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1. Eraser is a lockset based data race detector[1]
2. The algorithm can be represented by a state machine with 4 states
3. The analysis tracks metadata for each thread/memory address/lock …

Motivating Example – Eraser analysis

[1]Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and ThomasAnderson.  Eraser: A dynamic data 
race detector for multithreaded programs.ACM Transactions on Computer Systems (TOCS), 15(4):391–411, 1997
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Motivating Example – Eraser analysis
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// Metadata type

typedef struct ThreadMeta{
    int tid;
    Set<LOCK> rlockset;
    Set<LOCK> wlockSet;
} ThreadMeta;
typedef struct AddrMeta{
    int status;
    Set<int> threadId;
    Set<LOCK> lockset
} ;
// Metadata declaration

Map<Thread, ThreadMeta> thread_meta_map;
Map<Address, AddrMeta>  address_meta_map;

// static transformation table

static u_char qtable[]{0, 1, 3, 3};
static u_char wtable[]{1, 3, 3, 3};
static u_char rtable[]{0, 2, 2, 3};
// write access

if (NEW_THREAD_ACCESS) {
    addr.status = wtable[addr.status];
} else {
    addr.status = qtable[addr.status];
}
addr.lockset &= thread.wlockset;
//read access

if (NEW_THREAD_ACCESS) {

    addr.status = rtable[addr.status];
}
addr.lockset &= thread.rlockset;

Analysis kernel is simple
(~20 line of code)
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Kernel logic
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(few LOC)
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Challenge – Metadata optimization

● Compared with simple kernel, the metadata access is the bottleneck
● Memory access are frequent  => dominating performance
● Metadata is analysis dependent => needs to repeat optimization for every analysis

● Tradition compilers are bad at this
● Reasoning memory access is hard, e.g. the aliasing is NP hard

● => Can we automate this optimization process?
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● Solution
● Separate the logic and implementation of dynamic analyses, and let a compiler to automatically 

optimize the input analyses
● Observations

● Most dynamic analyses kernels are simple algorithms
● Most optimizations are related to memory access pattern / layout
● Many dynamic analysis kernels can be represented naturally without loops or indirect memory 

access, removing the need for memory indirection in language description

ALDA’s Solution & Insights
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● By restricting language syntax, the compiler can better reason about and optimize 
metadata access in dynamic analyses.

ALDA’s Key idea and workflow
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Content of today

• Motivation
• Key insights & idea
• ALDA Language Design
• ALDA Optimizations
• Evaluation
• Conclusion
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Design ALDA Language

● What pieces make up a dynamic analysis?
○ What metadata does the analysis need
○ What’s the logic for analysis
○ When to apply such logic
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// Metadata of Eraser algorithm in ALDA
address := pointer : sync
tid := threadid : 4
lid := lockid : 256
status := int8
thread2WLock = universe::map(tid, set(lid))
thread2Lock = universe::map(tid, set(lid))
addr2Lock = universe::map(address, universe::set(lid))
addr2Thread = universe::map(address, set(tid))
addr2Status = universe::map(address, status)

ALDA Syntax - How to specify metadata ?

● Declare the types of data we need to track
● Metadata associations

○ map / set - high level abstractions
○ let compiler to choose the data structure
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// When thread read memory address
onLoad(address addr, tid t) {
    if(!addr2Thread[addr].find(t) && addr2Status[addr] != VIRGIN){
        if(addr2Status[addr] == EXCLUSIVE)
              { addr2Status[addr] = SHARED; }
        addr2Thread[addr].add(t);
    }
    if(addr2Status[addr] > EXCLUSIVE){
        addr2Lock[addr] = addr2Lock[addr] & thread2Lock[t];
    }
}

ALDA Syntax - What’s the logic for analysis

● C like syntax inside function body
○ Except loop statements
○ Disallow pointer/reference types
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// Instrumentation example of load operation
insert after LoadInst call onLoad($1, $t)

ALDA Syntax - Where to apply such logic

● Indicates the location to instrument function
● Can be either a function call or a specific 

instruction
○ malloc/pthread_create
○ load/cast/xor low level operations
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• Motivation
• Key insights & idea
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• ALDA Optimizations
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How to optimize the code? - Metadata Coalescing

● Due to lack of indirection, memory access patterns are simple
● Our compiler, ALDAcc, performs static analysis to reason the types and memory 

access patterns
● With the analyses, the compiler relayout the metadata to coalesce them  

// When thread read memory address

onLoad(address addr, tid t) {
    if(!addr2Thread[addr].find(t) && addr2Status[addr] != 
VIRGIN){
        if(addr2Status[addr] == EXCLUSIVE)
              { addr2Status[addr] = SHARED; }
        addr2Thread[addr].add(t);
    }
    if(addr2Status[addr] > EXCLUSIVE){
        addr2Lock[addr] = addr2Lock[addr] & thread2Lock[t];
    }
}

// Metadata type

typedef struct AddrMeta{
    int addr2Status;
    Set<int> 
addr2Thread;
    Set<LOCK> addr2Lock
} ;
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● Pagetable map, virtual-memory based map are widely used for pointer key types
○ the K’s domain size is big: e.g. 2^48 for x86_64 
○ data structure is frequently accessed

● Compiler gathers following info:
○ Map initial state
○ Access is locked 
○ The memory size of value(sizeof(V))
○ Analysis granularity (byte/word/...)

How to optimize the code? - Data structure selection
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Synced page map Unsynced page map
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● Performace
○ Can ALDAcc generate code comparable to hand-tuned implementations?

● Generality
○ Can ALDA represent common dynamic analyses?

● Application
○ Can ALDA be used to build analyses that are otherwise impractical?

Evaluation*

*: ALDA is publicly available at https://doi.org/10.5281/zenodo.5748338 
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● We use ALDA to reproduce LLVM Memory Sanitizer, Eraser and compare with the 
hand-tuned implementations.

● We run both programs in SPECInt / SPLASH & 4 real-world applications
● ALDAcc can generate comparable code with hand-tuned implementation

Performance – compare with hand-tuned implementations

Similar performance as hand-tuned
(MSan & Eraser)
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We try to use ALDA to implement following dynamic analysis:

1. Hand-written Eraser takes 600+ LOC
2. LLVM MSan takes at least 8146 LOC
3. ALDAcc’s MSan requires a common libc handler take ~1100 LOC

Generality – 6 types of dynamic analyses

Name LOC Name LOC

Eraser 70 MSan 192

UseAfterFree 35 StrictAliasCheck 12

FastTrack 69 TaintTracking 33

Save >80% line of code
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● Different analyses can’t be easily combined (TSan/MSan can’t run at the same time)
● We use ALDA to easily combine different analysis algorithms 

together(Eraser/FastTrack/UAF/TaintTracking)  

Application – Combined analysis

*: Bar compressed

Save 44.8% execution time
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Application – SSLSan & ZLibSan
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● API misuse widely exists in open-source projects
● API specific => Common sanitizers can’t catch them
● Each library has different usage => Requires build for each library

● We use ALDA to build SSLSan and ZLibSan and run them for memcached/nginx/ffmpeg
● Validate 4 bugs/misuses in three applications



● We present ALDA, a domain specific language and ALDAcc, that can convert the 
ALDA program into highly optimized executables

● We describe several static optimizations for ALDA analyses and show their efficiency
● We applied ALDAcc into real world example: library sanitizer / combined analyses
● We look forward to applying ALDA to new analyses and languages

Summary
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Thanks for listening
Q & A
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• Instrumentation frameworks like LLVM, Intel Pin are basis for ALDA to apply analysis 
logic into origin program. 

• Dynamic analyses framework:
• Some are focusing on providing utilities to develop dynamic analyses, like Valgrind, they 

failed to perform metadata access optimization and relayout as ALDA does
• Some are based on well typed languages like JavaMOP, which avoids the metadata lookup 

problem 
 

Related work
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