: Fuzzing Robotic Systems over
Robot Operating System (ROS) for
Finding Correctness Bugs

ESEC/FSE 2022
Seulbae Kim, Taesoo Kim

eeeeeeeeeeeeeeeeeeeeeeeeeeeee @
School of Cybersecurlty S S ’
»

and Privac |
y @Georquech

Motivation: Robotic systems are intriguing targets

- Robots: One type of Cyber-Physical Systems

[SENSING] TurtleBot3 “Burger”

360° Laser distance sensor

Camera sensor .[SOFTWAR!E].
Sensor malfunction, | Object recognition,

SW errors,

[ACTUATION]
Dynamixel motors

Driver firmware errors,

vulnerabilities, ...

physical attacks, ...

Challenges of testing robotic systems

1. Systems are heterogeneous
- Factories, surgical robots, drones, autonomous cars, ...

2. Input space is humongous — as big as the physical world
- Robots operate in different conditions and environments

3. Physical processes are noisy
- Sensors and actuators are noisy as they interact with the real world

Tackling challenge #1 (heterogeneity)

- Robot Operating System (ROS) is a de facto standard for
robot development

:::ROS

Robot Operating System

- ROS-based robotic application:| node |+

Robot development using ROS

|

|

1 publish

cameraJ » front_image
W publish

LiDAR J » laser_dist

topic

subscribe

Object_ W publish

ath_planner
subscribe P P

detector

subscribe

» objects

msg:
(human, 5m)

msg:
(human, 5m)

hazard_logger

msg:

(human, 5m)

Robot development using ROS

- ROS-based robotic application: [node |+| topic |+ S

The behavior of ROS-based systems can be summarized

as the data (message) flow among distributed nodes

Tackling challenge #2 (huge input space)

- Feedback-driven fuzzing to the rescue

) . l <> I >
eaad -
U < buggy code

input target system coverage map

Y |

A need for a new feedback mechanism

General software programs Robotic systems

Sensing Perception

2 &

Actuation Planning

« Diverse, linear code paths « Distributed system
* More code paths =~ more bugs found « Behavior is driven by state changes
in a loop, not by code paths o

Semantic feedback for robotic systems

- Fundamental questions
- How do we determine if the robotic system is approaching an
undesirable state?
- What indicates that the robotic system is being driven towards
buggy states?

Semantics of the execution can be utilized as feedback!

e.g., Redundant sensor inconsistency as feedback

. The case of PX4 flight controller

- Pixhawk 4 has two Inertial Measurement Units (IMU)

- IMU consists of an accelerometer (measures linear acceleration)

IMUT: ICM-20689 of TDK
IMU2: BMI-055 of Bosch

1 80

0.9 o diff - 76 m/s2
0.8
0.7 60
0.6 50
0.5 40
0.4 30
> Average diff < 0.01 m/s? 2
10

0.1

0 S | - ‘_ L L‘ L&-—-—h 0

98 & PP P F I P S MR R A N P g g P s g i o

Diff. of measured acceleration Diff. of measured acceleration

10

(stable operation) (crashed mission)

Tackling challenge #3 (noise)

- Key intuition
- It is impossible to perfectly model the physical world
- There will always be cyber-physical discrepancy to some degree
- Let's use the discrepancy to our advantage

We can simultaneously execute a robotic system

in @ simulator and in the real world

1"

Tackling challenge #3 (noise): Hybrid execution

- States and events from both worlds are monitored, e.g.,
- Phy:|location (gps)| collision (camera),/ battery state, motor temp.
- Simylocation (gps)} collision (script), non-existent, non-existent

Some states diverge, which is an Some states exist only
important execution feedback in the physical world

B B e

(a) PX4 drone in the real world (b) PX4 drone in Gazebo simulator 1

Which types of bugs are we looking for?

- A new class of bugs in robotic systems: correctness bugs

$./buggy_program
[1] 3541023 segmentation fault ./buggy_program

Classic software bugs Robotic correctness bugs

13

Which types of bugs are we looking for?

- A new class of bugs in robotic systems: correctness bugs

- I 1
©
N S)
?‘ \(‘ ,)l
Violation of Violation of Cyber-physical

physical laws specification discrepancy

14

Overview of RoboFuzz

4 4 A 4
| System | Message : R Hybrid
Inspector Mutator Executor
V, -

_
Test Target - l

oKy |

Node-Topic Graph [Feedback] Simulator
Engine x
No ‘

Bug | ___Yes / 7\ (Oracle
Report | \BUG'/‘ L Handler
>

15

System Inspector

- Generates a node-topic graph
. Select a topic to inject mutated messages

System
Inspector

Test Target

publish
camera front_image
. publish _
LiDAR laser_dist

< path_planner
SO
object_ publish } - . >
detector objects \Z
®O/g

Node-Topic Graph 16

subscribe

subscribe
hazard_logger

Message mutator

- Structure-aware mutation
- ROS messages are structured

e —{ e |

uint32 height
uint32 width
string encoding
uint8[] data

image height
image width
encoding of pixels

#
#
#
actual matrix data of pixels

An example message

17

Hybrid executor

- Set up a pair of simulated and physical test beds
- |dentical environment
[Hybrid J

- Robots subscribe to the same topic
- Publish mutated messages to the topic

- Both robots receive the message and
take corresponding actions

Simulator ’

Executor

18

Oracle handler

- Collects and merges states from ———
hybrid execution x

- Allows developers to declare and apply
custom correctness oracles |

- Reports if any violation is found [:;23:; J

- See paper for our specialized oracles

. for two ROS internals and
Y
four ROS-based robots es RE;;?,H
]

19

stategim,

Feedback engine

- If no bug is found, calculates the feedback score [Message]

. : . Mutator
. Using the semantic feedback metrics
. €.g., redundant sensor inconsistency 1

- Users can register custom feedback metrics

- Favorable inputs are enqueued |

- Further mutated in the subsequent FeEedpack]
ngine
fuzzing rounds °
No

<>

20

)

Evaluation

« Environment

. Laptop machine running Ubuntu 20.04
- Intel i7-8850H 2.6Ghz, 16GB RAM, Quadro P2000 Mobile GPU

- Six fuzzing targets
- ROS 2 internals:
. (1) Type system (ROSIDL), (2) Client library (rclpy/rclcpp)

- ROS 2-based robots:
.- (3) PX4, (4) TurtleBot3, (5) Movelt2, (6) Turtlesim

21

Overall effectiveness of RoboFuzz

- RoboFuzz fuzzed each target for 12 hours

- Found 30 new correctness bugs (25 acknowledged, 6 fixed)

- ROS 2 Internal layers
. 8in ROSIDL ((1))

- 5inrclpy/rclepp ((2)
- Applications

. 8in PX4 drone ((3))

- 5in TurtleBot3 ((4))

. 2 in Movelt2 ((5))

« 2in Turtlesim ((6))

=» affects any robot built upon ROS 2

= Utilized hybrid fuzzing for 3) & (4)

22

Demo - TurtleBot3 spec. violation

Maximum linear velocity
- Spec : 0.22 m/s

RoboFuzz Demonstration LEUcLEuREEEEEen

is smaller than documented
due to a float handling

Bug#3 | bug in motor driver
- Motor driver HW impl. doesn’'t match the spec.

- Maximum linear velocity is smaller than documented MANIFESTATION:

- Spec: 0.22 m/s, actual: 0.21 m/s Simulated robot can move

at 0.22 m/s
The physical robot cannot

https://youtu.be/MBSIiCiYLBCI

https://youtu.be/MB5iCiYLBCI

Effectiveness of semantic feedback

- Fuzzing PX4 with and without semantic feedback for 12 hr
- 9 bugs with semantic feedback
. 2 bugs without feedback

10

g L # with feedback —=o 9
w/o feedback ° O 4
6 E 3
= feedback score | 4 1 E 8
ﬁ 4 - Pl (ncrmailized) S §
: oGl 114 A
0 bﬁ Ll U I | il H L 0 | 0

o 1 2 3 4 5 6 7 8 9 10 11 12

Fuzzing time (hr) ”

- Targeted correctness bugs in ROS and ROS-based robots

- Semantic feedbacks are defined and registered to efficiently
explore the input space

- Utilized hybrid execution model to collect and compare the
states of both cyber and physical robots

- Found 30 new correctness bugs in multiple robotic systems

- Open-sourced at https://github.com/sslab-gatech/robofuzz
. Artifact evaluated: available (&), evaluated & reusable (&)

25

https://github.com/sslab-gatech/robofuzz

Q&A

