in binary.

2. Harmless Additional Code: Decompiled source code
has additional code (e.g., additional del statements in
an exception block for cleaning up variables) that do
not impact the existing semantics of the program.

3. Incorrectly Omitted Code: Decompilers, particularly in
Decompyle++, may produce a decompiled source code
without certain parts of the program. We find that this is
because of the incorrect parsing rules of the decompiler
which skips the blocks and quits the parsing early.

Our work focuses on the first case (See Section 4.1.2).
The second case is trivial and easy to detect. Hence, we
detect and ignore them. The third case is out of our scope
because it happens when the decompiler’s implementation
is largely incomplete for a certain pattern. We detect the
third case by instrumenting every block in a binary and
checking whether the instrumented code correctly appears
in the decompiled source code. If it does not, we detect the
third case and ignore it. We elaborate more in Appendix 1.

2.3. Observations and Challenges

More Failures on Newer Python Versions. We observe
that decompilation failures are frequently observed on recent
versions of Python binaries (e.g., 3.8 or later). This might
imply that code generation patterns of the compilers are
getting more complicated, imposing significant challenges.
Logically Different Decompiled Source Code. We observe
that even if a decompiler successfully generates source code
from the input binary, the decompiled source code may
contain different logic. Since these errors happen silently
without explicit error messages, detecting them is challeng-
ing. We call them implicit errors and discuss them in detail
in Section 4.1.1. These errors can substantially affect all the
downstream analyses that rely on the decompiled source
code. Unfortunately, we have not seen active discussions
about this problem, even though the severity of the prob-
lem is certainly concerning (e.g., we have observed 13,384
samples having such problems).
Anti Reverse-engineering Techniques. We observe the
malicious techniques used by cyber attackers to thwart
the decompilation processes. For example, attackers modify
Python binaries to insert dummy/unusual bytecode instruc-
tions, breaking the patterns used by the decompilers (see
Section 5.4.3). Also, a customized Python runtime with a
randomized instruction set is used to prevent the decompi-
lation of Python binaries [5, 26] (see Section 5.4.2).

3. Forensically Equivalent Transformation

Forensically Equivalent Transformation (FET) is a trans-
formation aiming to preserve forensically critical semantics
without strictly requiring preserving the semantics of the
original program. Compared with the semantically equiva-
lent transformation (SET), FET can conduct more diverse
transformations, while some semantics might be lost.
Reasons for FETs. A salient reader may question why
one needs to use FET instead of SET, because SET does
not have concerns regarding losing semantics during the
transformation. We define and use FETs, because we ob-
served that using only SETs is insufficient to resolve various
decompilation errors. In other words, fixing such errors

3

TABLE 1. TRANSLATING KEYWORDS.

Keywords Original Stmt. Transformed Stmt.

Group 1: Keywords can be removed. Critical semantics preserved.

await, async await task fn task fn()

Group 2: Keywords can be implemented by using other primitives.

with, lambda with open(...) as f: def FET fn(x):
fn = lambda x:\ return ‘y’ if \
‘y’ if x%2==0\ x%2==0 else ‘n’
else ‘n’ f = open(...)

f.write(fn(1)) f.write(FET fn(1))
f.close()

Group 3: Keywords can be replaced with a function call.

assert, del, assert(...) FET assert(...)
raise del obj FET del(obj)

Group 4: Keywords for variable scopes can be removed.

nonlocal, global x FET global x = ...
global x = ...
* Blue and red represent keywords and transformed code by FET.

requires more aggressive transformations, meaning that we
may need to compromise the semantic preserving constraint.

For example, we observe that Python decompilers’
supports for certain keywords (e.g., async, await, and
lambda) are limited or lacking. After we apply a series of
SETs on async, we find that none of the SETs we tried
resolve the error since decompilers do not understand/imple-
ment the concept of these keywords. The closest transforma-
tion that works for the decompilers is practically removing
the keyword (or transforming to a similar implementation
without asynchronous instructions). This essentially mo-
tivates the development of FET, relaxing the concept of
SET while not significantly affecting subsequent forensic
analyses. FET is essentially a superset of SET, and FET
includes any SETs.
Deriving FETs. We manually derive FETs by analyz-
ing decompilation errors from 375 Python binaries col-
lected from PyPI (90), CPython libraries (150), and open-
source/malware samples (135), among the 3,000 samples
we used in Section 2.2.2. Note that they are not parts of the
dataset used in our evaluation.
Types. There are three types of FETs: (1) translating key-
words (Section 3.1), (2) translating control structures (Sec-
tion 3.2), and (3) inserting no-op instructions (Section 3.3).

3.1. Translating Keywords

Table 1 shows four groups of Python keywords that we
transform. The first column shows the target keywords of the
transformation, and the next two columns show examples of
the original and transformed statements.
Group 1. FETs remove keywords in this group (e.g., await
and async). Removing them has little to no change in the
semantics for forensic analysis (i.e., it makes the program
synchronous while all other semantics are preserved). Note
that if there exist code snippets dependent on those keywords
(e.g., registered callbacks), we do not apply this FET.
Group 2. Keywords in this group are translated into se-
mantically similar implementations (i.e., FET) that do not

use the keywords. The example in Table 1 shows a sim-
plified version of the with-as implementation. Note that
the semantics of with-as include an exception handler
(i.e., try-finally). Hence, an example SET of ‘with x()
as f: f.write(y)’ is ‘try: f = x(); f.write(y);
finally: f.close()’. In this example, there is a subtle
difference between the SET and FET in how an exception
is handled. Specifically, if an exception happens in the with
block, the exception will be caught by the try block in the
SET case, while it will be passed to an upper layer try
block in the FET case.
Group 3. Keywords such as break, continue, and return
are replaced with a function call. Transformations for this
group change the semantic of the original statement, how-
ever, from the human reader (e.g., forensic analyst), the lost
semantics have limited impact. Further, once successfully
decompiled, those transformed functions can be replaced
with the original form: ‘FET keyword()’→‘keyword’.
Group 4. Keywords defining the scope of variables are
replaced with variables with a prefix of ‘FET ’. Similar
to Group 2, Group 4 changes the semantics but it is not
critical for forensic analysis, and they can be post-processed
to recover the original semantics.
Other Keywords. There are a few remaining keywords
that FET does not consider, as we have not observed de-
compilation errors caused by them. This is mainly because
these keywords’ semantics are straightforward or their usage
pattern does not vary significantly, making it easier for
decompilers to handle them. For example, there are constant
values such as True, False, and None. Also, FET does not
transform pass since it does not have a corresponding in-
struction in the binary. In other words, no code is generated
for the pass statement. Lastly, there are keywords used to
define objects and functions such as class and def.

3.2. Translating Control Structures

Table 2 shows the second type of FETs changing the
control flow structure of the program.
Structure 1. This FET changes the program’s control flow
structure into a similar structure, while preserving all ex-
pression statements, including assignments, comparison, and
function calls that are parts of the original control structure.
For example, a try-except structure can be transformed
into (1) a code block from the try and (2) another block
from the except, guarded by an if.
Structure 2. Chained if statements are separated into mul-
tiple individual ifs. For instance, if-elif can be translated
into the two independent ifs. Similarly, the import state-
ment can have multiple imports with ‘as’ (e.g., import x
as a, y as b), which can be separated into two import
statements: ‘import x as a; import y as b’.
Structure 3. Branching statements (e.g., continue, break,
return) in loops are translated to conditionals. For exam-
ple, a continue with an assignment of a new variable
FET continue. The statement s2 that is dependent on
the original continue statement is now guarded by the

4

Transform-
ation

Error
Identification

Decompilation Failure

Decompiled
Source CodeTarget Block

Selection

Decompilation

Decompilation Failure (Explicit Error)

Error Location
<Ferror, Ierror>

Implicit Error
Detection

Terminate
No Error

 Python Binary
(.pyc file)

Implicit Error
Success Success

Error Identification Iterative Transformation
Figure 2. Overview of PYFET (Gray Boxes represent PYFET’s Components).

TABLE 2. TRANSLATING CONTROL FLOW STRUCTURES.

Keywords Original Stmt. Transformed Stmt.

Structure 1: Translating Exceptions to Conditionals.

try-except try: s1 s1;
except: s2 if FET error(): s2

Structure 2: Breaking Chained Statements.

if-elif, if x: s1 if x: s1
import-as elif y: s2 if not x and y: s2

Structure 3: Translating Branching Statements to Conditionals in Loops.

continue, while cond: while cond:
break, if s1: if s1:
return, continue FET continue = 1
yield s2 if FET continue == 0:

s2

Structure 4: Taking Statements out of the Exception.

return, with x as y: with x as y:
continue return y.fn(): FET ret = y.fn()
in with return FET ret

try: try:
return, return x FET ret = x
continue except: except:
in try-
except if FET ret is not None:

return FET ret
* Blue and red represent keywords and transformed code by FET.

‘if FET continue == 0:’, emulating the original con-
trol flow structure. break and return can be similarly im-
plemented by changing the loop condition (i.e., ‘cond=0’).
Structure 4. FET can take control flow statements out of
the exception handlers (e.g., try-except and with1). As
shown in Table 2, a return in an exception is replaced
with a return after the exception block.
Other Structures. Similar to the keywords that we do not
consider in FET, structures not mentioned in this section are
those that we have not observed in decompilation errors.

3.3. Adding No-operation Instructions

A FET can introduce new instructions if they do not
affect the program’s existing data and control flows. For
example, adding no-operation instructions (i.e., instructions
that do nothing meaningful in terms of data/control flow)
to an existing basic block is a FET. There are multiple
forms of no-op instructions: (1) calling an empty function
‘FET null()’ and (2) assigning a variable to itself (e.g.,
‘FET null=FET null’). Note that Python has an existing
NOP instruction (opcode 9) which we do not use because
existing decompilers do not recognize and react to it.

1. ‘with-as’ implements exception handling logic internally.

...
def convert--- This code section failed: ---

...
636 STORE_FAST 'converted_column'

...
Parse error at or near ‘COME_FROM_LOOP’ instruction at offset 638_1

1
2
3
4
5
6

(a) Extracting Error-inducing Instruction’s Offset and Function

(b) Obtained Error Location

Error Location: <Ferror, Ierror> = < convert, 638>A B

A

B

Figure 3. Example of Error Message Processing.

4. PYFET Design
Fig. 2 shows the overall procedure of PYFET, consisting

of two phases: (1) Error Identification (Section 4.1) to
detect decompilation errors and (2) Iterative Transformation
(Section 4.2) to automatically resolve the detected errors.

4.1. Error Identification

Decompilation errors are detected by analyzing the exe-
cution outcome of the decompilers. For a detected error, we
extract the error location, a tuple of a function containing
the error and an error-inducing instruction’s offset: (Ferror ,
Ierror). There are two types of errors: explicit and implicit.
Explicit errors are are observed when a decompiler fails
with an explicit error message. Implicit errors occur when a
decompiler generates a decompiled code that is semantically
different from the input binary without explicit errors.

4.1.1. Handling Explicit Errors. To detect explicit errors,
we check for an error message from a decompiler. If a
decompiler fails without any error message (e.g., the de-
compiler process hangs and does not terminate), we do not
consider them explicit errors (Discussion in Section 6).
Obtaining Error Location. We parse error messages from
the decompiler to obtain the error location. Fig. 3-(a) shows
an example error message from Uncompyle6 [47]. It con-
tains the function name where the decompilation failed at
line 2 (Ferror), and the error-inducing instruction’s offset
(Ierror) at line 6. We use a regular expression to extract the
two pieces of information (A and B in Fig. 3-(b)). Note
that if an error-inducing instruction’s offset is not available,
we use the first instruction’s offset (i.e., the root of a CFG).

4.1.2. Handling Implicit Errors. Fig. 4 outlines PYFET’s
implicit error detection process, consisting of four steps.
1. Implicit Error Pattern Searching: We check whether the

decompiled source code has a structure that matches a

5

Decompiled
Source Code

Found
a maching

error pattern

Implicit Error
Pattern Searching

Error Code Extraction
and Mutation

(Scorrect)
Correct Pattern
Code (Mutated)

(Serror)
Error Pattern
Code
(No mutation)

Compiler
(Ierror)
Error Pattern's
Instr.

(I correct)
Correct
Pattern's Instr.

Searching the
Input Binary

Correct Pattern's
Instr. (I correct) Found

Error Pattern's
Instr. (Ierror) Found

Others

Figure 4. Implicit Error Detection Procedure.

predefined implicit error pattern2. Note that the matching
happens at the source code level. If there is no matching
implicit error pattern, we report no implicit errors.

2. Error Code Extraction and Mutation: If we identify a
code snippet that matches an implicit error pattern, we
extract the matching part of the source code, which we
call “Error Pattern Code” (Serror) and its error location
(i.e., <Ferror , Ierror >). Then, we mutate Serror ’s code
structure (as in the second column of Table 3) to its
correct pattern’s structure (as in the third column of
Table 3), obtaining Scorrect (Correct Pattern Code).

3. Compilation: We compile Scorrect and Serror to obtain
their bytecode instructions: Correct Pattern Code’s in-
structions (Icorrect) and Error Pattern Code’s instructions
(Ierror). We use the same compiler version that gener-
ated the input binary, according to the binary’s header.

4. Searching the Input Binary: We search the original input
binary to check whether the matching instructions of
Ierror or Icorrect exist in the input binary at the same
error location. Since we found Serror in the decompiled
program in step 1, if the original input binary has Icorrect
at the same location, it means the original binary and the
decompiled program are different, suggesting an implicit
error. Observe that we compare the code snippets in two
programs (i.e., the decompiled program and the original
binary) at the same location. If both have Serror and
Ierror , it means they are consistent hence no implicit
errors are detected. Details of other outcomes of the
search can be found in Appendix 2.2.

Implicit Error Patterns. Table 3 shows 6 selected implicit
error patterns. The remaining patterns are in Appendix 2.1.

P1. A decompiler incorrectly includes statements (e.g.,
‘return s2’) after an if into the if block.

P2. A nested if with an inner if containing an else block
is incorrectly decompiled to the outer if paired with
the else (which should be paired with the inner if).

P3. When there are two consecutive ifs, the second if
was paired with the first if’s else.

P4. A decompiler introduces an else to try and includes
the subsequent statements under the new else.

2. The patterns are obtained by studying various Python programs’
decompilation results. Details of the study for predefined implicit error
patterns is in Appendix 2.1, including examples shown in Table 3.

TABLE 3. IMPLICIT ERROR PATTERNS.

Pattern Name Implicit Error Pattern Correct Pattern

P1: if if c1: if c1:
includes s1 s1
with/return return s2 return s2

if c1: if c1:
P2: Incorrectly if c2: s1 if c2: s1
paired else else: else:

s2 s2

P3: if if c1: s1 if c1: s1
introduced else: if c2: s2
else if c2: s2

P4: try try: s1 try: s1
introduced except: s2 except: s2
else else: s3 s3

P5: for for x in y: for x in y:

introduced s1 s1

else else: s2
s2

for x in y: for x in y:

P6: Removed if c1: while c1:

the inner loop s1 s1

when nested else: s2
s2 s3
s3

* Blue text represents keywords and highlighted lines show
the differences between the error and correct code.

P5. A decompiler introduces an else to for and includes
the subsequent statements under the new else.

P6. When there is a while in a for, a decompiler com-
pletely removes the inner while. Further, it also in-
correctly introduces an else and puts statements that
should not belong to (s2 and s3 in the example).

Note that for P4 and P5, the else block of try or for
will only be executed when there is no exception raised
or break executed respectively. The decompiler essentially
mispresents the critical control flow logic of the program.
Obtaining Error Location. In the Code Extraction and
Mutation process, we obtain the location of Serror .

4.2. Iterative Transformation

Outline. As illustrated in Algorithm 1, we iteratively trans-
form the input binary via three steps. First, we obtain a
control flow graph of the input binary (line 2) and choose the
initial target block containing the error location (ErrorLoc)
(line 3). Second, we transform instructions in the chosen
target block (line 5). Note that there can be multiple transfor-
mations that are applicable to a block, represented as multi-
ple lines between the transformation and error identification
in Fig. 2 (also, the algorithm returns a set of transformations
at line 5). For each transformed binary from each applied
transformation, we run the error identification process to
check whether the transformed binary does not have de-
compilation errors (lines 5∼8). If it resolves the originally
targeted error, we consider the transformation is successful
(line 9). Otherwise, we try the same process iteratively on
other blocks adjacent to the current target blocks (line 10).

6

Algorithm 1: Forensically Equivalent Transformation
Input : Bin: input Python binary.

ErrorLoc: the location of the error-inducing instruction.
Output: DecResult: a decompiled source code.

1 procedure ForensicEquivTrans(Bin,ErrorLoc)
2 CFG ← GetCFG (Bin)
3 targetSet ← SelectInitialTarget

(CFG.root ,ErrorLoc)
4 while targetSet ≠ ∅ do
5 transformedSet ← TransformBin (CFG, targetSet)
6 for trBin ∈ transformedSet do
7 DecResult ← Decompile (trBin)
8 if IdentifyError (DecResult) = ∅ then
9 return DecResult

10 targetSet ← SelectAdditionalTarget (targetSet)

11 return Failure

674: LOAD_FAST
676: RETURN_VALUE

660: LOAD_GLOBAL
...

672: RAISE_VARARGS

650: LOAD_GLOBAL
...

658: JUMP_FORWARD

640: LOAD_GLOBAL
...

648: POP_JUMP_IF_FALSE

638: JUMP_FORWARD
0

620: POP_BLOCK
...

636: STORE_FAST

576: FOR_ITER
...

618: JUMP_ABSOLUTE

512: POP_BLOCK
514: JUMP_FORWARD

...

1

1

1

1
22

2

Figure 5. Control Flow Graph of convert() in Fig. 3.

The process terminates with a failure when no target blocks
are left to process and no successful transformation is found.
This essentially means that PYFET fails to find a solution.
Note that if a binary contains multiple errors, we run the
algorithm multiple times, fixing a single error at a time.

4.2.1. Obtaining CFG. Our transformation is applied per
basic block. Hence, before the analysis, we obtain a control
flow graph (CFG) of an input binary. We use a default
Python disassembler to obtain all the instructions from the
binary, and then identify control flow changing instructions.

4.2.2. Target Block Selection. The initial target block is
essentially the basic block containing the error-inducing
instruction. For example, the basic block 0 in Fig. 5 is
the initial target block obtained from the example in Fig. 3.
We then apply transformations to the identified target block.
Extending Target Blocks (Iterative Process). The initial
block may not be the root cause of the error, meaning
that transforming instructions in the initial target block (0)
may not resolve the error. In such a case, PYFET selects
additional target blocks for transformation incrementally.
Specifically, PYFET first selects blocks that are directly
connected to the initial block (i.e., reachable if we ignore
the direction of the edges in the graph). Fig. 5 shows
an example. 0 is the initial target block, where the next

([POP_JUMP_IF_FALSE,POP_JUMP_IF_TRUE].*)+
[POP_JUMP_IF_FALSE,POP_JUMP_IF_TRUE]

(a) Regular Expression for Identifying Target Instructions

(b) Regular Expression Patterns and Transformation Rule Definitions

Ref. Pattern Transformation

RE-1 [POP_JUMP_IF_FALSE,
POP_JUMP_IF_TRUE]

POP_JUMP_IF_FALSE à JUMP_IF_FALSE_OR_POP |
POP_JUMP_IF_TRUE à JUMP_IF_TRUE_OR_POP

RE-2 . No Change

RE-3 [POP_JUMP_IF_FALSE,
POP_JUMP_IF_TRUE]

POP_JUMP_IF_FALSE à
(STORE_FAST, LOAD_FAST, POP_JUMP_IF_FALSE) |
POP_JUMP_IF_TRUE à
(STORE_FAST, LOAD_FAST, POP_JUMP_IF_TRUE)

Figure 6. Regular Expression Example.

selectable blocks are marked by 1
3. Observe that blocks

512∼514 and 620∼636 are connected to 0 via backward
edges, and blocks 640∼648 and 674∼676 are connected via
forward edges. If transforming all four additional blocks
does not work, PYFET further extends the target blocks
that are directly connected from all the selected blocks.
Those blocks are marked by 2 . We keep extending the
target blocks until our transformed binary leads to successful
decompilation or covers all the basic blocks in the function
(without successful decompilation, implying that it fails).
Target Block Selection Algorithm. PYFET selects a tar-
get block for transformation as described in Algorithm 2.
There are two functions SELECTINITIALTARGET() and SE-
LECTADDITIONALTARGET(), for selecting the initial target
block and additional target blocks respectively. SELECTINI-
TIALTARGET() takes two inputs: rootBlock and ErrorLoc.
rootBlock is the root node of the CFG of a function, and
ErrorLoc is the error-inducing instruction’s offset obtained
in Section 4.1 (Error Identification). It initializes targetSet
and blockQueue with the root block of the CFG, meaning
that the root block is used as a default target block.

At lines 4∼12, for each block (starting from the root
block), it checks whether there is an instruction that has the
same address as the error location (lines 6∼7). Once found, it
returns targetSet containing the current block with the error-
inducing instruction. After processing the block, it enqueues
all the successor blocks (i.e., children) to blockQueue so that
they are processed in the subsequent loop iterations.

SELECTADDITIONALTARGET() selects additional target
blocks if PYFET fails to resolve the decompilation errors
after transforming all the current target blocks in targetSet .
Additional target blocks are selected from the current target
blocks’ immediate predecessors and successors (lines 17∼18
and 19∼20). Finally, it returns the new set newTargetSet .

4.2.3. Transformation (FET). A FET consists of (1) regu-
lar expressions for searching target instructions to transform
and (2) rules for code transformations.
Identifying Target Instructions. We use a regular expres-
sion consisting of Python bytecode’s instruction mnemonics
to describe target instructions to transform. Specifically, an
element of our regular expression is instruction.
Transformation Rule Definition. It defines how to replace
the matched instructions with new instructions. Fig. 6-(a)

3. The numbers indicate the processing order of target blocks (0 for
initial, 1 for the next round, and so on).

7

TABLE 4. EXAMPLES OF PYFET’S TRANSFORMATION RULES.

Name Original Stmt. Transformation Description

R1 Dividing Logical (x or y) and z
t = x or y; t and z Compound logical expressions in a (conditional) statement

Expressions (x and z) or (y and z) can be divided into smaller expressions in multiple steps.

R2
Simplifying if x: if x: Complex/nested conditional statement structures often
Control Flow s1 s1 cause errors during the decompilation.
Structures elif y: if y and not x: Flattening means to transform the structures into a typical/

s2 s2 basic structure while preserving the semantic.

R3 Eliminating return x return x Unexpected/unusual code sequences (e.g., code after
Unreacheable Code for x in y: return can break the decompilers. They can be removed.

R4

Eliminating while x: while x: break/continue statements are implemented as jump
Control Flow instructions. If it is right next to the loop end, which also
Changes at the break break consists of multiple consecutive jumps, decompilers fail
End of Loop ... FET null = FET null to parse which jump instructions are for the loop end.

R5

Detaching
with x as y:

with statement in Python runs the code inside an
Control Flow with x as y:

FET return = y.f()
exception handler (i.e., try/finally). Control flow

Changing Stmt. in return y.f()
return FET return

changing statements (e.g., continue/return) result in
Exception Handler x = y; z = y.f(); y.close(); complicated code, leading to decompilation failures.

return z

R6 Unsupported f = lambda x:\ def f(x): Certain language features (e.g., lambda functions) may not
Language Features x*2 return x*2 be supported by decompilers.

* Blue and red represent keywords and transformed code by FET.

Algorithm 2: Target Block Selection Algorithm
Input : rootBlock: the root basic block of the binary’s CFG.

ErrorLoc: the location of the error-inducing instruction.
Output: targetSet: a set of selected target blocks.

1 procedure SelectInitialTarget(rootBlock , ErrorLoc)
2 targetSet .push(rootBlock)
3 blockQueue.enque(rootBlock)
4 while blockQueue = ∅ do
5 curBlock ← blockQueue.dequeue()
6 for ins ∈ curBlock do
7 if Address(ins) = ErrorLoc then
8 targetSet ← ∅
9 targetSet .push(curBlock)

10 return targetSet

11 for succBlock ∈ curBlock .successors do
12 blockQueue.enqueue(succBlock)

13 return targetSet

14 procedure SelectAdditionalTarget(targetSet)
15 newTargetSet ← ∅
16 for curBlock ∈ prevTargetSet do
17 for predBlock ∈ curBlock .predecessors do
18 newTargetSet .push(predBlock)
19 for succBlock ∈ curBlock .successors do
20 newTargetSet .push(succBlock)

21 return newTargetSet

shows one of the regular expressions and transformation
rules we used. It detects a chain of instructions consisting
of POP JUMP IF FALSE or POP JUMP IF TRUE and a
block of (any) instructions between the jump instructions.
Fig. 6-(b) shows the notations we use in this paper to
refer to matching patterns of the input. Specifically, we use
RE-1 to refer to instructions matched with the first pattern
of the regular expression shown in (a). Similarly, RE-2

and RE-3 refer to the second and third patterns. The third
column presents transformation rules that will be applied
to the matched instructions. Specifically, for the instructions
matched with RE-1, we replace POP JUMP IF FALSE and
POP JUMP IF TRUE with JUMP IF FALSE OR POP
and JUMP IF TRUE OR POP respectively. For the in-
structions matched with RE-2, we do not transform, mean-
ing that they remain intact. RE-3 adds two instructions:
STORE FAST and LOAD FAST. We give an example of how
the FET in Fig. 6 is applied on [35] (Section 8.1).
FET Rule Examples. Table 4 shows a few selected FETs
including intuitive explanations of the rules. Note that the
transformations are done at the binary level. We use the
source code representation for the presentation purpose. The
remaining rules are presented in Appendix 3.1.

4.2.4. Error Identification. After the transformation pro-
cess, we may obtain multiple transformed binaries. For each
binary, we go through the same error identification process
(Section 4.1). If any of them can be decompiled without
errors (both implicit and explicit), we conclude that the
original error is resolved. Otherwise, we repeatedly try other
target blocks until we succeed or exhaust all the blocks.
Binary with Multiple Decompilation Errors. A binary
can have multiple error-inducing instructions at different
locations. To facilitate discussion, we use Ei, Li, and Bi

to represent a decompilation error (Ei) in a binary (Bi)
and its error location (Li). Assume that we initially run
PYFET to fix E1 at L1, if we observe another error E2 at
a different location L2 (≠L1) on a new transformed binary
Bn, it means that (1) we resolved the previous error E1 and
(2) the current binary contains two decompilation errors: E1

and E2. Hence, we reiterate the entire process to fix E2 at
L2, on the transformed binary Bn. Note that when fixing
multiple errors, we handle multiple transformed binaries that

8

0

6,000

12,000

18,000

3.9 3.8 3.7 3.6 3.5 3.4 2.7

of

 S
am

pl
es

Python Binary Version

Samples with Decompilation Error Samples without Decompilation Error

2,468
3,045

3,828
5,738

3,254
6,215 637

3,323
114
840

198
1,418

6,911
17,772

(81.1%)
(66.7%) (47.6%)

(19.2%) (13.6%) (14.0%)

(38.9%)

of Samples with Errors
of Total Samples

(Failure Rate (%))

Figure 7. Python Malware with Decompilation Errors.

may have changed instruction addresses (or offsets) due to
our transformations by maintaining a mapping of addresses
between the input and transformed binaries.

5. Evaluation
Implementation. The prototype of PYFET is implemented
in Python. The total SLOC is 6,243, including all the tools
that we develop to assist PYFET: e.g., the control flow graph
(CFG) generator and logging/result processing tools.
Environment Setup. All the experiments are conducted on
a Ubuntu Linux 18.04 with an i9 3.70GHz CPU and 64GB
RAM. We use Docker [30] with official Python images to
handle individual Python versions independently.
Base Python Malware Samples. We collect Python mal-
ware binaries (i.e., .pyc files) through ReversingLabs [39]
which is one of the largest threat intelligence research labs.
Each sample from ReversingLabs is annotated with a threat
level that represents the maliciousness, ranging from 0 to 5,
where 0 indicates ‘benign’ and 5 means ‘highly malicious’.

We search for two types of files with the threat level
ranging from 1 to 5, between June 2016 and July 2021:
(1) .pyc files and (2) binaries packed by popular Python
packers such as [14]. We obtain 1,905 unique files of the first
type (i.e., .pyc files), and 631 files of the second type (i.e.,
packed binaries) which contain 36,446 unique .pyc files
when extracted. In total, we obtain 38,351 .pyc samples.
Identifying Malware Samples for Evaluation. To iden-
tify malware samples causing decompilation errors, We
use five Python decompilers, Uncompyle6, Decompyle3,
Uncompyle2, Unpyc37, and Decompyle++ to decompile the
38,351 malware samples. We then identify 17,117 samples
(45.6% of the total) causing decompilation failures. Fig. 7
shows the results by the Python versions with respect to the
decompilation results (i.e., successful or failed).

Python 2.7 samples caused the most decompilation er-
rors (6,911 samples). This is, in part, because our dataset
contains significantly more 2.7 version samples than other
versions. In terms of the failure rate, Python 3.7 and later
versions have higher failure rates, 66.7% (for 3.8) and 81.1%
(for 3.9), than Python 2.7 (38.9%). Note that since only
Decompyle++ officially supports Python 3.9 binaries, all the
decompilation failures of 3.9 are from Decompyle++.

5.1. Effectiveness of PYFET

We use the 17,117 samples with decompilation errors to
measure the effectiveness of our approach. The ‘# of Errors’

column in Table 5 shows the number of implicit and explicit
errors from the samples. As shown in the ‘Fixed’ column,
PYFET successfully resolves all the decompilation errors.
Errors in File/Function. We find that most (62.2%,
10,653) erroneous samples have more than one error,
and for functions, almost half of the erroneous functions
(52.9%, 66,253) have multiple errors. On average, a single
file has 4.1 errors, and a single function has 1.7 errors.
Decompyle++ has significantly more errors in a file/function
than any other decompiler. The most number of errors in
a single file is 91, which is from a Python 3.9 sample fre-
quently using three instructions that are not supported by the
decompiler: JUMP IF NOT EXC MATCH, DICT MERGE,
and LIST TO TUPLE. Our further inspection result reveals
that Decompyle++ does not support 45 opcodes across all
Python versions, and we find 8,528 samples causing errors
due to 23 unsupported opcodes. Details of the unsupported
instructions can be found on [35] (Section 9.1).
Frequently Applied FETs. Table 5 shows the top 3 FETs
that resolved the most number of decompilation errors for
the samples from each Python version for each decom-
piler. The ‘All’ rows show the average of all the versions
for each decompiler. We have significantly more errors in
Decompyle++ as compared to other decompilers (i.e., 73.4%
of the total samples). Hence, two top FETs (R11 and R10)
are from Decompyle++. The top 3 FETs used are as follows:

R11. Eliminating unpacking variables using asterisks.
R7. Moving control flow changing instructions (e.g.,

continue and return) out of try or except block.
R10. Simplifying else blocks of control structures by

detaching statements into a separate conditional.
R11 is commonly used by Uncompyle6, Decompyle3,

and Decompyle++, handling 25% of all errors (4,279). The
top 3 FETs handle 61.2% of errors (47,116), showing that
a few FETs can handle a large number of errors. We also
observe that a single FET handles errors caused by multiple
causes. For instance, R5 resolves errors caused by a missing
grammar in Uncompyle6 and an unsupported instruction
WITH CLEANUP START in Decompyle++. In addition, we
observe that FETs are not specific to a particular decom-
piler: (1) R7 is effective for Uncompyle6, Decompyle3,
and Unpyc37 and (2) R8 resolves errors for Uncompyle6,
Decompyle3, and Uncompyle2. Many FETs (e.g., R1∼R3,
R5, R7, and R8) also work for multiple Python versions.

The ‘Remains’ column shows the number of the rest of
the FETs that successfully resolved decompilations errors,
with the accumulated percentages.
of Blocks Attempted. The ‘Blocks Attempted’ column
shows the number of basic blocks PYFET iterates and tries
FETs throughout the process. It is dependent on the distance
between the error location and the block containing the
error-inducing instruction. In general, if there exist long
and nested conditionals or loops along the path, it results
in a large number of basic blocks attempted. The average
number of blocks attempted is 6.5 (out of 19.6). Note
that Decompyle++ and Unpyc37 do not provide the error
location, hence we use the root node of a function as an
error location. As a result, we observe more number of

9

TABLE 5. PYFET EVALUATION WITH THE 5 DECOMPILERS

D
ec

om
p.

1

Ver-
sion

of Errors # Errors in Frequently Applied (Successful) FETs Blocks Attempted FETs Attempted

Explicit Implicit Total Fixed File Fn.2
Top 3 FETs

Remains3
Min∼
Max

Average Min∼
Max Avg. Per

Block1st 2nd 3rd Blocks Layers

U
nc

om
py

le
6

3.8 5,464 1,500 6,964 100% 2.9 1.1 R7 (57.0%) R8 (18.5%) R5 (14.1%) 7 (10.4%) 1∼10 5.4 2.7 1∼14 4.1 1.5
3.7 465 501 966 100% 2.4 1.1 R2 (47.9%) R1 (47.2%) R7 (2.1%) 3 (2.8%) 1∼19 8.9 3.7 1∼29 4.2 0.9
3.6 39 11 50 100% 1.7 1.3 R2 (53.7%) R5 (31.7%) R9 (9.8%) 3 (4.8%) 2∼15 5.4 2.6 1∼8 3.8 1.4
3.4 7 0 7 100% 1.0 1.0 R3 (42.9%) R8 (28.6%) R1 (14.3%) 1 (14.2%) 1∼13 6.3 3.7 1∼6 4.8 1.5
2.7* 239 1 240 100% 1.4 1.4 R17 (98.7%) R1 (1.3%) - - 1∼5 1.2 1.0 1∼4 1.1 1.1

All 6,214 2,013 8,227 100% 2.7 1.1 R7 (50.2%) R8 (19.9%) R5 (10.2%) 10 (19.7%) 1∼19 5.7 2.9 1∼19 4.0 1.4

D
3

3.8 5,621 1,064 6,685 100% 2.8 1.3 R7 (54.0%) R8 (33.4%) R3 (8.4%) 7 (4.2%) 1∼13 5.5 2.8 1∼17 4.4 1.6
3.7 384 454 838 100% 2.0 1.5 R1 (37.5%) R8 (35.4%) R2 (12.0%) 5 (15.1%) 1∼18 8.1 3.8 1∼10 4.3 1.1

All 6,005 1,518 7,523 100% 2.7 1.3 R7 (53.3%) R8 (33.1%) R3 (7.9%) 9 (5.7%) 1∼13 5.8 2.9 1∼17 4.4 1.5

U
2 2.7* 16 2,144 2,160 100% 1.4 1.0 R2 (43.8%) R8 (37.5%) R4 (6.3%) 2 (12.4%) 3∼9 5.7 2.8 2∼8 4.5 0.8

U
3 3.7 80 2,474 2,554 100% 2.0 1.0 R1 (34.6%) R7 (26.9%) R6 (14.1%) 4 (24.4%) 1∼23 8.8 3.1 1∼13 6.0 0.7

D
ec

om
py

le
++

3.9 9,288 1,214 10,502 100% 27.1 8.7 R4 (29.6%) R11 (23.3%) R13 (21.0%) 5 (26.1%) 1∼161 10.1 4.9 2∼204 12.8 1.3
3.8 12,271 1,881 14,152 100% 16.0 7.5 R10 (42.1%) R11 (34.4%) R16 (6.3%) 8 (17.2%) 1∼129 9.3 4.8 1∼245 17.6 1.9
3.7 5,335 2,924 8,259 100% 7.5 2.8 R11 (49.3%) R5 (24.3%) R9 (13.2%) 6 (13.2%) 1∼65 5.8 2.2 2∼121 11.8 2.0
3.6 3,795 1,754 5,549 100% 9.1 3.2 R11 (47.5%) R5 (25.4%) R9 (10.9%) 6 (16.2%) 1∼65 5.2 2.1 2∼109 10.9 2.1
3.5 430 187 617 100% 5.4 3.3 R5 (49.4%) R16 (29.1%) R14 (9.6%) 4 (11.9%) 1∼34 5.9 2.8 2∼48 8.9 1.5
3.4 307 388 695 100% 3.6 1.8 R9 (70.7%) R13 (10.9%) R16 (8.4%) 2 (10.0%) 1∼73 6.5 3.3 3∼104 12.7 1.9
2.7* 2,773 14,011 16,784 100% 3.2 1.2 R16 (77.8%) R2 (14.6%) R15 (4.0%) 1 (3.6%) 1∼208 7.9 4.2 1∼235 9.6 1.2

All 34,199 22,359 56,558 100% 6.6 2.5 R11 (34.2%) R10 (19.3%) R16 (13.6%) 10 (32.9%) 1∼208 7.7 4.7 1∼245 12.1 1.6
1: Decompilers (D3: Decompyle3, U2: Uncompyle2, U3: Unpyc37). 2: Function. 3: The number of unique FETs successfully resolve decompilation errors. *: 2.7 or earlier.

blocks attempted than other decompilers, as PYFET has to
traverse to the instruction causing errors from the root node.
In particular, a sample makes Decompyle++ traverse 208
blocks (out of 245 blocks) because in the sample’s CFG, the
error is very far from the root node. Overall, we find that
PYFET explored 37.6% of the basic blocks (with an average
of fewer than 11 blocks) from all the samples, showing that
our algorithm is efficient.
of FETs Attempted. Multiple FETs might be applica-
ble to a single basic block. Hence, the number of FETs
attempted reflects the effectiveness of PYFET in applying
FETs for each block. The first two sub columns show the
number of FETs attempted across all the basic blocks, which
is 7.4 on average. Recall that PYFET explores 7 basic blocks
on average. It means that for each block, there are typically
one or two matching FETs. Observe that all the decompilers
except Decompyle++ have fewer FETs attempted than the
number of blocks attempted, due to the blocks that do not
have any applicable FETs. Except for Decompyle++, up to 6
FETs on average are attempted, which is a small number of
attempts. Lastly, Decompyle++ has substantially more FETs
attempted than the number of blocks attempted. Our analysis
on the cases shows that they go through many nested chains
of conditionals consisting of multiple boolean expressions.
When PYFET attempts to break down those expressions, it
iteratively tries FETs (e.g., R1) on each boolean expression.

5.2. Correctness and Impact of PYFET

5.2.1. Correctness. We conduct the following experiment
to understand the correctness of PYFET’s transformations.

1. We collect 14,949 Python source code files from 100
popular Python programs (Details of the selection pro-
cess can be found in Appendix 4.2).

2. From the step 1’s dataset, we randomly select samples
to obtain 40 decompilation errors for each of the 30
FETs4, resulting in 1,200 decompilation errors.

3a. For each error sample from step 2, we manually apply
a source-level FET to the original source and compile
the transformed source5.

3b. We compile the 1,200 samples from step 2, and then
apply PYFET to the compiled binaries, obtaining 1,200
transformed binaries.

4. Compare transformed binaries from steps 3a and 3b to
evaluate the correctness of transformation by PYFET.

The comparison results show that there is no bytecode
differences between the binaries from the step 3a and 3b,
meaning that all the transformations by PYFET are correct.

5.2.2. Impact of Transformation. We conduct another
experiment to understand the impact of PYFET’s transfor-
mations in the decompiled source code.

* We borrow the steps 1, 2, and 3b from the correctness
experiment in Section 5.2.1 for the steps 1,2, and 3.

3. Same to 3b. We obtain 1,200 transformed binaries.
4. We use decompilers to obtain the decompiled source

code from the 1,200 transformed binaries.
5. Compare the decompiled source from step 4 with the

original source from step 2.
The results show that, at the source code level, PYFET’s

impact is less than 3 lines of source code on average
across all FETs. Specifically, 14 FETs (R17∼R30) do not
affect the decompiled source code, 16 FETs (R1∼R16) cause
the changes of 3.5 lines of the source code, and 8 FETs

4. For rules that we do not have 40 errors, we manually inject errors at
the source code level and repeat the steps 2∼4.

5. If a FET is applicable for multiple Python versions, we try to use
different compiler versions evenly.

10

(R4, R8∼R11, R13, R15∼R16) are reversible. The maximum
number of lines changing we see is for R6 (Adding support
for unsupported language features) with 8 lines of code
change. We observe that it was because of converting dic-
tionary comprehension into a separate function that takes
additional lines of code for definition. However, we see
only one line of code change in the original function (i.e.,
changing variable to be assigned to invoked function rather
than dictionary comprehension). We also note that R2 can
impact readability by generating complex if blocks from a
large chain of elifs. While R5 removes implicit exception
handlers from removing with block, potentially impacting
other exception handlers. At the bytecode level, on average
2.9 instructions are changed, where all are intended for
fixes. We observe that PYFET only changes the targeted
statement/control structure but not others.

In terms of the control flow, the impact of our trans-
formation is limited. Specifically, 22 rules (R3, R6, and
R11∼R30) have no change in the program flow. The remain-
ing 8 rules (R1, R2, R4, R5, and R7∼R10) have on average
2.3 changes (320 cases in total) in edges. However, they are
all intended (e.g., R7 moving ‘continue’ out of the loop).
Due to the space, we provide code snippets of 60 example
transformations by PYFET in real world applications on [35]
(Section 12) to show the impact of PYFET’s transformation.
We provide 1,200 example transformations on [36] as well.

5.3. Performance of PYFET

35
,92
0
36
,81
8

33
,22
6
42
,20
6

9,8
78

34
,08
0
35
,78
4

2,4
75

1,3
28 7,2

70
5,8
06

1,9
26
2,1
47
1,5
18
1,0
89

72
3

0
10,000
20,000
30,000
40,000
50,000

3.8 3.7 3.6 3.4 2.7 3.8 3.7 2.7 3.7 3.9 3.8 3.7 3.6 3.5 3.4 2.7

Ti
m

e
(m

s)

Python Binary Version

PYFET-U6 (W/ UNCOMPYLE6) PYFET-D3 (W/ DECOMPYLE3)
PYFET-U2 (W/ UNCOMPYLE2) PYFET-U3 (W/ UNPYC37)
PYFET-D++ (W/ DECOMPYLE++)

Figure 8. Performance of PYFET per Error.

Fig. 8 shows the overhead per error for PYFET across all
samples. Note that PYFET is a framework that can choose
which decompiler to use, resulting in 5 versions of PYFET in
the result, each with a different decompiler. For decompilers
that do not support certain Python versions, we do not
report the results for the versions. PYFET-U6 and PYFET-D3
both take around 33∼42 seconds to fix an error for Python
versions except for 2.7 which takes around 10 seconds.
Meanwhile, PYFET-U2, PYFET-U3, and PYFET-D++ take
on average 2.7 seconds because they run faster than others.
Note that most of the execution time is spent on running
decompilers. The pattern matchings and transformations
take less than 1.7 seconds (on average 84.2 ms).

5.4. Case Studies
5.4.1. Handling 3.9 Binaries. Among the five decompilers
we evaluated, Decompyle++ is the only decompiler support-
ing Python 3.9 binaries. However, it has a high failure rate

(81.1%), as shown in Fig. 7. In this section, we use PYFET
to transform 3.9 binaries to 3.8 to enable support of Python
3.9 binaries for Uncompyle6 and Decompyle3.6 In our base
dataset, there are 3,045 Python 3.9 binaries.
Step 1. Changing the File Version. The first two bytes of
.pyc files represent the magic number indicating the Python
version. We modify it to ‘3413’ which is the magic number
for 3.8 version. This successfully handles 415 samples.
Step 2. Translating 3.9 Instructions to 3.8. 11 newly intro-
duced instructions and 11 removed (i.e., obsolete) instruc-
tions in 3.9 are shown in [35] (Table 15). To accommodate
the changes, we define 13 additional rules (more details in
[35] (Section 10.1). Note that all the 13 transformation rules
are SET (semantically equivalent transformation), meaning
that the translated 3.8 binaries are semantically equivalent
to their 3.9 binaries. The rules are straightforward, i.e.,
replacing a single instruction with another single instruction
(e.g., IS OP and COMPARE OP). The most complicated rule
is RE-6 which translates a dictionary creation into a map
creation. Note that coming up with the rules was fairly easy
and only took 8 hours by one of the authors.
Decompilation Errors after Version Conversion. With the
13 rules (R18∼R30), we successfully convert 3.9 binaries
to 3.8 binaries. However, we observe that the converted
3.8 binaries suffer from similar decompilation errors we
observed in the existing 3.8 binaries. Specifically, we show
that the FETs used for 3.9 (except for the rules for version
conversion) are similar to the FETs for 3.8 in Appendix 3.1.
Evaluation of Transforming Binaries. After changing
the file version, we find a total of 214,831 errors across
Uncompyle6 and Decompyle3. PYFET resolves all errors
making all binaries decompilable by the two decompilers.
We give further details in [35] (Section 10.1).

5.4.2. Opcode Remapped Python Binaries. Opcode
remapping is an anti-reverse-engineering technique against
decompilers. It modifies the Python runtime environment
with new opcode definitions that are not compatible with
standard Python opcodes. As a result, any decompilation
attempt fails because decompilers do not know the modified
Python opcode definitions. In this case study, we use PYFET
to handle opcode remapped Python binaries from two real-
world products: Dropbox [3] and druva inSync [19].
Decompilation Attempt. We use Uncompyle6 to decompile
two Python binaries from Dropbox (Python 3.8 binary)
and druva inSync (Python 2.7 binary). The decompiler
hung and did not successfully terminate on both binaries,
failing to decompile them. Note that while PYFET requires
a decompiler to terminate and decompile or throw errors,
we treat the hanging behavior here as an error and proceed.
Initial Analysis. We manually analyze both files and find
that they have unknown magic numbers on the header. After
we correct the magic numbers, however, we still observe
decompilation failures. Then, we disassemble the binary.
The result shows that some instructions have unrecognizable
opcodes, indicating that the opcode might be remapped.

6. The remaining ones (Unpyc37 and Uncompyle2) do not support 3.8.

11

Opcode

mnemonic

Org.

Opcode #

Modified

Opcode #

RETURN_VALUE 83 53

BEGIN_FINALLY 53 83

CALL_FUNCTION 131 129

LOAD_CONST 100 131

LOAD_GLOBAL 116 98

STORE_FAST 125 95

(d) Opcode Remapping (e) Transformation Rules

Transformation

Rule

[Original Opcode #]

→ [New Opcode #]

RETURN_VALUE [#53]→[#83]

BEGIN_FINALLY [#83]→[#53]

CALL_FUNCTION [#129]→[#131]

LOAD_CONST [#131]→[#100]

LOAD_GLOBAL [#98]→[#116]

STORE_FAST [#95]→[#125]

0 CALL_FUNCTION 1
2 STORE_ATTR 2

...
8 DELETE_GLOBAL 0
10 CALL_FUNCTION 2
12 <0>

...
98 BEGIN_FINALLY

0 LOAD_CONST 1
2 STORE_FAST 2

...
8 LOAD_GLOBAL 0
10 LOAD_CONST 2
12 CALL_FUNCTION 1

...
98 RETURN_VALUE

(a) Opcode Remapped Program

(Dropbox, Disassembled)

(b) Original Program

(Dropbox, Disassembled)

(c) Regular Expression Detecting Dropbox Opcode Remapped Binaries

.*[#53]$

Offset Opcode Arg Offset Opcode Arg

Figure 9. Opcode Remapped Binary (Dropbox, Modified Python 3.8.12)

Extracting Python Opcode Remapping. To infer the op-
code mapping between the original Python and the modified
Python, we leverage the fact that (1) Dropbox’s modi-
fied Python is based on the 3.8.12 version and (2) they
contain binary files of Python standard libraries. Hence,
we obtain Python 3.8.12’s standard libraries, compile them
with a vanilla Python, and then compare the results with
Dropbox’s binaries. We observe that whole bytecodes match
except for their opcodes. For the druva inSync binaries,
the druva’s Python environment provides opcode.opmap
which we can compare with the original opcode.opmap.
Note that Dropbox does not include the opcode module.
Handling Opcode Remapping in Dropbox (Python 3.8).
Fig. 9-(a) shows a few lines of disassembled code of a
.pyc binary from Dropbox. Note that Fig. 9-(b) shows
the original program’s disassembled code (for ground-truth).
Observe that the instructions are abnormal. For example, it
calls a function without specifying the target function (typi-
cally, LOAD GLOBAL is used to specify the target function).
Observe that at offset 12 it does not show a valid opcode
mnemonic, meaning that the opcode number is not valid.
Lastly, the function ends with BEGIN FINALLY (at offset
98) while all normally compiled Python functions end with
RETURN VALUE. Hence, we use the regular expression in
Fig. 9-(c), which finds a function ending with the opcode
53, to fingerprint a binary with the same opcode remapping.

Fig. 9-(d) shows how the opcodes are remapped.
RETURN VALUE’s opcode is changed from 83 to 53.
BEGIN FINALLY’s opcode is 83 in the Dropbox while
it is 53 in a vanilla Python binary. Observe that
CALL FUNCTION’s opcode is changed from 131 to 129,
while there is no opcode 129 in the vanilla Python. As a
result, the disassembler fails at offset 12 in Fig. 9-(a).

Finally, Fig. 9-(e) shows a few transformation rules that
change the remapped opcode back to the original opcode.
For example, the first rule fixes the RETURN VALUE’s op-

Arg
0 SETUP_EXCEPT 48
3 <34>

...
47 STORE_DEREF 255
50 POP_TOP
51 LOAD_CONST 4
54 JUMP_ABSOLUTE 71

...

0 LOAD_CONST 4
3 STORE_NAME 2
6 LOAD_CONST 2
9 PRINT_ITEM

10 PRINT_NEWLINE
...

19 RETURN_VALUE

(d) Control Flow Graph

(a) PjOrion Obfuscated Program (b) Original Program

(c) Transformation Rule for Updating Entry Point

^[SETUP_EXCEPT] à [JUMP_FORWARD]

48: POP_TOP
49: POP_TOP
50: POP_TOP
51: LOAD_CONST
54: JUMP_ABSOLUTE

0: JUMP_FORWARD

B
...

71: STORE_NAME
74: JUMP_ABSOLUTE

62: LOAD_CONST
65: JUMP_ABSOLUTE

80: PRINT_ITEM
81: JUMP_ABSOLUTE 33: RETURN_VALUE

A

C

Offset Opcode ArgOffset Opcode

(f) Transformation Rules for Eliminating Unconditional Jumps

[JUMP_FORWARD] à [], [JUMP_ABSOLUTE] à []
(Apply if the jump target instruction has a single incoming edge)

34: PRINT_NEWLINE
35: JUMP_ABSOLUTE

^[JUMP_FORWARD].*[POP_TOP]+ à [].*[]

(e) Transformation Rule for Eliminating Entry Point Jump

Figure 10. Control Flow Extraction for PjOrion Obfuscation.

code by changing the opcode 53 to 83 (i.e., [#53]→[#83]).
Handling inSync Binaries (Python 2.7). Due to space,
we present how we handle inSync binaries in [35] (Section
11.2).

5.4.3. PjOrion Obfuscated Binaries. PjOrion [43] is a
popular advanced obfuscation technique against decom-
pilers, leveraging four methods: (1) adding invalid in-
structions in binary, (2) adding exception blocks (using
SETUP EXCEPT), (3) hiding original opcodes in argument
bytes, and (4) adding random jump instructions to shuffle the
overall binary. In this section, we demonstrate how PYFET
deobfuscates the PjOrion obfuscated binaries.
Decompilation Attempt. We use Uncompyle6 to decompile
a Python binary7 obfuscated by PjOrion. The decompiler
fails at the invalid instruction inserted by the obfuscator.
Initial Analysis. We manually analyze the binary and ob-
serve that the instructions are displaced. Specifically, the
obfuscator exploits the multi-byte nature of binary to hide
opcodes in bytes reserved for arguments. Fig. 10-(a) shows
a few lines of disassembled obfuscated binary. We observe
that (1) the binary starts with SETUP EXCEPT followed by
an invalid instruction (i.e., essentially raising an exception),
(2) the SETUP EXCEPT block ends at offset 48 that points
to an argument of STORE DEREF (i.e., hiding the next
instruction to be executed in the argument of STORE DEREF
when an exception is raised), and (3) the first instruction of
the original binary (offset 0 in Fig. 10-(b)) is at offset 51 of
the obfuscated binary shown in Fig. 10-(a).

7. It is a simple program created ourselves and is a Python 2.7 binary
as PjOrion only supports 2.7 binaries.

12

Extracting Control Flow. We first apply our rule shown in
Fig. 10-(c), to eliminate the exception. We then use PYFET
to generate a control flow graph. The graph is shown in
Fig. 10-(d). Notice that A jumps to block B . In B we
can see our first instruction at offset 51 following three
POP TOP instructions, two of which (offset 48 and 49)
were initially hidden. Following the graph from B onwards,
we can see the remaining instructions being revealed with
eventually ending on C .
Applying FETs. We first apply R3 from Table 4 to remove
any unreachable code. Second, we apply Fig. 10-(e) to re-
move the entry point jump instruction and the corresponding
POP TOP instructions initially used by the previously elim-
inated SETUP EXCEPT. We then use the rules in Fig. 10-(f)
to remove the jump instructions added by PjOrion. Note
that we only apply the rules when the jump target has a
single incoming edge (e.g., instructions at 71, 62, 80, 34
and 33 to name a few). The rules essentially merge all the
basic blocks in Fig. 10-(e) (from A to C). To this end, we
successfully deobfuscate the PjOrion obfuscated binary.

6. Discussion
Source-level FET Presentation. We describe FETs at the
source-level to ease the presentation, while these are binary-
level transformations. Note that a source-level FET descrip-
tion means a specific implementation of the source (e.g., if
a source-level FET can have multiple corresponding byte-
codes, we mean one of those). Hence, all FETs in Table 4
and Table 9 mostly establishes 1:1 mapping between the
source and binary representation, except for a few cases.
For example, while in Python 3.7 has a SETUP LOOP while
3.8’s while does not have the instruction. On average, each
example of FET is mapped to 1.07 binary code snippets.
Side-effects of FET. Since we derive FET rules from suc-
cessfully decompiled programs (that are also free of implicit
errors), FETs’ transformations are safe for decompilers (i.e.,
they do not introduce known new errors). Regarding the
possibility of FETs introducing errors in adjacent blocks,
our results (in Section 5.2.2) show that the transformations
do not have side effects apart from the expected semantic
changes. We also did not observe such cases while experi-
menting with the tool (e.g., in Section 5.4).
Unhandled Decompilation Errors. There are errors that
PYFET does not handle (i.e., out of the scope). First, if a
decompiler does not terminate (hence there is no explicit
error message), we do not handle the case. In practice, a
decompiler might enter an infinite loop or an extremely slow
execution path. In our paper, if decompilation does not finish
within 5 minutes, we consider it does not terminate. While
we rarely see such cases, one of such cases is presented in
Section 5.4.2. Other examples of making decompilers not
terminate are presented in Appendix 6.
Generality of PYFET. Many decompilation issues we ob-
serve are generic and can happen in other decompilers
(e.g., C/C++ decompilers). For example, handling complex
control flows and optimized binary code is a long-standing
problem. Some decompilers may have implicit errors as
well. To answer whether the technique can be expanded for

other languages (e.g., C/C++), one can follow our experi-
ments on decompilers. We leave it as future work.

7. Related Work
Binary Transformation/Rewriting. Dynamic binary trans-
lation techniques [23, 38, 49] are used in various tasks such
as profiling and security analysis. They essentially conduct
semantically equivalent transformations on machine instruc-
tions and add additional instructions for instrumentations.
There are also binary rewriting/transformation techniques
for optimizations [15, 53] and security [18, 20, 31, 34, 50,
51]. In particular, T-Fuzz [33] transforms (i.e., removes)
conditional statements that are difficult to satisfy, increas-
ing the coverage of fuzzing techniques. Tonder et al. [45]
leverage program transformation (SET) at the source code
level to improve the accuracy of static analysis techniques.
PYFET differs from their work as our transformation is at
the binary level and we use FET, not SET.
Decompilers. Decompilers [1, 11, 24] and decompilation
techniques [12] are mainly for reverse-engineering. Popular
decompilers such as Hex-Rays [22] and Radare2 [1] are built
on top of disassemblers. They aim to recover the original
source code representation from the given binary instruc-
tions, by identifying certain patterns of the instructions that
match the high-level language constructs [13, 27, 32, 41].
Decompilation Errors. There is a line of research [6, 28,
44, 52] relating to testing, finding, and studying bugs in
decompilers. [28] systematically tests popular C decompil-
ers [24, 25] to evaluate the correctness. [6] analyze and
discuss challenges and limitations of x86/64 disassembly
techniques. While the specific challenges differ from Python
decompilers, [6] acknowledge that decompilation errors can
lead to misleading reverse-engineering processes.

8. Conclusion
We present PYFET that transforms a Python binary

causing decompilation failures into another form without the
errors, based on the novel concept of Forensically Equivalent
Transformation. We evaluate our proof of concept system on
17,117 real-world Python malware samples in the wild, and
PYFET successfully fixes 77,022 errors. Our case studies
show that PYFET effectively solves various challenges, such
as handling opcode remapping and obfuscation techniques.
Moreover, we also use PYFET to migrate Python 3.9 binaries
to 3.8 for decompilers that do not support the version.

Acknowledgment
We thank the anonymous referees for their constructive

feedback and ReversingLabs for sharing the Python malware
samples. The authors gratefully acknowledge the support
of NSF (1916499, 1908021, 1850392, 1853374, 2210137,
and 1924777), DARPA PA-20-02-07-FP-020, and ONR
N00014-23-1-2095. This research was also supported by
Science Alliance’s StART program, and gifts from Google
exploreCSR and Cisco Systems. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the sponsor.

13

References

[1] “Radare2,” https://radare.org/r/, 2020.
[2] “cpython/Lib,” https://github.com/python/cpython/tree/

main/Lib, 2022.
[3] “Dropbox,” https://www.dropbox.com/, 2022.
[4] “The Python Package Index,” https://pypi.org/, 2022.
[5] M. Aguirre, “Protecting a Python codebase,”

https://bits.theoremone.co/protecting-a-python-
codebase-part-3/, 2015.

[6] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska,
and H. Bos, “An in-depth analysis of disassembly on
full-scale x86/x64 binaries,” in USENIX Security’16.

[7] “Python Malware On The Rise, Cyborg Secu-
rity,” 2022, https://www.cyborgsecurity.com/cyborg
labs/python-malware-on-the-rise/.

[8] “REC Studio 4-Reverse Engineering Compiler,” http:
//www.backerstreet.com/rec/rec.htm, 2015.

[9] “Binary Ninja,” 2022, https://binary.ninja/.
[10] “Boomerang Decompiler,” 2022, http://boomerang.

sourceforge.net/index.php.
[11] “RetDec,” 2022, https://github.com/avast/retdec.
[12] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo,

“Native x86 decompilation using Semantics-Preserving
structural analysis and iterative Control-Flow structur-
ing,” in USENIX Security’13.

[13] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural
nets can learn function type signatures from binaries,”
in USENIX Security’17.

[14] “PyInstaller,” https://pyinstaller.org/, 2022.
[15] B. De Sutter, B. De Bus, and K. De Bosschere, “Link-

time binary rewriting techniques for program com-
paction,” ACM Trans. Program. Lang. Syst., vol. 27,
no. 5, p. 882–945, sep 2005.

[16] “Python decompiler for 3.7-3.8,” 2022, https://github.
com/rocky/python-decompile3.

[17] “Decompyle++,” 2022, https://github.com/zrax/pycdc.
[18] S. Dinesh, N. Burow, D. Xu, and M. Payer,

“Retrowrite: Statically instrumenting cots binaries for
fuzzing and sanitization,” in SP’20.

[19] “Druva inSync,” https://www.druva.com/products/
endpoints/, 2022.

[20] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary
rewriting without control flow recovery,” in PLDI’20.

[21] “Ghidra,” 2022, https://ghidra-sre.org/.
[22] I. Guilfanov, “Decompilers and beyond,” Black Hat

USA, vol. 9, p. 46, 2008.
[23] Intel, “Pin,” https://www.intel.com/content/www/

us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html, 2022.

[24] “Hex Rays,” 2022, https://www.hex-rays.com/ida-pro/.
[25] “JEB Decompiler by PNF Software,” 2022, https://

www.pnfsoftware.com/.
[26] D. Kholia and P. Wegrzyn, “Looking inside the (drop)

box,” in WOOT’13.
[27] J. Lee, T. Avgerinos, and D. Brumley, “TIE: principled

reverse engineering of types in binary programs,” in
NDSS’11.

[28] Z. Liu and S. Wang, “How far we have come: Test-
ing decompilation correctness of C decompilers,” in
ISSTA’20.

[29] “Malware Makers Using ‘Exotic’ Programming
Languages,” 2022, https://threatpost.com/malware-
makers-using-exotic-programming-languages/.

[30] D. Merkel, “Docker: lightweight linux containers for
consistent development and deployment,” Linux jour-
nal, vol. 2014, no. 239, p. 2, 2014.

[31] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and
Z. Lin, “Probabilistic disassembly,” in ICSE’19.

[32] M. Noonan, A. Loginov, and D. Cok, “Polymorphic
type inference for machine code,” SIGPLAN Not.,
vol. 51, no. 6, p. 27–41, jun.

[33] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz:
Fuzzing by program transformation,” in IEEE S&P’18.

[34] S. Priyadarshan, H. Nguyen, and R. Sekar, “Practi-
cal fine-grained binary code randomization,” in AC-
SAC’20.

[35] “PyFET Supplementary Material,” 2022, https://github.
com/pyfet-pyc/src/blob/main/appx.pdf.

[36] “PyFET repository: Correctness and Impact of
PyFET.” 2022, https://github.com/pyfet-pyc/src/tree/
main/Correctness and Impact PyFET.

[37] “PyFET Repository,” 2022, https://github.com/pyfet-
pyc/src.

[38] “QEMU,” https://www.qemu.org/, 2022.
[39] ReversingLabs, “Explainable Threat Intelligence, Re-

versingLabs,” https://www.reversinglabs.com/, 2022.
[40] S. Sampath, “DisC-Decompiler for TurboC,” https://

www.debugmode.com/dcompile/disc.htm, 2001.
[41] E. J. Schwartz, C. F. Cohen, M. Duggan, J. Gennari,

J. S. Havrilla, and C. Hines, “Using Logic Program-
ming to Recover C++ Classes and Methods from Com-
piled Executables,” in CCS’18.

[42] “Snowman,” 2018, https://derevenets.com.
[43] “Project orion,” 2014, https://kr.cm/f/t/15280/.
[44] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via

live code mutation,” SIGPLAN Not., vol. 51, no. 10, p.
849–863, oct.

[45] R. Tonder and C. Goues, “Tailoring programs for static
analysis via program transformation,” in ICSE’20.

[46] “Uncompyle2: A Python 2.7 byte-code decompiler,”
2016, https://pypi.org/project/uncompyle2/.

[47] “Uncompyle6,” 2022, https://github.com/rocky/
python-uncompyle6.

[48] “Unpyc37: Decompiler for Python 3.7,” 2022, https:
//github.com/greyblue9/unpyc37-3.10.

[49] Valgrind, “Valgrind,” https://valgrind.org/, 2022.
[50] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin,

“Securing untrusted code via compiler-agnostic binary
rewriting,” in ACSAC’12.

[51] D. Williams-King, H. Kobayashi, K. Williams-King,
G. Patterson, F. Spano, Y. J. Wu, J. Yang, and V. P.
Kemerlis, “Egalito: Layout-agnostic binary recompila-
tion,” in ASPLOS’20.

[52] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding
and Understanding Bugs in C Compilers,” SIGPLAN

14

https://radare.org/r/
https://github.com/python/cpython/tree/main/Lib
https://github.com/python/cpython/tree/main/Lib
https://www.dropbox.com/
https://pypi.org/
https://bits.theoremone.co/protecting-a-python-codebase-part-3/
https://bits.theoremone.co/protecting-a-python-codebase-part-3/
https://www.cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/
https://www.cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/
http://www.backerstreet.com/rec/rec.htm
http://www.backerstreet.com/rec/rec.htm
https://binary.ninja/
http://boomerang.sourceforge.net/index.php
http://boomerang.sourceforge.net/index.php
https://github.com/avast/retdec
https://pyinstaller.org/
https://github.com/rocky/python-decompile3
https://github.com/rocky/python-decompile3
https://github.com/zrax/pycdc
https://www.druva.com/products/endpoints/
https://www.druva.com/products/endpoints/
https://ghidra-sre.org/
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.hex-rays.com/ida-pro/
https://www.pnfsoftware.com/
https://www.pnfsoftware.com/
https://threatpost.com/malware-makers-using-exotic-programming-languages/
https://threatpost.com/malware-makers-using-exotic-programming-languages/
https://github.com/pyfet-pyc/src/blob/main/appx.pdf
https://github.com/pyfet-pyc/src/blob/main/appx.pdf
https://github.com/pyfet-pyc/src/tree/main/Correctness_and_Impact_PyFET
https://github.com/pyfet-pyc/src/tree/main/Correctness_and_Impact_PyFET
https://github.com/pyfet-pyc/src
https://github.com/pyfet-pyc/src
https://www.qemu.org/
https://www.reversinglabs.com/
https://www.debugmode.com/dcompile/disc.htm
https://www.debugmode.com/dcompile/disc.htm
https://derevenets.com
https://kr.cm/f/t/15280/
https://pypi.org/project/uncompyle2/
https://github.com/rocky/python-uncompyle6
https://github.com/rocky/python-uncompyle6
https://github.com/greyblue9/unpyc37-3.10
https://github.com/greyblue9/unpyc37-3.10
https://valgrind.org/

Not., vol. 46, no. 6, p. 283–294, jun.
[53] X. Zhang, Q. Guo, Y. Chen, T. Chen, and W. Hu,

“Hermes: A fast cross-isa binary translator with post-
optimization,” in CGO’15.

Appendix
1. Incorrectly Omitted Code

We inspect all samples in Section 5 for instances of
incorrectly omitted code. We found 3,901 errors in 1,862
binaries across all Python versions. Decompyle++ has the
most number of such errors, with a total of 3,328 (85.3%).
In terms of Python versions, Python 3.9 binaries suffer from
this error most (0.25 errors per sample binary).

2. Implicit Errors
2.1. Implicit Error Patterns. As stated in Section 3
(Deriving FETs), we obtain implicit error patterns by ana-
lyzing the 375 samples’ decompilation results. Specifically,
we abstract the differences between their original source
code and (incorrectly) decompiled source code to develop
implicit error patterns and their correct pattern, as shown in
Table 3 and Table 6 (showing the remaining implicit errors).
Error patterns are obtained from the decompiled programs.
Correct patterns are the error patterns’ corresponding code
from the original source code.

2.2. Implicit Error Detection’s Outcomes. In Sec-
tion 4.1.1, we present our implicit error detection process.
This subsection further explains how we interpret the im-
plicit error detection process’s outcomes for each implicit
error pattern found in decompiled binary. Table 7 shows
four logically possible outcomes.
I. The first outcome case is that the input binary has

Icorrect but does not have Ierror . Note that the decom-
piled program has Ierror . Hence, this means that the
input program has a corrected version of the error code,
meaning that the decompiled program has an implicit
error. Intuitively, Icorrect is a solution of an implicit
error. If the error does not exist, Icorrect should not exist
in the input binary.

II. The input binary has Ierror but does not have Icorrect .
This means the decompiled program and the input pro-
gram have identical instructions (Ierror). Hence no error
is detected.

III. If none of them exist in the input binary, there can be
two reasons. First, it may mean that the decompiled
program is significantly different from the input program
so we cannot make a meaningful comparison. Second,
the compiler that we use to obtain Icorrect and Ierror
generated completely different code compared with the
input binary. For both cases, we cannot trust the result;
hence conservatively, we detect no errors.

IV. This result is impossible and may happen if our imple-
mentation of code matching has a bug. We detect no
errors for this case, and we have not observed this case
during our experiments.

TABLE 6. IMPLICIT ERROR PATTERNS (REMAINING).

Pattern Name Implicit Error Pattern Correct Pattern

P7: if if c1: if c1:
removes s1 s1
else c2 else: c2

if c1: s1 if c1: s1
P8: Incorrectly else: elif c2: s2
removes elif if c2: s2 elif c3: s3

if c3: s3

P9: for if c1: s1 if c1: s1

incorrectly else: else:

moves code for x in y: for x in y:

outside if c1: s1 if c1: s1
if c2: s2 if c2: s2

P10: Code in except: except:
except is moved try: s1 s1
in new try block finally: s2

P11: if if c1: s1 if c1: s1
incorrectly elif c2: s2 if c2: s2
adds elif

P12: if if c1: if c1 and c2:

converts and if c2: s1

to nested if s1 elif c3: s2
elif c3: s2

P13: if if c1: if c1:

incorrectly adds s1 s1

else after raise raise x raise x
else: s2 s2

P14: Incorrect if c1: if c1:

indentation s1 s1

after return return s2 return s2
s3 s3

P15: while while c1: while c1\
moves loop s1 or c2 and not c2:
condition s1

P16: if with x: with x:
incorrectly adds if c1: s1 if c1: s1
else inside with else: s2 s2

P17: while is if False: while False:
converted to s1 s1
if with False

P18: if if c1: if c1:
incorrectly s1 s1
introduces else else: s2 s2

if c1: if c1:
P19: Duplicated raise s1 raise s1
raise outside if return s2 return s2

raise s1

P20: Incorrect if not c1: pass x = c1 or c2
or statement x = c2

P21: Incorrect x = x from x import y
import statement import y
* Blue text represents keywords and highlighted lines show
the differences between the error and correct code.

Note that the outcomes of III and IV can happen if (1)
the implicit error patterns are not correct in the first place,
(2) our correct patterns were wrong (e.g., error pattern and
correct pattern both produce the same bytecode instructions),
or (3) the compiler generates different instructions compared
to the original input binary’s instructions (e.g., we use a

15

TABLE 7. INPUT BINARY SEARCHING OUTCOMES.

Outcome Icorrect Ierror Implicit Error Detected?

I Ë é Error Detected
II é Ë No Error
III é é No Error (Result Not Trustable)
IV Ë Ë No Error (Result Not Trustable)

* Ë: Found in the input binary, é: Not found in the input binary.

TABLE 8. UNIQUE FET RULES BREAKDOWN.

FET Python Version and Decompiler

Rule 3.9 3.8 3.7 3.6 3.5 3.4 2.7

U* D* D+ U D D+ U D D+ U3 U D+ D+ U D+ U D+ U2

R1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R18∼30 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: FET rule is used at least once. U: Uncompyle6. D: Decompyle3.
D+: Decompyle++. U3: Unpyc37. U2: Uncompyle2. *: Migrated binaries.

different compiler since the input binary version header is
wrong). Observe that we look for inconsistency between the
two binaries where if both Serror (from decompiled code)
and input binary have the error pattern code, it means there
are no implicit errors since the two binaries are consistent.

3. Additional Details of FET Rules
3.1. Complete List of FET Rules. Table 9 shows the
remaining FET rules used in our experiments except for
the Python 3.9 to 3.8 migration which we present on our
website [35] (Section 10.1). All rules for the migration are
SET (semantically equivalent transformation).

3.2. FET Rules across Python Versions. Table 8 shows
the FETs used by PYFET for the respective Python version.
Observe that FETs used for 3.9 are similar to those for 3.8.

4. Additional Details for Evaluation
4.1. Decompilation Errors by Each Decompiler. We ob-
serve that there are different samples causing decompila-
tion errors on different decompilers as shown in Fig. 11.
Specifically, for Uncompyle6, Decompyle3, Uncompyle2,
and Unpyc37, samples exclusively causing decompilation
errors are 1,302, 715, 1,567, and 1,288, respectively. Mean-
while, 17,117 samples cause decompilation failures on
Decompyle++ only.

4.2. Application Selection Criteria for Section 5.2.1. We
download top 100 Python projects based on popularity (#

907
257

30 7 101
553

162
1,567 1,288

2,468

3,828
2,961

637
114

198

6,911

0

2,000

4,000

6,000

8,000

3.8 3.7 3.6 3.4 2.7 3.8 3.7 2.7 3.7 3.9 3.8 3.7 3.6 3.5 3.4 2.7

of

 F
ai

le
d

Fi
le

s

Python Binary Versions
UNCOMPYLE6 DECOMPYLE3 UNCOMPYLE2 UNPYC37 DECOMPYLE++

Figure 11. Dataset Breakdowns by Decompilers.

of stars) from GitHub (out of 2M+) for our ground truth
study (14,949 Python source files). More details about 100
Python applications are on [35] (Section 9.2). We select the
top 10 applications in terms of popularity and those have
at least 10 SLOC per function and more than 100 functions
(to prune out popular but trivial projects). Each sample is
recompiled on the same Python versions used in Section 5.1
(i.e., 2.7, and 3.5∼3.9). For each of the recompiled binary,
we run the five decompilers to extract errors and eventually
apply PYFET. We then filter out samples based on FETs
applied such that we have 40 samples for each of the FET
rules from R1∼R30 (1,200 samples). For rules we do not find
sufficient candidates, we manually inject errors in randomly
selected samples.
Selected Samples. On average, the evaluated samples have
11.3 functions, 8.8 conditionals (if conditions), 2.9 loops,
1.6 with blocks, and 0.6 try-except blocks per file.

5. Extended Case Studies

5.1. Manually Patching Decompilers vs PYFET. We man-
ually debug three decompilers to resolve decompilation
failures in order to demonstrate the effort required to fix
the source code of decompilers. We choose Uncompyle68,
Unpyc37, and Decompyle++ as each of them has a unique
design and implementation. Details of the chosen decompil-
ers are on [35] (Section 9.3).

def error_1a(...):
return c1 or c2 and not c3

def error_1a(...):
return c1 or c2 and not c3

(a) Error Inducing Code

1
2

expr ::= LOAD_GLOBAL
expr ::= unary_not
unary_not ::= expr UNARY_NOT
ret_expr_or_cond ::= ret_expr
ret_and ::= expr JUMP_IF_FALSE_OR_POP

ret_expr_or_cond COME_FROM
ret_or ::= expr JUMP_IF_TRUE_OR_POP

ret_expr_or_cond COME_FROM
ret_expr ::= expr
ret_expr ::= ret_and
ret_expr ::= ret_or
return ::= ret_expr RETURN_VALUE
sstmt ::= return RETURN_LAST

(b) Relevant Grammar in Uncompyle6

(c) Corrected Grammar

ret_expr ::= ret_and_a
or ::= expr POP_JUMP_IF_TRUE

expr
and ::= or JUMP_IF_FALSE_OR_POP

COME_FROM expr
ret_and_a ::= and COME_FROM

3
4

5
6

7
8

(d) Decompiled Output
with Corrected Grammar (Fixed)

(e) Error Inducing Input for
Fixed Grammar (Implicit Error in (f))

(f) Incorrectly Decompiled Code
(‘c0 or’ is omitted)

def error_1b(...):
return c1 or c2 and

not c3

def error_1b(...):
return c0 or c1 or c2 and

not c3

Figure 12. Decompilation Failure and Fixes for Uncompyle6

8. Since the design for Uncompyle6, Decompyle3, and Uncompyle2 is
similar, we choose Uncompyle6 as it supports diverse Python versions.

16

TABLE 9. PYFET’S TRANSFORMATION RULES (REMAINING).

Name Original Stmt. Transformation Description

R7
Detaching Control try: continue try: FET continue = 1 try/except statement in Python runs the code inside

Flow Changing Stmt. except: ... except: ... an exception handler. Control flow changing statements

in try/except Block if FET continue: continue (e.g., continue/break/return) result in complicated
code, leading to decompilation failures.

R8
Eliminating Control while x: while x: Python compiler adds optimized jumps in between loops

Flow Changes in when part of the loop is only executed. These optimizations

Loop ... FET null() make it difficult for decompiler to parse. Adding nop
... instructions at the end of the loop fixes this.

R9
Extracting Logical while x: FET cond = x Having long logical expressions in while loop leads

Expressions from ... while FET cond: to complex loop structure. Separating the long logical

while Loop ... expression from the loop makes it simpler for the
FET cond = x decompiler to parse.

R10
Simplifying Control try: s1 try: s1; FET else = 1 Having complex statements in else of any control flow

Flow Structures except: s2 except: s2 block leads to complex structure. Separating those statements

for else Block else: s3 else: FET null() into separate conditional simplifies it for decompiler to
if FET else: s3 parse since it will leverage grammar for conditionals instead.

R11 Eliminating Unpacking class x(*arg,\ class x(FET one star arg,\ Unpacking variables in arguments under different contexts
Variables **kwargs) FET two star kwargs) may not be supported by decompilers.

R12 Simplifying Import from x import\ from x import a as b Chained imports in tuples lead to complex compiled code
(a as b, c as d) from x import c as d that may not be supported by decompilers.

R13 Datastructure {x, y, z} FET set(x, y, z) Datastructure initializations (e.g., sets or dictionary) definition
initialization may not be supported by the decompiler.

R14 Expanding yield Stmt. yield from z for i in z: yield i yield from may not be supported by the decompiler.

R15 Dictionary to List x = {a:b for \ t = [(a,b) for a, b in c] Dictionary comprehension may not be supported by
a,b in c} x = dict(t) the decompiler.

Separating Control if x: s1 if x: s1 Having consective control structures can lead to difficulty
R16 Structure for i in y: s2 FET null() in parsing especially when decompiler may perceive two

for i in y: s2 control structures as one. Adding nop instructions fixes this.

R17 Converting assert’s assert x assert x assert’s implementation without CALL FUNCTION causes an
Implementation error. Hence, we instrument CALL FUNCTION in binary.

* Blue and red represent keywords and transformed code by FET.

Debugging Uncompyle6. We debug Uncompyle6 to fix the
decompilation error caused by the code shown in Fig. 12-(a).

1) Identifying Root Cause: We first run the decompiler
with debugging flags “-agT” to trace back the root cause.
Since Uncompyle6 leverages the SPARK parser with 165
grammar rules, we dump the grammar rules associated with
the error. From the error message and logs, we shortlist 11
grammar rules (out of 770) shown in Fig. 12-(b) that are
related to boolean operators with return. Note that this
process required substantial analysis and understanding of
the decompiler’s internals. For instance, we went through
60 functions, and five different files (6,520 SLOC in total)
to shortlist the above rules, taking 7 hours of an author.

We begin with slightly modifying the shortlisted 11 rules
to locate the problematic rules. Specifically, since the error
message does not provide any detailed information on the
failed term/grammar, we use ‘?’ on each term to make it
optional in the grammar as shown in Fig. 13-(a). As it es-
sentially skips the term, we are trying to skip the problematic
term. This process includes inspecting the parsing grammar
used and reasoning the outcomes with the modified grammar
rules. Doing so on all 11 rules took about 3∼4 hours (each
rule taking 20∼30 minutes). After analyzing the results (i.e.,
inspecting rules used frequently near the error), we find that
‘ret expr’ is likely a problematic rule. We then start to

modify the rule to narrow down terms causing the error
by unfolding the rule and playing with each term. Note
that changing a term in a rule often breaks the decompiler.
After a handful of failed trials, Fig. 13-(b) shows the first
successful trial of getting a source code output. However,
the output misses the majority of the code.

As directly modifying ret expr is failed, we try to ex-
tend ret and by adding a new rule ret and a as shown
in Fig. 13-(c). We change unary not to expr so that the
expression after c1 can be parsed. The output now includes
c1, c2, and c3. However, it misses or and and operators.
We then attempt to break down the grammar in Fig. 13-
(d) and Fig. 13-(e) to add ‘or’ and ‘and’ respectively.
However, observe that Fig. 13-(e) misses c2 and c3 while
recovering the operators. To recover the two operators in the
same expression correctly, we had to inspect 10 additional
rules and their contexts to craft them, taking more than 8
hours. Fig. 13-(f) shows a failed attempt that we tried to
extend from step 4. Note that the entire process consisted of
unfolding the initially successful grammar rule we identified
in Fig. 12-(b). We finally craft a working rule shown in
Fig. 12-(c) that results in a correct decompilation output.
Note that the entire debugging process requires us to deeply
understand the decompiler including classes/data structures

17

used and grammar rules. It took more than two days in total.

Parse error at or near
‘None’ instruction at
offset -1

return c1

(a) Attempt 1 (Experimentally modifying existing rules)

ret_and ::= expr JUMP_IF_FALSE_OR_POP
ret_expr_or_cond?
COME_FROM

ret_expr ::= expr POP_JUMP_IF_TRUE
expr JUMP_IF_FALSE_OR_POP
COME_FROM unary_not
COME_FROM

2

ret_expr ::= ret_and_a
ret_and_a ::= expr POP_JUMP_IF_TRUE

expr JUMP_IF_FALSE_OR_POP
COME_FROM expr COME_FROM

ret_expr ::= ret_and_a
or ::= expr POP_JUMP_IF_TRUE

expr JUMP_IF_FALSE_OR_POP
COME_FROM

ret_and_a ::= or expr COME_FROM

ret_expr ::= ret_and_a
or ::= expr POP_JUMP_IF_TRUE

expr JUMP_IF_FALSE_OR_POP
COME_FROM

and ::= or expr COME_FROM
ret_and_a ::= and

ret_expr ::= ret_and_a
or ::= expr POP_JUMP_IF_TRUE

expr
ret_and_a ::= or JUMP_IF_FALSE_OR_POP

COME_FROM expr COME_FROM

1

(b) Attempt 2 (Crafting new stand alone rule from analyzed bytecode)

(c) Attempt 3 (Relaxing rule to recover ‘c1’, ‘c2’, and, ‘c3’)

return c1 c2 (not c3)3

(d) Attempt 4 (Adding rule to recover ‘or’)

(e) Attempt 5 (Adding rule to recover ‘and’)

(f) Attempt 6 (Relaxing rule further to recover ‘c1’, ‘c2’, and, ‘c3’)

return c1 or (not c3)4

return c1 or and5

return c1 or c2 \
(not c3)

6

Figure 13. Grammar Rules Failed in Fixing Uncompyle6.

2) New Bugs due to the Fix: We find that our fix causes
multiple side-effects, leading to new bugs. For instance, it
causes an implicit error as shown in Fig. 12-(f), where “c0
or” in the original code (Fig. 12-(e)) is incorrectly removed.
We found this error after running 10 mutated test cases.
Debugging Unpyc37 and Decompyle++. We debug
Unpyc37 and Decompyle++ to fix decompilation errors in
conditional blocks and exception blocks respectively. For the
two decompilers we take upto 10 hours to fix. We outline
the details for both of them in [35] (Section 10.2).
Fixing the Errors via PYFET. For all errors, PYFET fixes
the errors by transforming less than or equal to 2 lines
of source code (examples are presented on [35] in Section
10.3). Coming up with each FET takes 2.5 hours on average,
including the time to analyze the error, craft the rules, and
test on multiple examples. PYFET does not require one to
understand and change the decompiler’s internals.

PYFET’s fixes essentially try to avoid the decompilers
exercising the buggy rules or code. Specifically, we analyze
how Uncompyle6 works after the PYFET’s transformation.
We notice that it no longer uses the buggy rule, handling
JUMP IF FALSE OR POP. We also find that there is an-
other very similar rule handling JUMP IF TRUE OR POP,
and by comparing the two rules, we notice the buggy rule
is missing an expr term (which we added in our solution
shown in Fig. 12-(c)’s rule ‘and’). Similarly, we analyze the
execution of Unpyc37 after PYFET’s transformation and ob-
serve that the buggy parts of the code (lines 2509∼2519 for
POP JUMP IF function) are not executed anymore. Mean-
while, for Decompyle++, we observe that the buggy parts

of code (i.e., extra invocation of bc next function) impact
only our instrumented null instruction (FET null()) and
not the original code (originally SETUP EXCEPT).

6. Additional Discussion
Examples of Unterminated Decompilation Process. We
see decompilers do not terminate even after 5 minutes, when
the input binary has a particular data structure, such as
a map or dictionary with many elements (e.g., more than
10,000 elements). Our manual inspection shows that the
decompilers use a recursive logic to parse the consecutive
elements in the map and dictionary. A potential solution is
to split the large data structure into multiple small chunks.
Supporting New/Evolving Python Versions. As Python
evolves, its opcode definitions change (e.g., changing/adding
instruction opcodes). Since our FET rules (except for the
opcode remapping rules only used in Section 5.4.2) are
based on opcode mnemonics, changes in opcode numbers do
not affect PYFET. Removed instructions do not significantly
affect PYFET because compilers typically leverage other
existing instructions to implement the removed instructions,
where a working FET can be derived similarly. Handling
new instructions is challenging. However, as shown in the
Python 3.9 case study (Section 5.4.1), it can be done with
a reasonable manual effort. Similarly, attackers may come
up with new patterns that do not exist in PYFET. It can
be handled by analyzing the obfuscated binary and crafting
new rules, as shown in Section 5.4.3.
Intention of Error-inducing Instructions. While we find
many malware samples causing decompilation errors, it does
not necessarily mean that all the errors are intentionally or
maliciously injected.
Limitations of Implicit Error Detection. In Section 4.1.2,
we explain how we detect implicit errors. It is important to
mention that our implicit error detection may have false neg-
atives, while we are unlikely to suffer from false positives.
This is because (1) our implicit error detection is based on
the patterns obtained via our empirical observations, and (2)
we use strict pattern matching rules to detect implicit error
pattern code, leaving a small room for wrongly detecting
and transforming code. Observe that all the detected implicit
errors are correctly fixed (we manually verified all the fixes)
in our evaluation, meaning that we did not observe any
false-positive cases. There are two major sources of false
negatives: (1) our implicit error patterns are incomplete and
(2) our transformation has implementation bugs.
Obfuscation Techniques. We show in Section 5.4.2, Sec-
tion 5.4.3 and [35] (Section 11.2) how PYFET supports
various obfuscation techniques. From our experience, since
an obfuscator is essentially a post-processing technique for
a compiler, our approach is suitable for handling obfuscated
binaries (i.e., PYFET is essentially a pre-processor for a
decompiler). While handling new anti-analysis techniques
requires new FET definitions, we believe our design is
generic to handle them. Our approach prevents tinkering the
decompiler to handle obfuscations that can potentially break
overall parsing rules within the decompiler.

18

	Introduction
	Background and Preliminary Study
	Bytecode, Disassemblers, and Decompilers
	Preliminary Study on Decompilation Failures
	Causes of Decompilation Failures
	Correctness of Decompiled Source Code

	Observations and Challenges

	Forensically Equivalent Transformation
	Translating Keywords
	Translating Control Structures
	Adding No-operation Instructions

	Pyfet Design
	Error Identification
	Handling Explicit Errors
	Handling Implicit Errors

	Iterative Transformation
	Obtaining CFG
	Target Block Selection
	Transformation (FET)
	Error Identification

	Evaluation
	Effectiveness of Pyfet
	Correctness and Impact of Pyfet
	Correctness
	Impact of Transformation

	Performance of Pyfet
	Case Studies
	Handling 3.9 Binaries
	Opcode Remapped Python Binaries
	PjOrion Obfuscated Binaries

	Discussion
	Related Work
	Conclusion
	Appendix
	Incorrectly Omitted Code
	Implicit Errors
	Implicit Error Patterns
	Implicit Error Detection's Outcomes

	Additional Details of FET Rules
	Complete List of FET Rules
	FET Rules across Python Versions

	Additional Details for Evaluation
	Decompilation Errors by Each Decompiler
	Application Selection Criteria for Section 5.2.1

	Extended Case Studies
	Manually Patching Decompilers vs Pyfet

	Additional Discussion

