Creating Concise and Efficient Dynamic Analyses with ALDA

Xiang Cheng
Georgia Institue of Technology
Atlanta, GA, USA
cxworks@gatech.edu

ABSTRACT

Dynamic program analyses are essential to creating safe, reliable,
and productive computing environments. However, these analy-
ses are challenging and time-consuming to construct due to the
low-level optimization required to achieve acceptable performance.
Consequently, many analyses are often never realized, or have inef-
ficient implementations. In this work we argue that many analyses
can and should be constructed with a high-level description lan-
guage, leaving the burden of low-level optimizations to the analysis
instrumentation system itself.

We propose a novel language for dynamic analysis called ALDA.
ALDA leverages common structuring of dynamic analyses to pro-
vide a simple and high-level description for dynamic analyses.
Through restricting the supported behaviors to only essential oper-
ations in dynamic analyses, an optimizing compiler for ALDA can
create analysis implementations with performance on-par to hand-
tuned analyses. To demonstrate ALDA’s universality and efficiency,
we create an optimizing compiler for ALDA targeting the LLVM
instrumentation framework named ALDAcc. We use ALDAcc to
construct 8 different dynamic analysis algorithms, including the
popular MemorySanitizer analysis, and show their construction is
succinct and simple. By comparing two of them (Eraser and Mem-
orySanitizer) with their hand-tuned implementations, we show
that ALDAcc’s optimized analyses are comparable to hand-tuned
implementations.

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Software testing and debugging.

KEYWORDS
Domain specific language, dynamic analysis, compiler optimization

ACM Reference Format:

Xiang Cheng and David Devecsery. 2022. Creating Concise and Efficient
Dynamic Analyses with ALDA. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS °22), February 28 — March 4, 2022, Lausanne, Switzerland.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3503222.3507760

“Work done while at Georgia Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9205-1/22/02...$15.00
https://doi.org/10.1145/3503222.3507760

740

David Devecsery”
Meta Platforms, Inc
Seattle, WA, USA
ddevec@fb.com

1 INTRODUCTION

Dynamic program analyses are essential to productivity in today’s
computing environments. They enable dynamic code safety [36],
aid in debugging [39, 51, 58], support stronger security primitives [1,
4], and aid in the forensic analysis [17, 24]. However, these analyses’
prohibitive run-time overhead and difficulty in development can
limit their use in practice.

Constructing efficient and correct dynamic analyses presents a
significant challenge. Many analyses require large amounts of fine-
grained instrumentation and introduce complex and unpredictable
memory access patterns. Due to the fine-grained control that anal-
ysis designers need, state-of-the-art instrumentation frameworks
usually operate at a low-level (often assembly, or an IR equivalent).
This low-level of abstraction often forces the implementation of
even simple algorithms to be complex and difficult to optimize,
increasing the burden to build a usable analysis. Not only must
the analysis designer work with low-level interfaces [26, 28, 38],
but the designers perform a variety of low-level optimizations [37],
and carefully construct data-structures [56]. Moreover, as many of
these analyses are built with platform specific tools, most imple-
mentations are not portable. Once another language or compiler
becomes available, the entire process must repeat.

In this work, we argue that this low-level process of building
analyses is wasteful and unnecessary. Instead, we propose that
analyses should be described algorithmically, at a high-level, while
low-level optimizations are left to compilation. Constructing ef-
ficient dynamic analyses in high-level languages is appealing for
several reasons. First, the descriptions of the analysis will be more
succinct, more easily written and prototyped, and less prone to
errors. Second, high-level descriptions are more friendly to novice
analysis designers, enabling custom analyses for specific problems.
Third, analyses constructed in high-level languages can be triv-
ially combined. Today if a user wanted to combine two different
dynamic analyses in one run, they would have to re-work each of
the analyses to run together, often a daunting task.

Despite the benefits of using a high-level description language
for dynamic analysis, such a tool is only practical if it produces
analyses which are competitive with hand-tuned implementations.
Therefore, such a system must 1) generate highly optimized dy-
namic analyses that are competitive with hand-optimized imple-
mentations, and 2) describe common dynamic analyses succinctly.

However, achieving both of these properties is non-trivial, and
requires careful language construction. One particular challenging
class of dynamic analyses are heavy-weight dynamic analyses [38].
These analyses are classified by their fine-grained instrumenta-
tion and challenging metadata access patterns. Because of these
operations, heavy-weight analyses tend to have very high over-
head and prove hard to optimize. They include some of the most

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507760
https://doi.org/10.1145/3503222.3507760

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

D>

Instrumentation Code

InputGenerali.

ALDA Program riginal Program

?

Analysis Program

Link
<[>

Runtime Library Code

Figure 1: ALDA’s Workflow

used analyses today, like taint tracking [9, 15, 22], data-race detec-
tion [18, 43, 45], memory-safety analyses [33, 34], and debugging
tools [42].

Heavy-weight dynamic analyses require fine-grained analysis,
adding relatively light-weight instrumentation for nearly every
instruction in the program [18, 22, 42]. As instrumentation is fre-
quent and the work-per-instrumentation is small, many dynamic
analysis designers have found great benefit in low-level, micro-
optimizations [37, 38, 56]. This presents both a great challenge and
opportunity for a dynamic analysis optimization system. These
optimizations require reasoning about behaviors which compilers
traditionally struggle to analyze, such as memory access patterns
and caching behaviors. However, if the compiler could automati-
cally perform these micro-optimizations, it would free the analysis
designer from the burden of repeating this tedious process.

In this work, we present A novel Language for Dynamic Analyses
(ALDA). We have designed ALDA specifically for creating succinct
and easily optimized descriptions of dynamic analyses. Analyses
are written as programs in ALDA. When compiled, these analyses
are automatically injected into the application to be analyzed. The
workflow of an ALDA analysis is found in Figure 1.

ALDA leverages two insights to achieve our analysis goals of
efficiency, succinct representation, and generality to many analyses.
First, we recognize that many operations fundamental to dynamic
analyses are easily described using two logical primitives: maps and
sets. Maps create an association between a program-value and any
analysis state associated with that value (or metadata). Additionally,
many analyses naturally track sets of data, ensuring all operations
operate on data within a valid set. For instance, a use-after-free
analysis will ensure that any memory uses do not occur on the
“set” of free memory. By making these primitives first-class citizens,
ALDA can succinctly represent many dynamic analyses.

Second, we observe that the kernel meta-data updates used by
dynamic analyses are often very simple, succinct operations. ALDA
need not support many behaviors, such as indirect memory ac-
cesses through pointers, which greatly complicate our ability to
statically reason about memory accesses. By reducing the core lan-
guage to a few simple semantics, ALDA dramatically increases its
ability to reason about and optimize implementations of these ker-
nel functions, while still retaining the ability to express many of
the most-used dynamic analyses.

Based on these insights, we have implemented an optimizing
compiler for ALDA in the LLVM compiler infrastructure. We show
that our compiler, ALDAcc, can take simple analysis descriptions

741

Xiang Cheng and David Devecsery

written in ALDA and produce an optimized analysis code compet-
itive with state-of-the-art and hand-tuned solutions. In fact, our
ALDACcc generates code that is comparable with LLVM’s hand-
optimized Memory Sanitizer over our benchmark suites. We addi-
tionally demonstrate that ALDA is expressive, easily implementing
eight different analyses. Finally, ALDA analysis descriptions are
succinct, leading to a 83.1% reduction in size versus hand-tuned
implementations. In fact, ALDA analyses are so simple and concise,
that we argue it enables new targeted analyses which were previ-
ously impractical. We demonstrate two such analyses by creating
library-specific sanitizers to check the usage of library functions in
the SSL and ZLib libraries.
The contributions of the work are as follows:

e We present ALDA, a domain-specific language targeted at
representing many analyses and enabling automatic opti-
mization. We show that ALDA can succinctly and clearly
represent many dynamic analyses.

We present ALDAcc!, the first optimizing compiler for ALDA
targeted at the LLVM compiler framework [26]. We show
that ALDAcc can convert the description of many commonly
used dynamic analyses into highly-optimized executables,
providing competitive speed with hand-tuned analyses at a
fraction of the implementation cost.

e We describe several static optimizations for ALDA analyses
and show its efficiency.

We apply ALDA on complex libraries like OpenSSL and
Zlib creating two new sanitizers: SSLSan and ZlibSan. We
show that these sanitizers’ implementation is simple, yet the
analyses still efficiently detect real-world bugs.

2 MOTIVATION

This section highlights the challenges of designing and constructing
a heavy-weight dynamic analysis, discussing the design decisions,
trade-offs, and complexities an analysis designer must consider
when creating these analyses. We restrict our focus to heavy-weight
dynamic analyses [38], or analyses which perform expensive and
intensive analysis operations. We focus on these analyses as they
are highly useful, yet often some of the most challenging analyses
to design and implement.

We begin by explaining the standard construction of a heavy-
weight dynamic analysis at a high level, then explore the challenges
an implementer may encounter when building their analysis.

2.1 Logical Dynamic Analysis Construction

The purpose of a dynamic analysis is to identify a dynamic prop-
erty of a program by observing the execution of that program. The
analysis accomplishes this by adding extra analysis state (called
metadata) and monitoring instructions into the program. Heavy-
weight dynamic analyses are particularly challenging to write, as
they are classified by their tendency to maintain large amounts of
metadata for the program’s state, access that metadata in unpre-
dictable patterns, and instrument a wide variety of instructions in
different ways [38]. These heavyweight analyses consist of three
components: metadata association, propagation, and monitoring.

! ALDAcc is available at https://github.com/cxworks/alda-analysis

https://github.com/cxworks/alda-analysis

Creating Concise and Efficient Dynamic Analyses with ALDA

Metadata association provides a mapping from values in the
program to their corresponding metadata. This is different for each
analysis. For instance, a data-race analysis will only care about per-
thread and per-memory location metadata, while a taint-tracking
analysis will maintain metadata for every register as well as memory
locations.

Metadata propagation Each analysis has its own propagation
policy, which defines how the metadata evolves as the program runs.
Importantly, these propagation policies tend to be relatively simple
when expressed in a high-order logic. For instance, on memory
access a lockset-based data-race detector will simply intersect the
thread’s lockset with that of the accessed memory location.

Metadata monitoring is the process by which an analysis mon-
itors its metadata and raises a notification if the monitored property
is violated. For instance, whenever a memory location’s metadata
is updated, a lockset-based data-race detector will check for a race
condition by seeing if that location’s lockset is empty.

Logically each of these components is simple to implement.
Metadata association can be done with a one of many map data-
structures. Propagation is analysis specific, but generally simple,
something like taking the union of two sets (taint tracking analy-
sis), or advancing a finite-state-machine (FSM) (Eraser data-race
detection). Monitoring is also typically simple, often just ensuring
a set is non-empty, or a FSM has not reached some state. However,
many challenges arise when we require efficient implementations
of these algorithms, dramatically increasing the complexity, and
time-cost of analysis construction.

2.2 Efficient Dynamic Analysis Implementation

Unfortunately, naive implementations of dynamic analyses are
often an order-of-magnitude or more slower than their optimized
counterparts, requiring developers carefully performance-tune their
implementations. This is challenging, as these analyses often build
upon propagation algorithms so simple that they often consist of
a single instruction in the common case (e.g. a logical or [22]).
For these applications, analysis costs are dominated by metadata
organization and lookup, as well as the low-level caching effects.
Optimizing these details are both challenging and time-consuming,
requiring a great deal of programmer expertise, and often trial-and-
error experimentation. When optimizing an analysis at a low-level,
the designer must consider two critical factors:

Metadata Access Patterns: Whenever a propagation event
occurs, the analysis will access and manipulate metadata according
to the analysis’s propagation policy. However, not all data is always
accessed and manipulated on every event. For example, FastTrack’s
primary optimization is a summary-based analysis [18], which
allows the analysis to access only a single clock-value (often 32-
bits) in the common case, but a full vector-clock (100s of bits) in the
uncommon. If a programmer naively implements their FastTrack
algorithm to look up all metadata at once, then the cache costs of
loading vector clocks will dominate the analysis, largely mitigating
the improvement of the FastTrack optimization. Instead, for an
efficient analysis implementation the programmer must reason at
a memory-layout level about access patterns, determine the best
layout that balances lookup-costs and cache efficiency, and then
carefully access metadata to follow this pattern.

742

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Metadata Storage and Structure Efficiency: Data-structure
choice is critical in most applications. Nevertheless, due to the
low-level nature of dynamic analysis optimization, these trade-offs
become much harder to reason about. Two data-structures, even
with equivalent asymptotic complexity may have vastly different
performance results. For instance, the critical operation in taint-
tracking is merging taints, so the decision of how to represent
a taint set is vitally important. If a taint-set is small, it could be
represented with a 32-bit bit vector (implemented as an int). This
is an efficient data-structure, however it only applies when the
taint domain is statically bounded to less than 32. Alternatively, the
sparse bit-vector is a data-structure constructed as a linked-list of
bit-vector chunks. This structure can represent and union taints of
arbitrary sizes with the same asymptotic complexity of a bit vector.
However, the sparse bit vector requires indirection, forcing the
application to access a larger cache footprint per memory access,
giving it far worse performance than the int-based solution. This
forces the designer to trade-off flexibility for analysis efficiency.
This is also why most efficient taint analyses only support very
small taint-sets, and many data-race detectors only support small
numbers of locks [45].

3 DESIGN

Our system accomplishes two primary tasks. First, it enables a
high-level description of many dynamic analyses, providing the
benefits of succinct and simple high-level analyses. Second, it en-
ables the compilation of highly-efficient analysis implementations
given these high-level descriptions. To achieve these outcomes, we
require ALDA, a high-level analysis description language, and an
optimizing compiler.

3.1 ALDA Language

ALDA is constructed with a focus on heavy-weight dynamic analy-
ses. These analyses are far more challenging to construct and opti-
mize than their lightweight counterparts. To support these analyses,
ALDA must efficiently achieve all three aspects of heavy-weight
analysis construction outlined in section 2.1 while also specifying
the analysis in such a way that an optimizing compiler can take
advantage of the high-level description to generate efficient low-
level implementations. The key to ALDA is our observation that
analyses are actually simple at a high-level. Here we give ALDA’s
syntax in Figure 2 and will discuss how ALDA supports the different
high-level abstractions.

3.1.1 High-Level Description. As outlined in section 2, there are
three primary actions attributed to heavy-weight dynamic anal-
yses: metadata association, metadata propagation, and metadata
checking. ALDA is structured to facilitate these three operations.

Metadata Association — Each analysis needs to specify the type
of metadata present in the analysis, and associate that metadata
with program values. The very first section of the program is its
type declaration, where programmers specify the types they will
use as their metadata. This section of the program can be thought
of as a series of typedefs (although with stronger typing), where the
programmer makes explicit to the compiler what different types
may exist within the analysis.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

(program) ::= (stmt)*

(stmt) == (type-decl) | (meta-decl) | (func-decl) | (insert-decl)

(type-decl) == (typename) \:=" (type) (‘:’ sync)? (“:* (number))?

(type) = int8 | int16 | int32 | int64 | pointer | lockid | threadid

(meta-decl) := (identifier) ‘=" (meta-type)

(meta-type) ::= (specifier) ((map-type) | (set-type) | (typename))

(set-type) == set ‘(’ (typename))’

(map-type) == map ‘(’ (typename) ‘,” ((typename) | { meta-type)
))’

(specifier) := universe: | bottom:: |

(func-decl) == (typename)? (funcname) ‘(* (func-arg-list)? ‘)’ ‘{’
(func-body) ‘¥’

(func-arg) == (typename) (identifier)

(func-body) == ((if-stmt)|(return-stmt)|(expression-stmt))*

(insert-decl) ::= insert (before | after) (insert-point)
call (funcname) “(’ {call-arg-list)?)’

(insert-point) ::= func (identifier) | LoadInst | StoreInst | ...

(call-arg) ::= (call-arg-base) | sizeof ‘(’ (call-arg-base) ‘)’ |
(call-arg-base).m

(call-arg-base) ::= $(number) | $r | $p | $t

Figure 2: ALDA’s Syntax in eBNF form. We omit some defi-
nitions similar to standard C syntax for brevity. A complete
syntax can be found in the ALDAcc repository.

Once typing is done, ALDA’s metadata declaration statements
specify the metadata in the analysis. ALDA uses map primitive,
allowing programmers to declare maps associating metadata with
their values. These metadata declarations are highly valuable to
optimizing compiler, as the compiler can use these information to
optimize memory layout and metadata association structures. For
this reason, ALDA does not support compound data types (such as
structures or tuples), instead preferring the programmer specify all
associations explicitly, and allowing the compiler to later choose
ideal compound data types.

Metadata Propagation — ALDA provides an event based meta-
data propagation policy. The programmers first define event han-
dlers as function declarations and specify instrumentation decla-
rations to connect the events with corresponding handlers. Event
handlers have a function-like syntax, in which the arguments pass
information about the event to the handler, such as any addresses
accessed or any local metadata the operation depends upon and
the optional return value is used to propagate local metadata. The
body of the function describes the propagation policy, expressed in
ALDA’s own syntax. The syntax is C-like, but restricts its support
to conditionals, comparisons, non-recursive function calls, and stan-
dard arithmetic operation statements. ALDA explicitly disallows
loops, local variables, type casts and reference types (e.g. pointers or
references), as reference types would greatly complicate our ability
to reason more precisely about the access patterns of memory.

With these limitations alone, ALDA would be unable to represent
many analyses. Consider a use-after-free analysis. On free this
analysis will mark all addresses being freed as poison, then on load
or store, it will ensure the accessed address is not poison. Marking
a range of addresses as poison is naturally expressed with a loop,
which isn’t supported by ALDA. However, we observe that a great

743

Xiang Cheng and David Devecsery

number of analyses perform such operations on a known range of
metadata. ALDA instead provides range based functions for its map
primitives to express such operations instead of supporting complex
loops. With this representation, ALDA can naturally express many
analyses without introducing complex syntax.

Finally, the insertion declaration connects an event with its cor-
responding handler. The events can be either specific instructions
like memory load or store, arithmetic operations or function calls
to libraries. Besides, the insertion declaration also shows which
data is passed as arguments to the event handler and whether to
care about the return value.

Metadata Monitoring — The final aspect is checking or moni-
toring the metadata. ALDA supplies an alda_assert function that
can be inserted within the body of a propagation event to generate
an error report and analysis backtrace to the user.

3.1.2 Other Language Features. ALDA additionally provides sup-
port for concurrent and program-specific analyses. ALDA provides
a sync keyword, which designates a metadata as synchronized,
telling ALDA to ensure thread safety when accessing it. Many
analyses assume race-free programs and do not require sync while
some analyses, such as data-race detectors, cannot assume proper
synchronization of the analyzed program. These analyses may use
synchronized accesses when appropriate.

Second, ALDA provides support for limiting the domain of sets.
Many dynamic analyses track sets and maps of elements that logi-
cally live in infinite (or very large) domains. For example, a program
could dynamically generate locks, leaving it with a practically infi-
nite number of locks. Consequently, any analysis that tracked sets
of locks (e.g.lockset data-race detectors) would have to use a dynam-
ically sized data-structure to hold those lock-sets. These structures
are slow and memory hungry, greatly reducing overall analysis per-
formance. When constructing an analysis, choosing a dynamically
sized data-structure for all unknown-sized elements will be sub-
optimal. Therefore, even heavily used and well-respected analysis
implementations, such as Google’s ThreadSanitizer [45] limit the
quantity of locks that they can track in a program, allowing them
to use far more efficient statically-sized containers. ALDA supports
optimizations which limit the size of sets and maps, allowing more
efficient data structure selection.

3.2 Optimizing Compiler

Our compiler takes in a ALDA analysis description, a program rep-
resentation and compiles them into a program with instrumented
analysis code. The compiler retains the original functionality of
the program, only supplementing its behavior with the analysis
described in ALDA. Furthermore, it is the compiler’s job to lever-
age the information and flexibility provided by ALDA to optimize
the analysis code, memory accesses, and data-structure layout. To
accomplish these tasks, the compiler operates in four phases.

3.2.1 Static Analysis. The primary goal of static analysis is to iden-
tify the metadata access behaviors of the analysis so later phases of
compilation can optimize data-structure selection, metadata map-
ping layout, and memory accesses. Fortunately, as ALDA restricts
memory indirection by disallowing pointers, references, local vari-
ables, and loops, this process is far simpler in ALDA than it would

https://github.com/CXWorks/alda-analysis/blob/main/ALDA_Full_Syntax.pdf

Creating Concise and Efficient Dynamic Analyses with ALDA

be for a general purpose program. In ALDA the only way to ac-
cess global metadata is through the program’s global metadata
maps. Our analysis can trivially identify these sites by iterating the
statements of the analysis body and identifying map look-ups.

We note that the analysis can still not reason perfectly about
memory access patterns. If a memory access exists within a branch,
that access may or may not occur. Currently the compiler has
conservatively assumes all branches will occur. In cases where the
branch is rarely or never taken, this may cause the compiler to
falsely group together metadata. We are interested in exploring
improving this behavior through profile-guided optimizations as
future work.

3.2.2 Metadata Layout. Once the compiler has determined both
the logical metadata mapping and the memory access patterns as-
sociated with those mappings, it is ready to layout the metadata in
memory. This process consists of two primary components: First,
the compiler determines a structure to organize the analysis meta-
data. Second, it determines the ideal way to map from program
value to analysis metadata

For primitive data-types, storage choice is trivial, the analysis
must maintain enough bits to store the information the analysis
requires. For example, if the analysis requires a lock identifier with
a domain of 32 values, the compiler must assign at least 5 bits of
storage to uniquely identify a lock. However, for non-primitive
types (in particular sets) selecting the ideal data-structure to store
the value in question is far more nuanced. If the domain of the set
is finite and small, then the compiler will choose a highly efficient
bit-vector. However, if the set’s domain is large, a less efficient
dynamically sized set representation may be required.

Once the structure of all metadata is known, the compiler deter-
mines the best way to map that metadata to its associated program
state. In particular, our compiler performs two optimizations here.
First, it determines which sets of data should be co-located to reduce
caching and metadata lookup costs. Second, it determines the best
structure as an implementation of this map.

To determine co-location of data-sets, the compiler relies on
its static memory access pattern analysis . If it detects that two
metadata values are accessed together with the same key, then the
compiler will attempt to group those metadata elements on the same
cache line, ensuring that look-ups to the data are fast. Once this
grouping has been done, the compiler now knows the value types
(both data-structure representation, and co-located groupings) in
each of its maps.

Finally, the compiler determines the correct type of map to use.
This mapping is critical to performance [37]. However, the best
choice of mapping is both data and language-specific. In a type-
unsafe language like C, type-safety is not guaranteed and types
cannot reliably be statically determined. Therefore, the dynamic
analysis cannot know how a memory region will be accessed and
must generate a generic mapping of metadata to memory addresses.
However, for type-safe languages, such as Java, it is practical to
embed the metadata within the object itself, dramatically reducing
lookup costs.

Besides the language, the structure of metadata can also affect
this map. Imagine creating global mappings for a type-unsafe lan-
guage. If a map’s key-domain is large (e.g. pointers), it would not

744

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

make sense to use a hash map because the structure would con-
sume valuable memory resources and provide poor cache locality.
A compiler should instead choose a pagetable based map for better
performance. ALDA provides tools to aid the compiler in these
operations.

ALDA compilers can leverage its type declaration infer a type’s
domain size. This allows the compiler to determine when a map
key’s domain is small and allocate data-structures accordingly.

3.2.3 Event Handler Generation. Once the metadata layout and
mapping have been decided, the compiler is ready to generate the
event handler code. The majority of this process is a standard com-
pilation of the handler’s body, however, our compiler implements
one notable optimization: metadata lookup minimization. Through
its static analysis, the compiler has appropriate knowledge of what
metadata maps will be accessed by the analysis at different points
in an event-handler body. To minimize lookup costs and memory
pressure, the compiler coalesces these into a single metadata lookup
when possible (e.g. two keys are logically equivalent, and the maps
are co-located).

3.2.4 Event Handler Insertion. Finally, the compiler inserts the
event handlers and metadata into the original program. This process
is fairly straight-forward and target dependant (e.g. Java code will
be instrumented in a different manner than an C code). After the
event handlers have been inserted, the resulting binary will contain
not only the original code, but also the optimized analysis code and
is ready for execution.

3.3 Limitations of ALDA

The goal of the ALDA language is to allow expression of many
common dynamic analyses, while shifting the burden of analysis
optimization from the programmer to the compiler. ALDA provides
a fundamental trade-off, in that the language is intentionally not
as expressive as general-purpose languages, particularly around
indirect memory accesses and loops. However, these restrictions
dramatically increase an ALDA compiler’s ability to reason about
memory access patterns, improving the compiler’s optimization
abilities. Anecdotally, we found this trade-off to be minimally in-
trusive for all of the common dynamic analyses we attempted to
construct in ALDA.

We have designed ALDA to succinctly represent most commonly-
used dynamic analyses, however, some behaviors cannot be ex-
pressed naturally in ALDA. For these behaviors we have provided
escape hatches, such as external function call support. These es-
cape hatches allow programmers to express analyses which do not
naturally fit within ALDA at the potential cost of (1) optimization,
and (2) loss of portability.

Finally, ALDA, is designed to allow construction of an optimizing
compiler on top of it. However, care must be taken to construct
an optimizing compiler for each target language ALDA wishes to
support. We discuss the design of one such compiler in section 5.

4 ALDA LANGUAGE SPECIFICATION

As mentioned in section 3.1.1, ALDA programs can be thought
of as having roughly four components: (1) type declarations, which
indicate what types of data will be used in the analysis; (2) metadata

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

address
tid :=
lid := lockid
status := int8
thread2WLock = universe::map(tid, set(lid))
thread2Lock = universe::map(tid, set(lid))
addr2Lock = universe::map(address, universe::
set(lid))
8 addr2Thread =
9 addr2Status =

:= pointer :
threadid : 4
1 256

sync

NN G W =

universe::map(address, set(tid))
universe::map(address, status)

10 onLoad(address addr, tid t) {

11 if(!addr2Thread[addr].find(t)

12 && addr2Status[addr] !'= VIRGIN){

13 if(addr2Status[addr] == EXCLUSIVE)

14 { addr2Status[addr] = SHARED; }

15 addr2Thread[addr].add(t);

16 }

17 if(addr2Status[addr] > EXCLUSIVE){

18 addr2Lock[addr] = addr2Lock[addr] &
thread2Lock[t];

19 }

20 }

21 onStore(address addr, tid t) {

22 if(!'addr2Thread[addr].find(t)){

23 addr2Thread[addr].add(t);

24 if(addr2Status[addr] == SHARED)

25 { addr2Status[addr] = SHARED_MODIFIED; }

26 if(addr2Status[addr] == EXCLUSIVE)

27 { addr2Status[addr] = SHARED_MODIFIED; }

28 if(addr2Status[addr] == VIRGIN)

29 { addr2Status[addr] = EXCLUSIVE; }

30 } else {

31 if(addr2Status[addr] == SHARED)

32 { addr2Status[addr] = SHARED_MODIFIED; }

33 }

34 if(addr2Status[addr] > EXCLUSIVE)

35 { addr2Lock[addr] = addr2Lock[addr] &
thread2WLock[t]; }

36 }

37 insert after LoadInst call onLoad($1l, $t)

38 insert after StoreInst call onStore($2, $t)

Listing 1: State machine transformation of Eraser algorithm.

Virgin, Exclusive, Shared and Shared-Modified are 4 states
defined in Eraser’s algorithm.

declarations, which describe the metadata for a given analysis;
(3) event handler declarations, which describe how metadata is
propagated; and (4) insertion point declarations, which tell the
compiler how to place propagation functions. In this section we
discuss how these four sections allow ALDA to efficiently and
succinctly construct dynamic analyses. We motivate our discussion

745

Xiang Cheng and David Devecsery

with our re-implementation of LLVM MemorySanitier’s analysis,
shown in Listing 2, and state machine transformation of Eraser
algorithm shown in Listing 1.

4.1 Type Declaration

ALDA currently supports six primitive types, shown as type in Fig-
ure 2. Four of these types are integer types with different lengths.
Pointer types are used to indicate pointer values in ALDA pro-
grams, as pointer sizes vary across architectures. Likewise, to han-
dle language-specific lock/thread implementations, ALDA defines
special lockid and threadid . Since most dynamic analysis do not reg-
ularly use float types, ALDA does not yet support them, although
it could in the future.

Additionally, ALDA supports two specifiers for primitive types:
sync and number. The sync keyword is used to indicate a value
should be locked whenever it, or a map or set containing it is
accessed. There is an inherent cost of providing the isolation asso-
ciated with locks. The use of sync can be seen in Listing 1 line 1,
when the address is marked as sync, all the metadata that using it
as a key(like addr2Lock, addr2Thread) will be protected by a lock.
The number specifier allows a programmer to specify that a value
has a limited range, somewhat like a bitwise width in a C structure.
By limiting the range of some values, ALDA can better optimize
the memory layout of some structures, particularly when limiting
the domain of map keys or set values. For example, in Listing 1 line
4, the domain size of locks in the program is limited to 256. With
this information, ALDAcc can use a fixed-size data structure, such
as a bit-vector, to compress the memory usage and improve cache
locality.

4.2 Metadata Declaration

The metadata declaration section indicates the type of metadata
presented in the analysis and associates that metadata with pro-
gram values. The key primitives that ALDA uses to allow succinct
and highly-efficient analysis implementations are the set and map
primitives. Maps are used to store the mapping between the original
program data and metadata while sets are a commonly used struc-
ture within analyses, that ALDA supports natively for optimization
purposes.

Additionally, ALDA supports two different types of initial states
for metadata, universe and bottom or €. The universe qualifier means
that the collections initially contain all the entities in the domain of
the collection, just like the definition of universe set U in mathemat-
ics. This is useful in many analyses, for example Eraser algorithm
assumes each memory address holds all the locks initially. Bottom
or € initialized collections to be empty. ALDA additionally provides
a fairly standard set of operators on set and map abstractions listed
Table 1. These interfaces are straight-forward and provide succinct
and commonly-used interfaces for dynamic analysis to interact
with metadata.

4.3 Event Handler Declaration

This part of ALDA program defines the logic for how analysis han-
dles an exact event with its metadata. The analysis may also raise
any warnings or errors if appropriate. ALDA allows this declaration
through a function syntax, very similar to C functions. The syntax

Creating Concise and Efficient Dynamic Analyses with ALDA

1 // Type Declaration

2 address := pointer

3 size := int64

4 label := int64

5 value := int8

6 // Metadata Declaration

7 addr2label = universe::map(address, value)

8 addr2size = map(address, size)

9 // Event Handler Declaration

10 onMalloc(address ptr, size s) {

11 //Mark heap memory [ptr, ptr+s) as poison(-1)

12 addr2label.set(ptr, s, -1);

13 addr2size[ptr] = s;

14 }

15 onFree(address ptr, size s) {

16 if(addr2size[ptr]){

17 addr2label.set(ptr, -1, addr2sizelptrl]);

18 addr2size[ptr] = 0;

19 }

20 }

21 onAlloca(address ptr, size s)

22 { addr2label.set(ptr, -1, s); }

23 onStore(address ptr, label 1, size s)

24 { addr2label.set(ptr, 1, s); }

25 label onLoad(address ptr, size s)

26 { return addr2label.get(ptr, s); }

27 onBranch(label 1)

28 { alda_assert(1, 0) ; }

29 // Insertion Point Declaration

30 insert after Allocalnst call onAlloca($r,
sizeof($r))

31 insert after func free call onFree($1)

32 insert after func malloc call onMalloc($r, $1)

33 insert after LoadInst call onLoad($1l, sizeof(
$r))

34 insert after StoreInst call onStore($l.m, $2,
sizeof($1))

35 insert before BranchInst call onBranch($1.m)

Listing 2: Core part of MemorySanitizer’s Algorithm in ALDA

of these function declarations can be found in Figure 2 as func-decl
elements. Listing 2 has examples of these functions in onMalloc,
onFree, and onBranch. There are three interesting aspects of the
function bodies we outline here.

First, is the event handler declaration as a function. Functions’
arguments are used to receive data from the underlying program.
This can include the operands of the instrumented operation, meta-
data associated with any local values used by the instrumented
operation, or any needed evolving global state, such as the current
thread’s identifier. Meanwhile, functions’ return value is optional.
The definition of how program state is translated into these argu-
ments and return value is propagated are discussed in section 4.4.

746

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Table 1: Builtin interfaces and functions in ALDA

set(k, v, n) Set n elements’ value starting from k to v
Ijl;p set(k, v) Set a mapping from k to v
V>’ get(k, n) Get the value of key k with length n
get(k) Get the corresponding v mapping to k
set add(e) Add element e to set
<E> remove(e) Remove element e from set
built-in | alda_assert(expr, expt) | Built-in function for checking & backtrace
function | ptr_offset(ptr, n) Safely move ptr to offset n
Table 2: call-arg syntax breakdown.
Symbol Meaning
s Refer to the i-th parameter of the original function
or operand of the instruction
$p All the elements in the insert point (i in range [1, ... n])
$r Return value of the instrumented function
$t Current thread id
$X.m The local metadata value for a given argument
sizeof($X) | Memory size in bytes of the argument in original program

Second, ALDA restricts the function’s body to only a small subset
of C-like statements: if statements, return statements and expression
statements. This restriction has several notable impacts. On the one
hand, ALDA has no support for indirection outside of its set and map
primitives, disallowing pointers and reference types. On the other
hand, ALDA does not support any type of looping. We have found
that very few dynamic analyses actually need or heavily use these
behaviors. However, because of these restrictions, an intelligent
ALDA compiler can reason very precisely about data access patterns
within a metadata, allowing for very powerful optimizations.

Finally, we note that as a part of ALDA’s expression statement,
ALDA allows external function calls to C code within function
metadata bodies. We allow this in ALDA for two reasons. First,
there are some rare instances when analyses require looping or
indirection, we allow limited support through external calls. Second,
ALDA uses this interface to provide some useful built-in functions,
like the alda_assert to generate the error report.

4.4 Insertion Point Declaration

The last part of an ALDA program tells the compiler how to instru-
ment the event handlers into programs. Insertion point declarations
answer a question: when and where to instrument which event
handler function. The syntax definition of this part can be found
in Figure 2 at the insert-decl statement. The keywords before and
after are used to indicate the time to instrument. (e.g. A data race
analysis needs to instrument after a thread grants a lock, but before
it releases it). The insert-point is used to specify the location to
instrument: either a program function call such as malloc, or an
instruction (e.g. load, or add). Finally, insert-decl describes how ar-
guments are passed from the program to functions. ALDA provides
syntax (noted as call-arg) to address this connection, details are
shown in Table 2. For example, the onMalloc function’s insertion
point is found on line 32 of Listing 2. We define the arguments
passed to onMalloc’s insertion declaration as $r and $1. $1 indicates
the first argument to the malloc function (allocation size), and $r
indicates malloc’s return pointer.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

5 IMPLEMENTATION

We have constructed an optimizing compiler for ALDA using the
LLVM 6.0.1 backend [26], we call this implementation ALDAcc.
ALDACcc takes a ALDA analysis description, converts it into an ab-
stract syntax tree, performs optimizations discussed in section 3.2.
Once these optimizations have taken place, the compiler instru-
ments the analyzed program, and outputs an instrumented binary.
In this section, we talk about ALDAcc’s implementation details and
limitations.

5.1 Analysis Granularity

Currently ALDAcc defaults to word-based (8 bytes on 64bits ma-
chine) metadata granularity. This means it will create 1 metadata
unit representing 8 bytes of address-space in the program. Any
accesses to sub-word granularity data (e.g. chars in C) will coalesce
their access into the word representing their metadata. Word-based
metadata tracking is common as it provides a trade-off between ac-
curacy and performance. ALDAcc can also be configured to handle
metadata at byte, quarter-word and half-word granularity.

5.2 Map Coalescing

With the information gathered by the static analysis, ALDAcc opti-
mizes the analysis’s metadata layout. Specifically, ALDAcc performs
two optimizations: metadata coalescing and data structure selection.
Metadata coalescing aims to group metadata together to reduce
map look-ups, improve data locality, and optimize cache-hit rates.

ALDACcc bases its coalescing of maps on the key-type of the map,
merging multiple maps with equivalent keys into a single map. This
key-type based lookup is more aggressive than, say using access-
patterns to determine which maps are accessed together. However,
we find this is effective for ALDAcc, as the data-space savings
from reducing the per-map structure overhead often outweigh the
cache-savings in the rare case combined values are not all used.
To achieve this merge, ALDAcc goes through the global metadata
maps declared by users and groups the maps based on their key
types. Then, for each new map our compiler updates the event
handlers to access this new map.

5.3 Shadow Memory Selection

After metadata coalescing, all the metadata types are fixed and
ALDACcc selects data structures for the metadata. Currently, ALDAcc
selects map and set data-structures based on the following factors:
the domain size of a map or set, synchronization status, actual size
of its value (for maps), and the granularity of the analysis. For sets,
ALDACcc prefers a bit-vector if the set is small (less than 512 bytes),
and fixed. We found that when a set is not of fixed size, it is rarely
critical for performance, so, ALDAcc defaults to a tree-based set as
they are the most flexible. For maps, ALDAcc prefers an array for
maps of limited domain size. For address-space sized maps ALDAcc
selects between a virtual-memory based shadow-memory and a
page-table like data-structure, depending on the size of each map
element and analysis’s granularity.

Offset based shadow memory has better performance but higher
memory usage than a page-table like data structure [37, 57]. AL-
DAcc seeks out a balance between performance and memory uti-
lization, allowing analyses with large metadata requirements to

747

Xiang Cheng and David Devecsery

run, while also highly optimizing those with smaller metadata. To
achieve this, ALDAcc chooses its structure based on an individual
metadata map’s value size and analysis granularity. More specifi-
cally ALDAcc defines a value known as the shadow factor, which is
the amount of metadata that a single byte of program address space
will consume, after accounting for the analysis’s metadata granular-
ity. If this factor is greater than some threshold (3 by default), then
ALDACcc uses a page-table based solution for memory efficiency.
If the factor is less than that value, ALDAcc chooses performance
and the virtual-memory based solution. For example, in Listing 2,
the shadow factor for the map is 1 because the size of the value is 1
byte and the analysis granularity is 1 byte. So in this case, ALDAcc
will choose a shadow memory based map implementation.

5.4 Metadata Lookup Reduction

Once metadata is laid out, ALDAcc determines optimal lookup
patterns to minimize metadata lookup costs. Poorly optimized
metadata lookup patterns can slow the program through wasted
computation and cache misses. ALDAcc optimizes using common
sub-expression elimination (CSE). Specifically, ALDAcc searches for
common sub-expressions in map lookup statements, by iterating
through the statements to find redundant look-ups. The compiler’s
internal representation then creates a local variable storing the ref-
erence of the map lookup result and replaces all common lookups
with that reference.

5.5 Event Handler Instrumentation

Finally, ALDAcc is tasked with instrumenting the specified analysis
code into the analysis binary. ALDAcc uses the LLVM framework to
instrument the analysis into the analyzed program. First, ALDAcc
compiles the event handler bodies into C++ functions. Then it
inserts these handlers into the analyzed program at the appropriate
location (either before or after each analyzed event depending on
the event description in ALDA), inlining when appropriate.

Additionally, ALDAcc adds function-local and language-specific
tracking when appropriate. This includes adding metadata track-
ing for dynamic, local metadata structures (e.g. LLVM’s register
variables and variadic arguments), as well as identifying C stan-
dard library calls and adding the appropriate calls for them. Once
ALDAcc has finished instrumenting the program, it compiles the
analysis functions, and links them together with the newly instru-
mented application binary.

5.6 Limitations

While ALDAcc seeks to create an optimizing compiler for ALDA,
our implementation does currently have some limitations.

5.6.1 LLVM Backend. ALDAcc is implemented on LLVM, a static
instrumentation framework. Therefore, ALDAcc cannot instrument
dynamically loaded libraries. This limitation can be solved by either
porting ALDA to a dynamic instrumentation framework, such as
Pin[28] or provide handlers for all used external functions. Cur-
rently ALDA picks the later one.

Additionally, ALDAcc does not yet support precise metadata
tracking for LLVM’s vector operations, since the vector type in
LLVM IR doesn’t map to a type in C. To resolve this inconsistency,
we move the compiler’s vectorization optimization after ALDAcc’s

Creating Concise and Efficient Dynamic Analyses with ALDA

instrumentation only when running with ALDA to ensure ALDAcc
instruments event handlers with the correct granularity.

5.6.2 External Function Calls. ALDA provides built-in handlers for
commonly used libc functions. However, there are some functions,
such as printf and scanf, that ALDA cannot naturally handle due to
its limited syntax. ALDA supports using external C function calls
to handle these complex behaviors. External functions may either
translate their logic into load and store operations that ALDAcc
will optimize, or they may use a slow, optimized metadata reading
and writing interface.

6 EVALUATION

In this section, we seek to answer following questions:
e How well can ALDAcc optimize code, and can it compare to
highly-optimized hand-tuned analyses?

e Can ALDA represent common dynamic analyses?
e Can ALDA construct new analyses quickly and efficiently?

6.1 Experiment Setup

To evaluate ALDA, we create a series of analyses, compile them
using ALDAcc, and them test them across our benchmark suites.
Our benchmark suites include Splash2 and SPECInt 2006, as well
as four real-world programs: nginx, memcached, sort and ffmpeg?.

We use SPECInt to evaluate computationally intensive single-
threaded workloads and Splash2 for multi-threaded performance.
All SPEC experiments are run with the reference inputs. We modi-
fied our Splash2 inputs to increase runtime to a few seconds under
two threads as the default Splash2 inputs are too short for meaning-
ful benchmarking®. We exclude ocean_nc and water_spatial since
we could not find a reasonable input to evaluate. For nginx we
benchmark using Apache benchmark launching 16 threads to make
1 million requests. For memcached, we use the memtier_benchmark
developed by redis labs[41]. Sort is a Linux program in GNU core-
utils program, using multi-threading sort algorithm. We generate
a 112MB random number text file as our test data. For fimpeg we
pick a 121MB H264 video from its official samples* to test encoding
performance. We run these applications with 4 threads/processes.

We launch all the experiments on a virtual machine with four
Intel(R) Xeon(R) CPU E5-2630 v4 cores and 32GB memory under
Ubuntu 18.04 Desktop LTS. We run each test six times and report
the geomean of the later five executions as our final result. Then
we normalize the result to the original program execution’.

2We use nginx-1.7.9, memcached-1.6.2, sort-8.32 and fimpeg-4.2.2

3SplashZ arguments are: fft -m26; radix -n268435456; raytrace balls4.env; cholesky
inputs/tk29.0; lu_c/nc -n4096; fmm particles=131072; volrend inputs/head; barnes
nobody=262144; ocean_c -n4098; radiosity bf=0.005, room, batch, largeroom; water_ns
NSTEP=210

“http://samples.fimpeg.org/V-codecs/h264/HD-h264.ts

5The original program’s time/speed are: bzip2 541.4s, gobmk 527.8s, h264ref 980.5s,
hmmer 408.9s, libquantum 370.5s, mcf 256.5s, perlbench 329.7s, sjeng 531.6s, fft 9.1s,
lu_c 11.7s, lu_nc 29.4s, radix 19.2s, cholesky 0.1s, barnes 1.9s, fmm 1.7s, raytrace 0.7s,
water_ns 4.7s, volrend 0.2s, radiosity 2.6s, ffmpeg 19.9s, sort 8.4s, memcached 8590.6
kB/s, nginx 1652883.9 kB/s.

748

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Table 3: Error report validation of MemorySanitizer

Program Location Notes
Fmm fmm.c:313 LLVM MSan doesn’t intercept "gets"
Barnes | getparam.c:53 function, leads to false positive.
Ocean_C multi.c:261 T
Volend ain.C503 Uninitialized memory use reported by
2 et both ALDA and LLVM MSan.
Gee sbitmap.c:349

6.2 Performance

To evaluate the performance of ALDAcc, we first conduct two ex-
periments comparing ALDAcc with heavily optimized, hand-tuned
programs. We then evaluate the impact of ALDAcc’s optimizations.

MSan. First, we compare ALDAcc to MemorySanitizer [47], a
widely used and highly optimized memory safety analysis in LLVM.
We reproduced MSan’s algorithm® in ALDA. To verify the correct-
ness of our re-implementation, we ran MSan’s unit tests on our
ALDA MSan and verified the outputs were correct. Besides, we
manually checked the errors reported by LLVM MSan and ALDA
MSan finding they are equivalent. These errors are listed in Ta-
ble 3 and we exclude these error programs (gcc in SPECInt and
barnes, ocean_c,volrend in Splash2) from our benchmark as they
have uninitialized memory use errors, which cause MSan to stop
the test prematurely.

Our results are found in Figure 3. Overall, these results are posi-
tive, with ALDAcc showing similar performance with MSan among
all the benchmarks (on average 2.21x for ALDAcc and 2.29x for
LLVM). We additionally analyzed the generated code and found
MSan and ALDAcc have very similar generated LLVM IR code af-
ter compiler optimization, with only slight deviations in metadata
memory layout. This divergence causes MSan to experience several
cache misses in critical portions of libquantum that ALDAcc does
not. The speedup in ALDAcc comes from slightly more efficient
cache behavior on our target machine, but the two systems would
likely perform similarly if run across a wide variety of machines.
We also measured the memory overhead for MSan and ALDAcc,
and found the two to have roughly equivalent memory footprints.

Eraser. The second implementation we evaluate is our hand-
optimized version of the classic Eraser data-race detection algo-
rithm [43]. We optimized Eraser with hash-based locking opera-
tions, static tables to represent state transformations, and careful
data-structure selection. We then built the same algorithm with
ALDA and compiled it using ALDAcc. We compare the two analyses
across the Splash2 benchmark suite.

The results can be found in Figure 4, runtimes are normalized to
baseline overhead and all results are statistically significant at 95%
confidence. ALDAcc achieves 24.79x overhead, which is comparable
with our hand-tuned version with an average of 25.12x overhead.
We attribute this difference to the inline function calls and metadata
layout. The metadata memory overhead of ALDAcc is also nearly
identical between the two implementations.

®We run LLVM 6.0.1’s MSan with the flags disabling handle-icmp, check-access-address,
handle-ioctl and enabling strict-strcmp, strict-memcmp.

http://samples.ffmpeg.org/V-codecs/h264/HD-h264.ts

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

Xiang Cheng and David Devecsery

I LLVM 524 %7
- 51 [ALDAcc
g 4 3.72
ERl
=
g 2+ 1.68 1.79 1.82 1.85
i
N 1.05 1.05
1
<& N & & & & S 2 ¢ SRS g ¢S > R I
e m& » & & & QQ’ & N7 R & R <7 & x¥ = S &
$ &b & 0?%9 N 4l < E“o\ &4‘* A‘Q"& ‘3390 8&0 & IS
N s
Figure 3: LLVM MSan VS ALDA MSan.
100 I Hand-Tuned

E Il ALDAcc-full
£ 80 £/ ALDAcc-ds-only
>
o 60
E 40 38.1
S
g 20.7 CLL
g 20 13.113.4p 00 CrC
8 : ELLs
2 N /

0 ‘ L Z 1

&

Figure 4: Hand-Tuned Eraser vs ALDAcc Eraser in Splash2

Table 4: ALDA is able to represent multiple analyses with
few lines of code.

Name LOC | Name LOC
Eraser 70 MSan 192
UseAfterFree | 35 StrictAliasCheck | 12
FastTrack 69 TaintTracking 33

Metadata Layout Optimization. We additionally evaluate the effi-
ciency of our metadata optimizations. For this evaluation, we turn
off our map coalescing and, metadata lookup reduction (CSE) opti-
mizations and re-ran the Eraser analysis on SPLASH2 benchmark.
We choose the Eraser benchmark over MSan as MSan only uses a
single metadata map, making map coalescing irrelevant. The result
is shown in Figure 4 as ds-only bars and the average speed up for
our metadata layout optimizations are 26.9%. Unfortunately, we
could not separate the CSE and map coalescing optimizations as
their implementation in ALDAcc is intertwined. We also could not
quantitatively evaluate the impact of our data-structure selection
optimization, as non-trivial benchmarks ran out-of-memory when
run without the optimization.

6.3 Generality

The second aspect we evaluate is ALDA’s ability to represent a
variety of dynamic analyses. We look at both the breadth of analyses

749

we can represent in ALDA, and how succinctly it can represent
these analyses. For this, we use ALDA to implement 6 different
dynamic analysis algorithms and approximate their complexity
via lines of code (LOC). These algorithms can be found in Table 4.
However, since we can’t find reasonable implementations of these
algorithms except for Eraser and MSan, we only compare our LoC
with these two algorithms. Specifically, ALDAcc’s implementation
only requires a fraction of the effort compared to LLVM MSan,
which takes 8146 LOC and to hand-tuned Eraser, which requires
690 LOC.

6.4 Newly Enabled Analysis

Finally, we demonstrate new use-cases for dynamic analyses en-
abled by ALDA.

6.4.1 Library-Specific Sanitizers. The first use-case we consider, is
the creation of library-specific sanitizers. Currently sanitizers re-
quire too much developer effort build for niche use-cases. However,
as we have shown, ALDA enables simple, concise, and relatively
low effort sanitizer construction. To demonstrate this, we consider
the potential impact of custom sanitizers for complex library inter-
faces. In particular, we have built SSLSan, targeting the OpenSSL
library [50], and ZlibSan, targeting ZLib[20]. These sanitizers are
constructed to identify memory-leak, uninitialized-memory-access,
use-after-free and misuses stemming from the libraries.

Creating Concise and Efficient Dynamic Analyses with ALDA

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Eraser | FastTrack - UAF Bl IndexTT CombinedAnalysis
137.11
= 100 [~
% %0 80.98 78.53 s 81.43
= — - —
g 67.79 51 64.51) 63.67 s 63.90 —
60 | 54.41 — |— —] i —
= - —
kS| 40 |- sun 102 3800 3653 36.45 38.74 37.07 37.25 s 41.02 35.76 38.17
g = 1710 B z» l
E 20 - 125 6.67 110 461
0 / \ / : / i / j / i i i ‘ 1 i
& [& 4 o > e X > & Q> & S
& S ¥ & P S & & N ¢ & ¢
S & ¥ & C&é\ & %\& 8 & « & S &
a & L & & &
¢ &
&

Figure 5: Combined Analysis of Eraser, FastTrack, Use After Free and Taint Tracking(*: bar compressed).

To demonstrate the utility of SSLSan, we run our SSLSan on
memcached and nginx, validating two bugs [27, 49] in memcached
and one in nginx [31]. The first bug was a memory leak caused by
improper SSL interface usage. However, because the bug occurred
within the SSL library, general-purpose dynamic analysis tools,
such as valgrind, failed to identify the existence of the bug. Instead,
we constructed SSLSan in 177 lines of ALDA code and found it can
easily detect this bug. We additionally detected two misuse bugs
resulting from improper closing of SSL ports.

Besides, we ran ZlibSan on ffmpeg, validating one uninitialized
memory access bug[32]. These tools show that ALDA allows simple
construction of powerful sanitizers, capable of identifying bugs and
interface misuses in mature codebases.

6.4.2 Combined Analysis. The second scenario enabled by ALDA
is that of combining multiple analyses together, to run them all
on a single execution. Users often wish to run multiple different
analyses on the same execution during debugging or testing. How-
ever, different types of analyses generally do not compose cleanly
together (in clang, it is impossible to combine any two of the TSan,
ASan, or MSan at the same time), so programmers must instead
run each analysis individually. However, ALDA easily supports the
composition of analyses, and due to its automatically optimizing
nature, can actually implement combined analyses more efficient
than any independent analysis. To demonstrate this capability, we
combine two data race detectors (Eraser and FastTrack) along with
a taint-tracking analysis and a use-after-free checker into a sin-
gle analysis. This combination is as simple as concatenating our 4
ALDA analysis source files into a single file.

Our evaluation uses the Splash2 benchmark and three real world
programs (we exclude SPEC and Nginx as they are not multi-thread).
The results can be found in Figure 5. For each program, we run
Eraser, FastTrack, use after free (UAF), and index taint tracking
(IndexTT) individually. Then we use ALDA to construct a combined
analysis, running all four at once (Combined). Remarkably, we see
that ALDAcc cannot only trivially combine and run these analyses,
but by optimizing the analyses together, ALDAcc reduces the overall
cost of running the combined analyses vs running each individually.
This ultimately results in a 44.9% speedup on average.

750

7 RELATED WORK

ALDA is the first high-level language designed specifically for
general-purpose dynamic analysis construction, with data-structure
layout and metadata access optimization in mind.

Prior works have proposed several frameworks for dynamic anal-
ysis construction[13, 14, 30, 46, 54]. However, none of these works
provide automatic optimization, relying on the programmer to build
any needed low-level optimizations. Gems[14] is a generic source
code level instrumentation framework aiming to provide a generic
model for cross language, platform instrumentation. Its IR trans-
former does not explicitly analyze or optimize on instrumented
code. There also exist many static and dynamic binary instrumen-
tation toolkits [6-8, 10, 19, 26, 35, 48, 52, 55], but these tools are
primarily focused on low-level instrumentation efficiency and ease,
not concisely describing or optimizing high-level dynamic analyses.
For instance, the CSI framework [44] defines the APIs like ALDA’s
insertion point to instrument dynamic analysis into the program.
However, these frameworks do not consider the performance or
data-layout of any complex analysis behaviors, pushing the bur-
den of low-level optimization onto the programmer. By contrast,
ALDA leverages its restricted language-level syntax to not only
create metadata mappings, but also automatically optimize the
instrumented code.

Several frameworks have attempted to optimize dynamic anal-
yses by including heavy-weight static optimizations [9, 16, 19].
However, these analyses are focused on removing dynamic instru-
mentation calls through heavy-weight static analysis. For example,
MDL[19] is a language framework focusing on collecting data dur-
ing program runtime. Its online instrumentation only collects the
data requested by user and does not contain the analysis logic.
ALDACcc instead optimizes each instrumentation call individually,
however does not focus on reducing the number of instrumentation
sites in the program.

Many other works have focused on dynamic analysis optimiza-
tion [2, 21, 23, 25, 37, 57]. These works typically propose manual or
profile-guided transformations that can aid a developer in construct-
ing a more efficient analysis. Umbra[57] and Shadow[37] provide a
detailed study on the efficiency and performance of shadow memory
on both 32-bit and 64-bit machines. However, they mainly focusing
on the use of shadow memory, ALDAcc automatically optimizes
metadata layout, including use of shadow memory if appropriate.

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

High-level languages, such as Datalog, have been used to enable
static analyses [3, 29, 40, 53]. However, dynamic analyses often use
features such as finite-state machines which cannot trivially be
represented in Datalog. Additionally, the optimization of dynamic
analyses and their static counterparts are very different.

Finally, some tools have focused on generating dynamic analy-
ses from high-level, prose-like descriptions [5, 11, 12]. For example,
MOP is a domain specific language targeting to automatically gen-
erate runtime monitors while program is running. However, MOP
is focused on constructing analyses from prose-like descriptions,
not on the metadata layout(map and set primitives) and computa-
tional optimizations that ALDA considers. For instance, JavaMOP,
achieves efficient metadata performance by relying on Java’s strong
typing, allowing it to co-locate data and metadata. When applying
MOP to weakly-typed languages like C/C++, these optimizations
would not be possible, and MOP would have to tackle the metadata
layout challenges addressed by ALDA.

8 CONCLUSION

This paper has argued for the use of high-level descriptions to
construct many dynamic analyses. We have described ALDA, a
language designed specifically to enable high-level descriptions of
dynamic analyses, and ALDAcc, our compiler for ALDA built with
LLVM. We have shown that ALDAcc is successful in building a wide
array of useful dynamic analyses, with performance comparable to
state-of-the-art implementations. We look forward to improving
and advancing ALDA and ALDAcc.

ACKNOWLEDGMENTS

We thank our shepherd, Michael Bond, and other anonymous re-
viewers for their constructive comments and feedback. We thank
our anonymous artifact reviewers for their patience and sugges-
tions. ALDA’s artifact is publicly available at https://doi.org/10.
5281/zenodo.5748338.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 1-40.

Matthew Arnold and Barbara G Ryder. 2001. A framework for reducing the cost
of instrumented code. In Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation. 168-179.

Michael Arntzenius and Neelakantan R Krishnaswami. 2016. Datafun: a func-
tional Datalog. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming. 214-227.

Arash Baratloo, Navjot Singh, Timothy K Tsai, et al. 2000. Transparent run-time
defense against stack-smashing attacks.. In USENIX Annual Technical Conference,
General Track. 251-262.

Eric Bodden, Laurie Hendren, and Ondiej Lhotak. 2007. A staged static pro-
gram analysis to improve the performance of runtime monitoring. In European
Conference on Object-Oriented Programming. Springer, 525-549.

Derek Bruening and Saman Amarasinghe. 2004. Efficient, transparent, and com-
prehensive runtime code manipulation. Ph.D. Dissertation. Massachusetts Institute
of Technology, Department of Electrical Engineering

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

Bryan Cantrill, Michael W Shapiro, Adam H Leventhal, et al. 2004. Dynamic
Instrumentation of Production Systems.. In USENIX Annual Technical Conference,
General Track. 15-28.

Walter Chang, Brandon Streiff, and Calvin Lin. 2008. Efficient and extensible
security enforcement using dynamic data flow analysis. In Proceedings of the 15th
ACM conference on Computer and communications security. 39-50.

=

751

[10

=
&

[20]

[21

[22

[23

[24]

[25

[26

[27

[28

[29

[30

[32

[33

Xiang Cheng and David Devecsery

Andres S Charif-Rubial, Denis Barthou, Cédric Valensi, Sameer Shende, Allen
Malony, and William Jalby. 2013. MIL: A language to build program analysis tools
through static binary instrumentation. In 20th Annual International Conference
on High Performance Computing. IEEE, 206-215.

Feng Chen, Marcelo d’Amorim, and Grigore Rosu. 2006. Checking and correcting
behaviors of Java programs at runtime with Java-MOP. Electronic Notes in
Theoretical Computer Science 144, 4 (2006), 3-20.

Feng Chen and Grigore Rosu. 2007. Mop: an efficient and generic runtime verifi-
cation framework. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems, languages and applications. 569-588.
Shigeru Chiba and Takashi Masuda. 1993. Open C++ and its optimization. In
Proceedings of OOPSLA, Vol. 93.

Pavan Kumar Chittimalli and Vipul Shah. 2012. GEMS: a generic model based
source code instrumentation framework. In 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation. IEEE, 909-914.

James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. 196-206.

David Devecsery, Peter M Chen, Jason Flinn, and Satish Narayanasamy. 2018.
Optimistic hybrid analysis: Accelerating dynamic analysis through predicated
static analysis. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. 348—
362.

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M Chen.
2014. Eidetic systems. In 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14). 525-540.

Cormac Flanagan and Stephen N Freund. 2009. FastTrack: efficient and precise
dynamic race detection. ACM Sigplan Notices 44, 6 (2009), 121-133.

Jeffrey K Hollingsworth, Oscar Niam, Barton P Miller, Zhichen Xu, Marcelo JR
Gongalves, and Ling Zheng. 1997. MDL: A language and compiler for dynamic
program instrumentation. In Proceedings 1997 International Conference on Parallel
Architectures and Compilation Techniques. IEEE, 201-212.

Jean-loup Gailly, Mark Adler. 2017. ZLib Compression Library. (Jan 2017). https:
//zlib.net/.

Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner, and Philippe Clauss.
2012. VMAD: an advanced dynamic program analysis and instrumentation
framework. In International Conference on Compiler Construction. Springer, 220—
239.

Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D
Keromytis. 2012. libdft: Practical dynamic data flow tracking for commodity
systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments. 121-132.

Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. SD3: A scalable ap-
proach to dynamic data-dependence profiling. In 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 535-546.

Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. 2012. Efficient patch-
based auditing for web application vulnerabilities. In Presented as part of the 10th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
12). 193-206.

Thomas Kistler and Michael Franz. 2003. Continuous program optimization: A
case study. ACM Transactions on Programming Languages and Systems (TOPLAS)
25, 4 (2003), 500-548.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

dormando LINKIWI, tharanga. 2019. Memory Leak with TLS Termination Enabled
- Issue 538 - Memcached/Memcached. https://github.com/memcached/memcached/
issues/538.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190-200.

Magnus Madsen, Ming-Ho Yee, and Ondfej Lhotak. 2016. From Datalog to flix:
a declarative language for fixed points on lattices. ACM SIGPLAN Notices 51, 6
(2016), 194-208.

Daniel Mahrenholz, Olaf Spinczyk, and Wolfgang Schroder-Preikschat. 2002.
Program instrumentation for debugging and monitoring with AspectC++. In
Proceedings Fifth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing. ISIRC 2002. IEEE, 249-256.

mdounin. 2020. Nginx-SSL: fixed shutdown handling. (Aug 2020). https://github.
com/nginx/nginx/commit/e01cdfbd8c1b757eaadad059cb7c9b9313e715a6.
mkver. 2020. Remove unused z_stream. (Sep 2020). https://github.com/FFmpeg/
FFmpeg/commit/d1487659%ee584d3b0521a894e9ea0f182edbd676.

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly compatible and complete spatial memory safety for C.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 245-258.

https://doi.org/10.5281/zenodo.5748338
https://doi.org/10.5281/zenodo.5748338
https://zlib.net/
https://zlib.net/
https://github.com/memcached/memcached/issues/538
https://github.com/memcached/memcached/issues/538
https://github.com/nginx/nginx/commit/e01cdfbd8c1b757eaadad059cb7c9b9313e715a6
https://github.com/nginx/nginx/commit/e01cdfbd8c1b757eaadad059cb7c9b9313e715a6
https://github.com/FFmpeg/FFmpeg/commit/d1487659ee584d3b0521a894e9ea0f182edbd676
https://github.com/FFmpeg/FFmpeg/commit/d1487659ee584d3b0521a894e9ea0f182edbd676

Creating Concise and Efficient Dynamic Analyses with ALDA

(34

[35

[36]

[41]

[42

[43

[44]

[45]

[46

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In Proceedings of the 2010
international symposium on Memory management. 31-40.

George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. 2002. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In International Conference on Compiler Construction. Springer, 213-228.
George C Necula, Scott McPeak, and Westley Weimer. 2002. CCured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 128-139.

Nicholas Nethercote and Julian Seward. 2007. How to shadow every byte of
memory used by a program. In Proceedings of the 3rd international conference on
Virtual execution environments. 65-74.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89-100.
Guillaume Pothier and Eric Tanter. 2009. Back to the future: Omniscient debug-
ging. IEEE software 26, 6 (2009), 78-85.

Norman Ramsey, Joao Dias, and Simon Peyton Jones. 2010. Hoopl: a modular,
reusable library for dataflow analysis and transformation. ACM Sigplan Notices
45,11 (2010), 121-134.

RedisLabs. 2020. NoSQL Redis and Memcache traffic generation and benchmark-
ing tool. (Dec 2020). https://github.com/RedisLabs/memtier_benchmark.
Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. 2013.
Using likely invariants for automated software fault localization. In Proceedings
of the eighteenth international conference on Architectural support for programming
languages and operating systems. 139-152.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems (TOCS) 15, 4 (1997), 391-411.

Tao B Schardl, Tyler Denniston, Damon Doucet, Bradley C Kuszmaul, I-Ting An-
gelina Lee, and Charles E Leiserson. 2017. The CSI framework for compiler-
inserted program instrumentation. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 1, 2 (2017), 1-25.

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race
detection in practice. In Proceedings of the workshop on binary instrumentation
and applications. 62-71.

Olaf Spinczyk, Andreas Gal, and Wolfgang Schréder-Preikschat. 2002. AspectC++
an aspect-oriented extension to the C++ programming language. In Proceedings

752

[47

[48

[49]

[50

[51

[52

(53]

[54

[55

[56

[57]

(58]

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

of the Fortieth International Conference on Tools Pacific: Objects for internet, mobile
and embedded applications. 53-60.

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 46-55.

Ariel Tamches and Barton P Miller. 2001. Fine-grained dynamic instrumentation of
commodity operating system kernels. Ph.D. Dissertation. University of Wisconsin-
Madison.

tharanga, 2019. Mecached TLS Shutdown. (Apr
2019). https://github.com/memcached/memcached/blob/
eelcfe3bf9384d1a93545fc942e25bed6437d910/thread.c#L558.

The OpenSSL Project. 2003. OpenSSL: The Open Source toolkit for SSL/TLS.
(April 2003). www.openssl.org.

Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou.
2007. Triage: diagnosing production run failures at the user’s site. ACM SIGOPS
Operating Systems Review 41, 6 (2007), 131-144.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214-224.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using
datalog with binary decision diagrams for program analysis. In Asian Symposium
on Programming Languages and Systems. Springer, 97-118.

Edward D Willink and Vyacheslav B Muchnick. 1999. Weaving a way past the C++
one definition rule. In Proceedings of the Aspect-Oriented Programming Workshop
at ECOOP’99.

Zhichen Xu, Barton P Miller, and Oscar Naim. 1999. Dynamic instrumentation
of threaded applications. ACM SIGPLAN Notices 34, 8 (1999), 49-59.

Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2004. Efficient forward com-
putation of dynamic slices using reduced ordered binary decision diagrams. In
Proceedings. 26th International Conference on Software Engineering. IEEE, 502-511.

Qin Zhao, Derek Bruening, and Saman Amarasinghe. 2010. Umbra: Efficient
and scalable memory shadowing. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. 22-31.

Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. 2017. Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold. In Proceedings of the 26th Symposium on
Operating Systems Principles. 565-581.

dormando.

https://github.com/RedisLabs/memtier_benchmark
https://github.com/memcached/memcached/blob/ee1cfe3bf9384d1a93545fc942e25bed6437d910/thread.c##L558
https://github.com/memcached/memcached/blob/ee1cfe3bf9384d1a93545fc942e25bed6437d910/thread.c##L558
www.openssl.org

	Abstract
	1 Introduction
	2 Motivation
	2.1 Logical Dynamic Analysis Construction
	2.2 Efficient Dynamic Analysis Implementation

	3 Design
	3.1 ALDA Language
	3.2 Optimizing Compiler
	3.3 Limitations of ALDA

	4 ALDA Language Specification
	4.1 Type Declaration
	4.2 Metadata Declaration
	4.3 Event Handler Declaration
	4.4 Insertion Point Declaration

	5 Implementation
	5.1 Analysis Granularity
	5.2 Map Coalescing
	5.3 Shadow Memory Selection
	5.4 Metadata Lookup Reduction
	5.5 Event Handler Instrumentation
	5.6 Limitations

	6 Evaluation
	6.1 Experiment Setup
	6.2 Performance
	6.3 Generality
	6.4 Newly Enabled Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

