
Finding Consensus Bugs in Ethereum via Multi-transaction Differential Fuzzing

Youngseok Yang1 Taesoo Kim2 Byung-Gon Chun1,3*
1Seoul National University 2Georgia Institute of Technology 3FriendliAI

Abstract
Ethereum is the second-largest blockchain platform next to
Bitcoin. In the Ethereum network, decentralized Ethereum
clients reach consensus through transitioning to the same
blockchain states according to the Ethereum specification.
Consensus bugs are bugs that make Ethereum clients transi-
tion to incorrect blockchain states and fail to reach consensus
with other clients. Consensus bugs are extremely rare but can
be exploited for network split and theft, which cause reliability
and security-critical issues in the Ethereum ecosystem.

We describe Fluffy, a multi-transaction differential fuzzer
for finding consensus bugs in Ethereum. First, Fluffy mu-
tates and executes multi-transaction test cases to find consen-
sus bugs which cannot be found using existing fuzzers for
Ethereum. Second, Fluffy uses multiple existing Ethereum
clients that independently implement the specification as
cross-referencing oracles. Compared to a state-of-the-art
fuzzer, Fluffy improves the fuzzing throughput by 510× and
the code coverage by 2.7× with various optimizations: in-
process fuzzing, fuzzing harnesses for Ethereum clients, and
semantic-aware mutation that reduces erroneous test cases.

Fluffy found two new consensus bugs in the most popu-
lar Geth Ethereum client which were exploitable on the live
Ethereum mainnet. Four months after we reported the bugs to
Geth developers, one of the bugs was triggered on the mainnet,
and caused nodes using a stale version of Geth to hard fork
the Ethereum blockchain. The blockchain community consid-
ers this hard fork the greatest challenge since the infamous
2016 DAO hack. We have made Fluffy publicly available at
https://github.com/snuspl/fluffy to contribute to the security
of Ethereum.

1 Introduction

The case is perhaps Ethereum’s greatest challenge
since the 2016 DAO fork, and it raises questions about
Ethereum’s oft-touted decentralization and the effective-
ness of its developer coordination going into Ethereum
2.0.

— Coindesk, November 12th, 2020 [11]

*Corresponding author.

An extremely rare consensus bug1, which makes
Ethereum [17, 54] clients transition to incorrect blockchain
states and fail to reach consensus with other clients, was
triggered on the Ethereum mainnet on November 11th,
2020 [2, 11, 43, 45]. This was one of the two consensus bugs
we found and reported to Ethereum developers four months
before that date. The bug caused Ethereum nodes using a
stale version of Geth [19], the most popular Ethereum client,
to hard fork the Ethereum blockchain. One of the affected
nodes was Infura [15], the largest infrastructure service that
allows decentralized applications (DApps) to connect to the
Ethereum network without having to run their own Ethereum
nodes.

Consequently, Infura went down, and with it some of most
popular Ethereum applications such as Metamask, Maker-
DAO, Uniswap, and Compound went down [11]. Shortly af-
ter, cryptocurrency exchanges around the world including
Binance, the largest exchange, halted the trading of ETH,
the cryptocurrency of Ethereum [2, 11]. Infura and others
quickly upgraded their Geth clients to fix the bug. Neverthe-
less, around 30 Ethereum blocks from block 11234873 on the
forked chain were lost [23], which transferred approximately
8.6 million USD worth of ETH2. The blockchain commu-
nity considers this hard fork the greatest challenge since the
infamous DAO hack of 2016 [11, 13].

This paper describes how we found such extremely rare,
high-impact consensus bugs in the heavily-tested Ethereum
network through fuzzing [9, 30, 38], an automated software
testing technique that randomly mutates inputs and tests the
target program on the resulting data.

Finding new consensus bugs in actively used Ethereum
clients is challenging, because consensus bugs are extremely
rare. Attackers can exploit consensus bugs for network split
and theft, which cause reliability (e.g., delaying transac-
tions) and security-critical issues (e.g., stealing ETH) in the
Ethereum ecosystem. To prevent such issues, Ethereum devel-
opers make preventing consensus bugs a top priority, and
invest heavily in auditing, testing, and fuzzing Ethereum

1We focus on consensus bugs in state management that make Ethereum
clients transition to incorrect blockchain states. Bugs in blockchain consensus
algorithms such as proof of work are not the focus of this paper.

2(Total amount of ETH transferred by block 11234873 to 11234902 on
the canonical chain) × (Closing price of ETH/USD on November 10th)

https://github.com/snuspl/fluffy

EVMLab EVM
libFuzzer

EVM
Fuzzer Fluffy

Transactions per test Single Single Single Multiple
Contract language Bytecode Bytecode Solidity Bytecode
In-process fuzzing - X - X
Coverage-guided - X - X

Open source X - X X
Created in 2017 2017 2019 2020

Impact of newly
found bugs (Count)

High (1),
Low (2)

Low (2) N/A High (2)

Table 1: A comparison of Fluffy and existing fuzzers for
finding consensus bugs in Ethereum.

clients [18, 21, 22, 33]. Since the Ethereum network launched
in July 2014, only 13 consensus bugs have been found in
the most popular Geth [19] and OpenEthereum [41] clients,
and only 6 of them would have been exploitable on the live
Ethereum mainnet [34].

Ethereum fuzzers have found most of the consensus
bugs [18, 22, 33, 34]. These existing fuzzers focus on the
blockchain state, which is a set of Ethereum accounts that
hold a balance of ETH. Specifically, the fuzzers model an
Ethereum client as a blockchain state model, in which the
blockchain state is transitioned by an Ethereum transaction.
As a result, in each fuzzing iteration, they generate and test a
pre-transaction blockchain state and a single transaction that
transitions the blockchain state. Table 1 compares the existing
fuzzers. EVMLab [18] generates random Ethereum Virtual
Machine (EVM) bytecode of Ethereum smart contracts [54],
and invokes the contracts with a single transaction. EVM-
Lab has found in the most popular Geth and OpenEthereum
clients one high-impact bug that was exploitable on the main-
net and two low-impact bugs that were not exploitable on a
live network. EVM libFuzzer [33] is a closed source fuzzer
whose details are unknown. EVM libFuzzer integrates with
libFuzzer [30] and has found two low-impact bugs. EVM-
Fuzzer [22] is a more recent fuzzer that generates Solidity [20]
code of contracts.

However, the blockchain state model of existing fuzzers
falls short to cover the full search space for finding consensus
bugs. The full search space consists of the set of possible client
program states, which are the values of program variables of
Ethereum clients that can be reached after executing Ethereum
transactions. For each pre-transaction blockchain state (e.g.,
Account A has 0 ETH), the blockchain state model can cover
only a single pre-transaction program state (e.g., account_a
= { ETH: 0, deleted: false}). Consequently, existing fuzzers
fail to test other possible pre-transaction program states (e.g.,
account_a = { ETH: 3, deleted: true}) that represent the same
blockchain state. This leads existing fuzzers to miss consensus
bugs which are triggered only when a transaction is applied
to such other pre-transaction program states.

To fully cover the search space for finding consensus bugs,
we propose to model an Ethereum client as a client program
state model, in which the client program state is transitioned
by a transaction. Based on this model, in each fuzzing itera-
tion, we generate and execute a sequence of multiple transac-
tions that transition an initial client program state. This allows
us to indirectly generate various intermediate pre-transaction
program states, which can be reached after executing transac-
tions and can lead to the discovery of new consensus bugs.

We embody our approach in Fluffy, a multi-transaction
differential fuzzer for finding consensus bugs in Ethereum.
Fluffy mutates and executes multi-transaction test cases to
find consensus bugs which cannot be found using existing
fuzzers for Ethereum. In addition, Fluffy uses multiple ex-
isting Ethereum clients that independently implement the
specification as cross-referencing oracles, similar in concept
to N-versioning [5]. This technique is known as differential
fuzzing [9, 36] in the testing community.

Our Fluffy design employs several new fuzzing techniques.
First, we modify existing Ethereum clients to provide an exe-
cution model that enables efficient multi-transaction fuzzing.
Second, we use multi-transaction test cases that encode de-
pendencies between multiple Ethereum transactions and en-
able mutating transaction contexts (i.e., sequence of transac-
tions that are executed prior to the transaction) rather than
pre-transaction blockchain states. Third, we introduce new
semantic-aware mutation strategies for mutating transaction
contexts, transaction parameters, and EVM bytecode.

We have implemented Fluffy in Rust and Go, and
made it publicly available at https://github.com/snuspl/fluffy.
Our current implementation supports fuzzing Geth and
OpenEthereum, which are used by 98% of nodes in the
Ethereum mainnet, as of August 2020 [6]. Our implementa-
tion adopts various optimizations including in-process fuzzing
and optimized fuzzing harnesses for Ethereum clients, and
also provides a debugger to analyze crashes due to consen-
sus bugs. Our evaluation on a 12-core machine shows that
Fluffy finds 10 out of 11 real-world consensus bugs in Geth
and OpenEthereum within just 12 hours of fuzzing. Fluffy
also improves the fuzzing throughput by 510× and the code
coverage by 2.7× compared to EVMLab.

2 Background

We first provide an overview of Ethereum [17, 54], and then
describe consensus bugs in Ethereum.

2.1 Ethereum

The Ethereum blockchain network consists of decentralized
peer-to-peer Ethereum clients that implement the Ethereum
Virtual Machine (EVM) specification [54]. EVM is a Turing-
complete machine that specifies how the Ethereum blockchain

https://github.com/snuspl/fluffy

state, a set of Ethereum accounts, is altered through trans-
actions recorded on Ethereum blocks. Accounts in the
blockchain state have an address and hold a balance of ETH,
the cryptocurrency of Ethereum. There are two types of ac-
counts: the externally-owned account (EOA) owned by an
Ethereum user, and the smart contract account which is owned
by code and has a key-value storage. In addition to the ac-
counts, EVM provides precompiled contracts that perform
specialized operations at fixed addresses. Ethereum trans-
actions are either message call transactions that can invoke
smart contracts, or contract creation transactions that create
new smart contracts.

Blockchain state. EVM transitions blockchain states through
processing Ethereum bytecode instructions invoked by trans-
actions. EVM provides around 140 distinct instructions. Each
instruction makes specific changes to EVM internal states
such as the EVM stack and the EVM memory, as well as the
blockchain state such as the ETH balance of EOAs and the
storage of smart contracts. Each instruction also has a specific
gas cost, a fee that the transaction sender pays to compensate
for the computational effort that it takes to execute the instruc-
tion in the network. EVM throws an out-of-gas error when
the sum of the gas cost exceeds the gas limit of a transaction.

Client program state. Ethereum clients implement EVM
with a specific programming language such as Go and
Rust [19, 41]. As a result, a client maintains its own client
program state, which are the values of program variables
(e.g., Rust or Go variables) that are reached after executing
Ethereum transactions. There can be multiple different client
program states that represent the same blockchain state, since
the client determines the blockchain state it is in by interpret-
ing the values of a subset of its program variables.

Example. Figure 1 shows how an Ethereum client executes a
sequence of two transactions to transition an initial blockchain
state (State 0). Transaction 1 first creates contract C by in-
voking the bytecode in its data field, which returns (RETURN)
the bytecode that becomes the code of contract C (State 1).
Transaction 2 then invokes the code of C with specific value
and data parameters, such that a particular key-value pair is
stored (SSTORE) in the storage of C (State 2).

Suppose we initialize an Ethereum client implementation
in two different ways. First, we initialize the client directly
with the blockchain state after Transaction 1 (State 1). Second,
we initialize the client with the initial blockchain state (State
0), and then execute Transaction 1 to transition the blockchain
state. Although the resulting blockchain state (State 1) is the
same for the two clients, the resulting client program state may
not be the same depending on the client implementation. As a
result, the two clients can behave differently when executing
the subsequent Transaction 2.

We show why it is important to fully test such different
behaviors when testing whether clients transition to incorrect
blockchain states, which we describe next.

Ethereum Client

Ethereum
Network

Ethereum Virtual Machine

Stack

Memory

…

Bytecode (hex)
...
60 05 (PUSH1 0x05)
60 01 (PUSH1 0x01)
F3 (RETURN)

Ethereum Virtual Machine

Stack

Memory

…

Bytecode (hex)
35 (CALLVALUE)
36 (CALLDATASIZE)
55 (SSTORE)
...

State 0 State 1 State 2

Account A
(EOA)

Address: 0xf1a2…
Balance: 5ETH

…

Transaction 1
Contract creation (A⇒C)
Value: 2ETH
GasLimit: 30,000gas
Data: 0x...60056001F3

Transaction 2
Message call (A⇒C)
Value: 0ETH
GasLimit: 30,000gas
Data: 0x13

Account C
(Contract)

Address: 0x3b2c…
Balance: 2ETH
Code: 0x353655…
Storage: {}

Account C
(Contract)

Address: 0x3b2c…
Balance: 2ETH
Code: 0x353655…
Storage: {0x01=>..}

… …

Figure 1: Multiple Ethereum transactions interact to deter-
mine the transitions of Ethereum blockchain states.

2.2 Consensus Bugs

Consensus bugs are implementation bugs that make Ethereum
clients transition to incorrect blockchain states, and fail to
reach consensus with other clients that transition to correct
states according to the EVM specification [54]. The Ethereum
community has fostered the development of diverse client im-
plementations with a goal to verify the EVM specification and
make the Ethereum network more secure. Nevertheless, only
two Ethereum clients are used by 98% of nodes participat-
ing in the Ethereum mainnet, as of August 2020 [6]. Around
80% of nodes use Geth [19] written in Go, and 18% use
OpenEthereum [41], previously called Parity, written in Rust.
Therefore, consensus bugs that affect Geth and OpenEthereum
have the most critical impacts on the Ethereum ecosystem.
Known bugs. Consensus bugs in actively used Ethereum
clients are extremely rare. Table 2 shows the list of con-
sensus bugs [34] reported to have been found in Geth, and
OpenEthereum under the former name of Parity. Since the
Ethereum network launched in July 2014 until 2019, only
13 consensus bugs were found. Only 6 of the 13 bugs are
high-impact bugs that would have been exploitable on the live
Ethereum mainnet. In addition to these 6 high-impact bugs,
we were able to find 2 new high-impact consensus bugs in
2020, which we describe in detail later in the paper.

Consensus bugs are extremely rare for the following rea-
sons. First, the Ethereum community makes preventing con-
sensus bugs a top priority, and heavily invest in auditing,
testing, and fuzzing Ethereum clients [18, 21, 22, 33]. Second,
Ethereum clients are continuously being tested on the live

Client Date Consensus bug description Tx Impact Finding method Fluffy (Time)

1 Geth Aug 2020 The balance of a deleted account is carried over to a new account 2 High Fluffy X (291m)
2 Geth Jul 2020 The DataCopy precompile performs shallow rather than deep copy 1 High Fluffy X (386m)
3 Geth Mar 2019 Block timestamps exceeding uint64 lead to a wrong block hash 1 High Unknown N/A
4 Parity Oct 2018 The SSTORE gas refund counter does not go below zero when it should 1 Medium Triggered-Testnet X (57m)*
5 Parity Jun 2018 Unsigned transactions are accepted and treated as valid 1 Medium Triggered-Testnet N/A
6 Geth Feb 2018 Subgroups in elliptic curve pairings are not validated properly 1 High Unknown N/A
7 Parity Oct 2017 CREATE in static context without enough balance throws a wrong error 1 High EVMLab X (41m)*
8 Geth Oct 2017 CALL in static context with less than three stack elements crashes 1 Low EVM libFuzzer X (38m)
9 Parity Oct 2017 The gas for the ModExp precompile overflows for certain inputs 1 Low Manual auditing Timeout-12h

10 Parity Oct 2017 RETURNDATACOPY overflows during addition of offset and length 1 Low EVM libFuzzer X (14m)*
11 Parity Oct 2017 The gas for the ModExp precompile overflows for large numbers 1 Low EVMLab X (15m)
12 Parity Oct 2017 RETURNDATASIZE from a precompile returns a non-zero size 1 Low EVMLab X (2m)
13 Geth Feb 2017 The EVM stack underflows for SWAP, DUP, and BALANCE 1 High Unknown X (6s)
14 Geth Jan 2017 Undisclosed - High Unknown N/A
15 Geth Nov 2016 Fails to revert the deletion of touched accounts on out of gas 1 High Triggered-Mainnet X (5m)

Table 2: The list of consensus bugs [34] found in Geth and Parity, which is the former name of OpenEthereum. The first two
bugs are new bugs found by Fluffy. The number of transactions (Tx) indicates the minimum number of depending transactions
required to trigger the bug. High-impact and medium-impact bugs are bugs that would have been exploitable on the live Ethereum
mainnet and testnet respectively. Low-impact bugs are bugs that were fixed before they became exploitable on a live Ethereum
network. The last column shows the time it takes Fluffy to find the bugs, which is explained in § 7.1.

mainnet for consensus bugs with real-world transactions. On
the mainnet, multiple versions of multiple Ethereum clients
have reached consensus on a total of more than 800 million
transactions as of August 2020.
Ethereum fuzzers. All consensus bugs have been found with
fuzzing [9,36], except for the bugs triggered on a live network,
found with manual auditing, or whose finding method is un-
known. Existing Ethereum fuzzers [18, 22, 33] focus on the
blockchain state. Specifically, the fuzzers model an Ethereum
client as a blockchain state model, in which the blockchain
state is transitioned by an Ethereum transaction. As a result, in
each fuzzing iteration, they generate and test a pre-transaction
blockchain state and a single transaction that transitions the
blockchain state.

However, the blockchain state model of existing fuzzers
falls short to cover the full search space for finding consensus
bugs. The full search space consists of the set of possible client
program states that can be reached after executing Ethereum
transactions. For each pre-transaction blockchain state (e.g.,
Account A has 0 ETH), the blockchain state model can cover
only a single pre-transaction program state (e.g., account_a
= { ETH: 0, deleted: false}). Consequently, existing fuzzers
fail to test other possible pre-transaction program states (e.g.,
account_a = { ETH: 3, deleted: true}) that represent the same
blockchain state. This leads existing fuzzers to miss consensus
bugs which are triggered only when a transaction is applied
to such other pre-transaction program states.
Bug impacts. Attackers can exploit consensus bugs for net-
work split and theft. First, an attacker can trigger a con-
sensus bug to make buggy client nodes create a fork of
the blockchain, which only they agree on. The transactions

recorded on the forked chain are eventually nullified, when
the consensus bug is fixed and the fork is abandoned [23, 51].
Second, an attacker can steal ETH from certain vulnerable
smart contracts on buggy client nodes. Even if the business
logic of a smart contract is perfectly secure, a consensus bug
can alter how the buggy client executes the contract and allow
the theft of ETH.

Attackers have strong incentives to find and exploit con-
sensus bugs. Attackers can short ETH on cryptocurrency ex-
changes after triggering a consensus bug, with the expectation
that the price of ETH will fall, when investors learn about the
attack and lose trust in Ethereum. Attackers also can trade
their ETH with an off-chain item (e.g., other cryptocurrency
such as Bitcoin [39]) on the forked chain after triggering the
bug, such that the traded ETH is given back to them when
the bug is fixed and the forked chain is abandoned. Finally,
attackers can steal ETH from vulnerable smart contracts.

3 Overview

We describe Fluffy, a multi-transaction differential fuzzer for
finding consensus bugs in Ethereum. Unlike existing fuzzers
which use the blockchain state model, Fluffy fully covers the
search space for finding consensus bugs, by modelling an
Ethereum client as a client program state model. Using this
client program state model where the client program state
is transitioned by a transaction, Fluffy tests a sequence of
multiple transactions in each iteration. In addition, Fluffy
uses different Ethereum clients as cross-referencing oracles.

Figure 2 illustrates an overview of Fluffy. First, Fluffy

Tx1 {Create,
Data =

0x60..., ...}

Tx2 {Call,
Value =
3ETH, ...}

Tx3 {Create,
Data =

0x35..., ...}

Block {Number:
1000000, ...}

Block {Number:
3000000, ...}

Client A

Client B

Fluffy Ethereum Clients

…

Corpus
Pick

Mutate

Tx1

Mutator 1

2

S3
S2
S1

S3'
S2'
S1'

…

Coverage feedback & States4

S0 S1 Tx2 S2 Tx3 S3

Tx1 Tx2 Tx3

3 Execute
States

Checker

Test Case

Save5

S0 S1' S2' S3'

Figure 2: An overview of Fluffy. Fluffy first selects a test case from the corpus (1©). Next, Fluffy mutates transactions in the
test case using a semantic-aware mutation strategy (2©). Fluffy then executes the new test case on multiple Ethereum clients
(3©). The clients transition the initial blockchain state to new states, while executing the transactions in the test case. When the
execution completes, Fluffy collects the new states and coverage feedback (4©). Fluffy saves the new test case if new code paths
are discovered (5©). Fluffy proceeds to the next iteration if the clients transitioned to the same states, and crashes otherwise.

selects a test case from the corpus of previously executed
test cases (1©). Each test case contains multiple transactions,
and information about dependencies between the transactions.
Fluffy then generates a new test case by mutating the transac-
tions in the selected test case using a semantic-aware mutation
strategy (2©). Fluffy then executes the new test case on mul-
tiple Ethereum clients (3©). The clients transition the initial
blockchain state (S0) to new states (Client A: (S1, S2, S3),
Client B: (S1′, S2′, S3′)), while executing the transactions
(Tx1, Tx2, Tx3) in the test case. When the execution com-
pletes, Fluffy collects the new blockchain states and code
coverage feedback from the clients (4©). Fluffy saves the
new test case in the corpus if new code paths are discovered
(5©). Fluffy cross-checks the blockchain states collected from
different clients, and crashes if the clients transitioned to a
different state during execution (S1 != S1′ || S2 != S2′ || S3 !=
S3′). Otherwise, Fluffy proceeds to the next fuzzing iteration.

4 Design

We describe the design of Fluffy, focusing on the execution
model, the test case, and the mutation algorithm.

4.1 Execution Model

We modify existing Ethereum clients to provide an execution
model that enables efficient multi-transaction fuzzing.
Genesis account. We modify clients to use an initial
blockchain state that contains the genesis account, which
we define as an EOA that has a large balance of ETH. The
genesis account serves as the starting point for creating new
smart contracts and invoking the code of the contracts (i.e.,
we set the sender of transactions to the genesis account).
Activated addresses. We modify clients to convert 20-byte
Ethereum addresses to activated addresses, which we define

as an address either owned by a precompiled contract, or
owned by a contract created in previous EVM execution. The
rationale is that it is extremely inefficient to explore the 20-
byte Ethereum address space, especially given that we rewrite
blockchain history and almost all of the addresses are not
used by a contract. Moreover, we cannot know in advance
which addresses will be activated and used by smart contracts
in the future, since new contracts can be created dynamically
during the execution of EVM bytecode (CREATE).

4.2 Test Case
We use test cases that are tailored to multi-transaction fuzzing.
Figure 3 shows the data structure of test cases used in Fluffy.
We execute test cases on Ethereum clients through iterating
over the blocks and the transactions of each block in the
list order, and applying each transaction to the blockchain
state. Our design has several unique characteristics that enable
efficient multi-transaction fuzzing.

First, we enable mutating the context of transactions, which
we define as the ordered sequence of transactions that are ex-
ecuted prior to the transaction. Our approach is in contrast to
existing approaches [18, 22, 33] that directly generate a pre-
transaction blockchain state and test a single transaction. The
blockchain state mutation strategy of existing approaches are
limited to testing only a single pre-transaction client program
state for each pre-transaction blockchain state. In contrast, our
approach is able to generate and test various pre-transaction
client program states (e.g., (account_a = { ETH: 0, deleted:
false}), (account_a = { ETH: 3, deleted: true})) for each pre-
transaction blockchain state (e.g., Account A has 0 ETH).
This is because the values of program variables of Ethereum
clients can change in various ways depending on which se-
quence of transactions are executed. This lets us find bugs
like the transfer-after-destruct bug (§ 6.2), which requires test-
ing particular pre-transaction client program states that the

class FluffyTestCase:
Block[] blocks

class Block:
Transaction[] transactions
int versionNumber // hard-fork upgrades
int timestamp // between prev/next block
// Constants: author, gasLimit, ...

class Transaction:
int gasLimit // minimum to threshold
int value // 0, 1, or random
byte[] data // bytes
// Constants: signature, gasPrice, ...

class CreateContract extends Transaction:
byte[] constructor // invoked bytecode
byte[] codeToReturn // code of new contract

class MessageCall extends Transaction:
int receiver // activated address

Figure 3: The data structure of test cases used in Fluffy.

blockchain state mutation strategy is unable to generate.
Second, we introduce the constructor and the code-to-return

fields for contract creation transactions. These fields, along
with a number of injected instructions which we describe later,
become part of the data field. Our approach enables directly
mutating the code of the newly created smart contracts, which
is set to the code-to-return when the transaction completes.
Existing Ethereum fuzzers [18, 22, 33] do not consider this
approach, since they execute a single transaction per fuzzing
iteration and do not invoke the code of smart contracts created
by transactions.

Third, we limit the possible values of transactions and block
parameters to reduce wasting CPU cycles in meaningless mu-
tations and executions. We use constant values for parameters
that have limited effects on how clients execute transactions.
Our approach reduces the overhead of mutating and executing
multiple transactions.

4.3 Mutation

We use three mutation strategies to mutate test cases: context
mutation, bytecode mutation, and parameter mutation. Our
bytecode and context mutation strategies have not been em-
ployed in existing Ethereum fuzzers [18, 22, 33]. Minor parts
of the parameter mutation strategy, such as setting the times-
tamp of a block within a certain range, share some similarities
with existing fuzzers.
Context mutation. We randomly mutate the list of blocks
and the list of transactions to mutate transaction contexts. We
use four strategies: add, delete, clone, copy. We add a new
block or a new transaction to the list, or delete an existing one.

Transaction (Contract creation)
byte[] data

// byte[] constructor

1: …

2: …

// Skip code-to-return

15: PUSH1 0X1b

16: JUMP

// byte[] codeToReturn

17: ….

18: ….

// Copy and return

27: PUSH1 0x0a

28: PUSH1 0x11

29: PUSH1 0x11

30: CODECOPY

31: PUSH1 0x0a

32: PUSH1 0x11

33: RETURN

EVM Memory

Execute
Constructor

1

Copy to EVM
Memory

3

Skip Code-
To-Return

2

Bytes returned
(Code of the new
smart contract)

// codeToReturn

0x…

Return the
copied Code-
To-Return

4

0: 0x00

1: 0x00
2: 0x00
…

// codeToReturn

17: ….

18: ….

…

Figure 4: Fluffy mutates the data field of contract creation
transaction by mutating the constructor field and the code-to-
return field that become part of the data field along with a
number of injected bytecode instructions. When the transac-
tions are executed, the constructor is executed and the code-
to-return is returned.

We also clone an existing block or a transaction, or copy its
contents to another block or transaction.
Bytecode mutation. We mutate the constructor and the code-
to-return fields of contract creation transactions to mutate
bytecode. Specifically, we randomly add, delete, mutate, and
copy bytecode instructions in the fields. Among the vari-
ous EVM instructions, we do not add the PUSH instructions
(PUSH1-PUSH32), which make EVM push a number of fol-
lowing bytes (1B-32B) in the fields onto the EVM stack,
rather than interpreting the bytes as bytecode instructions and
executing them. Our approach enables preserving the seman-
tics of bytecode instructions that are not directly modified by
Fluffy across mutations.

We then update the data field using the mutated constructor
and code-to-return, as illustrated by Figure 4. We concate-
nate the constructor, instructions to skip the execution of the
code-to-return (JUMP), the code-to-return, instructions to copy
the code-to-return to the EVM memory (CODECOPY), and in-
structions to return the copied bytecode (RETURN). When the
transaction is executed and the bytecode of the data field is
invoked, the constructor is executed and the code-to-return is
returned.

In contrast, it is difficult to generate smart contract con-
structors that return appropriate bytecode, if we treat the data
field as a single sequence of instructions and mutate the data
field as a whole. The reason is that the generated constructor
is likely to prematurely terminate before invoking RETURN

to return bytecode. Moreover, appropriate bytes should be
stored in the right region of the EVM memory before invok-
ing RETURN, and a small mutation is likely to completely alter
the stored bytes.

Nevertheless, we do note that in Fluffy the code of a smart
contract is not always equal to the code-to-return field of the
transaction that creates the contract. This is because errors
such as EVM stack underflow can still occur during the exe-
cution of the constructor field of the transaction, and prevent
the following injected instructions to copy and return the
code-to-return.
Parameter mutation. We mutate transaction parameters as
follows. We simply set the transaction receiver address to
a random integer, assuming that the target clients convert it
to an activated address. We set the gas limit to the sum of
the minimum gas required for EVM to not reject the transac-
tion before invoking any bytecode, and a randomly generated
number in the range between 0 to a threshold to avoid long se-
quences of meaningless instructions such as an infinite while
loop. For example, we can set the threshold to 1.6 million
gas that allows executing the CREATE instruction 50 times,
which is the most expensive instruction that costs 3.2 thou-
sand gas. 1.6 million gas costs only around 0.8 ETH on the
Ethereum mainnet as of August 2020. In case of value, which
determines the amount of ETH transferred by the transaction,
we randomly choose 0, 1, or a random integer.

We also randomly mutate the parameters of blocks. Most
notably, we mutate the block version number, which deter-
mines the version of EVM that executes the transaction. Since
Ethereum launched in 2014, there has been around 10 non-
backward compatible EVM hard-fork upgrades that came into
effect at particular block version numbers. We use the version
numbers that mark the start of a new EVM hard-fork upgrade,
rather than covering all of the block version numbers used in
mainnet, which are more than 10 million as of August 2020.

5 Implementation

We implement Fluffy on top of libFuzzer [30] using Rust and
Go. We adopt the basic infrastructure of libFuzzer, including
the code coverage bitmap and test case scheduling, but intro-
duce several key components. We replace the default mutator
of libFuzzer with our multi-transaction mutator. We also intro-
duce fuzzing harnesses for OpenEthereum and Geth to enable
in-process fuzzing and several other optimizations. Finally,
we implement a crash debugger for analyzing crashes due
to consensus bugs. The rest of the section describes notable
implementation details.

5.1 Fuzzing Harnesses
We implement fuzzing harnesses as long-running processes
that integrate with the transaction processing components of
Ethereum clients.

In-process fuzzing. We reuse fuzzing harnesses across
fuzzing iterations to avoid having to spawn new Ethereum
client processes for every new test. We link the mutator with
the OpenEthereum harness to mutate test cases and collect
code coverage statistics in the same process, and run the Geth
harness in a separate process. We use Linux FIFO files for
exchanging test cases and execution results between the two
processes.

Initial blockchain state. In addition to the genesis account,
we add to the initial blockchain state accounts with a balance
of 1 Wei (1×10−18 ETH) under the addresses of precompiled
contracts. These non-zero balance accounts let us avoid trig-
gering a false positive consensus bug in Geth related to a bug
that was previously exploited in the live Ethereum mainnet
(Bug #15 in Table 2) [51].

Activated addresses. We maintain a list of activated ad-
dresses in the harnesses. While executing transactions, we
add addresses of newly created contracts to the list and con-
vert Ethereum addresses to activated addresses (i.e., acti-
vatedList[bigInteger(address) % activatedList.length()]). To
test deleted addresses, we do not remove addresses from the
list when contracts invoke SELFDESTRUCT and destroy them-
selves.

Transaction verification. Ethereum clients use the
secp256k1 ECDSA algorithm to verify the signature of
transactions [54]. This requires signing and verifying each
of the many transactions that Fluffy generates, which is
costly considering that most of EVM bytecode instructions
consume few CPU cycles. We skip these procedures in our
harnesses, since we do not focus on signature verification.

Jump destinations. EVM throws an error if the destination of
JUMP and JUMPI is not JUMPDEST, which marks a valid jump
target. This increases the chance of Fluffy terminating pre-
maturely due to an error when testing loops and conditional
branches. To address this issue, we disable the checking of
JUMPDEST and allow jumping to non-JUMPDEST instructions
in our harnesses.

Number of transactions. Fluffy uses its mutator and the test
case scheduler to determine the number of transactions it
should use per test case. Fluffy randomly generates test cases
with few transactions to build the initial corpus. If new code
paths are not easily discovered with few transactions, Fluffy
gradually generates test cases with more transactions through
the transaction context mutations, adding the new test cases
to the corpus if they discover new code paths. Fluffy provides
an option to configure a libFuzzer parameter (-len_control),
which determines whether to prefer to generate small test
cases over large test cases. Fluffy also provides an option to
set a hard limit on the number of transactions in a fuzzing
iteration. We note that the search space of Fluffy, which is the
Ethereum client program state model, is constant regardless
of the number of transactions that Fluffy executes for each
test case.

// CALL to precompiled

// DataCopy (0x0..04)

…..

21: PUSH1 0X04 // addr

23: PUSH2 0xffff // gas

26: CALL

// Corrupt copied data

27. PUSH1 0xf9 // value

29: PUSH1 0x00 // offset

31: MSTORE

EVM

(Spec)

byte[]

returnData

byte[]

memory

Memory Output of
last CALL

Geth

(Impl)

0: 0x32
… nil

Before CALL (line 20) CALL (line 26) MSTORE (line 31)Bytecode

0x32 …

byte[]

returnData

byte[]

memory

nil

Memory Output of
last CALL

0: 0x32
… 0x32

Memory Output of
last CALL

0: 0xf9
… 0x32

0x32 …

byte[]

returnData

byte[]

memory

0xf9 …

Figure 5: A minimal test case for the shallow copy bug in Geth. An attacker can exploit this bug to corrupt data copied through
the precompiled DataCopy contract, making Geth deviate from the EVM specification.

5.2 Crash Debugger

The crash debugger enables analyzing crashes due to consen-
sus bugs.
Analyzing the root cause. We find the first states that the
clients output differently while processing the test case, which
we call triggering states. We also find the last state that can
reach the triggering states when used as the starting point of
EVM execution, which we call the starting state. We then
find which EVM bytecode instruction invoked during the
execution of transactions between the starting state and the
triggering states cause different behaviors in Ethereum clients.
Finally, we use tools like Delve [14] on corresponding code
in Ethereum clients to analyze the root cause.
Validating exploitability. We compare the latest blockchain
state in the Ethereum mainnet with the starting state of the bug.
We check whether an Ethereum user can transition the latest
blockchain state to a new state that includes the accounts in the
starting state. We also check whether the transactions between
the starting state and the triggering states are processed by the
latest version of EVM used in the mainnet. Finally, we convert
the transactions into new transactions that can reproduce the
bug on vanilla Ethereum clients. In particular, we convert
active addresses to Ethereum addresses through examining
EVM traces [19,41], and insert JUMPDESTs where appropriate.

6 New Consensus Bugs

Fluffy found two new consensus bugs in Geth which were
exploitable on the live Ethereum mainnet: shallow copy bug
and transfer-after-destruct bug. Existing ethereum fuzzers [18,
22, 33] that test only a single transaction per iteration are not
able to find the transfer-after-destruct bug, because finding
it requires testing particular pre-transaction client program
states which the fuzzers are unable to generate. Although the
shallow copy bug can be found by testing a single transaction,
existing fuzzers failed to reach deep states of Ethereum clients
and failed to find the bug during the time from when the bug
became exploitable in the live Ethereum mainnet in November

2019 (Geth v1.9.7 release) to when we found and reported
the bug in July 2020 [43]. In this section we describe the
bugs using minimal test cases, and discuss the impact of the
bugs. We also explain how the bugs were reported, fixed, and
triggered, with a focus on vulnerability disclosure issues that
occurred.

6.1 Shallow Copy Bug

The root cause of this bug is that the implementation of the
precompiled DataCopy contract (address: 0x0..04) in Geth
performs a shallow copy upon invocation, although the con-
tract should perform a deep copy according to the EVM spec-
ification.

Figure 5 shows a minimal test case that triggers the bug.
Suppose that a message call transaction is issued to a con-
tract account that contains bytecode instructions shown in the
figure. The figure shows the inner workings of the EVM spec-
ification (top) as well as the Geth implementation (bottom)
when processing the bytecode of the contract invoked by the
transaction. Geth implements the EVM memory and the out-
put of the last CALL to external contracts with byte[]memory
and byte[]returnData respectively, which are pointers to a
byte buffer.

The following steps trigger the bug. Between line 1 to line
20, the contract stores a byte 0x32 in the EVM memory at
offset 0. Geth carries out the execution by storing the byte
0x32 in the byte buffer that byte[]memory points to. At this
point byte[]returnData is nil, since no CALL has been made
from the contract yet.

Next, the contract CALLs the DataCopy contract at address
0x0..04, passing in the 1-byte data at the EVM memory off-
set 0 as the argument. This leads to the execution of the
DataCopy implementation in Geth, which is a single line of
code that simply returns the byte[] pointer that is given to
it. In this case the pointer points to the 1-byte data in the
byte buffer that byte[]memory is pointing to. Geth then sets
byte[]returnData to this pointer.

The contract corrupts the copied data by simply storing

// Contract (Address: A)

1: If VALUE == 0

2: SELFDESTRUCT

3: ELSE

4: STOP

// Contract (Address: B)

1: CALL A with 0 ETH

2: CALL A with 2 ETH

EVM

(Spec)

Account A

Geth

(Impl)

Transaction 1 (C⇒B, 5 ETH):

CALL A with 0 ETH (line 1)

Transaction 1 (C⇒B, 5 ETH):

CALL A with 2 ETH (line 2)
Transaction 2 (C⇒A, 1 ETH)Pseudocode

Balance: 0ETH

Account object

Balance: 0ETH

Deleted: true

Address
A

Account object

Balance: 2ETH

Deleted: true

Address
A

Account object

Balance: 3ETH

Deleted: false

Address
A

Code: 0x6003…

Account A

Balance: 2ETH

Code: 0x6003…

Account A

Balance: 1ETH

Figure 6: A minimal test case for the transfer-after-destruct bug in Geth. Transaction 1 invokes B, which leads to two CALLs to A.
Transaction 2 invokes A. An attacker can exploit this bug to carry over the balance of a deleted account to a new account under
the same address, making Geth deviate from the EVM specification.

new data, 0xf9, in the EVM memory at offset 0 (MSTORE). Ac-
cording to the specification, storing data in the EVM memory
should never affect the data copied through DataCopy. How-
ever, in Geth, the contents of byte[]returnData changes
from 0x32 to 0xf9.

Now, the contract can corrupt the blockchain state, for
example through a sequence of bytecode instructions that
stores the corrupted data in the storage of the contract
(RETURNDATACOPY, MLOAD, SSTORE). After the transaction,
Geth expects that 0xf9 is stored in the storage, whereas
OpenEthereum and all other clients that comply with the
specification expect 0x32.

Although this shallow copy bug is conceptually simple to
understand, it is difficult to detect through code reviews, and
tools such as static checkers which the Ethereum developers
are actively using. The reason is that in the actual Go code
of Geth it is not straightforward to track how pointers move
across multiple files, classes, and functions.
Impact. When exploited, this bug can trigger a network split
where Geth client nodes create a fork of the blockchain that
stores 0xf9 in the storage. Furthermore, this bug can be ex-
ploited for smart contract theft. For example, suppose a con-
tract invokes DataCopy by passing in an Ethereum address,
overwrites the address with user input, and then transfers ETH
to the copied address returned from DataCopy. Attackers can
withdraw ETH from this contract to their account by specify-
ing the address of their account as the user input, while others
believe that the result of DataCopy should always be equal
to the original address. Existing techniques for finding smart
contract vulnerabilities [26, 32, 40, 49, 50, 57] are not capable
of finding such vulnerability because they assume that the
underlying Ethereum clients faithfully carry out the semantics
of EVM bytecode instructions and precompiled contracts.

6.2 Transfer-After-Destruct Bug
The root cause of this bug is that Geth carries over the balance
of a deleted account object to the newly created account object

under the same Ethereum address, although it should not
according to the EVM specification.

Figure 6 shows a minimal test case that triggers this bug.
The initial blockchain state consists of two contracts. If the
value of the transaction that invokes the contract is 0 ETH,
the contract under address A destroys itself by invoking
SELFDESTRUCT. If not, contract A simply terminates execu-
tion with STOP. The contract under address B issues two
CALLs to A. To trigger the bug, we send a transaction to B,
and then a transaction to A. The figure illustrates how the
EVM specification (top) and the Geth implementation (bot-
tom) handle the two transactions.

The first transaction (Transaction 1) is a message call trans-
action sent to B. The code of contract B is then executed as
follows. First, we CALL A with 0 ETH (Contract B, line 1),
which results in destroying contract A with SELFDESTRUCT.
Geth carries out SELFDESTRUCT by marking the account ob-
ject under address A as deleted, rather than destroying the
account object as a whole. Geth also sets the balance of the
account object to 0 ETH. Next, we CALL A with 2 ETH (Con-
tract B, line 2). This makes Geth look up the account object
under address A, and add 2 ETH to the balance of the object.

When the first transaction finishes, Geth transitions to
a blockchain state where the account under address A is
nil, through recognizing that the account object is marked
as deleted and ignoring the balance of 2 ETH. This lets
Geth comply with the EVM specification, which speci-
fies that all information associated with the addresses of
SELFDESTRUCTed accounts should become nil after a transac-
tion is processed [54].

However, Geth fails to comply with the EVM specification
when processing the second transaction (Transaction 2). The
second transaction is a message call transaction sent to A
with 1 ETH. According to the specification, the balance of
the account under address A should become 1 ETH after this
transaction, since the balance of the account was nil, and thus
was 0 ETH before the transaction. However, Geth mistakenly
thinks that the account has 3 ETH after the transaction. When

processing the transaction, Geth does recognize that the ac-
count object under address A is marked as deleted. Geth thus
attempts to replace the old object with a new account object,
but mistakenly carries over the balance of the old object to that
of the new object during the process. This results in adding
to the balance of the new account object 2 ETH from the old
object, as well as 1 ETH from the transaction.
Impact. Similar to the shallow copy bug, this bug can be ex-
ploited for network split and theft. Moreover, this bug makes
the total supply of ETH in circulation inconsistent between
Geth and other Ethereum clients, which adds to the argu-
ment that the total supply of Ethereum is impossible to calcu-
late [1, 53].

6.3 Responsible Vulnerability Disclosure

Responsible vulnerability disclosure in cryptocurrencies is
hard because decentralized systems give no single party au-
thority to push code updates [7]. To ensure that Ethereum
mainnet nodes update securely, we privately reported the bugs
to the Geth developers through the Ethereum bug bounty
program [21]. Geth developers confirmed that the bugs are
exploitable on the live Ethereum mainnet, and silently fixed
the bugs in new versions of Geth to reduce the risk of an at-
tacker exploiting the bugs. Ethereum mainnet nodes upgraded
organically over time, thereby fixing the bugs.

Unfortunately, not all mainnet nodes upgraded, and this
caused nodes using Geth v1.9.7 to v1.9.16 to hard fork the
Ethereum block chain when the shallow copy bug was trig-
gered four months later, on November 11th, 2020 [2, 11,
15, 43, 45]. Affected Ethereum infrastructure services and
decentralized applications (DApps) went down, and cryp-
tocurrency exchanges halted the trading of ETH. Around 30
Ethereum blocks from block 11234873 on the forked chain
were lost [23], which transferred approximately 8.6 million
USD worth of ETH. The blockchain community considers
this hard fork the greatest challenge since the infamous DAO
hack of 2016 [11, 13].

The hard fork sparked an active discussion on vulnerability
disclosure protocols [11, 43, 52]. As a result, the Geth team
created a public transparency policy for disclosing bugs [19].
The Geth team also revealed security advisories, including an
advisory on the shallow copy bug (CVE-2020-26241) [35].

7 Evaluation

We evaluate Fluffy to answer the following questions.

• Does Fluffy effectively find real-world consensus bugs
in Ethereum? (§ 7.1)

• Does Fluffy cover deep code paths that lead to consensus
bugs in Ethereum clients? (§ 7.2)

• Does Fluffy efficiently test many instances of multiple
transactions that rewrite blockchain history? (§ 7.3)

• Does Fluffy enable analyzing crashes triggered by con-
sensus bugs? (§ 7.4)

We evaluate Fluffy on Intel(R) Xeon(R) CPU E5-2680
v3 (12 cores) with 128 GB memory. We compare Fluffy
with EVMLab [18], which is an open-source, state-of-the-art
differential fuzzer that is maintained by Ethereum developers.
EVMLab is also the only existing fuzzer that found a high-
impact consensus bug that would have been exploitable on
the live Ethereum mainnet [34].

Unless noted otherwise, we configure the fuzzers as fol-
lows. For Fluffy, we configure libFuzzer parameters to run
24 parallel fuzzing instances (-fork=24), and prefer gener-
ating and executing small inputs rather than large inputs (-
len_control=100). For EVMLab, we run 24 instances of the
fuzzer in parallel. We run the fuzzers without any seed corpus
for each experiment.

We use OpenEthereum v3.0.0 and Geth v1.9.14 as the
target programs. EVMLab uses the vanilla version of the
Ethereum clients. Fluffy uses the modified version that also
fixes the two new bugs Fluffy found, since without the bug
fixes Fluffy crashes due to the bugs during experiments.

7.1 Bug Finding Capability

We measure the time it takes for Fluffy to find the consensus
bugs that occurred in Geth and OpenEthereum including the
two new bugs Fluffy found, which are listed in Table 2. For
each bug, we port the bug to OpenEthereum v3.0.0 or Geth
v1.9.14, run Fluffy for 12 hours, and check if Fluffy finds the
bug. We do not experiment with Bug #3 and Bug #5 which
are associated with block mining and signature verification
that Fluffy and existing fuzzers for Ethereum [18, 22, 33]
do not focus on, Bug #6 which was fixed by switching to
a different external library, and Bug #14 whose details are
undisclosed [34].

Table 2 presents the result of the experiment. Fluffy
finds 10 out of 11 real-world consensus bugs in Geth and
OpenEthereum within just 12 hours of fuzzing. Among the
10 bugs, Fluffy finds Bug #7 and Bug #10 with a configura-
tion that bounds the number of transactions and the length
of the data of transactions, and finds Bug #4 with an earlier
implementation of the multi-transaction mutator. The only
bug Fluffy fails to find within 12 hours is Bug #9, which was
originally found with manual auditing.
Result. Fluffy finds 10 out of 11 real-world consensus bugs in
Geth and OpenEthereum within just 12 hours of fuzzing. The
result shows that Fluffy is able to effectively find consensus
bugs in Ethereum.

0.0k

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

 0 1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
co

v
er

ed
 c

o
d

e
p

at
h

s

Time (hour)

Fluffy
Fluffy−Random−Bytecode

EVMLab

Figure 7: The number of code paths covered by Fluffy, a
modified version of Fluffy called Fluffy-Random-Bytecode,
and EVMLab over time.

7.2 Code Coverage
We measure the number of code paths covered by Fluffy, a
modified version of Fluffy called Fluffy-Random-Bytecode,
and EVMLab. Fluffy-Random-Bytecode simply generates
random bytecode instructions rather than using the sophisti-
cated bytecode mutation strategy (§ 4.3) of Fluffy. In case of
Fluffy and Fluffy-Random-Bytecode, we measure the size of
the corpus, which represents the number of code paths, over
time. In case of EVMLab, which does not use and report code
coverage, we replay the corpus it generates using libFuzzer
on OpenEthereum.

Figure 7 shows the covered code paths over time. The result
shows that Fluffy covers more code paths than EVMLab at
all times. In the first 1 hour, Fluffy quickly covers more than
4,000 code paths, whereas EVMLab covers less than 2,000
paths. After 12 hours, Fluffy covers 5,809 code paths, which
is 2.7 times as many code paths as 2,185 code paths that
EVMLab covers.

Fluffy-Random-Bytecode performs better than EVMLab,
but worse than Fluffy at all times. After 12 hours, Fluffy-
Random-Bytecode covers 3,202 code paths, which is close
to half of the paths covered by Fluffy and 1.5 times as many
code paths as those covered by EVMLab. This show that the
bytecode mutation strategy of Fluffy contributes significantly
to the effectiveness of Fluffy.
Result. Fluffy explores 2.7 times as many code paths as EVM-
Lab. The result shows that Fluffy is able to cover deep code
paths in Ethereum clients that lead to consensus bugs.

7.3 Throughput
We evaluate whether Fluffy efficiently tests many instances of
multiple transactions. For this evaluation we measure metrics
such as the number of processed transactions, the number of
executed fuzzing iterations, and the CPU usage.

Figure 8 shows the total number of Ethereum transactions

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
u
m

u
la

ti
v

e
co

u
n

t

Time (hour)

Fluffy (Transactions)
Fluffy (Fuzzing iterations)

EVMLab

Figure 8: The total number of transactions and fuzzing iter-
ations processed by Fluffy and EVMLab over time. Fluffy
processes a varying number of transactions across iterations,
whereas EVMLab processes 1 transaction per iteration.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0 5 10 15 20 25 30 35 40 45

C
o

u
n

t

Number of transactions per fuzzing iteration

Figure 9: The distribution of the number of transactions that
Fluffy processes per fuzzing iteration in 12 hours.

and fuzzing iterations processed by Fluffy and EVMLab over
time. Fluffy processes a varying number of transactions across
iterations, whereas EVMLab processes exactly 1 transaction
in every iteration. After 12 hours, Fluffy processes more than
350 million transactions and more than 38 million fuzzing
iterations. On average, Fluffy processes 9.2 transactions per
fuzzing iteration. In contrast, EVMLab processes less than
700 thousand transactions and fuzzing iterations after 12
hours. In total, Fluffy processes 510 times as many trans-
actions and 55 times as many iterations as EVMLab.

We then examine the number of transactions that Fluffy
processes in each fuzzing iteration. Figure 9 shows the distri-
bution of the number of transactions. 3 to 8 transactions are
processed most frequently, except for the test cases with zero
transaction. The largest number of transactions that Fluffy
tests in an iteration for this specific 12-hour fuzzing experi-
ment is 46. As a comparison, the number of transactions that
have produced the blockchain state in the live Ethereum main-
net is more than 800 million transactions, as of August 2020.
Therefore, this result shows that Fluffy tests Ethereum clients

0

10
0

10
1

10
2

10
3

10
4

10
5

 0 1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
ex

ec
s

p
er

 m
in

u
te

Time (hour)

Fluffy
EVMLab

Figure 10: The number of fuzzing iterations executed per
minute over time. We run the fuzzers in sequential mode
without parallel fuzzing for this experiment.

using a small number of transactions that rewrite blockchain
history.

Although the largest number of transactions is 46 for this
experiment, Fluffy can test more or fewer number of transac-
tions in a different experiment that runs for the same 12 hours,
since how Fluffy determines the number of transactions is
nondeterministic (§ 5.1). Furthermore, there can be consensus
bugs that require more than 46 transactions to trigger.

Next, we examine the throughput of a single fuzzing in-
stance through running Fluffy and EVMLab in sequential
execution mode without parallel fuzzing for 12 hours. Fig-
ure 10 shows the number of fuzzing iterations executed per
minute over time.

Fluffy achieves and sustains an order of magnitude higher
throughput compared to EVMLab. In the beginning, Fluffy ex-
ecutes up to 16,805 fuzzing iterations per minute. We observe
that in the beginning Fluffy generates and executes transac-
tions that invoke a small number of bytecode instructions,
which allows Fluffy to quickly execute more iterations. The
throughput decreases gradually over time, as Fluffy discov-
ers new inputs that invoke many bytecode instructions and
executes mutations of those inputs. After 12 hours, Fluffy
executes around 3,500 fuzzing iterations per minute.

In contrast, the throughput of EVMLab is overall flat, but
fluctuates wildly at certain times during fuzzing. In particu-
lar, EVMLab fails to complete a fuzzing iteration for more
than a minute between 6 and 7 hours, and 10 and 11 hours
after fuzzing. We observe that such fluctuations occur when
EVMLab is stuck in processing an excessively long sequence
of bytecode instructions. Fluffy does not experience this, be-
cause Fluffy limits the number of bytecode instructions that
are executed through limiting the gas limit of transactions.

We now measure the CPU usage to analyze why Fluffy
achieves higher throughput, as both Fluffy and EVMLab are
CPU-bound. Figure 11 shows the CPU usage breakdown
when running Fluffy and EVMLab. We obtain the numbers

 0

 20

 40

 60

 80

 100

Fluffy EVMLab

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

Fuzzer
Geth

OpenEthereum
Others

Figure 11: The CPU usage breakdown when running Fluffy
and EVMLab.

through running the Linux perf command for one minute
while running each fuzzer.

In case of Fluffy, most of the CPU time is spent in executing
the code of OpenEthereum and Geth. We also observe that
the majority of the CPU time spent in the clients is used to
execute the core EVM interpreter logic, where most of the
consensus bugs have been found.

In contrast, EVMLab suffers from the overhead of execut-
ing its own code, which is written in Python, and handling
other tasks. We observe that much of the other tasks are as-
sociated with Docker [37], although EVMLab reuses Docker
containers when spawning new OpenEthereum and Geth pro-
cesses to test new inputs. We also observe that a large portion
of the CPU time for executing the clients is spent in parsing
test inputs and initializing the clients, where consensus bugs
are unlikely to be found.

We emphasize that Fluffy does not outperform EVMLab
by simply using a more efficient programming language and
using specific configurations. In Figure 11, excluding the
overhead of the fuzzer code (Fuzzer) and other tasks (Others),
the CPU used for the Ethereum clients (OpenEthereum and
Geth) is 18.2% for EVMLab and 89.9% for Fluffy, which
is 4.9×. However, Fluffy processes 510× transactions and
55× fuzzing iterations compared to EVMLab, which is much
larger than 4.9×. This shows that Fluffy executes Ethereum
clients much more efficiently, even if the overhead external to
Ethereum clients is the same as EVMLab.
Result. Fluffy processes 510 times and 55 times as many
transactions and fuzzing iterations as EVMLab. The result
shows that Fluffy efficiently tests many instances of multiple
transactions that rewrite blockchain history.

7.4 Debugging
We used the crash debugger of Fluffy to analyze crashes.
We encountered a false positive bug, when we set the initial
blockchain state to a state that contains only the genesis ac-
count. We analyzed that the latest mainnet blockchain state

cannot transition to a state that contains the accounts in the
starting state of the bug, because the starting state contains
a zero-balance account under the address of a precompiled
contract. Creating such account was possible only before a
previous EVM upgrade (related to Bug #15 in Table 2). To
avoid triggering this false positive bug, we added to the ini-
tial blockchain state non-zero balance accounts under the
addresses of precompiled contracts. We also used the crash
debugger to analyze the shallow copy bug and the transfer-
after-destruct bug, and create minimal test cases.
Result. Fluffy enables analyzing crashes triggered by consen-
sus bugs.

8 Discussion and Limitations

We discuss future research directions, and limitations of the
current design of Fluffy.
Smart contract blockchains. Our idea of multi-transaction
differential fuzzing can be applied to other blockchains that
provide smart contract capabilities like Ethereum. Smart
contract blockchains have a total market capitalization of
95 billion USD, as of December 2020, and include popular
blockchains such as Ethereum, Cardano, Stellar, EOS, Tron,
Tezos, and Neo [12]. Like Ethereum, multiple depending
transactions which create and invoke smart contracts deter-
mine the transitions of blockchain states in these blockchains.
Therefore, techniques of Fluffy such as multi-transaction test
cases and semantic-aware mutation strategy can be applied to
find consensus bugs in these other blockchains.
Many-client fuzzing. Another research direction is to fuzz
multiple versions of many Ethereum clients in addition to a
single version of OpenEthereum (Rust) and Geth (Go). Al-
though the two clients are used by 98% of nodes partici-
pating in the Ethereum mainnet, as of August 2020 [6], the
Ethereum community is becoming more aware of the bene-
fits of using multiple different clients since the shallow copy
bug we reported was triggered in the live mainnet [15]. Ex-
amples of other Ethereum clients are Aleth (C++), Trinity
(Python), Besu (Java), Nethermind (.NET), and EthereumJS
(Javascript) [16]. Moreover, it is worthwhile to fuzz not only
the latest version of the clients but also previous versions,
since many of the decentralized Ethereum nodes in the main-
net do not immediately upgrade when new versions are re-
leased, and keep on using a previous version [6]. While it
is straightforward to extend the current implementation of
Fluffy to fuzz many clients, it remains a challenge to achieve
high fuzzing throughput while executing multiple transactions
on many clients.
Mutating client program states. Fluffy models an Ethereum
client as a client program state model, rather than an EVM
state model. Nevertheless, Fluffy mutates the Ethereum client
program state indirectly through setting the initial program
state to a corresponding initial EVM state and executing mul-
tiple transactions. This is because, like other fuzzers, Fluffy

does not directly mutate internal states of the target programs.
An alternative approach is to directly mutate client program
states. However, it would be challenging to directly generate
valid client program states that are reachable with transactions,
such that the found bugs are exploitable on the Ethereum
mainnet.
Limitations of differential fuzzing. Similar to existing dif-
ferential fuzzers for Ethereum, Fluffy is unable to find bugs
when the Etherum clients transition to the same incorrect
blockchain state due to the same consensus bug. A practical
solution to this limitation is to fuzz many different versions
of different client implementations, since it is unlikely that
the same bug exists in all of these different clients. A more
fundamental solution is to utilize the EVM specification itself
as an oracle, similar to how Hydra [27] implements an em-
ulator along with a fuzzer. However, this approach reduces
the number of input generation and testing as well as requires
extensive engineering efforts unlike differential testing. We
also note that, to our knowledge, there has been no previous
case of the same bug occurring in multiple Ethereum client
implementations.
Limitations of fuzzing. Like existing fuzzers for Ethereum,
Fluffy inherits the limitations of fuzzing. Although fuzzing
is good at exploring code paths with loose branch conditions
(e.g., x > 0), fuzzing struggles to drive the target program
into paths with tight branch conditions (e.g., x == 0xdead-
beef) [9, 48, 56]. This limitation is demonstrated by Fluffy
failing to find Bug #9 in Table 2 within 12 hours, which re-
quires specific inputs that satisfy tight branch conditions to
trigger. We can address the limitation by combining fuzzing
with concolic execution [9, 25, 48, 56], which interprets target
program variables as symbolic variables and uses constraint
solving to generate specific inputs that satisfy branch condi-
tions.

9 Related Work

Fluffy is the first multi-transaction differential fuzzer for find-
ing consensus bugs in Ethereum. In this section we describe
existing works that are related to Fluffy.
Consensus in blockchains. Consensus in blockchains are
increasingly becoming important as blockchains such as Bit-
coin [39] and Ethereum [17] are becoming increasingly used.
Researchers have proposed various techniques related to con-
sensus in blockchains to improve the scalability, security, and
usability of blockchains [4, 24, 28, 29, 31, 44, 47]. Our work
complements these works by focusing on the implementation
aspects of consensus in blockchains, and finding consensus
bugs in Ethereum clients that lead to network split and theft.
Differential testing for consensus bugs. Differential testing
is an effective software testing method that has been applied
to various systems [3, 8, 10, 36, 42, 55]. Several fuzzers have
been proposed to apply differential testing techniques to find
consensus bugs in Ethereum [18, 22, 33]. These fuzzers gen-

erate a blockchain state and a transaction that transforms the
state. Fluffy is also a differential fuzzer for finding consensus
bugs, but Fluffy generates and runs multiple transactions that
rewrite blockchain history and adopts various optimizations
to improve the fuzzing throughput and the code coverage.
Coverage-guided fuzzing. Coverage-guided fuzzers such as
libFuzzer [30] and AFL [38] leverage code path statistics
to mutate test inputs. Fluffy extends such coverage-guided
fuzzing mechanisms through extending libFuzzer. Leveraging
more sophisticated mechanisms like gradient-guided tech-
niques [46] is left as future work.
Smart contract vulnerabilities. Existing techniques for find-
ing smart contract vulnerabilities [26, 32, 40, 49, 50, 57] focus
on vulnerabilities in the business logic of smart contracts
and transactions, whereas Fluffy focuses on vulnerabilities
in the underlying Ethereum client implementations. For ex-
ample, TxSpector [57] replays transaction history to extract
logic relations, and applies user-specific logic rules to uncover
vulnerabilities such as the re-entrancy vulnerability. In con-
trast, Fluffy generates and tests transactions which have never
occurred in blockchain history to trigger consensus bugs in
Ethereum clients that alter how the vulnerable clients execute
the business logic of smart contracts.

10 Conclusion

Consensus bugs in Ethereum are extremely rare but can be
exploited for network split and theft, which cause reliability
and security-critical issues in the Ethereum ecosystem. Our
fuzzer, called Fluffy, shows how to find consensus bugs hid-
den in deep states of Ethereum clients. Unlike existing fuzzers
for Ethereum, Fluffy supports multi-transaction tests and uses
different Ethereum clients as cross-referencing oracles. Fluffy
also greatly improves the fuzzing throughput and the code cov-
erage with various optimizations: in-process fuzzing, fuzzing
harnesses for Ethereum clients, and semantic-aware multi-
transaction mutation that reduces erroneous test cases. Fluffy
found two new consensus bugs in the most popular Geth client
which were exploitable on the live Ethereum mainnet. Fluffy
is publicly available at https://github.com/snuspl/fluffy.

11 Acknowledgements

We thank our shepherd Ding Yuan and the anonymous re-
viewers for their insightful feedback. We thank the mem-
bers of the Software Platform Lab at Seoul National Uni-
versity for their valuable input. This work was supported by
Institute of Information & communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.2015-0-00221, Development of a Unified
High-Performance Stack for Diverse Big Data Analytics).

References

[1] Adriana Hamacher. So, what is the Ethereum
(ETH) total supply?, August 2020. https:
//decrypt.co/38271/so-what-is-the-ethereum-
eth-total-supply.

[2] Andrey Shevchenko. Binance briefly pauses Ethereum
withdrawals as network suffers ‘minor hard-fork’,
November 2020. https://cointelegraph.com/
news/binance-pauses-ethereum-withdrawals-
as-network-suffers-minor-hard-fork.

[3] George Argyros, Ioannis Stais, Suman Jana, Angelos D.
Keromytis, and Aggelos Kiayias. SFADiff: Automated
Evasion Attacks and Fingerprinting Using Black-box
Differential Automata Learning. In Proceedings of the
23rd ACM Conference on Computer and Communica-
tions Security (CCS), 2016.

[4] Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. Notary: A Device for
Secure Transaction Approval. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[5] Algirdas Avizienis. The N-Version Approach to Fault-
Tolerant Software. IEEE Transactions on Software En-
gineering, 1985.

[6] Bitfly. Ethereum Mainnet Statistics. https://
ethernodes.org, Accessed August 2020.

[7] Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula,
Tim Ruffing, and Aviv Zohar. Responsible Vulnerability
Disclosure in Cryptocurrencies. Commun. ACM, 2020.

[8] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz
Khurshid, and Vitaly Shmatikov. Using Frankencerts
for Automated Adversarial Testing of Certificate Vali-
dation in SSL/TLS Implementations. In Proceedings
of the 35th IEEE Symposium on Security and Privacy
(Oakland), 2014.

[9] George Candea and Patrice Godefroid. Automated Soft-
ware Test Generation: Some Challenges, Solutions, and
Recent Advances. In Computing and Software Science -
State of the Art and Perspectives. Springer, 2019.

[10] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su,
and Jianjun Zhao. Coverage-Directed Differential Test-
ing of JVM Implementations. In Proceedings of the
2016 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2016.

[11] Colin Harper. Ethereum’s ‘Unannounced Hard
Fork’ Was Trying to Prevent the Very Disruption It
Caused, November 2020. https://coindesk.com/
ethereums-hard-fork-disruption.

https://github.com/snuspl/fluffy
https://decrypt.co/38271/so-what-is-the-ethereum-eth-total-supply
https://decrypt.co/38271/so-what-is-the-ethereum-eth-total-supply
https://decrypt.co/38271/so-what-is-the-ethereum-eth-total-supply
https://cointelegraph.com/news/binance-pauses-ethereum-withdrawals-as-network-suffers-minor-hard-fork
https://cointelegraph.com/news/binance-pauses-ethereum-withdrawals-as-network-suffers-minor-hard-fork
https://cointelegraph.com/news/binance-pauses-ethereum-withdrawals-as-network-suffers-minor-hard-fork
https://ethernodes.org
https://ethernodes.org
https://coindesk.com/ethereums-hard-fork-disruption
https://coindesk.com/ethereums-hard-fork-disruption

[12] CryptoSlate. Smart Contracts Coins: Protocols
intended to digitally facilitate, verify, or enforce the
negotiation or performance of a contract. https:
//cryptoslate.com/cryptos/smart-contracts,
Accessed December 2020.

[13] David Siegel. Understanding The DAO Attack,
June 2016. https://coindesk.com/understanding-
dao-hack-journalists.

[14] Derek Parker. Delve: A Debugger for the Go Program-
ming Language. https://github.com/go-delve/
delve, Accessed August 2020.

[15] Eleazar Galano. Infura Mainnet Outage
Post-Mortem 2020-11-11, November 2020.
https://blog.infura.io/infura-mainnet-
outage-post-mortem-2020-11-11.

[16] Ethereum. Clients, tools, dapp browsers, wal-
lets and other projects. https://github.com/
ethereum/wiki/wiki/Clients,-tools,-dapp-
browsers,-wallets-and-other-projects, Ac-
cessed December 2020.

[17] Ethereum. Ethereum Whitepaper: A Next-Generation
Smart Contract and Decentralized Application Platform.
https://ethereum.org/en/whitepaper/, Accessed
August 2020.

[18] Ethereum. EVM lab utilities: Utilities for inter-
acting with the Ethereum virtual machine. https:
//github.com/ethereum/evmlab, Accessed August
2020.

[19] Ethereum. Go Ethereum: Official Go implementation of
the Ethereum protocol. https://geth.ethereum.org,
Accessed August 2020.

[20] Ethereum. Solidity: An object-oriented, high-
level language for implementing smart contracts.
https://solidity.readthedocs.io/en/develop,
Accessed August 2020.

[21] Ethereum. The Ethereum Bounty Program. https:
//bounty.ethereum.org, Accessed August 2020.

[22] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang,
Yu Jiang, Huizhong Li, and Xiang Shi. EVMFuzzer:
Detect EVM Vulnerabilities via Fuzz Testing. In Pro-
ceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE),
2019.

[23] Geth team. Geth security release: Critical
patch for CVE-2020-28362, November 2020.
https://blog.ethereum.org/2020/11/12/
geth_security_release.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling Byzan-
tine Agreements for Cryptocurrencies. In Proceedings
of the 26th ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2017.

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2005.

[26] Everett Hildenbrandt, Manasvi Saxena, Nishant Ro-
drigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Bran-
don M. Moore, Daejun Park, Yi Zhang, Andrei Ste-
fanescu, and Grigore Rosu. KEVM: A Complete For-
mal Semantics of the Ethereum Virtual Machine. In
31st IEEE Computer Security Foundations Symposium
(CSF), 2018.

[27] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding Semantic Bugs
in File Systems with an Extensible Fuzzing Framework.
In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (SOSP), 2019.

[28] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Guang Yang, Wei Xu, Fan Long, and Andrew Chi-
Chih Yao. A Decentralized Blockchain with High
Throughput and Fast Confirmation. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC),
2020.

[29] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter Pietzuch. Teechain: A Se-
cure Payment Network with Asynchronous Blockchain
Access. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[30] LLVM Project. libFuzzer - a library for coverage-
guided fuzz testing. https://llvm.org/docs/
LibFuzzer.html, Accessed August 2020.

[31] Marta Lokhava, Giuliano Losa, David Mazières, Gray-
don Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove,
Rafał Malinowsky, and Jed McCaleb. Fast and Secure
Global Payments with Stellar. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making Smart Contracts Smarter.
In Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security (CCS), 2016.

[33] Martin Holst Swende. One year of Ethereum Security,
November 2017. Devcon 3.

https://cryptoslate.com/cryptos/smart-contracts
https://cryptoslate.com/cryptos/smart-contracts
https://coindesk.com/understanding-dao-hack-journalists
https://coindesk.com/understanding-dao-hack-journalists
https://github.com/go-delve/delve
https://github.com/go-delve/delve
https://blog.infura.io/infura-mainnet-outage-post-mortem-2020-11-11
https://blog.infura.io/infura-mainnet-outage-post-mortem-2020-11-11
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://ethereum.org/en/whitepaper/
https://github.com/ethereum/evmlab
https://github.com/ethereum/evmlab
https://geth.ethereum.org
https://solidity.readthedocs.io/en/develop
https://bounty.ethereum.org
https://bounty.ethereum.org
https://blog.ethereum.org/2020/11/12/geth_security_release
https://blog.ethereum.org/2020/11/12/geth_security_release
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

[34] Martin Holst Swende. Protecting The Baselayer - from
Shanghai to Osaka, October 2019. Devcon 5.

[35] Martin Holst Swende. Shallow copy in the
0x4 precompile could lead to EVM mem-
ory corruption, November 2020. https:
//github.com/ethereum/go-ethereum/security/
advisories/GHSA-69v6-xc2j-r2jf.

[36] William M. McKeeman. Differential Testing for Soft-
ware. Digital Technical Journal, 1998.

[37] Dirk Merkel. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal, March 2014.

[38] Michał Zalewski. american fuzzy lop. https://
lcamtuf.coredump.cx/afl, Accessed August 2020.

[39] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Elec-
tronic Cash System, 2008. https://bitcoin.org/
bitcoin.pdf.

[40] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding The Greedy, Prodigal,
and Suicidal Contracts at Scale. In Proceedings of the
34th Annual Computer Security Applications Confer-
ence (ACSAC), 2018.

[41] OpenEthereum. OpenEthereum: Fast and feature-
rich multi-network Ethereum client. https:
//github.com/openethereum/openethereum,
Accessed August 2020.

[42] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana.
DeepXplore: Automated Whitebox Testing of Deep
Learning Systems. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP),
2017.

[43] Péter Szilágyi. Geth v1.9.17 Post Mortem, Novem-
ber 2020. https://gist.github.com/karalabe/
e1891c8a99fdc16c4e60d9713c35401f.

[44] Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla,
Karan Grover, Muthian Sivathanu, Nishanth Chandran,
Divya Gupta, and Satya Lokam. Blockene: A High-
throughput Blockchain Over Mobile Devices. In Pro-
ceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[45] Scott Chipolina. How a Dormant Bug Briefly
Split the Ethereum Blockchain, November 2020.
https://decrypt.co/47891/how-a-dormant-bug-
briefly-split-the-ethereum-blockchain.

[46] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. NEUZZ: Efficient

Fuzzing with Neural Program Smoothing. In Proceed-
ings of the 40th IEEE Symposium on Security and Pri-
vacy (Oakland), 2019.

[47] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakr-
ishnan, Kathleen Ruan, Parimarjan Negi, Lei Yang, Rad-
hika Mittal, Giulia Fanti, and Mohammad Alizadeh.
High Throughput Cryptocurrency Routing in Payment
Channel Networks . In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2020.

[48] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Proceedings of the 2016 Annual
Network and Distributed System Security Symposium
(NDSS), 2016.

[49] Christof Ferreira Torres, Mathis Steichen, et al. The
Art of The Scam: Demystifying Honeypots in Ethereum
Smart Contracts. In Proceedings of the 28th USENIX
Security Symposium (Security), 2019.

[50] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical Security Analysis of Smart Contracts.
In Proceedings of the 25th ACM Conference on Com-
puter and Communications Security (CCS), 2018.

[51] Vitalik Buterin. Security alert [11/24/2016]: Con-
sensus bug in geth v1.4.19 and v1.5.2, November
2016. https://blog.ethereum.org/2016/11/
25/security-alert-11242016-consensus-bug-
geth-v1-4-19-v1-5-2.

[52] William Foxley. Developers Debate Disclosure Proto-
cols After ‘Accidental’ Ethereum Hard Fork, November
2020. https://coindesk.com/developers-
debate-disclosure-protocols-accidental-
ethereum-hard-fork.

[53] William Foxley. How Much Ether Is Out
There? Ethereum Developers Create New
Scripts for Self-Verification, August 2020.
https://coindesk.com/how-much-ether-is-
out-there-ethereum-developers-create-new-
scripts-for-self-verification.

[54] Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger, 2014. https://
gavwood.com/paper.pdf.

[55] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in C compilers. In
Proceedings of the 2011 ACM SIGPLAN Conference

https://github.com/ethereum/go-ethereum/security/advisories/GHSA-69v6-xc2j-r2jf
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-69v6-xc2j-r2jf
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-69v6-xc2j-r2jf
https://lcamtuf.coredump.cx/afl
https://lcamtuf.coredump.cx/afl
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/openethereum/openethereum
https://github.com/openethereum/openethereum
https://gist.github.com/karalabe/e1891c8a99fdc16c4e60d9713c35401f
https://gist.github.com/karalabe/e1891c8a99fdc16c4e60d9713c35401f
https://decrypt.co/47891/how-a-dormant-bug-briefly-split-the-ethereum-blockchain
https://decrypt.co/47891/how-a-dormant-bug-briefly-split-the-ethereum-blockchain
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2
https://coindesk.com/developers-debate-disclosure-protocols-accidental-ethereum-hard-fork
https://coindesk.com/developers-debate-disclosure-protocols-accidental-ethereum-hard-fork
https://coindesk.com/developers-debate-disclosure-protocols-accidental-ethereum-hard-fork
https://coindesk.com/how-much-ether-is-out-there-ethereum-developers-create-new-scripts-for-self-verification
https://coindesk.com/how-much-ether-is-out-there-ethereum-developers-create-new-scripts-for-self-verification
https://coindesk.com/how-much-ether-is-out-there-ethereum-developers-create-new-scripts-for-self-verification
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf

on Programming Language Design and Implementation
(PLDI), 2011.

[56] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM : A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of
the 27th USENIX Security Symposium (Security), 2018.

[57] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and
Zhiqiang Lin. TXSPECTOR: Uncovering Attacks in
Ethereum from Transactions. In Proceedings of the 29th
USENIX Security Symposium (Security), 2020.

	Introduction
	Background
	Ethereum
	Consensus Bugs

	Overview
	Design
	Execution Model
	Test Case
	Mutation

	Implementation
	Fuzzing Harnesses
	Crash Debugger

	New Consensus Bugs
	Shallow Copy Bug
	Transfer-After-Destruct Bug
	Responsible Vulnerability Disclosure

	Evaluation
	Bug Finding Capability
	Code Coverage
	Throughput
	Debugging

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgements

