
RoboFuzz: Fuzzing Robotic Systems over Robot Operating
System (ROS) for Finding Correctness Bugs

Seulbae Kim
Georgia Institute of Technology

Atlanta, Georgia, USA
seulbae@gatech.edu

Taesoo Kim
Georgia Institute of Technology

Atlanta, Georgia, USA
taesoo@gatech.edu

ABSTRACT

Robotic systems are becoming an integral part of human lives.

Responding to the increased demands for robot productions, Ro-

bot Operating System (ROS), an open-source middleware suite for

robotic development, is gaining traction by providing practical tools

and libraries for quickly developing robots. In this paper, we are

concerned with a relatively less-tested class of bugs in ROS and

ROS-based robotic systems, called semantic correctness bugs, in-

cluding the violation of specification, violation of physical laws,

and cyber-physical discrepancy. These bugs often stem from the

cyber-physical nature of robotic systems, in which noisy hardware

components are intertwined with software components, and thus

cannot be detected by existing fuzzing approaches that mostly focus

on finding memory-safety bugs.

We propose RoboFuzz, a feedback-driven fuzzing framework

that integrates with ROS and enables testing of the correctness

bugs. RoboFuzz features (1) data type-aware mutation for effec-

tively stressing data-driven ROS systems, (2) hybrid execution for

acquiring robotic states from both real-world and a simulator, cap-

turing unforeseen cyber-physical discrepancies, (3) an oracle han-

dler that identifies correctness bugs by checking the execution

states against predefined correctness oracles, and (4) a semantic

feedback engine for providing augmented guidance to the input mu-

tator, complementing classic code coverage-based feedback, which

is less effective for distributed, data-driven robots. By encoding

the correctness invariants of ROS and four ROS-compatible robotic

systems into specialized oracles, RoboFuzz detected 30 previously

unknown bugs, of which 25 are acknowledged and six have been

fixed.

CCS CONCEPTS

• Computer systems organization→ Robotics; • Software and

its engineering→ Software testing and debugging.

KEYWORDS

Robot Operating System 2 (ROS 2); Correctness bugs; Semantic

feedback-driven fuzzing

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549164

ACM Reference Format:

Seulbae Kim and Taesoo Kim. 2022. RoboFuzz: Fuzzing Robotic Systems

over Robot Operating System (ROS) for Finding Correctness Bugs. In Pro-

ceedings of the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),

November 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3540250.3549164

1 INTRODUCTION

Human lives and robots are inextricably linked. Traditionally, robots

have been used extensively in agriculture and manufacturing for

task automation. Recent developments have brought robots even

closer to everyone’s daily lives. For example, Amazon and Google

are deploying humanless delivery systems using unmanned aerial

vehicles [5, 17], the market size of robot vacuum cleaners has grown

23% annually [18], and the use of robots in surgical procedures in-

creased from 2% in 2012 to 15% in 2018 [48], showing how rapidly

the robot industry is growing to accommodate human needs. Simul-

taneously, modern robots, such as autonomous driving vehicles, are

becomingmore sophisticated, demanding an integration of complex

subsystems, e.g., sensing, perception, planning, and actuation.

Responding to such higher demands for developing intricate

robotic systems, Robot Operating System (ROS) [27, 33] is gaining

popularity. ROS is an open-source middleware suite for robot de-

velopment that features a message-passing scheme for distributed

robot processes, hardware abstraction, a broad collection of develop-

ment tools (e.g., simulator), and robotic libraries (e.g., path planning

algorithm). Using ROS, developers can expedite the development

process without having to re-invent the wheel, and instead focus

on the core functionality of their robots. With its philosophy of

multi-language and multi-platform support, ROS is proliferating

as a de facto standard in robotics programming; it has been widely

adopted in industry [15, 40], the military [35, 41], research organi-

zations, and by individuals and is estimated to power 55% of the

total commercial robots shipped in 2024 [7].

Although having such a universal middleware is generally ad-

vantageous, a downside exists; a flaw in ROS itself or in the way

developers commonly use ROS in their applications can affect a

wide range of robotic systems that depend on ROS and wreak havoc

on the safety and security of many users. For example, ROS ver-

sion 1 had no notion of authentication, allowing any entity on the

network to fully access any robotic system, eavesdrop on internal

messages, and even hijack the execution if the IP address and port

are known. Indeed, over 100 ROS systems deployed in 28 countries

were discovered by scanning the default ROS port on the internet

for two months [12], being completely vulnerable to such attacks.

The latest version of ROS (i.e., ROS 2) is designed and implemented

in consideration of such problems and has invited greater public

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

447

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3540250.3549164
https://doi.org/10.1145/3540250.3549164

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Seulbae Kim and Taesoo Kim

scrutiny of security. Unfortunately, existing work and solutions

focus either on the network security aspects regarding authenti-

cation and authorization methods [9, 14, 28, 42], or on regression

testing [43], leaving the ROS community deficient in a systematic

testing method for finding unknown bugs that affect the robustness

and correctness of robotic systems.

Given this situation, fuzzing may seem to be a viable solution,

as it is well known for its capability of discovering unknown er-

rors in a variety of systems [1, 2, 8, 10, 45, 51]. However, robotic

systems are cyber-physical. They have both physical components

(hardware) interacting with the real world, and cyber components

(software) conducting computations and making decisions. This

unique context introduces a new class of bugs closely related to

semantic correctness (ğ2.3), namely, violation of physical laws, vio-

lation of specifications, and cyber-physical discrepancy, which do

not exist in traditional software and thus cannot be detected by

existing fuzzing approaches.

As a remedy, we propose RoboFuzz, the first feedback-driven

fuzzing framework for systematically testing all layers of ROS, in-

cluding the internal layers comprising the ROS core, as well as the

robotic applications built using ROS APIs. Unlike classic fuzzing ap-

proaches [1, 51], which target software binaries looking primarily

for memory-safety errors, testing ROS requires an understanding of

its distributed architecture, underlying components, inter-process

communication scheme, and robotic properties. Based on the knowl-

edge we accumlated by studying ROS and ROS-powered systems,

we design a flexible fuzzing framework for ROS that features a

customizable input mutator, hybrid executor, oracle handler, and

feedback engine. According to the target layer in ROS to test, one

can select a suitable test strategy by customizing the mutation

mode, states to watch, properties to check, and semantic feedback

to utilize. Given this strategy, RoboFuzz effectively explores the

state space of the system under test (SUT) by mutating and pub-

lishing messages to two copies of SUT, one operating in the cyber

world (i.e., a simulator) and the other running physically in the real

world. States of the SUTs from both worlds are then collected to

find errors and generate semantic feedback to assist further input

generation.

To demonstrate the effectiveness ofRoboFuzz, we tested the ROS

core, as well as four ROS-based robotic applications, namely, PX4

quadcopter, TurtleBot3, Move It 2, and Turtlesim, by applying cus-

tomized correctness oracles. By fuzzing these systems, RoboFuzz

revealed 30 bugs, of which 25 are acknowledged and six are fixed.

Among the bugs, 13 bugs are high-impact bugs that exist in the

internal layers of ROS, i.e., the type system and the client API

implementation, affecting a number of ROS-based systems.

In summary, this paper makes the following contributions:

• We introduce and study three types of semantic correctness bugs

that are specific to cyber-physical systems.

• We propose and implement RoboFuzz, a fuzzing framework that

seamlessly supports testing robotic systems over ROS to detect

correctness bugs. The prototype of RoboFuzz is open-sourced at

https://github.com/sslab-gatech/robofuzz.

• By designing robot-specific correctness oracles and semantic

feedback metrics, we test the latest ROS distribution and four

robotic systems, and detect 30 new correctness bugs.

2 BACKGROUND

2.1 Challenges of Testing a Robotic System

A typical robotic system can be characterized by the physical

(hardware) component, e.g., a GPS sensor or a motor, the cyber

(software) component, e.g., an implementation of a control algo-

rithm, and the environment, e.g., a terrain, that a robot interacts

with. This unique configuration poses three challenges in testing

robotic systems.

Challenge 1: Heterogeneity. The diversity of robotic systems is

enormous; surgical robots require extra precision, factory robots

are built to last, and aerial robots fly. Moreover, robots sharing

the same software may behave differently if they have different

hardware (e.g., sensors from different manufacturers), and the same

robots may behave differently under different environments. Such

heterogeneity makes testing robotic systems challenging because

one testing methodology may not work directly with other robots.

As a workaround, we focus on an integral property of a robot that

it essentially is a group of distributed processes that exchange data

for operation. In other words, a robotic behavior can be represented

by the data flow (whether it is analog or digital) between the nodes.

Considering this property, we design our framework to be capable

of capturing and controlling the data flow for testing.

Challenge 2: Huge State Space. Robotic systems operate in many

different environments and conditions, with countless variables

that exist in the real world. As a result, the state space tends to be

bigger than that of traditional software programs. To effectively

test such a profound system, we adopt feedback-driven fuzzing,

which is proven to be effective in exploring large state spaces,

leading to the successful detection of software bugs [1, 2, 8, 23, 51].

Particularly, we propose the use of semantic feedback, which is

unique to robotic systems, to further accelerate the state space

exploration by complementing the coverage-based feedback.

Challenge 3: Noisy Hardware. Unlike conventional software

that has neatly defined interfaces to exchange accurate data, the

hardware components (e.g., sensors and actuators) of a robot are

inherently noisy, as they interact with the real world. For example,

the GPS sensor constantly reports slightly changing latitude and

longitude values even when a robot is not moving at all. Similarly,

it is almost impossible to move a robot to the exact same location

with a precision of millimeters, as the actuators are noisy.

To incorporate such noise into testing, we design a hybrid execu-

tor, which runs tests simultaneously in a simulator and in the real

world, so that the states captured from both worlds, (e.g., the dis-

crepancy between the values reported by the noisy physical sensor

and noiseless simulated sensor) can be utilized to assist testing.

2.2 Robot Operating System (ROS)

Robot Operating System (ROS1) [33] is an open-source framework

designed to help developers build modular, distributed robotic appli-

cations. With convenient all-in-one tools and libraries that support

multiple operating systems and programming languages, combined

with a vibrant user community, ROS established a solid ecosystem

and attracted many users worldwide [3, 4] to become a de facto

standard in robotics.

1Unless otherwise noted, łROSž refers to ROS 2 herein, which is the latest version.

448

https://github.com/sslab-gatech/robofuzz

RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness Bugs ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Figure 1: System architecture of ROS 2.

uint32 height # image height

uint32 width # image width

string encoding # encoding of pixels

uint8[] data # actual matrix data of pixels

Figure 2: An example message definition for image data.

As shown in Figure 1, ROS separates the application layer (1)

from the internal layers (2 - 6), so users can focus solely on de-

signing the logical composition of the robotic application, while

the internal ROS layers manage the data distribution. Specifically,

ROS-powered applications are mainly built around three logical

concepts: node, topic, and message.

• Node: A node is a minimal self-contained process with a desig-

nated function, such as performing computations. Nodes are the

foundations of modular robotic systems that assist fault isolation

and high reusability.

• Topic: A topic is a message bus connecting publishers (data writer

nodes) to subscribers (data reader nodes). Each topic may have

multiple publishers and multiple subscribers, enabling multiple

nodes to concurrently exchange data anonymously.

• Message: A message is a typed key-value data structure that

serves as a unit of data transportation. ROS defines 15 built-in

types: bool, byte, char, float{32,64}, int{8,16,32,64}, uint{8,16,32,64},

string and wstring, and array types of the above-mentioned

built-in types. As shown in Figure 2, a message may contain

multiple fields of different types. ROS topics are strictly typed,

meaning that a topic only accepts messages of one type that is

pre-registered when initializing the topic.

Application Layer (1). ROS allows developers to build a ROS-

based application by utilizing ROS Client Library APIs (2) to com-

pose a logical network of nodes connected by topics in desired

programming languages (officially, C++ and Python). An illustra-

tive example of a ROS application is shown in Figure 3. Once the

developer specifies nodes and connects them by binding publishers

and subscribers to topics, ROS orchestrates the data distribution

through the publish-subscribe pattern, so that if one node pub-

lishes a message to a topic, the topic broadcasts the message to

all the nodes subscribing to that topic. Meanwhile, the underlying

implementation backing the application by handling the process

management and data distribution is completely abstracted away

from the user-space, as shown in Figure 1.

Figure 3: An example use of the publish-subscribe pattern in

a ROS application. Nodes (gray rounded rectangles) publish

data to other nodes through topics (white rectangles). A node

may subscribe to multiple topics (e.g., obj_detector gets data

from front_image and laser_dist), and multiple nodes can

subscribe to a topic (e.g., both path_planner and hazard_logger

receive data published to objects).

ROS Client Library API Implementation (2). RCL API imple-

mentations are the only user-facing APIs that expose ROS func-

tionality to users in specific languages (e.g., rclcpp and rclpy).

Developers can be agnostic of the inner workings of ROS and sim-

ply utilize the RCL APIs to compose a ROS network consisting of

nodes and topics, which essentially is a modular robotic system.

ROS Client Library (RCL) (3). RCL is a common unified layer

that bridges the user-space APIs implemented in multiple languages

(2) with lower-level functionalities. Core concepts of ROS (e.g.,

node, topic) are implemented in this layer so that the behaviors of

the language-specific APIs can remain constant.

ROS Middleware Interface (RMW) (4). RMW is an abstraction

layer built to support diverse standalone DDS implementations. It

wraps the APIs of individual DDS implementations in a uniform

interface, simplifying the interaction with the RCL layer.

Data Distribution Service (DDS) (5). A DDS [31] is a network

middleware that implements the publish-subscribe pattern com-

munication for real-time systems. Although DDS is not specific to

ROS, it became an essential part of ROS since it includes a num-

ber of useful functionalities for delivering arbitrary data, such as

marshalling and de-marshalling, Quality of Service (QoS) policy

implementation, dynamic node discovery, and message delivery on

the transport layer.

Type System Based on Interface Definition Language

(ROSIDL) (6). The type system of ROS utilizes an Interface Defini-

tion Language (IDL) to define messages (e.g., Figure 2), to automat-

ically generate corresponding code for the built-in ROS types in

each RCL API language (i.e., C++ and Python), and to enforce type

checking at the time of value assignment and delivery. It also maps

ROS types to the type system used by DDS, making ROS types

universally applicable to all ROS layers.

2.3 Correctness Bugs in Robotic Systems

Having the characteristics of cyber-physical systems discussed in

ğ2.1, robotic systems can suffer from not only traditional software-

oriented bugs (e.g., memory safety errors), but also a new class of

bugs related to the correctness in the operation. Unlike traditional

bugs that lead to software crashes, correctness bugs often do not

have immediate manifestations but have devastating impacts, such

as quickly wearing the hardware of the already deployed robotic

system by pushing the robot beyond its physical capability. In

particular, we focus on three types of correctness bugs that can

critically affect the safety and robustness of robotic systems.

449

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Seulbae Kim and Taesoo Kim

Violation of Physical Laws. Robotic systems have physical parts

operating in the real world and are thereby bound by various laws

of physics and their derivatives that should always hold. For ex-

ample, as defined by kinematic equations, if there is a change of

displacement, the robot must have a non-zero velocity, and if there

is a change of velocity, the acceleration must be non-zero. If the

robotic states (either externally observed or broadcasted by the

robot itself) violate any of the known physical laws, it implies

component failure or logical error in the software.

Violation of Specification. Specifications or datasheets of a robot

contain essential information about the robotic system, including

the physical capabilities of the components (e.g., sensor fidelity or

joint limits), as well as various assumptions about robotic behaviors.

Not complying with the specifications, the robot can be physically

damaged, and other components that rely on the specification can

also be broken, critically affecting the robustness of the system.

Regardless of whether the specification is incorrect, or the imple-

mentation of the specification is erroneous, those cases should be

detected and handled.

Cyber-physical Discrepancy. Simulations are often preferred

over real-world environments when developing and testing robotic

systems because of the cost and safety benefits. Here, the practical

merits of utilizing simulated robots are valid only if the simulated

robots are closely modeled to their physical counterparts. In this

regard, if the behaviors of two identical robots in the real world

and the simulation are sufficiently different, we regard it as a cyber-

physical discrepancy bug.

2.4 Motivation and Scope of Work

ROS is undergoing constant development; every year, a stable ver-

sion with new features, upgrades, and bug fixes is released. At the

same time, an increasing number of robotic systems are being built

on top of ROS distributions. ROS comes in a complicated package

that includes multiple abstraction layers interacting with each other

and various DDS implementations from different vendors, which

makes eliminating bugs and ensuring correctness challenging. Un-

fortunately, ROS currently relies on minimal testing approaches

(e.g., unit testing [43]), which are not versatile enough to detect a

wide range of unknown issues. Thus, in this paper, we are primarily

concerned with quickly detecting unknown bugs and correctness

issues from such an evolving codebase by building a generic fuzzing

framework targeting the internal abstraction layers of ROS (2 - 6),

as well as the robotic applications powered by ROS (1).

3 ROBOFUZZ: A GENERIC FRAMEWORK

3.1 Overview

RoboFuzz is a customizable feedback-driven fuzzing framework

tailored for Robot Operating System internals and applications. The

key intuition behind the design of RoboFuzz is that a robotic sys-

tem (ROS-based systems, in particular) is a stateful, noded system

in which nodes change their states based on the data they receive.

Therefore, the behavior of robotic systems can be summarized as

the data (message) flow among the distributed nodes. RoboFuzz ap-

proaches testing from the data flow standpoint, injecting messages

to nodes composing the robotic system under test.

Figure 4: Overview ofRoboFuzz’s architecture andworkflow.

Algorithm 1: Fuzzing algorithm of RoboFuzz

Input :𝑅𝑂𝐵𝑂𝑇 - robotic system, 𝑆𝑇𝑅𝐴𝑇 = {𝑆, 𝑠𝑐ℎ𝑒𝑑,𝑇 ,𝑊 ,𝑂 } - test strategy,
𝑆 - set of seed messages, 𝑠𝑐ℎ𝑒𝑑 - mutation schedule,𝑇 - set of target nodes,
𝑊 - set of states to watch,𝑂 - set of correctness oracles,
𝑁𝑟 - Maximum # rounds in a cycle

Output :𝑏𝑢𝑔 - a detailed bug report,𝑚𝑠𝑔 - message that triggered the bug

1 procedure 𝑟𝑜𝑏𝑜 𝑓 𝑢𝑧𝑧_𝑚𝑎𝑖𝑛 ()
2 𝑔𝑟𝑎𝑝ℎ ← 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟 .𝑖𝑛𝑠𝑝𝑒𝑐𝑡 (𝑅𝑂𝐵𝑂𝑇) // ğ3.2

3 foreach 𝑠𝑒𝑒𝑑 ∈ 𝑆 do
4 𝑓 𝑢𝑧𝑧_𝑜𝑛𝑒 (𝑠𝑒𝑒𝑑,𝑔𝑟𝑎𝑝ℎ)

5 procedure 𝑓 𝑢𝑧𝑧_𝑜𝑛𝑒 (𝑠𝑒𝑒𝑑,𝑔𝑟𝑎𝑝ℎ)
6 𝑚𝑠𝑔′ ← 𝑠𝑒𝑒𝑑

7 𝑙𝑎𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← ∅

8 for 𝑟𝑜𝑢𝑛𝑑𝑠 ← 1 to 𝑁𝑟 do
9 𝑚𝑠𝑔′ ←𝑚𝑢𝑡𝑎𝑡𝑜𝑟 .𝑚𝑢𝑡𝑎𝑡𝑒 (𝑚𝑠𝑔′, 𝑠𝑐ℎ𝑒𝑑,𝑔𝑟𝑎𝑝ℎ,𝑇) // ğ3.3

10 𝑠𝑡𝑎𝑡𝑒𝑆 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 .𝑠𝑖𝑚_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑅𝑂𝐵𝑂𝑇,𝑊 ,𝑚𝑠𝑔′) // ğ3.4

11 𝑠𝑡𝑎𝑡𝑒𝑅 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 .𝑝ℎ𝑦_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑅𝑂𝐵𝑂𝑇,𝑊 ,𝑚𝑠𝑔′) // ğ3.4

12 if 𝑜𝑟𝑎𝑐𝑙𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟 .𝑐ℎ𝑒𝑐𝑘_𝑏𝑢𝑔𝑠 (𝑂, 𝑠𝑡𝑎𝑡𝑒𝑆 , 𝑠𝑡𝑎𝑡𝑒𝑅) /*ğ3.5*/ == 𝑇𝑟𝑢𝑒

then
13 𝑠𝑎𝑣𝑒_𝑏𝑢𝑔_𝑟𝑒𝑝𝑜𝑟𝑡 (𝑚𝑠𝑔′, 𝑠𝑡𝑎𝑡𝑒𝑆 , 𝑠𝑡𝑎𝑡𝑒𝑅)

14 return

15 else
16 𝑠𝑐𝑜𝑟𝑒 ← 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘.𝑞𝑢𝑎𝑛𝑡𝑖 𝑓 𝑦_𝑠𝑐𝑜𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒𝑆 , 𝑠𝑡𝑎𝑡𝑒𝑅) // ğ3.6

17 if 𝑠𝑐𝑜𝑟𝑒 > 𝑙𝑎𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 then
18 𝑙𝑎𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒

19 𝑆 ← 𝑆 ∪𝑚𝑠𝑔′

The architecture and workflow of RoboFuzz are illustrated in

Figure 4, and Algorithm 1 presents the formal algorithm. RoboFuzz

takes a target system and a test strategy as input and outputs the

report of found bugs. The system inspector (ğ3.2) analyzes the target

system and extracts the ROS graph. Based on the extracted graph,

the message mutator (ğ3.3) mutates ROS messages and publishes

them to the target node(s) running in the hybrid executor (ğ3.4).

States are collected during the execution of the target undermutated

messages and checked against the provided oracles by the oracle

handler (ğ3.5). If the oracle detects any failure, a bug report is

generated, and the fuzzing loop terminates. Otherwise, the feedback

engine (ğ3.6) quantifies the interestingness of the target’s behavior

from the execution states, and provides feedback to the message

mutator, guiding subsequent mutations.

3.2 System Inspector

The first step of testing is to scan the robotic system to obtain the

ROS network graph, which is a topological view of the robotic

450

RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness Bugs ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

system consisting of all nodes, topics, and associated message types.

The system inspector launches the robotic system and examines

the ROS network by invoking internal node discovery APIs of ROS.

Unless the target node is specified on the test profile provided by

the user, all nodes in the identified ROS network that subscribe to

at least one topic automatically become the candidates of testing.

3.3 Type-aware Message Mutator

ROS-based systems are driven by ROS messages distributed along

the nodes of the ROS network. Thus, a testing framework has to

be capable of stressing the system by generating and transferring

proper messages to relevant nodes. The message mutator is de-

signed specifically for this task.

Type-aware Mutation. It is important to note that all topics

in the ROS network are bound to strictly typed messages. Given

that the type checker of ROS IDL works correctly, any message

is rejected to be published if it does not conform with the topic’s

type that is determined when the topic is initialized (i.e., when the

robotic system is launched). In light of this property, RoboFuzz

supports type-aware mutation of messages, associating appropriate

mutation operators with each ROS data type to constrain the result

of a mutation within the right type.

This is achieved by (1) inheriting the general mutation operators

such as bit flip, byte flip, and arithmetic operators from American

Fuzzy Lop (AFL) [51], which are proven to be effective in mutating

arbitrary data blobs and then (2) associating each operator with

ROS data type such that it is guaranteed for the application of an

operator to produce the values expressible by the type and also (3)

adding augmented operators that produce special values (e.g., NaN

and INF of float) and boundary values (e.g., uint32_max for 32-bit

unsigned integer) that are often mishandled by the robotic system.

In addition, RoboFuzz allows users to register custom mutation

operators (e.g., generating float in a certain range) for extensibility.

Specifically, given a message, the mutator selects one of the fields,

retrieves the data type associated with the selected field from the

ROS network graph, and applies one of the mutation operators

defined for that data type.

Message Scheduling. The mutator also manages the schedule

of when the mutated messages should be published, considering

the context and properties of the target system. For systems that

perform a series of actions upon receiving one message, publishing

a single message and watching the behavior would be appropriate

(e.g., a goal coordinate message to a trajectory following robot). If a

system is more realtime, requiring a stream of messages, publishing

a sequence of messages would better fit the purpose of the robot

(e.g., remote control messages to a drone). RoboFuzz systemati-

cally schedules testing campaigns by defining configurable factors

such as the number of messages in a sequence, frequency of pub-

lication, and the time to watch, and letting users decide the right

configuration based on their needs.

3.4 Hybrid Executor

Many developers rely heavily on robotic simulators to benefit from

reduced cost and time in developing and testing robotic systems.

Even though modern simulators have relatively realistic physics

engines with moderately accurate dynamics and kinematics models,

(a) PX4 drone in the real world (b) PX4 drone in Gazebo simulator

Figure 5: Hybrid executor running PX4 drone simultaneously

in the real world and the simulator. The actual place is accu-

rately modeled (GPS coordinate, trees, and building) to mini-

mize unhandled discrepancy between two environments.

a certain degree of discrepancy between the simulation and the

real-world execution is inevitable, either because of the lack of

accuracy in the modeling or simply because the state in concern

is not available in the simulator (e.g., the temperature of a motor).

In severe cases, the in-simulator position of a robot differs from

the position of a physical robot after receiving the identical control

commands due to the discrepancy. Such issue makes a Simulator-in-

the-Loop (SITL) testing insufficient to test for all potential issues.

To fill the gap between the simulators with insufficient fidelity

and profound physical environments, we employ a hybrid execution

model in RoboFuzz. As illustrated in Figure 5, the hybrid executor

runs the robot in a simulator, and simultaneously in the real world (if

the physical robot is available). It then relays the mutated messages

to both systems so that both robots can take corresponding actions

to the identical messages. In the meantime, the executor monitors

both worlds to capture the states and events. RoboFuzz benefits

from this design because (1) there are complementary states that

are only available in either of the worlds and (2) there are redundant

states that show divergence, especially if the relayed messages are

related to sensors or actuators, as discussed in ğ2.1.

3.5 Oracle Handler

Every robotic system has a different definition of correct states and,

based on these, employs different invariants during the execution.

Thus, a practical testing framework must allow developers to con-

veniently declare and apply correctness oracles that are specific to

each robotic system. RoboFuzz provides an oracle template, that

allows developers to define oracle states with respect to the states

captured by the hybrid executor. The built-in oracle handler checks

up on the robotic states with the provided oracles and generates

bug reports if any violation is found. In ğ4, we demonstrate the use

of robot-specific developer-defined oracles that we built targeting

different systems to reveal correctness bugs.

3.6 Feedback Engine

In a fuzzing process, execution feedback plays an important role

in providing guidance to the mutation engine. Typically, the ef-

fectiveness of the mutated input in the execution is quantified to

determine whether the mutation engine should keep mutating the

input or move on to another input. With the intuition that more

bugs can be detected by exploring more code paths in the program,

modern greybox fuzzers use code coverage as feedback and try to

generate inputs that increase the code coverage. Such a strategy

works well for general software programs that have diverse code

paths along the execution and results in finding a number of bugs.

451

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Seulbae Kim and Taesoo Kim

However, robotic systems, by nature, are distributed systems

whose behaviors are driven by state changes excited by data flow,

rather than by the control flow and thus tend to have a limited num-

ber of code paths. This propertymakes coverage-based feedback less

effective in summarizing the execution of robotic systems, as code

paths are redundant even when the robot exhibits a wide variety of

behaviors, and led us to design an augmented feedback mechanism

tailored for robotic systems. To complement the coverage-guided

feedback mechanism and enhance the input state exploration for

robotic systems, we propose semantic feedback, which quantifies

the łbugginessž of the execution context by taking advantage of

the domain knowledge of the tested robots, as detailed below.

Redundant Sensor Inconsistency Feedback. In robotics, multi-

ple redundant sensors are utilized to improve the accuracy of the

acquired data and to provide fault tolerance in the face of sensor

failure [19]. The assumption behind utilizing redundant sensors is

that even though each sensor provides its own measurement of the

state in varying precision, the results should align with each other

with high similarity because we simultaneously measure the same

property. From an alternative standpoint, a discrepancy in the states

measured by redundant sensors indicates potential issues in the

system, such as instability. Therefore, RoboFuzz allows developers

to register multi-sensor inconsistency as feedback if redundant

sensors are present in the system under test. In the case when the

robotic SUT has no redundant sensor, one could take advantage of

the modular architecture of robotic systems and install a redundant

sensor to facilitate the testing.

Control Error-based Feedback. Closed-loop feedback con-

trol [25] is a crucial part of robotic controllers; taking a control

command input, a robotic system outputs the error between the

reference value (e.g., current position) and the setpoint (e.g., desired

position), which is fed back to the controller so that it can generate

the next control command that can defeat the error. If a controller

is erroneous or poorly calibrated, it could fail to reduce the control

error, making the robot uncontrollable. Thus, developers can utilize

the knowledge of the internal logic of the controller to augment the

testing by factoring the control error into the execution feedback.

State Distance-based Feedback. For any numeric state that is

bound by physical limits, the difference between the measured

value and the limit indicates the distance to the erroneous state.

Thus, a strategy of favoring the input messages that minimize such

distance can potentially contribute to guiding RoboFuzz to trigger

errors that specification-based oracles (ğ3.5) attempt to detect.

Cyber-physical Discrepancy Feedback. When the hybrid ex-

ecutor (ğ3.4) runs the robotic SUT, it assures that the exact same

messages from the message mutator are published to both the phys-

ical robot and the simulated clone, which run the same software

stack with an identical configuration. Accordingly, the resulting

states of both robots are expected to be identical. However, in

practice, there are unwanted factors, such as the sensor noise or

inaccurate modeling of the simulator, that affect the fidelity of the

execution and result in a discrepancy in the states, such as the

divergence in the trajectory over time. By providing tools for com-

puting discrepancies and registering them as feedback, RoboFuzz

assists developers to take such factors into account in the testing

and excite the unhandled aspects of the execution environment.

4 ROBOFUZZ IN ACTION: SPECIALIZATION

With the base framework introduced in ğ3, one can readily

turn robot-specific knowledge and expectations into a specialized

fuzzing campaign. To demonstrate how RoboFuzz can be applied

to heterogeneous targets and effectively find bugs, we select four

robotic applications of distinctive properties, and study them to

generate appropriate oracles and semantic feedback metrics:

(1) PX4 quadcopter (PX4) [29]: an open-source flight control stack,

known for its support for a variety of quadcopter models and

high configurability.

(2) TurtleBot3 (TB3) [6, 36]: a differential wheeled mobile robot

equipped with a LiDAR sensor.

(3) Move It 2 (MI2) [11, 39]: a robotic manipulation library for ROS

that implements fundamental concepts of robotic manipulation,

such as kinematics, motion planning, and control.

(4) Turtlesim (TSM) [30]: a lightweight velocity-controlled turtle

robot in a 2D simulator, shipped with ROS for tutorials.

For ROS internals, we target (5) RCL APIs and the (6) type system

(ROSIDL) to ensure the building blocks of ROS-based applications

are correct. In this section, we discuss notable target-specific factors

leading to different mutation strategies, oracles, and feedback.

4.1 Common Oracles

Before we introduce target-specific strategies, there are common

oracles that can be universally applied to multiple robotic systems.

Unless otherwise noted, these common oracles are utilized by de-

fault, along with the specialized oracles.

Physical Constraint Oracle. Robotic systems operate in the

real world and are thereby bound by certain physical constraints.

The oracle handler adopts a set of checks for physical sanity, i.e.,

states related to the existence of the robot in the physical space can

neither disappear nor have infeasible values. In particular, any state

indicating the geometry of the robot, i.e., (𝑥,𝑦, 𝑧) for the position

and (𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ,𝑦𝑎𝑤) for the orientation, should present a feasible

value if the robot is in the three-dimensional physical space. For

example, it is guaranteed by physics that the 𝑧-position of a robot

can never be NULL, NaN, or INF. Likewise, kinematics-related states,

such as velocity, should always present physically tractable values

belonging to the real number range.

Sanitizer Oracle. Although not the primary concern of RoboFuzz,

the oracle handler also integrates with compiler sanitizers to sup-

port the checking of classic memory-safety issues and miscella-

neous software-oriented errors in the robotic SUT. If the target

node is compiled with sanitizer flags, the sanitizer oracle detects

the error signals emitted by AddressSanitizer [46] or UndefindBe-

haviorSanitizer [26] when the system terminates.

4.2 Testing PX4 Quadcopter

Mutation and Scheduling. PX4 is a complicated system that ac-

cepts multiple forms of inputs; one can (1) send trajectory setpoint

messages that consist of the target position (𝑥,𝑦, 𝑧), orientation

(𝑦𝑎𝑤), speed (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 , 𝑦𝑎𝑤𝑠𝑝𝑒𝑒𝑑), and acceleration (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧)

to have the internal motion planner work out movement control

plans to reach each setpoint; (2) directly send a stream of control

452

RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness Bugs ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

commands that consists of (𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒,𝑦𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ, 𝑟𝑜𝑙𝑙) values cor-

responding to the position of the control sticks of a remote control

unit to micro-control the drone; or (3) switch the parameter val-

ues as suggested by [20] to dynamically configure the drone in

runtime. RoboFuzz considers all three input spaces and mutates

and schedules messages accordingly; for (1), RoboFuzz mutates

one attribute (e.g., 𝑣𝑥) of one message in the sequence of trajec-

tory setpoint messages and publishes them at a given interval (e.g.,

20 𝐻𝑧); for (2), RoboFuzz mutates one of the stick values of one

of the control command messages in the sequence and publishes

the entire sequence; and for (3), RoboFuzz mutates the value of a

parameter and requests parameter change through the MAVLink

protocol.

Oracles. Three types of oracles are formulated for PX4:

• Parameter specification-based oracle: The behavior of PX4-based

robots is configured by parameters, which are numeric values

used in the controller software to configure the robot (e.g., max-

imum velocity along the z-axis). As the system makes various

assumptions based on the parameters, violating the parameters

could lead to safety-critical situations, as demonstrated in ğ6. We

parsed the PX4 documentation for parameter values and mapped

vehicular states with each parameter so that the oracle checks

whether the captured states satisfy the valid range set by the

corresponding parameter and reports the violations.

• Safety oracle: A collision is considered one of the most unde-

sirable events during flights, and any collision needs to be in-

vestigated regardless of the cause. The safety oracle checks for

collisions using the data read by contact sensors.

• Flight mode oracle: PX4 supports various flight modes, and each

mode utilizes different controller logic, leading to different ma-

neuvers. The documentation of PX4 introduces each mode, spec-

ifying the expected behaviors of the mode. For each mode, the

oracle models the control algorithm, checking whether the de-

scribed control is being executed. For example, the łtakeoff modež

brings a drone straight to the desired altitude and does not re-

quire any external controls. If a drone moves horizontally in this

mode, the incident is reported by the oracle as a bug.

Feedback. Two PX4-specific feedback metrics are applied:

• Redundant sensor inconsistency: Pixhawk 4 (a flight controller

hardware designed to run PX4 firmware) [32] has two Inertial

Measurement Unit (IMU) sensors of different vendors: BMI-055 of

Bosch and ICM-20689 of TDK. Both sensors utilize an accelerom-

eter and a gyroscope to measure the change in the position (lo-

cation) and orientation (rotation) of the drone. Even though the

two sensors vary in fidelity, they report consistent acceleration

and angular velocity measurements with negligible discrepancy.

However, we observed that their responses to anomalous or ex-

treme events, such as collisions or flips that bring about rapid

movements, are divergent, resulting in a considerable discrep-

ancy in the readings. Accordingly, we interpret the difference

between two IMU readings as an instability metric and use it as

an element of the execution feedback, such that inputs that lead

to larger discrepancies are favored.

• Position estimation error: PX4 utilizes the Extended Kalman Filter

(EKF) [34] to combine the measurements from the IMU, mag-

netometer, and GPS sensors into the estimation of the global

position (i.e., latitude and longitude). As the controller of PX4

computes the thrust amount to minimize the difference between

the setpoint (desired position) and the estimation (current posi-

tion), the estimation error is critical in the behavior of a drone.

One of the reasons jeopardizing the reliability of the EKF esti-

mation is known as excessive vibration of the drone body. In

light of this, we compute the position estimation error, i.e., the

Euclidean distance between the raw GPS sensor position and the

EKF-estimated position, and register it as feedback.

4.3 Testing TB3 and TSM

TB3 is a differential wheeled robot, whose movement relies on two

individually actuated wheels on a common axis. It has a 360-degree

laser distance sensor (LDS-01) on the top that enables simultaneous

localization and mapping (SLAM) [49] and autonomous driving.

TSM is essentially a 2D version of TB3, which is velocity controlled.

Mutation and Scheduling. TB3 runs a designated node that re-

ceives twist messages, which consist of target translational speed

(𝑚/𝑠) and rotational speed (𝑟𝑎𝑑/𝑠), and runs a differential drive

algorithm to control the torque generated by two motors. Accord-

ingly, RoboFuzz mutates the target speed, publishes the message

to the node, and then monitors the dynamic states of TB3, including

its position, velocities, and laser scan data.

Oracles. Along with the common oracles, we designed two TB3-

specific oracles.

• Specification-based oracle: Similar to the PX4 oracles, physical

invariants of the robot, such as the maximum translational and

rotational velocities, are collected from the specification docu-

ment of TB3. In addition, from the datasheet and the code of the

laser distance sensor driver, the range of valid scan distance data

is obtained, which is also checked by the TB3 oracle.

• Goal-based control oracle: Unless the commanded linear and

rotational speeds do not exceed the specified limits, TB3 is bound

to achieve the target speed. This fundamental property is checked

through the goal-based control oracle.

Feedback. Odometry is a process of measuring the change in

position over time. To a robot that does not have a global position

sensor (e.g., GPS), accurate odometry is the key to estimating the

global position and guaranteeing correct navigation.

• Odometric inconsistency: TB3 runs odometry to calculate the

change in its position and orientation upon the actuation of

control commands. Here, the odometry involves two redundant

methods to calculate the change of yaw angle, one using the

measurement of the IMU sensor and the other using the amount

of rotation of the wheels. Under normal execution conditions,

both methods yield analogous yaw angles. However, when the

instability increases (e.g., if the robot sways and the wheels do

not stick on the ground), the wheel-based measurement becomes

imprecise, as wheel movement does not always lead to the change

in position and results in increased odometric inconsistency.

4.4 Testing MI2 with PANDA Manipulator

PANDA manipulator by Franka Emika is a popular robot arm

equipped with seven revolute joints and torque sensors. Its control

interface officially supports ROS and MI2, enabling the testing.

453

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Seulbae Kim and Taesoo Kim

auto node = std::make_shared<rclcpp::Node>("rclcpp_node");

(a) rclcpp API to create a node.

node = rclpy.create_node('rclpy_node')

(b) rclpy API to create a node.

(c) Call chain of RCL functions that are internally invoked when

rclcpp or rclpy APIs are called to create a node.

Figure 6: API consistency on the ROS Client Library (RCL).

Mutation and Scheduling. MI2’s trajectory planner accepts the

goal position, which specifies where the hand of the robot arm

should be placed, and determines the position and motion of the

joints (i.e., angles of revolute joints over time) to realize the goal

position through inverse kinematics.

Oracles. Approaching from the control algorithm’s angle, we

designed three following oracles:

• Inverse kinematics oracle: Depending on the goal position and

constraints, the inverse kinematics solution may or may not exist.

This oracle emulates the inverse kinematics using an external

module and checks whether MI2 fails to find an existing solution.

• Specification-based oracle: The motion of the robot is physically

constrained by various joint constraints, (e.g., minimum and max-

imum angle a joint can achieve). Similar to other robotic systems,

we parse the datasheet of PANDA robot to extract the joint con-

straints and turn them into an oracle checking for violations.

• Physical correctness oracle: The controller periodically publishes

joint states, which consist of position and velocity setpoints com-

puted by the trajectory planner, the actual position and joint

velocities, and errors between these vectors. Here, the positions

and velocities should be valid numeric values, and the joint veloc-

ities should be non-zero when the manipulator is being actuated.

Feedback. As mentioned in ğ3.6, the joint controller of PANDA

manipulator also performs closed-loop feedback control, utilizing

the error between the setpoints and actual position.

• Joint-level controller error: The control error measured for each

joint indicates how precisely the torque controller is achieving

the planned trajectory. Errors exceeding the capacity of the robot

cannot be corrected and lead to control failure. Thus, by favoring

mutated messages that result in increased joint-level controller

errors, we can excite the failure and reveal bugs.

4.5 Testing ROS - RCL API Consistency

As described in ğ2.2, RCL API implementations are thin wrappers

written in specific languages around the core functionalities of the

RCL layer. Regardless of the API language, it is expected that the

code paths taken in RCL are identical, such that the same RCL func-

tions are invoked and return the same result (e.g., return values).

Figure 6 shows an example of RCL API consistency. ROS applica-

tions written in C++ can create a node using the rclcpp shown in

Figure 6(a). Likewise, the rclpy API of Figure 6(b) can be used if

Table 1: Code size of the components of RoboFuzz.

Component LoC Language

System inspector 161

Python
Message mutator and Scheduler 2,948
Hybrid executor and Harnesses 1,415
Oracles and Feedback engine 1,000

the ROS system is built in Python. In both cases, each RCL API

invocation ends up invoking the same RCL functions listed in Fig-

ure 6(c), ensuring that a ROS node is created and initialized in a way

that is uniform and thereby correct. The API consistency oracle

is designed to check whether two (or more) API implementations

emit consistent behaviors with respect to the RCL code path by

dynamically tracing the RCL function invocations and the return

values during the execution.

4.6 Testing ROS - ROSIDL-based Type System

ROS IDL is the centerpiece of ROS type system, which not only

generates language-specific code (e.g., C struct) for user-defined

message interfaces consisting of ROS native types, but also dynam-

ically checks the types of messages coming into and out of ROS

topics. Built upon the assumption that ROS IDL works correctly,

ROS nodes often omit redundant type checks of the data it handles,

and even boundary (minimum and maximum) checks.

Our IDL correctness oracle is designed to test such foundational

assumptions. Given a message containing fields 𝑓1 of built-in data

type 𝑡1 and 𝑓2 of fixed array of type 𝑡2, the IDL correctness oracle

checks for the following five invariants regarding the type system:

(1) assigning a value of type 𝑡 ′ to 𝑓1, where 𝑡 ≠ 𝑡 ′ should fail,

(2) assigning a value bigger than the𝑚𝑎𝑥 of 𝑡1 to 𝑓1 should fail,

(3) assigning a value smaller than the𝑚𝑖𝑛 of 𝑡1 to 𝑓1 should fail,

(4) assigning a value of type 𝑡 ′ to one of the elements of 𝑓2, where

𝑡2 ≠ 𝑡 ′ should fail,

(5) the value assignment succeeds otherwise.

5 EVALUATION

In this section, we evaluate the overall effectiveness of RoboFuzz

in finding correctness bugs in heterogeneous robotic systems by

answering three questions:

Q1. How effective is RoboFuzz in finding robotic bugs? (ğ5.1)

Q2. How effective is the semantic feedback mechanism? (ğ5.2)

Q3. How does RoboFuzz compare to a state-of-the-art robotic

fuzzer? (ğ5.3)

Implementation. We prototyped the RoboFuzz framework and

the specialized oracles in 5.5k lines of Python3 code [21], as shown

in Table 1. The framework is built based on ROS 2 foxy, which is

the latest LTS distribution of ROS 2.

Cost of Oracle Creation. Two weeks on average were required

for a person with a college-level knowledge of robotics to study one

system, review its specifications and code, and implement oracles.

For the robot developers who better understand their own systems,

less creation cost is anticipated.

Experimental Setup. We performed the evaluation on a laptop

machine running Ubuntu 20.04, with Intel i7-8850H 2.6Ghz, 16GB

RAM, and Quadro P2000 mobile GPU.

We targeted four robotic systems, PX4, TB3, MI2, and TSM, as well

as ROS 2 internals (ROSIDL and rclpy/rclcpp). For PX4 and TB3, we

454

RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness Bugs ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

utilized the actual robots along with their simulated clones; PX4

using Holybro X500 frame with Pixhawk4 flight controller, which

runs PX4 v1.12, and TB3 łBurgerž build, which runs foxy-devel

firmware. All simulationswere run in a Gazebo 11 simulator [24, 38],

except for TSM, which operates in its own 2D simulator. For internal

layer testing, we built ROS 2 foxy from the source.

For each of the six targets, we created separate fuzzing instances

per input type the target accepts, e.g., three for PX4 (ğ4.2) and one

for each of the rest. Each instance was run for 12 hours with only

target-specific oracles activated to prevent bugs in other layers (e.g.,

underlying bugs in ROS) from overshadowing the target bugs.

Hybrid Execution. RoboFuzz fully automates the hybrid execu-

tion at the software level, but physical execution involves inevitable

manual actions, e.g., rebooting a robot through a power switch and

putting it back at the initial position. In addition, due to battery life,

safety, and the need to visit the test site, we intermittently utilized

the hybrid executor for physical robots; we tested each robot for

approximately 30 minutes each time, for a total of 12 hours, in

addition to other fuzzing instances.

5.1 Effectiveness of RoboFuzz

New correctness bugs RoboFuzz detected from the target robotic

systems are listed in Table 2. Utilizing the in-house developed bug

oracles, RoboFuzz found 30 previously unknown bugs2. We re-

ported all the findings to the developers, and as a result, 25 bugs

have been acknowledged and six bugs have been fixed so far. It

should be noted that among the bugs RoboFuzz found, 13 bugs

(43%) reside in the internal ROS layers, potentially affecting any

robotic system that is built on top of ROS.

We validated each bug by replaying the recorded input messages

against the robotic system under test and observing the conse-

quences, i.e., checking if the oracle handler reports the same errors.

Since we dynamically tested systems using concrete input mes-

sages and definitive oracles (e.g., specification violation), none of

the detected bugs were identified as a false positive.

5.2 Effectiveness of Semantic Feedback

To show the efficacy of utilizing the semantic feedback as fuzzing

guidance, we (1) compare the number of bugs found over time with

and without the feedback while fuzzing PX4, which is the largest in

code size and state space among the targets, (2) analyze the feedback

score, demonstrating the correlation between the metrics proposed

in ğ4.2 with the correctness bug, and (3) show how traditional code

coverage feedback performs in the meantime.

Fuzzing with andwithout Feedback. Figure 7 shows the number

of bugs RoboFuzz discovered while fuzzing PX4 for 12 hours, with

and without the semantic feedback. With the guidance of the redun-

dant sensor inconsistency and position estimation error feedback

(ğ4.2), RoboFuzz found nine instances of bug #06 in the position

mode. In contrast, when we disabled the semantic feedback guid-

ance, RoboFuzz relied solely on the random mutation and found

only two cases of the same violation in 12 hours.

2Each bug was triggered multiple times by different inputs, but counted once per its
root cause identified by manual analysis.

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

#
B
u
g
s

Q
u
an
ti
fi
ed

fe
ed
b
ac
k

Fuzzing time (hr)

feedback score
(normalized)#

B
u
g
s

Q
u
an
ti
fi
ed

fe
ed
b
ac
k

Fuzzing time (hr)

with feedback
w/o feedback

Figure 7: Number of correctness bugs triggered while fuzzing

PX4 for 12 hours with and without semantic feedback. Green

boxes indicate the quantified semantic feedback generated

during the run with feedback, normalized to range [0:1].

0

5

10

15

20

25

0 2 4 6 8 10 0 3 6 9 12

B
ra
n
ch

co
v
er
ag
e
(%
)

Fuzzing time (first 10 mins) Fuzzing time (total, hr)

Figure 8: Code coveragemeasured during the 12-hour fuzzing

campaign presented in Figure 7. The first 10 minutes are

magnified (left), and the entire result is shown on the right.

Breakdown of the Semantic Feedback Score. Inputs that in-

crease the feedback score are put in the input queue, as they deserve

further mutations. In the case of PX4, if the IMU sensor inconsis-

tency or EKF-estimation error increases, the input is marked as

interesting. The contribution of feedback scores in finding bugs is

illustrated in green boxes in Figure 7. After detecting a bug, the

feedback score is reset, as a new fuzzing cycle is initiated. During

most cycles, we can observe that the feedback score has a tendency

to grow over time, and RoboFuzz ultimately reaches the bugs by

focusing on mutating the inputs that generate stronger feedback.

Impact of Traditional Code Coverage Feedback. As discussed

in ğ3.6, robotic systems tend to have limited diversity in the code

paths because of their distributed and data-heavy nature. We ob-

served this by instrumenting PX4 and measuring the branch cov-

erage using Gcov [16] during fuzzing, as shown in Figure 8. The

code coverage quickly saturated at 21% in the first 10 minutes and

then hardly grew during the remaining 12 hours even though the

drone exhibited a variety of different behaviors, including nine

specification violations. This shows the importance of incorporat-

ing supplementary feedback guidance in the robotic context to

complement traditional code coverage feedback.

5.3 Comparison with PGFuzz

PGFuzz [20] is a state-of-the-art fuzzer that aims to find policy vio-

lations in popular drone control software, including PX4. It identifies

policies from the documentation; maps each policy to the input

space consisting of configuration parameters, environmental fac-

tors, and user commands through static profiling; and mutates the

input space trying to minimize the distance to policy violations. By

extending the RoboFuzz oracles by implementing 21 PX4 policies

PGFuzz identified (including the overlapping policies we already

considered), we successfully detected 26 out of 36 policy violations

PGFuzz reported. The remaining 10 violations require intentional

fault injection (e.g., shutting GPS off via PX4 shell command), which

is not the input space considered by RoboFuzz.

455

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Seulbae Kim and Taesoo Kim

Table 2: List of new correctness bugs found and reported by RoboFuzz. 𝑅𝑠 : simulated robot, 𝑅𝑝 : physical robot.

Layer # Target Bug description Type Ack? Fix?

R
O
S
2
A
p
p
li
ca
ti
o
n
s

01 PX4 (Offboard mode) Horizontal acceleration setpoints are not constrained by MPC_ACC_HOR_MAX parameter S ✓

02 PX4 (Offboard mode) Controller implementation of feed-forward setpoint differs from documentation S ✓ ✓

03 PX4 (Offboard mode) Mismatch in trajectory setpoint message definition S ✓

04 PX4 (Offboard mode) Incorrect definition of applicable parameters of the flight mode S ✓

05 PX4 (Position mode) Definition of MPC_POS_MODE does not match the implementation, and inconsistent within the documentation S ✓ ✓

06 PX4 (Position mode) Incorrect usage of MPC_ACC_HOR and MPC_ACC_HOR_MAX definition S ✓

07 PX4 (Position mode) Incorrect description of MPC_ACC_UP_MAX and MPC_ACC_DOWN_MAX parameters S ✓

08 PX4 (Takeoff mode) Switching from Manual/Altitude/Position/Acro mode, drone files towards an arbitrary setpoint S ✓

09 TB3 Motor driver implementation of 𝑅𝑝 does not follow the actual motor specification, resulting in a smaller maximum velocity S ✓

10 TB3 Constraining logic on 𝑅𝑝 firmware fails to correctly clamp velocity to the valid range S ✓

11 TB3 Maximum torque achievable by 𝑅𝑠 is not constrained by the actual maximum torque of the motor specification S, D
12 TB3 Maximum velocity by the differential drive controller of 𝑅𝑠 does not match that of 𝑅𝑝 D
13 TB3 Mismatch between LiDAR scan data - software side data exceeds the hardware sensor’s specified maximum range D ✓

14 MI2 Joint limits are incorrectly defined in the 𝑅𝑠 model, exceeding physical limits and allowing invalid postures S, D ✓ ✓

15 MI2 Joint velocities are broadcasted as zero when the manipulator is moving P ✓

16 TSM Type confusion while normalizing orientation angles results in physically invalid position values (NaN) P ✓ ✓

17 TSM Missing validations of NaN / INF values on the controller inputs leads to physically invalid states P ✓

R
O
S
2
In
te
rn
al
s

18 ROSIDL Code generator for rclpy does not check 32/64 bit float boundaries, treating all float values as double R ✓ ✓

19 ROSIDL Runtime message setter does not handle byte types correctly - byte values are internally treated as string literals R
20 ROSIDL Missing data range checks for the elements of int arrays - e.g., 65535 can be assigned to int8 array R ✓

21 ROSIDL Missing data range checks for the elements of float arrays - double-sized value can be assigned to float array R ✓

22 ROSIDL Implicit type casting of array elements alters data without notifying - e.g., assigning -32 to uint8 array, the value becomes 224 R ✓

23 ROSIDL Missing type checks for bool array elements, allowing data of any type to be stored - e.g., string, list, dictionary, ... can become an element R ✓

24 ROSIDL Missing type checks for byte array elements, allowing data of any type to be stored - e.g., string, list, dictionary, ... can become an element R ✓

25 ROSIDL Missing type checks for string array elements, allowing data of any type to be stored - e.g., list, dictionary, byte, bool, ... can become an element R ✓

26 rclpy _on_parameter_event always returns True, regardless of the result R ✓ ✓

27 rclpy Missing NULL check of rmw_handle in rclpy_create_publisher leading to null pointer dereference S ✓

28 rclcpp rclcpp internally throws an exception while validating incorrect topic/service names, which cannot be caught by requester R ✓

29 rclcpp Node object relies on subscription interface to catch parameter events, violating design principle of parameter callbacks S
30 rclcpp Unreachable error checking code for parameter event type R

P: Physical incorrectness / S: Specification violation / D: Cyber-physical Discrepancy / R: Miscellaneous software error in ROS

On the contrary, PGFuzz missed all the new bugs detected by

RoboFuzz for the following three reasons. First, the policies PGFuzz

manually identified from the documentation do not include all

specifications that RoboFuzz oracle checked. Second, some bugs

are only triggered by a stream of real-time inputs (e.g., remote

control signals) with accurate timing. PGFuzz cannot generate

such complicated inputs with its coarse timing model, which only

specifies the happens-before relationship between inputs. Finally,

due to the lack of soundness of the static profiling engine, PGFuzz

missed one policy violation RoboFuzz detected (bug #08 in Table 2)

even though the bug violates two of the 21 policies it targeted. Since

the static profiler maps inputs to target parameters by tracking

dependency, the state transitions that rely on implicit dependencies,

such as the case of bug #08, are removed from the input space.

6 CASE STUDY

Correctness bugs in robotic systems are subtle and complicated

to reason about, as both hardware and software components are

involved. In this section, we introduce and analyze interesting

correctness bugs RoboFuzz discovered.

PX4 - Drone Loses Control with Unconstrained Acceleration

Setpoint. Offboard mode is one of the autonomous modes that

realizes trajectory setpoints received from a companion computer.

Bugs #01-02 in Table 2 are related to the combination of specifica-

tion violation and missing input sanitation, as detailed below. First,

even though the documentation of PX4 defines MPC_ACC_HOR_MAX

as łmaximum horizontal acceleration for auto mode and for man-

ual modež and assigns a default value of 5 𝑚/𝑠2, this constraint

is not applied to the acceleration setpoints, allowing any value to

be forwarded to the controller. Consequently, an abnormally large

horizontal acceleration setpoint, e.g., 𝑎𝑦 = 3000𝑚/𝑠2, immediately

contaminates the internal controller states, which results in gen-

erating huge horizontal thrust. The controller keeps pushing the

drone at the maximum velocity as it tries to realize the setpoint

acceleration (3000 𝑚/𝑠2), while the actual acceleration saturates

at the hardware limit. Unfortunately, once the internal states are

contaminated and the drone gears up for the anomalous setpoint, it

cannot be recovered to a stable state even by updating the accelera-

tion setpoint, e.g., 𝑎𝑦 = 0𝑚/𝑠2, and safety is no longer guaranteed

at this point.

TB3 - Legitimate Linear Velocity Command Being Silently

Ignored (Bugs #09-10). The documented maximum linear veloc-

ity of TB3 is 0.22 𝑚/𝑠 . When we publish a linear velocity control

command (𝑣𝑒𝑙𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑥 = 0.22), the ROS node reads the command

and writes it to the control table of the firmware. On the firmware

side, this value is constrained by the internal logic that computes

the maximum linear velocity with respect to the motor power as:

𝑣𝑒𝑙𝑚𝑎𝑥
𝑥 = 𝑤ℎ𝑒𝑒𝑙_𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 2𝜋 ∗𝑚𝑜𝑡𝑜𝑟_𝑟𝑝𝑚/60

= 0.033 ∗ 2𝜋 ∗ 61/60 = 0.2108
(1)

Then, the motor driver translates the constrained linear velocity to

the wheel velocity and commands the motor if the velocity does

not exceed the hardcoded limit, 337. The translation is done by the

following equation:

𝑣𝑒𝑙
𝑔𝑜𝑎𝑙
𝑥 = 𝑤ℎ𝑒𝑒𝑙_𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑅𝑃𝑀 ∗𝑤ℎ𝑒𝑒𝑙_𝑣𝑒𝑙𝑔𝑜𝑎𝑙 ∗ 0.10472

= 0.033 ∗ 0.229 ∗𝑤ℎ𝑒𝑒𝑙_𝑣𝑒𝑙𝑔𝑜𝑎𝑙 ∗ 0.10472
(2)

Plugging the goal velocity in, we get the desired wheel velocity:

𝑤ℎ𝑒𝑒𝑙_𝑣𝑒𝑙𝑔𝑜𝑎𝑙 = 𝑣𝑒𝑙
𝑔𝑜𝑎𝑙
𝑥 ∗ 1263.6329

= 0.2108 ∗ 1263.6329 = 266.37
(3)

456

RoboFuzz: Fuzzing Robotic Systems over Robot Operating System (ROS) for Finding Correctness Bugs ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

As the final wheel velocity, 266.37, does not exceed the limit (337),

this command is accepted and sent to the actual motor. However,

the documented velocity limit of the motor is 265 [37], and the

motor silently fails to execute the commanded velocity. As a result,

users end up sending a legitimate command that is accepted by the

firmware, but cannot make the robot move.

Turtlesim - TypeConfusion in normalizeAngle Function (Bug

#16). Turtlesim’s controller receives desired angular and linear

velocities as commands and simulates the motion and position of a

turtle every 𝑑𝑡 = 16𝑚𝑠 . The orientation angle 𝜃 is updated by:

𝜃𝑛𝑒𝑤 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝐴𝑛𝑔𝑙𝑒 (𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑎𝑛𝑔_𝑣𝑒𝑙 ∗ 𝑑𝑡) (4)

Here, normalizeAngle normalizes the orientation angle to [−𝜋 : 𝜋],

so that the posture can be visualized in the simulation. Unfortu-

nately, the return type ismistakenly assigned as float, whichmakes

the orientation NaN if the commanded angular velocity is sufficiently

large. As a result, the turtle’s position becomes physically infeasible.

rclpy - Concurrency Issue Due to Missing NULL Check (Bug

#27). When writing a user-space API for creating a publisher, it

is recommended by the RCL documentation to łget the rmw han-

dle from the publisher using rcl_publisher_get_rmw_handle each

time it is neededž to avoid potential concurrency issues with the

functions that can change the rmw handle pointer. rclcpp does this

at the end of its create_publisher function. However, the same

check is missing in rclpy_create_publisher of rclpy implementa-

tion, resulting in a NULL-pointer dereference error when the rmw

handle pointer is concurrently invalidated by other functions.

7 DISCUSSION AND FUTUREWORK

Addressing Physical-simulation Discrepancy. A number of un-

certain factors in the physical environment could hinder RoboFuzz

from reliably obtaining consistent execution data. To this end, we

made the following design decisions to minimize the disruption by

physical-simulation discrepancies. First, we designed simulation

maps as identical as possible to the actual test sites. For example,

in Figure 5, the dimensions and locations of the static objects were

reflected in the simulation map as accurately as possible. Second,

we designed state discrepancy oracles to check for reasonably obvi-

ous deviations, e.g., the difference of the final velocities rather than

their trends, so that trivial noises can be filtered. Last but not least,

we ran tests only on clear, windless days to minimize the influence

of weather on the robot.

Limitation. With RoboFuzz, we attempt to excite the faults in

robotic systems by injecting valid (i.e., correctly formatted) mes-

sages on the ROS level. Such positive testing is useful for revealing

various issues that can occur during normal operations, including

the correctness bugs we addressed in this paper. However, from a

holistic point of view, the security and robustness of robotic sys-

tems can still be threatened from different vectors. For example, the

underlying communication protocol (e.g., DDS) might be flawed, al-

lowing malformed messages to be transmitted and crash the entire

system or breaking the integrity of messages, causing unexpected,

hard-to-debug errors. Furthermore, various physical attacks can be

launched directly to robots. In our future work, we plan to develop

testing methodologies for the layers surrounding ROS to cover such

attack vectors and render safer ecosystem for robotic systems.

8 RELATED WORK

Testing ROS. Most existing work on ROS focuses on securing the

ROS network. Dieber et al. [14] and the SROS project [50] analyzed

potential network-based attack vectors and proposed a TLS-based

secure channel for inter-node communications. ROSPenTo [13] is a

penetration testing suite to analyze ROS networks, and McClean

et al. [28] demonstrated a honeypot. RoboFuzz instead takes an

orthogonal approach and focuses on the internal failures that break

the assumptions and threaten the robustness of ROS-based systems.

Fuzzing for Cyber-physical Systems. RVFuzzer [22] and

PGFuzz [20] target parameter errors and policy violations in spe-

cific drone controllers.RoboFuzz complements these approaches by

serving as (1) a generic framework that seamlessly integrates with

any ROS-based robotic system and (2) a highly extensible frame-

work with which various developer assumptions and specifications

can be modeled and tested through feedback-guided mutation. As

a result, RoboFuzz detects not only the PX4 bugs found by PGFuzz,

but also more bugs from PX4 and other robotic systems.

CPFuzz [47] demonstrates the applicability of AFL-based

coverage-guided greybox fuzzing to the controller programs of

cyber-physical systems (e.g., a heater system) to identify safety vio-

lations. Testing various small (< 100 LoC) benchmark controllers,

the approach successfully detects specification violations. However,

as shown in ğ5.2, the effectiveness of code-coverage guidance is

dampened in larger codebases. RoboFuzz counters this problem by

accommodating semantics-based feedback and successfully identi-

fies correctness bugs from large robotic systems.

Feedback-driven Fuzz Testing. A number of feedback-driven

fuzzing approaches are proven to be effective in finding bugs in

user-space applications [1, 51], and kernels [2, 44]. Unfortunately,

existing fuzzing approaches primarily focus on finding memory-

safety issues, and thus cannot be applied to finding correctness bugs

in robotic systems. RoboFuzz brings the concept of feedback-driven

fuzzing into the robotics domain, enabling effective testing.

9 CONCLUSION

This paper presents RoboFuzz, a semantic feedback-driven fuzzer

tailored for finding correctness bugs prevalent in ROS and ROS-

based robotic systems. By injecting mutated messages to the robots

running in both the real world and a simulator and checking the

captured robotic states against carefully designed robot-specific cor-

rectness oracles, RoboFuzz goes beyond memory-safety bugs and

detects subtle correctness bugs, including the violation of physical

laws, violation of specifications, and cyber-physical discrepancies.

This process is further expedited by incorporating semantic feed-

back as guidance, which quantifies the bugginess from the execution

context. As a result, RoboFuzz has detected 30 new correctness

bugs in ROS and ROS-based applications.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful feedback.

This research is funded by the Secure Systems Research Center

(SSRC) at the Technology Innovation Institute (TII), UAE. We are

grateful to Dr. Shreekant (Ticky) Thakkar and his team members

at the SSRC for their valuable comments and support.

457

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Seulbae Kim and Taesoo Kim

REFERENCES
[1] 2017. LibFuzzer ś a library for coverage-guided fuzz testing. https://llvm.org/

docs/LibFuzzer.html.
[2] 2018. syzkaller - kernel fuzzer. https://github.com/google/syzkaller.
[3] 2020. ROS Community Metrics Report. http://download.ros.org/downloads/

metrics/metrics-report-2020-07.pdf.
[4] 2022. ROS Robots. https://robots.ros.org/.
[5] Amazon. 2022. Prime Air. https://www.amazon.com/primeair.
[6] Robin Amsters and Peter Slaets. 2019. Turtlebot 3 as a Robotics Education

Platform. In International Conference on Robotics in Education (RiE). Springer,
170ś181.

[7] Bloomberg. 2022. The Rise of ROS: Nearly 55% of total commercial robots
shipped in 2024 Will Have at Least One Robot Operating System package.
https://www.bloomberg.com/press-releases/2019-05-16/the-rise-of-ros-
nearly-55-of-total-commercial-robots-shipped-in-2024-will-have-at-least-
one-robot-operating-system-package.

[8] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 2329ś2344.

[9] Breiling, Benjamin and Dieber, Bernhard and Schartner, Peter. 2017. Secure com-
munication for the Robot Operating System. In 2017 annual IEEE international
systems conference (SysCon). IEEE, 1ś6.

[10] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711ś725.

[11] Sachin Chitta. 2016. MoveIt!: an introduction. In Robot Operating System (ROS).
Springer, 3ś27.

[12] DeMarinis, Nicholas and Tellex, Stefanie and Kemerlis, Vasileios P and Konidaris,
George and Fonseca, Rodrigo. 2019. Scanning the internet for ros: A view of
security in robotics research. In 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 8514ś8521.

[13] Bernhard Dieber, Ruffin White, Sebastian Taurer, Benjamin Breiling, Gianluca
Caiazza, Henrik Christensen, and Agostino Cortesi. 2020. Penetration testing
ROS. In Robot operating system (ROS). Springer, 183ś225.

[14] Dieber, Bernhard and Breiling, Benjamin and Taurer, Sebastian and Kacianka, Sev-
erin and Rass, Stefan and Schartner, Peter. 2017. Security for the Robot Operating
System. Robotics and Autonomous Systems 98 (2017), 192ś203.

[15] Edwards, Shaun and Lewis, Chris. 2012. ROS-Industrial: Applying the Robot
Operating System (ROS) to Industrial Applications. In IEEE Int. Conference on
Robotics and Automation, ECHORD Workshop.

[16] GNU. 2022. gcov Ð a Test Coverage Program. https://gcc.gnu.org/onlinedocs/
gcc/Gcov.html.

[17] Google. 2022. Wing. https://wing.com/.
[18] iRobot. 2021. Investor Presentation August 2021. https://investor.irobot.com/

static-files/a6147f70-f50a-43d3-9161-9af57981ea0f.
[19] Mehdi Jafari. 2015. Optimal redundant sensor configuration for accuracy increas-

ing in space inertial navigation system. Aerospace Science and Technology 47
(2015), 467ś472.

[20] Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z Berkay Celik, and
Dongyan Xu. 2021. PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles. In
Network and Distributed System Security Symposium.

[21] Seulbae Kim and Taesoo Kim. 2022. RoboFuzz Artifact (Version 1). Zenodo (2022).
https://doi.org/10.5281/zenodo.7036047

[22] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory
Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu. 2019. RVFuzzer: Find-
ing Input Validation Bugs in Robotic Vehicles through Control-Guided Testing.
In 28th USENIX Security Symposium (USENIX Security 19). 425ś442.

[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2018).

[24] Nathan Koenig and Andrew Howard. 2004. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 3. IEEE,
2149ś2154.

[25] Jean-Paul Laumond et al. 1998. Robot motion planning and control. Vol. 229.
Springer.

[26] LLVM. 2021. Clang 13 Documentation - UndefinedBehaviorSanitizer. https:
//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.

[27] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in the
wild. Science Robotics 7, 66 (2022), eabm6074. https://doi.org/10.1126/scirobotics.
abm6074

[28] McClean, Jarrod and Stull, Christopher and Farrar, Charles andMascarenas, David.
2013. A Preliminary Cyber-Physical Security Assessment of the Robot Operating
System (ROS). In Unmanned Systems Technology XV, Vol. 8741. International
Society for Optics and Photonics, 874110.

[29] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. 2015. PX4: A Node-Based
Multithreaded Open Source Robotics Framework For Deeply Embedded Plat-
forms. In 2015 IEEE international conference on robotics and automation (ICRA).
IEEE, 6235ś6240.

[30] Jason M O’Kane. 2014. A gentle introduction to ROS. (2014).
[31] Gerardo Pardo-Castellote. 2003. OMG Data-Distribution Service: Architectural

Overview. In 23rd International Conference on Distributed Computing Systems
Workshops, 2003. Proceedings. IEEE, 200ś206.

[32] PX4. 2022. Pixhawk 4. https://docs.px4.io/master/en/flight_controller/pixhawk4.
html.

[33] Quigley, Morgan and Conley, Ken and Gerkey, Brian and Faust, Josh and Foote,
Tully and Leibs, Jeremy and Wheeler, Rob and Ng, Andrew Y. 2009. ROS: an
open-source Robot Operating System. In ICRA workshop on open source software,
Vol. 3. Kobe, Japan, 5.

[34] Maria Isabel Ribeiro. 2004. Kalman and Extended Kalman Filters: Concept, Deriva-
tion and Properties. Institute for Systems and Robotics 43 (2004), 46.

[35] Robotics And Automation News. 2021. US DoD selects Stratom to migrate
robotic systems from ROS-1 to ROS-2. https://roboticsandautomationnews.com/
2021/08/23/us-selects-stratom-to-migrate-robotic-systems-from-ros-1-to-ros-
2/45763/.

[36] Robotis. 2017. TurtleBot3. https://www.robotis.us/turtlebot-3/.
[37] Robotis. 2022. XL430-W250 motor specification. https://emanual.robotis.com/

docs/en/dxl/x/xl430-w250.
[38] ROS. 2022. Gazebo. https://gazebosim.org/.
[39] ROS. 2022. MoveIt Motion Planning Framework. https://moveit.ros.org/.
[40] ROS. 2022. ROS-Industrial. https://rosindustrial.org/.
[41] ROS. 2022. ROS-M. https://rosmilitary.org/.
[42] ROS Discourse. 2016. Announcing SROS! Security enhancements for ROS. https:

//discourse.ros.org/t/announcing-sros-security-enhancements-for-ros/536.
[43] ROS.org. 2016. Automatic Testing with ROS. http://wiki.ros.org/Quality/

Tutorials/UnitTesting.
[44] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and

Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In 26th USENIX Security Symposium (USENIX Security 17). 167ś182.

[45] Kostya Serebryany. 2017. OSS-Fuzz-Google’s continuous fuzzing service for open
source software. (2017).

[46] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). 309ś318.

[47] Fute Shang, BuhongWang, Tengyao Li, Jiwei Tian, and Kunrui Cao. 2020. CPFuzz:
Combining fuzzing and falsification of cyber-physical systems. IEEE Access 8
(2020), 166951ś166962.

[48] Sheetz, Kyle H and Claflin, Jake and Dimick, Justin B. 2020. Trends in the Adop-
tion of Robotic Surgery for Common Surgical Procedures. JAMA network open 3,
1 (2020), e1918911śe1918911.

[49] Sumegh Pramod Thale, Mihir Mangesh Prabhu, Pranjali Vinod Thakur, and Pratik
Kadam. 2020. ROS based SLAM implementation for Autonomous navigation
using Turtlebot. In ITM Web of Conferences, Vol. 32. EDP Sciences, 01011.

[50] Ruffin White, Dr Christensen, I Henrik, Dr Quigley, et al. 2016. SROS: Secur-
ing ROS over the wire, in the graph, and through the kernel. arXiv preprint
arXiv:1611.07060 (2016).

[51] Zalewski, Michal. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.

458

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/syzkaller
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
https://robots.ros.org/
https://www.amazon.com/primeair
https://www.bloomberg.com/press-releases/2019-05-16/the-rise-of-ros-nearly-55-of-total-commercial-robots-shipped-in-2024-will-have-at-least-one-robot-operating-system-package
https://www.bloomberg.com/press-releases/2019-05-16/the-rise-of-ros-nearly-55-of-total-commercial-robots-shipped-in-2024-will-have-at-least-one-robot-operating-system-package
https://www.bloomberg.com/press-releases/2019-05-16/the-rise-of-ros-nearly-55-of-total-commercial-robots-shipped-in-2024-will-have-at-least-one-robot-operating-system-package
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://wing.com/
https://investor.irobot.com/static-files/a6147f70-f50a-43d3-9161-9af57981ea0f
https://investor.irobot.com/static-files/a6147f70-f50a-43d3-9161-9af57981ea0f
https://doi.org/10.5281/zenodo.7036047
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://docs.px4.io/master/en/flight_controller/pixhawk4.html
https://docs.px4.io/master/en/flight_controller/pixhawk4.html
https://roboticsandautomationnews.com/2021/08/23/us-selects-stratom-to-migrate-robotic-systems-from-ros-1-to-ros-2/45763/
https://roboticsandautomationnews.com/2021/08/23/us-selects-stratom-to-migrate-robotic-systems-from-ros-1-to-ros-2/45763/
https://roboticsandautomationnews.com/2021/08/23/us-selects-stratom-to-migrate-robotic-systems-from-ros-1-to-ros-2/45763/
https://www.robotis.us/turtlebot-3/
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
https://gazebosim.org/
https://moveit.ros.org/
https://rosindustrial.org/
https://rosmilitary.org/
https://discourse.ros.org/t/announcing-sros-security-enhancements-for-ros/536
https://discourse.ros.org/t/announcing-sros-security-enhancements-for-ros/536
http://wiki.ros.org/Quality/Tutorials/UnitTesting
http://wiki.ros.org/Quality/Tutorials/UnitTesting
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Background
	2.1 Challenges of Testing a Robotic System
	2.2 Robot Operating System (ROS)
	2.3 Correctness Bugs in Robotic Systems
	2.4 Motivation and Scope of Work

	3 RoboFuzz: A Generic Framework
	3.1 Overview
	3.2 System Inspector
	3.3 Type-aware Message Mutator
	3.4 Hybrid Executor
	3.5 Oracle Handler
	3.6 Feedback Engine

	4 RoboFuzz in Action: Specialization
	4.1 Common Oracles
	4.2 Testing [0.5]PX4 Quadcopter
	4.3 Testing [0.5]TB3 and [0.5]TSM
	4.4 Testing [0.5]MI2 with PANDA Manipulator
	4.5 Testing ROS - RCL API Consistency
	4.6 Testing ROS - ROSIDL-based Type System

	5 Evaluation
	5.1 Effectiveness of RoboFuzz
	5.2 Effectiveness of Semantic Feedback
	5.3 Comparison with PGFuzz

	6 Case Study
	7 Discussion and Future Work
	8 Related work
	9 Conclusion
	References

