
Creating Concise and Efficient
Dynamic Analyses with ALDA

Xiang Cheng
Georgia Institute of Technology

David Devecsery*
Meta Platform. Inc

*: Work done while at Georgia Institute of Technology

1

1. Eraser is a lockset based data race detector[1]
2. The algorithm can be represented by a state machine with 4 states
3. The analysis tracks metadata for each thread/memory address/lock …

Motivating Example – Eraser analysis

[1]Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and ThomasAnderson. Eraser: A dynamic data
race detector for multithreaded programs.ACM Transactions on Computer Systems (TOCS), 15(4):391–411, 1997

Exclusive

Virgin

Shared-
Modified

Shared

wr
rd/wr, first thread

rd, new thread rd

wr

wr, new thread

Full lockset

AND

Empty lockset

… …

2

Motivating Example – Eraser analysis

Exclusive

Virgin

Shared-
Modified

Shared

wr
rd/wr, first thread

rd, new thread rd

wr

wr, new thread
Simple kernel logic Huge metadata

// Metadata type

typedef struct ThreadMeta{
 int tid;
 Set<LOCK> rlockset;
 Set<LOCK> wlockSet;
} ThreadMeta;
typedef struct AddrMeta{
 int status;
 Set<int> threadId;
 Set<LOCK> lockset
} ;
// Metadata declaration

Map<Thread, ThreadMeta> thread_meta_map;
Map<Address, AddrMeta> address_meta_map;

// static transformation table

static u_char qtable[]{0, 1, 3, 3};
static u_char wtable[]{1, 3, 3, 3};
static u_char rtable[]{0, 2, 2, 3};
// write access

if (NEW_THREAD_ACCESS) {
 addr.status = wtable[addr.status];
} else {
 addr.status = qtable[addr.status];
}
addr.lockset &= thread.wlockset;
//read access

if (NEW_THREAD_ACCESS) {

 addr.status = rtable[addr.status];
}
addr.lockset &= thread.rlockset;

Analysis kernel is simple
(~20 line of code)

3

Kernel logic
Implementation
(few LOC)

Pagetable map
Bitvector
(~200 LOC)

Lock pool
(~100 LOC)

The building process …
Complex data structures

Lock optimization

Parameter

Micro optimization

other optimization …

Analysis
kernel

Tuned
Pagetable map
Bitvector

Thread local
Atomic ops
…
(~100 LOC)

Efficient
Implementation
(~600 LOC)

Specific for analysis/architecture

New analysis
kernel

4

~250x~160x~100x~60x~30x

Challenge – Metadata optimization

● Compared with simple kernel, the metadata access is the bottleneck
● Memory access are frequent => dominating performance
● Metadata is analysis dependent => needs to repeat optimization for every analysis

● Tradition compilers are bad at this
● Reasoning memory access is hard, e.g. the aliasing is NP hard

● => Can we automate this optimization process?

5

Execution analysis

metadata lookup
metadata update
origin program
instrumentation
cost

88.05%

● Solution
● Separate the logic and implementation of dynamic analyses, and let a compiler to automatically

optimize the input analyses
● Observations

● Most dynamic analyses kernels are simple algorithms
● Most optimizations are related to memory access pattern / layout
● Many dynamic analysis kernels can be represented naturally without loops or indirect memory

access, removing the need for memory indirection in language description

ALDA’s Solution & Insights
6

● By restricting language syntax, the compiler can better reason about and optimize
metadata access in dynamic analyses.

ALDA’s Key idea and workflow

Instrument
Tool

Algorithm
Description

ALDA
Compiler

Runtime
Library

Analysis
Program

Analysis
Result

Origin
Program

7

Dynamic
analysis
kernel

Efficient
Implementation

ALDA
Compiler

Content of today

• Motivation
• Key insights & idea
• ALDA Language Design
• ALDA Optimizations
• Evaluation
• Conclusion

8

Design ALDA Language

● What pieces make up a dynamic analysis?
○ What metadata does the analysis need
○ What’s the logic for analysis
○ When to apply such logic

9

Exclusive

Virgin

Shared-
Modified

Shared

wr
rd/wr, first thread

rd, new thread rd

wr, new thread

AND

// Metadata of Eraser algorithm in ALDA
address := pointer : sync
tid := threadid : 4
lid := lockid : 256
status := int8
thread2WLock = universe::map(tid, set(lid))
thread2Lock = universe::map(tid, set(lid))
addr2Lock = universe::map(address, universe::set(lid))
addr2Thread = universe::map(address, set(tid))
addr2Status = universe::map(address, status)

ALDA Syntax - How to specify metadata ?

● Declare the types of data we need to track
● Metadata associations

○ map / set - high level abstractions
○ let compiler to choose the data structure

10

// When thread read memory address
onLoad(address addr, tid t) {
 if(!addr2Thread[addr].find(t) && addr2Status[addr] != VIRGIN){
 if(addr2Status[addr] == EXCLUSIVE)
 { addr2Status[addr] = SHARED; }
 addr2Thread[addr].add(t);
 }
 if(addr2Status[addr] > EXCLUSIVE){
 addr2Lock[addr] = addr2Lock[addr] & thread2Lock[t];
 }
}

ALDA Syntax - What’s the logic for analysis

● C like syntax inside function body
○ Except loop statements
○ Disallow pointer/reference types

11

// Instrumentation example of load operation
insert after LoadInst call onLoad($1, $t)

ALDA Syntax - Where to apply such logic

● Indicates the location to instrument function
● Can be either a function call or a specific

instruction
○ malloc/pthread_create
○ load/cast/xor low level operations

12

Content of today

• Motivation
• Key insights & idea
• ALDA Language Design
• ALDA Optimizations
• Evaluation
• Conclusion

13

How to optimize the code? - Metadata Coalescing

● Due to lack of indirection, memory access patterns are simple
● Our compiler, ALDAcc, performs static analysis to reason the types and memory

access patterns
● With the analyses, the compiler relayout the metadata to coalesce them

// When thread read memory address

onLoad(address addr, tid t) {
 if(!addr2Thread[addr].find(t) && addr2Status[addr] !=
VIRGIN){
 if(addr2Status[addr] == EXCLUSIVE)
 { addr2Status[addr] = SHARED; }
 addr2Thread[addr].add(t);
 }
 if(addr2Status[addr] > EXCLUSIVE){
 addr2Lock[addr] = addr2Lock[addr] & thread2Lock[t];
 }
}

// Metadata type

typedef struct AddrMeta{
 int addr2Status;
 Set<int>
addr2Thread;
 Set<LOCK> addr2Lock
} ;

14

● Pagetable map, virtual-memory based map are widely used for pointer key types
○ the K’s domain size is big: e.g. 2^48 for x86_64
○ data structure is frequently accessed

● Compiler gathers following info:
○ Map initial state
○ Access is locked
○ The memory size of value(sizeof(V))
○ Analysis granularity (byte/word/...)

How to optimize the code? - Data structure selection

Access is locked?

sizeof(V) > 3 ?

Universe or
bottom?

Virtual memory map

Synced page map Unsynced page map

Analysis granularity

Tune parameter

Y

universe

Y

N

N

15

Content of today

• Motivation
• Key insights & idea
• ALDA Language Design
• ALDA Optimizations
• Evaluation
• Conclusion

16

CSE/set
selection/tls/inline/

…

● Performace
○ Can ALDAcc generate code comparable to hand-tuned implementations?

● Generality
○ Can ALDA represent common dynamic analyses?

● Application
○ Can ALDA be used to build analyses that are otherwise impractical?

Evaluation*

*: ALDA is publicly available at https://doi.org/10.5281/zenodo.5748338

17

https://doi.org/10.5281/zenodo.5748338

● We use ALDA to reproduce LLVM Memory Sanitizer, Eraser and compare with the
hand-tuned implementations.

● We run both programs in SPECInt / SPLASH & 4 real-world applications
● ALDAcc can generate comparable code with hand-tuned implementation

Performance – compare with hand-tuned implementations

Similar performance as hand-tuned
(MSan & Eraser)

18

We try to use ALDA to implement following dynamic analysis:

1. Hand-written Eraser takes 600+ LOC
2. LLVM MSan takes at least 8146 LOC
3. ALDAcc’s MSan requires a common libc handler take ~1100 LOC

Generality – 6 types of dynamic analyses

Name LOC Name LOC

Eraser 70 MSan 192

UseAfterFree 35 StrictAliasCheck 12

FastTrack 69 TaintTracking 33

Save >80% line of code

19

● Different analyses can’t be easily combined (TSan/MSan can’t run at the same time)
● We use ALDA to easily combine different analysis algorithms

together(Eraser/FastTrack/UAF/TaintTracking)

Application – Combined analysis

*: Bar compressed

Save 44.8% execution time

20

Application – SSLSan & ZLibSan
21

● API misuse widely exists in open-source projects
● API specific => Common sanitizers can’t catch them
● Each library has different usage => Requires build for each library

● We use ALDA to build SSLSan and ZLibSan and run them for memcached/nginx/ffmpeg
● Validate 4 bugs/misuses in three applications

● We present ALDA, a domain specific language and ALDAcc, that can convert the
ALDA program into highly optimized executables

● We describe several static optimizations for ALDA analyses and show their efficiency
● We applied ALDAcc into real world example: library sanitizer / combined analyses
● We look forward to applying ALDA to new analyses and languages

Summary
22

Thanks for listening
Q & A

23

• Instrumentation frameworks like LLVM, Intel Pin are basis for ALDA to apply analysis
logic into origin program.

• Dynamic analyses framework:
• Some are focusing on providing utilities to develop dynamic analyses, like Valgrind, they

failed to perform metadata access optimization and relayout as ALDA does
• Some are based on well typed languages like JavaMOP, which avoids the metadata lookup

problem

Related work
24

	Creating Concise and Efficient Dynamic Analyses with ALDA
	Motivating Example – Eraser analysis
	Motivating Example – Eraser analysis (2)
	The building process …
	Challenge – Metadata optimization
	ALDA’s Solution & Insights
	ALDA’s Key idea and workflow
	Content of today
	Design ALDA Language
	ALDA Syntax - How to specify metadata ?
	ALDA Syntax - What’s the logic for analysis
	ALDA Syntax - Where to apply such logic
	Content of today (2)
	How to optimize the code? - Metadata Coalescing
	How to optimize the code? - Data structure selection
	Content of today (3)
	Evaluation*
	Performance – compare with hand-tuned implementations
	Generality – 6 types of dynamic analyses
	Application – Combined analysis
	Application – SSLSan & ZLibSan
	Summary
	Thanks for listening Q & A
	Related work

