DriveFuzz: Discovering Autonomous Driving Bugs through Driving Quality-Guided Fuzzing

Seulbae Kim1
Yuseok Jeon4

Major Liu2
Yonghwi Kwon5

Junghwan Rhee3
Chung Hwan Kim2

1Georgia Institute of Technology, 2University of Texas at Dallas, 3University of Central Oklahoma, 4UNIST, 5University of Virginia
Can we trust autonomous driving systems?

- Expectation vs Reality

Actual bug we detected!
Can we trust autonomous driving systems?

• Fatal autopilot accidents continue
Finding bugs via manual testing

Source: “Will Tesla Autopilot hit a dog, human, or traffic cone?”
- Youtube Lowlifemike

Source: “Will a Tesla KILL a cat?”
- Youtube Carwow
Finding bugs via automated testing

• Feedback-driven fuzzing for traditional software

![Diagram showing the process of finding bugs via automated testing]

Input → Target System → Code Coverage

Coverage feedback: bug: segmentation fault
Finding bugs via automated testing

• Feedback-driven fuzzing for autonomous driving systems?
Layers and workflow of Autonomous Driving System (ADS)

Sensing
- Inputs: Environment, Vehicle States
- Outputs: Sensor data
- Feedback: Control commands

Perception
- Inputs: Sensor data
- Outputs: Perceived states, nearby objects, ...
- Feedback: Routing plan

Planning
- Inputs: Map, Destination
- Outputs: Routing plan

Actuation
- Inputs: Control commands
- Outputs: Vehicle States

Vehicle States
- Environment
- Inputs: Routing plan

Map
- Destination
Considerations in designing test inputs

- Sensing
 - Environment
 - Controls
 - Sensor data

- Perception
 - Perceived states, nearby objects, ...
 - Control commands

- Planning
 - Destination

- Actuation

The test input should not be a snapshot

The test input should be able to stress all layers
Our input space: Driving scenarios

• Representing temporal and spatial domains of real world
• Consists of
 1) 3D map
 2) Mission (initial and goal positions)
 3) Actors (vehicles or pedestrians)
 4) Puddles (e.g., black ice)
 5) Weather conditions
Mutation of driving scenarios

- Map and mission selection
 - stress ADS with diverse environments
- Actor generation & mutation
 - render diverse interactive situations
- Puddle generation & mutation
 - stress planning & actuation layers with frictional diversity
- Weather mutation
 - affect sensing and perception
Confining mutation to feasible scenarios

• Two constraints to ensure physically valid mutation
 1) Spatial constraint
 • Initial positions of all actors and objects are spread away (e.g., 5 m)
 • Prevent unrealistic jams (e.g., vehicles overlapping)
 2) Temporal constraint
 • Maximum speed of actors are conservatively set
 • Prevent unrealistic behaviors
 • (e.g., a person running into a vehicle too quickly)

• Both constraints are configurable
Feedback-driven fuzzing for ADS

Input scenario → ADS → ?

feedback
Defining autonomous driving bugs

• Question: What happens to a buggy ADS?

Classic software bugs
Safety-critical vehicular misbehaviors

- ADS must comply with traffic rules & regulations
Feedback-driven fuzzing for ADS
A need for a new feedback mechanism

General software programs

- Diverse, linear code paths
- More code paths \approx more bugs found

Autonomous driving system

- Distributed system
- Behavior is driven by state changes in a loop, not code paths
A need for a new feedback mechanism

General software programs

- Diverse, linear code paths
- More code paths \approx more bugs found

Autonomous driving system

- Distributed system
- Behavior is driven by state changes in a loop, not code paths

Need proper metrics to quantify the quality of input driving scenarios
Solution: Driving quality feedback

- Intuition
 - Quality of driving \approx likelihood of misbehaviors

Hard acceleration, braking, and turns
- Metric auto insurance companies use

Oversteer and understeer
- #1 cause of motorsport accidents

Minimum distance to other actors
- Near-missed collisions
DriveFuzz overview

Input scenario
- Seed pool

Mutation engine *(Section 4.2)*
- Mission mutator
- Weather mutator
- Actor mutator
- *Puddle* mutator

Mutated scenario

Test executor *(Section 4.3)*
- Test bridge
- Driving simulator
 - Autonomous driving system (ADS)

Vehicle states *(position, velocity, acceleration, ...)*

Misbehavior detector *(Section 4.4)*
- Driving test oracles
 - Collision
 - Infraction
 - Immobility

Driving quality feedback engine *(Section 4.5)*
- Quantifying driving quality via vehicle states
 1. Hard acceleration/braking
 2. Hard turn
 3. Over/understeer
 4. Minimum distance

Puddle is invisible (It is visible in the illustrations for presentation)

Bug report

Not a bug
DriveFuzz in action

- Seed scenario
 - Map
 - Initial position
 - Destination
DriveFuzz in action

• Round 1

Mutation #1

Misbehavior NOT detected

score: 100

Mutation #2

score: 100

Mutation #3

Check driving quality scores

score: 100

Mutation #4

SELECT

score: 88
DriveFuzz in action

• Round 2

Mutation #4-1

Mutation #4-2

Misbehavior detected (collision)

Mutation #4-3

Save states and report
Evaluation

• Targeted two autonomous driving systems
 • Autoware
 • A full-fledged ADS with active development status
 • Internationally adopted by well-known auto manufactures (e.g., BMW)
 • Qualified to run driverless vehicles on public roads in Japan (2017~)
 • Behavior Agent
 • A rudimentary ADS developed by CARLA
 • Implements path planning and feedback-based PID control
 • Complies with traffic laws and avoids collisions
Detected 33 new bugs throughout ADS layers

<table>
<thead>
<tr>
<th>Bug #</th>
<th>Layer</th>
<th>Component</th>
<th>Description</th>
<th>Impact</th>
<th>Strategy</th>
<th>Root cause</th>
<th>ACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Sensing</td>
<td>Fusion</td>
<td>LiDAR & camera fusion misses small objects on road</td>
<td>C</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Perception</td>
<td>Detection</td>
<td>Perceives the road ahead as an obstacle at a steep downhill</td>
<td>J</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>03</td>
<td>Perception</td>
<td>Detection</td>
<td>Fails to semantically tag detected traffic lights and cannot take corresponding actions</td>
<td>C, V</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Perception</td>
<td>Detection</td>
<td>Fails to semantically tag detected stop signs and cannot take corresponding actions</td>
<td>C, V</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Perception</td>
<td>Detection</td>
<td>Fails to semantically tag detected speed signs and cannot take corresponding actions</td>
<td>V</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Perception</td>
<td>Localization</td>
<td>Faulty localization of the base frame while turning</td>
<td>C, L</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>07</td>
<td>Perception</td>
<td>Localization</td>
<td>Localization error when moving underneath bridges and intersections</td>
<td>C, L</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>08</td>
<td>Planning</td>
<td>Global planner</td>
<td>Generates infeasible path if the given goal is unreachable</td>
<td>C, L</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>09</td>
<td>Planning</td>
<td>Global planner</td>
<td>Generates infeasible path if the goal’s orientation is not aligned with lane direction</td>
<td>C, L</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>Planning</td>
<td>Global planner</td>
<td>Global path starts too far from the vehicle’s current location</td>
<td>C, L</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>Planning</td>
<td>Local planner</td>
<td>Target speed keeps increasing at certain roads, overriding the speed configuration</td>
<td>S, C</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>Planning</td>
<td>Local planner</td>
<td>Fails to avoid forward collision with a moving object</td>
<td>C</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Planning</td>
<td>Local planner</td>
<td>Fails to avoid lateral collision (ADS perceives the approaching actor before collision)</td>
<td>C</td>
<td>ent</td>
<td>Not impl</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Planning</td>
<td>Local planner</td>
<td>Fails to avoid rear-end collision (ADS perceives the approaching actor before collision)</td>
<td>C</td>
<td>ent</td>
<td>Not impl</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Planning</td>
<td>Local planner</td>
<td>While turning, ego-vehicle hits an immobile actor partially blocking the intersection</td>
<td>C</td>
<td>ent</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Actuation</td>
<td>Pure pursuit</td>
<td>Ego-vehicle keeps moving after reaching the destination</td>
<td>C, L</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>Actuation</td>
<td>Pure pursuit</td>
<td>Fails to handle sharp right turns, driving over curbs</td>
<td>C, L</td>
<td>all</td>
<td>Faulty conf</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Perception</td>
<td>Detection</td>
<td>Indefinitely stops if an actor vehicle is stopped on a sidewalk</td>
<td>I</td>
<td>ent</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Perception</td>
<td>Detection</td>
<td>Flawed obstacle detection logic; lateral movement of an object is ignored</td>
<td>C</td>
<td>con</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Planning</td>
<td>Global planner</td>
<td>Generates inappropriate trajectory when initial position is given within an intersection</td>
<td>C, L, V</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Planning</td>
<td>Local planner</td>
<td>Improper lane changing, cutting off and hitting an actor vehicle</td>
<td>C</td>
<td>man</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Planning</td>
<td>Local planner</td>
<td>Vehicle indefinitely stops at stop signs as planner treats stop signs as red lights and waits for green</td>
<td>I</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Planning</td>
<td>Local planner</td>
<td>Vehicle does not preemptively slow down when the speed limit is reduced</td>
<td>S</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Planning</td>
<td>Local planner</td>
<td>Always stops too far (~ 10 m) from the goal due to improper checking of waypoint queue</td>
<td>F</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Planning</td>
<td>Local planner</td>
<td>Collision prevention does not work at intersections (only checks if actors are on the same lane)</td>
<td>C</td>
<td>all</td>
<td>Logic err</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Planning</td>
<td>Local planner</td>
<td>Fails to avoid lateral collision (ADS perceives the approaching actor before collision)</td>
<td>C</td>
<td>man</td>
<td>Not impl</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Planning</td>
<td>Local planner</td>
<td>Fails to avoid rear-end collision (ADS perceives the approaching actor before collision)</td>
<td>C</td>
<td>man</td>
<td>Not impl</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Planning</td>
<td>Local planner</td>
<td>No dynamic replanning; the vehicle does infeasible maneuvers to go back to missed waypoints</td>
<td>C, L</td>
<td>ins</td>
<td>Not impl</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Actuation</td>
<td>Controller</td>
<td>Keeps over-accelerating to achieve the target speed while slipping, creating jolt back on dry surface</td>
<td>C, L</td>
<td>ins</td>
<td>Not impl</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Actuation</td>
<td>Controller</td>
<td>Motion controller parameters (PID) are poorly tuned, making the vehicle overshoot at turns</td>
<td>C, L</td>
<td>all</td>
<td>Faulty conf</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Simulator</td>
<td>Simulation</td>
<td>Simulation does not properly apply control commands</td>
<td>C, L, V</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
</tr>
<tr>
<td>32</td>
<td>Simulator</td>
<td>Vector map</td>
<td>Contains a dead end blocked by objects as a valid lane</td>
<td>I, V</td>
<td>all</td>
<td>Data err</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Simulator</td>
<td>Occasionally inconsistent simulation result</td>
<td>I, V</td>
<td>all</td>
<td>Logic err</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

[Impact] C: Collision / F: Fails to complete a mission / I: Vehicle becomes Immobile / L: Lane invasion / S: Speeding / V: Miscellaneous traffic Violation

The impact of driving quality feedback

- Fuzzing with and without driving quality feedback
 - Approximately 2x bugs detected with the feedback
An interesting bug

Multi-layer faults

• Sensing & Perception
 • Fails to perceive the puddle

• Planning
 • Fails to consider the slipping state
 • Keeps commanding speed-up

• Actuation
 • Missing Electronic Stability Control (ESC)
 • Keeps increasing the throttle amount
DriveFuzz summary

• DriveFuzz: End-to-end fuzzing framework for ADS
• Mutate driving scenarios
 • Mission, actors, puddles, weather
• Look for safety-critical misbehaviors
 • Collision, infraction, and immobility
• Leverage semantic feedback using driving quality metrics
• Found 30 bugs in two industry grade ADS
 • Readily exploitable by controlling nearby actors or objects
• Additional materials
 • Website & code: https://drivefuzz.autoinsight.dev/
Q & A

Contact: Seulbae Kim
- seulbae@gatech.edu
- https://squizz617.github.io