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SUMMARY

API-based systems, a large group of security-critical software programs including web

browser and OS kernels, accept program inputs being composed of API calls. Considering

the scale and complexity of an API-based system, fuzzing proves to be the most effective

approach for bug detection in practice. To effectively discover new bugs in an API-based

system nowadays, a fuzzer needs to generate syntactically and semantically correct API

calls, which are not declined at an early stage.

Grammar-based API fuzzers generate random API calls in various syntaxes described by

context-free grammars. Nevertheless, context-free grammars are unable to deliver certain

API semantics in an API program, especially how an API call interacts with the objects

in the program. Therefore, the random API calls generated by such fuzzers largely have

reference errors, type errors or state errors.

To effectively fuzz an API-based system, we present a context-aware fuzzing approach,

which relies on RPG IR to generate random API calls. RPG IR is a formal and contextual

representation that defines an object-based context for an API program and models not only

the syntax but also the context-based semantics of every API call in the program. Hence, the

generated API calls in RPG IR have reduced semantic errors and are more likely to trigger

bugs in an API-based system. To evaluate the effectiveness of RPG IR in API fuzzing, we

present FreeDom and Janus, two IR-based context-aware fuzzers targeting web browsers

and file systems, respectively. In particular, FreeDom has revealed 24 previously unknown

bugs in Apple Safari, Mozilla Firefox, and Google Chrome, 10 of which are assigned with

CVEs. Meanwhile, FreeDom largely outperforms the grammar-based DOM fuzzer, Domato,

with 3×more unique crashes. On the other hand, Janus visits at most 4.19×more code paths

compared to the state-of-the-art system call fuzzer, Syzkaller, by generating context-aware

file operations. More importantly, Janus has found 90 bugs in eight Linux file systems with

32 CVEs assigned.

xv



We further present RPG (Random Program Generator), a more generic approach to

conduct context-aware API fuzzing via RPG IR against different API-based systems. In

particular, RPG accepts API description in ASL (API Specification Language), a formal

language for developers to describe APIs that can be modeled by RPG IR. RPG manages to

compile ASL files into a context-aware API fuzzer based on RPG IR specifically targeting

the described APIs. We implement a prototype of RPG, which is evaluated by fuzzing

WebKit with the ASL files that describe DOM and SVG specifications. As a domain-

agnostic approach, RPG manages to discover a similar number of code blocks and unique

crashes compared to FreeDom.
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CHAPTER 1

INTRODUCTION

API (Application Programming Interface) based systems are a large group of security-critical

software programs being accessed through a set of API calls, including but not limited

to, OS kernels, web browsers, hypervisors, and databases. Common API-based systems

expose numerous APIs via an implementation of extraordinary complexity, which creates

significant difficulties for manual code inspection. Therefore, testing an API-based system

automatically with random API calls, namely fuzzing, becomes the dominant approach for

finding bugs in the system in practice [1, 2, 3, 4, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17].

An API-based system provides detailed API specifications for developers to make

valid API calls. Meanwhile, an API call that does not meet the specification is considered

syntactically or semantically incorrect. Such an API call is mostly declined by the system

at an early stage where syntax parsing or semantic checking occurs and takes no effect.

Since major API-based systems have been inspected for a long time, researchers have been

discovering more contextual bugs that are located at deep code paths and triggered by a

sequence of interdependent API calls without any syntax or semantic error.

A collection of recent fuzzers [1, 2, 4] invents various context-free grammars to describe

the API format that meets the specifications. The expressiveness of a context-free grammar

enables a fuzzer to generate API calls with correct syntax, namely the explicit structure of an

API. Nevertheless, such a grammar proves unable to comprehensively deliver the semantics

of an API, namely the implicit dependencies and effects of an API. The generated API calls

thus naturally contain semantic issues and hardly trigger deep bugs in a target system.

We observe that a large portion of semantic issues are related to incorrect object opera-

tions performed by a randomly generated API call. More specifically, the API call may use

1



an invalid object, access an object of an unwanted type, or operate an object that has wrong

status. To avoid those cases, we need to maintain a program context that records available

objects and their states, which is queried for generating a new API call and updated based

on the corresponding object state changes introduced by the generated API call. We call

such an approach that relies on additional context information to reduce semantic errors

during random API generation as context-aware API fuzzing.

To realize context-aware API fuzzing, we first propose RPG IR in this thesis. RPG IR

is a formal and contextual abstraction of an API program. An API program in RPG IR

contains an object-oriented context that records the lifetime, type and state information of

every object created in the program. Furthermore, RPG IR relies on a context-based model

to systematically describe the syntactic structure, object dependence and object state effects

of every API call in the program. We then present context-aware API fuzzing based on RPG

IR, including random generation of an API program in RPG IR with a consistent context and

random mutation over an API program in RPG IR without corrupting the existing context.

To evaluate the effectiveness of API fuzzing driven by RPG IR, we further design and

implement two context-aware API fuzzers based on the API model described by RPG IR:

FreeDom and Janus. FreeDom is a DOM fuzzer that uses RPG IR to describe the structure

and context dependence of three distinct parts in an HTML document. Compared to the

state-of-the-art DOM fuzzer, Domato, that is based on a context-free grammar, FreeDom

discovers 3× more unique crashes in WebKit thanks to its context-awareness enabled by

RPG IR. More importantly, FreeDom has successfully found 24 bugs in three mainstream

browsers (i.e., Apple Safari, Mozilla Firefox, and Google Chrome), to which 10 CVEs have

been awarded. On the other hand, we also present Janus, a context-aware file system fuzzer

that applies RPG IR to model Linux file operations and their effects to the file objects in an

image. Compared to the grammar-based state-of-the-art system call fuzzer, Syzkaller, Janus

achieves at most 4.19× more code coverage when fuzzing eight popular file systems for 12

hours. Moreover, Janus has found 90 bugs in the upstream Linux kernel, 32 of which have
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been assigned with CVEs. The two applications based on RPG IR verifies the importance of

context awareness in API fuzzing for reducing semantic errors.

To enlarge the research impact of RPG IR, we further present RPG (Random Program

Generator), which leverages RPG IR for context-aware API fuzzing in a more generic

manner. RPG works with ASL, a standard language for developers to program API syntax

and semantics in the form RPG IR suggests. Given the ASL files that describe the concerned

APIs, RPG automatically compile them into a context-aware fuzzer that generates random

API calls in RPG IR. The generated API calls are free from the semantic issues related

to object states previously mentioned and can be converted into any preferred format for

testing. We implement a prototype of RPG, that contains the ASL description for DOM and

SVG APIs. Our evaluation shows that when fuzzing either HTML or SVG documents in

WebKit, RPG is always as effective as FreeDom by discovering a similar number of unique

crashes and contextual crashes during a 24-hour run. Meanwhile, context awareness enables

RPG to largely outperform Domato and Dharma two typical context-free grammar-based

fuzzer.

In summary, this thesis makes the following contributions:

• We propose context-aware API fuzzing, where API programs are randomly generated

in RPG IR. To reduce semantic errors caused by abusing the objects regardless of their

states, RPG IR maintains an object-based context for an API program and explicitly

describes the context-dependence of every API call in the program.

• We present two context-aware fuzzers, FreeDom and Janus, for finding bugs in

web browsers and file systems, respectively. Both fuzzers model their concerned

APIs as RPG IR and reflect the effectiveness of IR-driven context-aware fuzzing by

discovering more than a hundred previously unknown bugs in real-world software

with 42 CVEs assigned in total.

• We further present RPG, a generic API fuzzing approach that allows developers to

program a context-aware fuzzer based on RPG IR by simply specifying APIs in ASL.
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ASL is a formal language for describing API syntax and semantics based on the API

model proposed by RPG IR.

The rest of the thesis is organized as follows. §2 presents an overview of context-aware

API fuzzing. §3 proposes RPG IR in detail. §4 describes the details of context-aware API

fuzzing via RPG IR. §5 presents FreeDom, a context-aware DOM fuzzer. The design and

implementation of Janus, a context-aware file system fuzzer, is presented in §6. §7 proposes

RPG and ASL. §8 discusses the limitations and future directions of context-aware fuzzing

based on RPG IR. §9 introduces related work. Finally, §10 concludes the thesis.
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CHAPTER 2

OVERVIEW

This chapter presents the research background, general ideas, and challenges of context-

aware API fuzzing.

2.1 Background

In recent years, many API fuzzers have been proposed and show great success in discovering

security bugs in real-world API-based systems represented by web browsers and OS kernels.

We summarize the known API fuzzers in Table 2.1.

Fuzzer Target Year Grammar Context-awareness

Dharma [2]

Web browser

2015 ✓

Avalanche [4] 2016 ✓

Domato [1] 2017 ✓

FreeDom [6] 2020 ✓

Syzkaller [7]
OS kernel

2015 ✓ △
Janus [9] 2019 ✓

Hydra [13] 2019 ✓

Table 2.1: A list of recent API fuzzers. The Grammar column indicates whether the fuzzer is based
on grammars. The Context-awareness column indicates whether the fuzzer is aware of the context
when generating random API calls. Syzkaller is not completely context-aware and still suffers from
semantic errors. FreeDom and Janus are two context-aware API fuzzer presented in this thesis.

A majority of the existing API fuzzers, such as Dharma [2], Avalanche [4], and

Domato [1], describe APIs in context-free grammars. Such a grammar normally splits

an API into multiple syntactic units and defines random values for the non-constant units

through grammar rules. Figure 2.1, Figure 2.2, and Figure 2.3 present the grammar rules

used by Domato, Dharma, and Syzkaller to randomly generate CSS selectors, SVG filter

attributes, and several system calls for file operations, respectively. The formality of the
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1 <selector> = #<elementid>
2 <elementid> = htmlvar0000<int min=1 max=9>
3

4 <selector> = <element>
5 <element p=0.5> = <tagname>
6 <tagname> = a | abbr | acronym | address | applet | area | article | aside | ...

Figure 2.1: An example of reference issues. The context-free grammar rules used by Domato define
CSS selectors with invalid elements.

1 filter_attributes :=
2 filter="+filter_value+"
3

4 filter_value :=
5 +uri+
6 none
7 inherit
8

9 uri :=
10 url(#!element_id!)
11 url(#xpointer(id('!element_id!')))

Figure 2.2: An example of type errors. The context-free grammar rules used by Dharma incorrectly
define a filter attribute with any type of element while only a <filter> element is accepted.

grammar guarantees the syntactic correctness of generated API calls. Nevertheless, grammar-

based API generation being unaware of the API context suffers from semantic issues, which

can be categorized into three types.

Reference issues. If a grammar does not annotate object creation and destruction, its

generated APIs may access non-existent objects or never have a chance to access certain

valid ones. For instance, as shown in Figure 2.1, Domato predefines a fixed number of

HTML elements and a list of HTML element tags to construct CSS selectors. However,

the elements valid for access at a point are dynamically determined based on the API calls

invoked (i.e., generated) previously. In practice, a document randomly produced by Domato

probably has more than 20 HTML elements or no <address> elements, which invalidates

Domato’s definition of CSS selectors.

Type errors. An API is designed to operate specific types of objects. Therefore, the API

calls output from typeless grammars tend to misuse the objects of unmatched types. For

example, Dharma accepts any type of SVG element for the value of a filter attribute
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1 open(file ptr[in, filename], flags flags[open_flags], mode flags[open_mode]) fd
2 rename(old ptr[in, filename], new ptr[in, filename])
3 write(fd fd, buf buffer[in], count len[buf])

Figure 2.3: An example of state errors. Syzkaller’s grammar does not evaluate the effects of a
system call on the file name or the write property of a file descriptor. The affected file and file
descriptor are likely to be inappropriately operated by another system call.

(see Figure 2.2). However, the attribute takes effect only when it is defined by a <filter>

element. Therefore, the invocations of filtering APIs in an SVG document generated by

Dharma are likely not functional.

State errors. The two aforementioned issues can be resolved by marking the lifetime and

types of the objects used by APIs in the grammar, which is demonstrated by Syzkaller [7].

Nevertheless, an API may require an input object to have a valid state and meanwhile update

the state of the object during its execution. However, existing context-free grammars that

focus on describing API representation cannot deliver such underlying runtime semantics

of an API. For instance, Figure 2.3 shows that Syzkaller’s grammar is unable to present

the effects of the system calls on the names (i.e., state) of the files (i.e., object) in a file

system. As a result, an out-of-date file name caused by rename() can still be used by a

system call afterward. Meanwhile, a new file name set through open() will never be referred

to. Moreover, tracking whether or not a file descriptor (i.e., object) is writable (i.e., state) is

also beyond the grammar’s ability. Consequently, Syzkaller outputs invalid write() calls

on the file descriptors that are read-only.

2.2 Approach

To overcome the common semantic issues we observe from the existing API fuzzers, we

propose context-aware API fuzzing, which is based on a context-aware representation,

namely RPG IR, to describe an API program for the purpose of fuzzing. An API program in

RPG IR contains not only the API calls made in the program but also the program context

that addresses the semantics of the API calls. The program context stores all the objects
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created by the API calls in the program. As we summarize in §2.1, an API call incurs

semantic errors normally because it tries to operate an object that is not in a valid state.

Therefore, the program context intendedly maintains the lifetime and runtime properties of

every created object. When a context-aware fuzzer generates a new API call in RPG IR, it

interacts with the program context to fetch appropriate input objects for use and add the

new objects created by the API call into the context. In addition, the fuzzer is responsible

for emulating the changes of the API call to the state of any existing object. Meanwhile, a

context-aware fuzzer performs mutation over an API program in RPG IR and meanwhile,

ensures that the integrity of the program context is not corrupted after mutating any API call.

2.3 Challenges

To realize context-aware fuzzing driven by a formal representation for describing API calls,

we need to address three main challenges.

Supporting API formats. The APIs in different domains being exposed by diverse

programming languages have distinguishable formats with contrasting complexity. For

example, system calls have a simple interface whose inputs and outputs are either integers

or pointers to data buffers and structures. Meanwhile, an HTML document simultaneously

involves three incompatible formats – JavaScript statements, DOM trees, and CSS rules –

all of which have completely different syntax. Therefore, a context-aware representation for

API description needs to be expressive enough to depict various API formats.

Delivering varied API semantics. The notable difference between individual APIs does

not simply reside in their formats but, more importantly, in their specific semantics, namely

how they interact with the context. Regarding an arbitrary API, there is no convention on

(1) the number, types, and states of its input objects, (2) the number and types of its output

objects, or (3) its changes to the state of the objects. Therefore, the API representation

adopted by a context-aware fuzzer is expected to model all the API semantics related to

object references, object type requirements and object states.
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Managing complicated contexts. As we mention in §2.2, the key approach of a context-

aware API fuzzer is to maintaining essential information about the objects in the context for

fewer semantic errors in the generated API programs. We observe the complexity of the

context, which is not straightforward to implement via RPG IR. When randomly generating

an API at a given program location, a fuzzer relies on the context to retrieve the live objects

of wanted types as the potential inputs of the API. To fully serve this purpose, the context

basically needs to store the objects with their types, states, and lifetimes in the current

program. In addition, the context should also tackle type inheritance, which is widely

supported by modern API-based systems. For instance, the context is expected to provide all

the HTMLElements for random selection when generating an API that operates an Element in

the document. Furthermore, the context should also consider object scopes when managing

object lifetime. For example, in an HTML document, the objects created by DOM APIs in

an event handler can only be used locally. If object creation can be introduced at any level

of nested scopes, the context becomes even more complicated.
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CHAPTER 3

RPG IR

RPG IR is a formal and context-sensitive abstraction of API programs specifically designed

for context-aware fuzzing. An RPG IR program basically consists of

• The API calls;

• The context information about the existing objects in the program based on the

evaluation of the effects of the API calls.

The API calls are the main parts of a program, which are executed for finding bugs and also

mutated for new programs. Meanwhile, the context information is also crucial for fewer

semantic errors in the program. In this chapter, we present the detailed design of RPG IR.

3.1 Scope

RPG IR organizes the API calls and context information in a program into various scopes.

Equation 3.1 describes a scope, which includes a sequence of API calls APIS and the objects

defined in the scope OBJS. Note that a scope can be empty, which does not involve any API

call. Also, no new objects can be created in the scope.

SCOPE = (APIS, OBJS) (3.1)

APIS = {API1, API2, ..., APIn}, n ≥ 0 (3.2)

OBJS = {OBJ1, OBJ2, ..., OBJm}, m ≥ 0 (3.3)

The only global scope SCOPEG naturally represents an entire API program P in RPG IR.

P = (SCOPEG) (3.4)
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Except for the global scope, all the other scopes in the program are created by particular

API calls. (see Equation 3.11 in §3.3).

SCOPEG

SCOPEAPI0 API1 API2

API10 API11

⊥ ⊥

⊥⊥

Figure 3.1: The scope structure of an example program in RPG IR.

Figure 3.1 illustrates the conventional scope tree adopted by RPG IR, which is widely

applied to all sorts of API programs in practice. For example, in an HTML document,

document and window are two predefined objects that can be freely accessed and are thus

placed in the global scope. Meanwhile, nested scopes are required for event handlers in

JavaScript, which have local objects. Note that the model does not support branches. In

other words, an API call is not supposed to create two new scopes. However, branches are

not considered meaningful in the context of API fuzzing. We expect all the API calls in

a generated program to be executed by the target. Most importantly, none of the existing

fuzzers mentioned in §2.1, including the context-aware ones, have a systematic support for

object scopes as RPG IR does, which reflects the generality of RPG.

Program location. Based on the scope model, any location in an RPG IR program can be

described as a two-element tuple, as shown in Equation 3.5.

LOC = (SCOPE, INDEX) (3.5)

More specifically, LOC represents a program location at the INDEXth API call in the scope

SCOPE. Based on this, we naturally define the ordering of two program locations in Equa-
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tion 3.6.

LOCa ≺s LOCb ⇐⇒ LOCa is visited before LOCb during the pre-order traversal of

the sub-tree rooted by the scope s. (3.6)

RPG IR utilizes this ordering between two program locations to validate object references

in Equation 3.10.

3.2 Object

RPG IR models an object created in a particular scope (i.e., OBJ in Equation 3.1) as a tuple

of its identifier ID, birth BIRTH, and death DEATH locations in the scope, type TYPE, and state

STATE.

OBJ = (ID, BIRTH, DEATH, TYPE, STATE) (3.7)

STATE = {(K1, V1), (K2, V2), ..., (Kn, Vn)}, n ≥ 0 (3.8)

STATE[Ki] = Vi, 1 ≤ i ≤ n (3.9)

Figure 3.2 shows two example objects described by RPG IR, including an HTMLInputElement

object and a file descriptor object.

For a local object, RPG IR uses BIRTH and DEATH to specify the program locations of the

API call that creates and deletes the object, respectively. RPG IR assumes that the life of a

local object is automatically terminated at the end of the scope where it is created and uses

this location as the default DEATH for the object. Before being deleted, a local object can be

accessed by an API call located anywhere after its definition under the current scope. In

contrast, an object in the global scope can be used anywhere in a program, whose BIRTH

and DEATH are not specified by RPG IR. We summarize the restrictions on object references

adopted by RPG IR into a formal form described by Equation 3.10. U(OBJ, LOC) checks

whether a given object OBJ can be used by the API call at the location LOC in an RPG IR
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program.

U(OBJ, LOC) =


TRUE SCOPEOBJ = SCOPEG or

OBJ[BIRTH] ≺SCOPEOBJ LOC, LOC ≺SCOPEOBJ OBJ[DEATH]

FALSE o.w.

(3.10)

In addition, the state of an object is abstracted as a list of properties. A property is a key

and value pair (K, V), where the key K is a string. For ease of presentation, we also index the

state by K to represent the property value V, as shown in Equation 3.9.

tagSTATE

HTMLInputElement

ID

"input"

v3

TYPE

W

FD

1

(a) (b)

S, 0BIRTH

STATE

ID v5

TYPE

DEATH DEATHBIRTH S, 2- S, 5

Figure 3.2: Examples of object representation in an RPG IR program.

The state of an object can be set by the API calls that use the object and referenced in

two ways in an RPG IR program. First, it can be used to define the argument of an API. For

example, the tag value of an HTML element illustrated in Figure 3.2(a) can be used as a

selector in certain DOM APIs. More importantly, it is used to check whether the object can

be accessed by a particular API. For instance, a write() call should only accept a writable

file descriptor (FD) whose W property equals 1, as shown in Figure 3.2(b).

Based on the context information recorded for every object, the three types of semantic

issues mentioned in §2.1 are largely reduced in an RPG IR program. More specifically, the

object scopes and definition locations are used to determine the visible and defined objects

that can be accessed by an API call at any program location, which avoids reference issues.

To get rid of type errors, the context marks the object types and thus enables an API call

to operate the objects of specific types only. More importantly, the object states recorded
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in the context are queried by RPG during API generation, which resolves the state errors.

In general, the semantic correctness of an API program in RPG IR originates from the

proposed object model.

3.3 API

RPG IR presents a context-based API model that formally describes the syntax and semantics

of an arbitrary API. Equation 3.11 depicts the outline of the model. Basically, RPG IR

formally defines an API call as a tuple of the return values RETURN (§3.3.1), a list of

arguments ARGS that may be context-dependent (§3.3.2), the contextual effects EFFECTS

(§3.3.3), a new scope SCOPE representing the API’s body (§3.3.4), a print function PRINT

that translates the API call in IR into plain text, and an optional print function EPRINT that

returns the text to be displayed after the body (§3.3.5). Note that API[SCOPE] here represents

the scope created by the API call, which is different from the scope where the API is called

(i.e., SCOPEAPI).

API = (RETURN, ARGS, EFFECTS, SCOPE, PRINT, EPRINT) (3.11)

The API model built by RPG IR is prior to the existing ones mentioned in §2.1 which fail to

fully address the object-related semantics of an API.

3.3.1 API Return

An API call may create zero or more objects as its return, as defined in Equation 3.12.

RETURN = {OBJ1, OBJ2, ..., OBJn}, n ≥ 0 (3.12)

Object creation is a type of contextual effects of an API. More specifically, every returned

object is added into its corresponding scope, which is formally described in §3.3.3. It is

worth noting that a returned object usually belongs to the scope of the API call. However,
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certain APIs even being invoked in a local scope create global objects. For example, an

HTML element node defined anywhere in the XML tree of an HTML document is globally

accessible.

3.3.2 API Arguments

ARGS in Equation 3.11 is naturally defined as a list of arguments. The length of the list can

be zero, which indicates that the API call does not have any argument.

ARGS = {ARG1, ARG2, ..., ARGn}, n ≥ 0 (3.13)

Arguments are the most fundamental concept in the API model proposed by RPG IR.

The syntax and semantics of an API call are completely addressed through the arguments.

Meanwhile, generating or mutating an API call is actually conducted by generating or

mutating its arguments. Equation 3.14 presents the definition of an argument, namely ARG,

in RPG IR. Supposing that ARG ∈ API[ARGS],

ARG = (TYPE, IMPORTS, ASSERTS, ARGS, VALUE) (3.14)

First, TYPE is literally the type of argument.

Next, IMPORTS is a list of objects that used by ARG, which implies the context dependence

of the argument (see Equation 3.15).

IMPORTS = {OBJ1, OBJ2, ..., OBJn}, n ≥ 0, (3.15)

∀1 ≤ i ≤ n, U(OBJi, LOCAPI) = TRUE (3.16)

To avoid reference errors, all the imported objects are required to be accessible from the

owner API of the argument (see Equation 3.16). Figure 3.3(b) shows a context-dependent

argument that presents a CSS ID selector in an HTML document. The CSS ID selector uses

15



the identifier of an HTMLInputElement object in its value. A context-free argument is not

based on any imported object, which can be randomly generated without context.

Furthermore, ASSERTS enforces specific state requirements on the imported objects,

which prevent state errors in a generated program, as mentioned in §2.1.

ASSERTS = {ASSERT1, ASSERT2, ..., ASSERTn}, n ≥ 0 (3.17)

ASSERT = HAS_PROPERTY(OBJ, K) (3.18)

| PROPERTY_EQ(OBJ, K, V) (3.19)

| PROPERTY_NEQ(OBJ, K, V), OBJ ∈ IMPORTS, K is a key string; (3.20)

HAS_PROPERTY(OBJ, K)⇒ ∃V, ⟨K, V⟩ ∈ OBJ[STATE] (3.21)

PROPERTY_EQ(OBJ, K, V)⇒ ⟨K, V⟩ ∈ OBJ[STATE] (3.22)

PROPERTY_NEQ(OBJ, K, V)⇒ ⟨K, V⟩ /∈ OBJ[STATE] (3.23)

RPG IR currently supports three types of state checks on an imported object.

• HAS_PROPERTY checks whether the object has a specific property in its state (Equa-

tion 3.21).

• PROPERTY_EQ checks whether the value of a specific property of the object equals a

given value (Equation 3.22).

• PROPERTY_NEQ checks whether the value of a specific property of the object does not

equal a given value (Equation 3.23).

For example, Figure 3.4 illustrates that RPG IR applies PROPERTY_EQ to check whether or

not the file descriptor imported for writing has its W property set to 1.

More importantly, an argument has a recursive definition in RPG IR. ARGS in Equa-

tion 3.14 specifies a list of sub-arguments being used to construct the argument. As shown

in Figure 3.3, a :focus CSS pseudo-class in RPG IR is built upon one sub-argument, which

is the aforementioned CSS ID selector.

The last element in the definition of an argument is VALUE, representing the argument
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ARGS

:focus CSS pseudo-class

selector

VALUE selector + ":focus"

TYPE string

IMPORTS

CSS ID selector

element

VALUE "#" + element[ID]

TYPE string

HTMLInputElement

ID v3

TYPE

(a) (b)

Object

Figure 3.3: Examples of argument definitions in RPG IR. (b) describes a CSS ID selector, which is
a context-dependent argument and has a value of #v3. (a) describes a :focus CSS pseudo-class built
upon another argument, namely the CSS ID selector, whose value is #v3:focus.

value being passed into an API call. VALUE is resolved by an expression comprising the

imported objects and sub-arguments that outputs a value of the specified type TYPE. Equa-

tion 3.24 describes VALUE, which can be an imported object, a primary expression, or a string

concatenation of primary expressions.

ARG[VALUE] = OBJ, OBJ ∈ ARGS[IMPORTS] (3.24)

| EXP(ARG) (3.25)

| EXP1(ARG) + EXP2(ARG) + ...+ EXPn(ARG), 2 ≤ i ≤ n (3.26)

First, if the argument value is an imported object, the argument is supposed to be an

object reference. A primary expression has various formats, including a string or number

literal (Equation 3.27), the value of a sub-argument (Equation 3.28), the identifier of an

imported object (Equation 3.29), or the value of a specific property of an imported object

(Equation 3.30).

EXP(ARG) = literal (3.27)

| ARG′[VALUE], ARG′ ∈ ARG[ARGS] (3.28)

| OBJ[ID], OBJ ∈ ARGS[IMPORTS] (3.29)

| OBJ[STATE][K], OBJ ∈ ARGS[IMPORTS] (3.30)

Considering the API call Document.createElement() illustrated in Figure 7.1, both of its

arguments define their values in primary expressions. The value of document is the identifier
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W

FD

1STATE

ID v5

TYPEIMPORTS fd

ASSERTS fd[STATE]["W"] = 1

TYPE FD

Write file descriptor

VALUE fd[ID]

Object

Figure 3.4: Another example of argument definition that involves an assertion on the object state.
The argument represents a reference to a write file descriptor, whose W property is expected to be 1.

of a Document object. Meanwhile, the value of tag is simply a string literal – "input." In

Figure 3.3, the values of both CSS pseudo-class and CSS ID selector are defined as string

concatenations, which involve the value of a sub-argument (i.e., selector) and the property

value of an imported HTMLInputElement object, respectively.

Unlike the domain-specific API fuzzers that use custom methods to describe the API

arguments in restricted formats, the recursive argument definition with flexible value repre-

sentation enables RPG IR to formally express all kinds of API designs. Similar to RPG IR,

the grammars adopted by existing grammar-based fuzzers are also expressive, which allow

one to recursively define complicated values with primary values (see Figure 2.1 and Fig-

ure 2.2 for examples). Nevertheless, arguments in RPG IR present their semantics through

object imports and state assertions, which are not delivered by context-free grammars.
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3.3.3 API Effects

As is known, API calls operate objects. Therefore, RPG IR formally models the contextual

effects of an API call, called API, into four types of object operations.

EFFECTS = {EFFECT1, EFFECT2, ..., EFFECTn}, n ≥ 0 (3.31)

EFFECT = NEW_OBJECT(API, OBJ) | NEW_GOBJECT(OBJ)

only for OBJ ∈ API[RETURN],

DEL_OBJECT(API, OBJ) | SET_STATE(OBJ, K, V),

for OBJ ∈ API[RETURN] or

OBJ ∈ API[ARGSi1 ][ARGSi2 ]...[ARGSim ][IMPORTS],∃i1, i2, ..., im,m ≥ 1

(3.32)

(3.33)

Creating a local object. As defined in Equation 3.34, the operation NEW_OBJECT adds

a local object returned by an API call into the scope where the API call is located. The

definition location BIRTH of the object is the same as that of the API call API.

NEW_OBJECT(API, OBJ)⇒SCOPEAPI[OBJS] = SCOPEAPI[OBJS] ∪ {OBJ},

OBJ ∈ API[RETURN] (3.34)

Creating a global object. Slightly different from NEW_OBJECT, NEW_GOBJECT adds a global

object returned from an API call into the global scope.

NEW_GOBJECT(OBJ)⇒SCOPEG[OBJS] = SCOPEG[OBJS] ∪ {OBJ},

OBJ ∈ API[RETURN] (3.35)

Deleting an existing object. An API call can delete an existing object from the scope.

RPG IR proposes DEL_OBJECT to address this operation, which sets the DEATH location
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of the object to the location of the API call. Note that the deleted object should be im-

ported by an argument or its underlying sub-arguments of the API call. DEL_OBJECT has

a wide variety of use cases for real-world APIs. For example, a file descriptor after be-

ing closed by close() should not be accessed afterward in a system call program. Also,

WebGLRenderingContext.deleteBuffer(), a WebGL API, invalidates a WebGLBuffer ob-

ject for any future use. The semantics of both APIs can be described by DEL_OBJECT.

DEL_OBJECT(API, OBJ)⇒ SCOPEOBJ[OBJS] = SCOPEOBJ[OBJS]− {OBJ},

OBJ ∈ API[ARGSi1 ][ARGSi2 ]...[ARGSim ][IMPORTS], ∃i1, i2, ..., im,m ≥ 1 (3.36)

Updating object state. The last operation SET_STATE is used to modify the state of an

object for an API call. RPG IR supports the operation to be performed on both the returned

objects and the imported objects of the API call. As defined by Equation 3.37, SET_STATE

manages to set an arbitrary value for a specified property of an object.

SET_STATE(OBJ, K, V)⇒ OBJ[STATE][K] = V,

OBJ ∈ API[RETURN] or

OBJ ∈ API[ARGSi1 ][ARGSi2 ]...[ARGSim ][IMPORTS],∃i1, i2, ..., im,m ≥ 1 (3.37)

For example, the W property of a file descriptor created by open() with a write-only or

read and write flag is set to be 1. The effect of WebGLRenderingContext.bindBuffer() is

described by setting the value of the isBound property of an imported WebGLBuffer object to

1 through SET_STATE. The isBound property indicates the usability of the WebGLBuffer ob-

jects, which is verified by most WebGL APIs operating WebGLBuffer. Based on SET_STATE,

RPG IR is able to maintain object states for avoiding state errors during API generation.

In general, RPG IR relies on those contextual operations to formally evaluate the changes

brought by an API call to the objects, which also lays a foundation for reduced semantic

errors in a generated program. By contrast, none of the existing API fuzzers manage to
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(a)

EPRINT

define_EventHandler

RETURN SCOPE

"function "+fn[ID]+"() {"

PRINT

createElement_input

RETURN

ARGS document tag

element

"var "+element[ID]+" = "+V(document) 
+".createElement("+V(tag)+");"

fn

PRINT

"}"

(b)

Figure 3.5: Examples of converting two DOM API calls in RPG IR into plain text. The
text of createElement_input in (b) is simply defined by its PRINT function. By contrast,
the text of define_EventHandler in (a) starts with the string returned from PRINT followed
by the text of its body, namely createElement_input, and ends with the string output by
EPRINT. The final text varies by the identifiers of the involved objects. A valid example can
be function f3() { var v3 = document.createElement("input"); }.

express such semantics of various APIs, which reveals the advantage of RPG IR.

3.3.4 API Body

An API call may create a new scope that contains other API calls (see Figure 3.1). The

contained API calls form the body of the original API call. For instance, RPG IR treats

an element node in the XML tree of an HTML document as an API call. The body of

such a node is thus a list of other element nodes. In practice, RPG IR also considers a

JavaScript function defined under <script> in an HTML document as an API call, whose

body encloses a list of DOM API calls. Compared to the previous fuzzers like Syzkaller,

which simply treats a program as a linear sequence of API calls that do not contain each

other, RPG IR is more expressive in describing API programs in different formats.

3.3.5 API Display

At the end, we discuss how RPG IR uses print functions to lower an API call in RPG IR

into plain text for testing and human reading. The definition of an API call involves two

print functions: PRINT and EPRINT (see Equation 3.11).

The string representation s of an API call starts with the text returned from PRINT. RPG

IR defines PRINT as a string concatenation of string literals and the argument values and
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Algorithm 1: Translating an API call in RPG IR into human-readable text.
Input: An API call API in RPG IR
Result: A string representing the API call in plain text

1 Function STR(API)
2 s← PRINT(API)
3 if API[SCOPE] ̸= ∅ then
4 for each API’ ∈ API[SCOPE][APIS] do
5 s← s + PRINT(API’)
6 end
7 s← s + EPRINT(API)
8 end
9 return s

returned objects of the API call.

PRINT(API) = EXP1(API) + EXP2(API) + ...+ EXPn(API), n ≥ 1 (3.38)

EXP(API) = literal (3.39)

| ARG[VALUE], ARG ∈ API[ARGS] (3.40)

| OBJ[ID], OBJ ∈ API[RETURNS] (3.41)

If the API call creates a new scope containing other API calls, the string representations

of those sub-calls need to be appended to s. The tailing text of the API call is returned by

EPRINT, which has exactly the same definition as PRINT.

3.4 Summary

RPG IR is a formal and context-aware representation of an API program that describes API

syntax and semantics in a self-contained way. We highlight its important design choices,

including (1) the recursive argument definition and argument value expressions enable RPG

IR to flexibly express various API formats, (2) the scope and object models introduce a

object-based context to an API program in RPG IR, (3) the argument imports, object state

assertions, and API effect model manage to comprehensively deliver the object-dependence

of an API call, which helps a fuzzer to reduce semantic issues in a generated API program.
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CHAPTER 4

CONTEXT-AWARE API FUZZING VIA RPG IR

In this chapter, we present context-aware API fuzzing based on RPG IR.

4.1 Context-aware API Generation

A context-aware API fuzzer generates random API calls with reduced semantic errors based

on the context information recored by RPG IR including scopes and objects. Figure 4.1

presents the pseudocode of this generation process (lines 9-31). Generating an API call

first requires the specification of the API, notated as api_spec. The context information is

delivered by scope and index which represents the scope and the location in the scope where

the API is called. The arguments of the API call are generated first (lines 13-16) through a

separate process called generate_arg(). The returned object is then constructed if it exists

(lines 19-20). After that, the specified effects related to object lifetime management and

object runtime properties are applied to the returned object and the objects imported by the

arguments (lines 23-24). If the targeted API is specified with certain child APIs, the fuzzer

creates a new scope associated with the API call. A sequence of random calls of the child

APIs are recursively generated in the newly created scope afterward based on the procedure

described at lines 1-7.

Figure 4.2 presents the pseudocode for generating a random argument of an API call. The

pseudocode first imports the objects required by the argument (line 3-10). More specifically,

the scope is queried for the live objects that have a matched type. Those objects are filtered

by the object state assertions. An imported object is randomly selected from the objects that

are left at the end. Next, the sub-arguments of the argument are recursively generated (line

13-18). Finally, the argument value is resolved (line 21). Note that argument generation may

fail when there is no valid object for importing which can further lead to a failure of the API

23



1 def generate_apis(scope, api_specs):
2 scope.apis = []
3 for _ in range(scope.limit):
4 api_spec = random.choice(api_specs)
5 api = generate_api(api_spec, scope, len(scope.apis))
6 if api is not None:
7 scope.apis.append(api)
8

9 def generate_api(api_spec, scope, index):
10 api = API(api_spec)
11

12 # Generate the arguments
13 for arg in api.args:
14 ok = generate_arg(arg, scope, index)
15 if not ok:
16 return None
17

18 # Generate the optional returned object
19 if api.return_type is not None:
20 api.ret = object_factory.create(api.return_type)
21

22 # Apply the effects
23 for effect in api.effects:
24 api.effect()
25

26 # Generate the optional body
27 if len(api.child_api_specs) > 0:
28 api.scope = create_scope(api)
29 api.scope.apis = generate_apis(api.scope, api.children_api_specs)
30

31 return api

Figure 4.1: Pseudocode for generating a random API call at a specific program location (i.e., scope
and index) based on the API specification (i.e., api_spec).

generation and is thus particularly handled by the fuzzer.

Once the fuzzer manages to generate a random API call in a particular scope, generating

a random API program in RPG IR becomes straightforward as presented in Figure 4.3. Note

that a program in RPG IR is represented by the global scope (see §3.3). Therefore, the

fuzzer needs to create a global scope for the program. After that, the fuzzer determines the

APIs to be invoked in the global scope and generates random calls for them through the

aforementioned process (i.e., generate_api in Figure 4.1).
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1 def generate_arg(arg, scope, index):
2 # Generate the imported objects
3 for obj_type in arg.object_types:
4 objects = scope.get_objects(obj_type, index)
5 for cond in arg.asserts:
6 objects = filter(cond, objects)
7 if len(objects) > 0:
8 arg.imports.append(random.choice(objects))
9 else:

10 return None
11

12 # Generate the sub-arguments
13 for sub_arg in arg.args:
14 ok = generate_arg(sub_arg, scope, index)
15 if ok is not None:
16 arg.args.append(sub_arg)
17 else:
18 return None
19

20 # Calculate the value of the argument
21 arg.value = arg.VALUE()
22

23 return arg

Figure 4.2: Pseudocode for generating a random argument for the API call at a specific program
location (i.e., scope and index).

1 def generate_program():
2 program = context_manager.create_global_scope()
3 program.apis = []
4 for api_spec in range(global_api_specs):
5 api = generate_api(api_spec, program, len(program.apis))
6 if api is not None:
7 program.apis.append(api)

Figure 4.3: Pseudocode for generating a random RPG IR program.

4.2 Context-aware API Mutation

A context-aware API fuzzer also supports several types of mutations over an existing

program in RPG IR without corrupting the maintained program context. The mutation

algorithms mostly rely on the generation process of APIs and arguments described in §4.1.

API insertion. The fuzzer first randomly selects an existing scope in the program. Then,

a random API call is generated at a random location in the scope, which is implemented

by generate_api(). Note that the birth and death location of all the objects created in the
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scope needs to be updated afterward.

API deletion and replacement. First, the fuzzer can randomly remove an existing API

call in the program. To avoid semantic errors in the mutated program, the API calls whose

effects have been applied to the context are excluded. Furthermore, the fuzzer can replace

an existing API call with a new one by removing the API call and generating a new one at

the same program location.

Argument mutation. The fuzzer randomly selects an argument of an existing API and

regenerates the argument itself or any of its underlying sub-arguments via generate_arg().

To avoid semantic errors, the fuzzer should not consider regenerating the arguments whose

imported objects are operated by an API call (i.e., affected by API effects).
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CHAPTER 5

FREEDOM: CONTEXT-AWARE DOM FUZZING VIA RPG IR

In this chapter, we present how we apply RPG IR to fuzz one of the most widely used

API-based systems – web browsers – in a context-aware manner. More specifically, we

propose FreeDom, a DOM fuzzer that strictly follows the API model based on RPG IR.

5.1 Background

5.1.1 DOM: An HTML Document Representation

A web browser accepts HTML documents as its input, which follows the Document Object

Model (DOM) standardized by W3C. Figure 5.1 presents an example of a document that

consists of the following parts:

The initial DOM Tree. The DOM logically treats a document as a tree structure, and each

tree node represents an object to be rendered. An HTML document file specifies the initial

object tree. Most notable nodes represent elements. An element is identified by its tag and

has its own semantics. A leaf node of an element can be another element or a text node.

Moreover, each element owns a list of attribute nodes. The attributes control various aspects

of the rendering behavior of an element. Note that for each element, the DOM standard

specifies exactly what child elements and attributes it owns and whether it can have text in

its content. For example, the DOM tree presented in Figure 5.1 includes a <form> element

that owns two attributes and two child elements.

CSS Rules. Cascading Style Sheets (CSS) are used to specify in which style the elements

in the document are rendered. Contained by <style>, a CSS rule consists of (1) a group

of CSS selectors, which determines the elements to be styled, and (2) a group of CSS

properties, each of which styles a particular aspect of the selected elements. For instance,
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Element node

Child element node
Attribute node

<html>
<style> 
#e4, .class1 { columns: 1264; filter: url(#e5) } 
select { word-spacing: normal; } 
</style> 

<script> 
function main() {

// Property write 
try { e3.autofocus = true; } catch(e) {}
// Method call
try { e3.reportValidity(); } catch(e) {}
// Property read 
try { var v1 = e2.control; } catch(e) {} 
try { v1.outerText = "1"; } catch(e) {} 

} 
function f1() { ... }
function f2() { ... }
</script> 

<body onload="main()"> 
<form id="e1" class="class1"> 

<label id="e2" for="e3"/> 
<select id="e3" onblur="f2()">Text</select> 

</form> 
<svg id="e4" xmlns="http://www.w3.org/2000/svg"
width="100">

<filter id="e5"/> 
</svg> 
</body> 
</html>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

CSS selector

CSS Rules

JavaScript

Text node

DOM Tree

Event handler 

CSS property

Figure 5.1: An example of an HTML document. The document is composed of three main parts
that have distinct syntax and semantics: (1) A DOM tree specifies objects to be displayed at the very
beginning. (2) A list of CSS rules further decorates the objects in the tree. (3) The JavaScript codes
modify the layout and effect of the objects at runtime.

Line 3 in Figure 5.1 requires the <form> selected by .class1 to split its content into 1,264

columns.

Event Handlers. To provide the interactivity of a web page, the DOM standard defines

various events being triggered at specific timing points or user inputs. Event handlers can be

registered in <script> so as to programmatically access or control the objects in the tree

at runtime. For example, in Figure 5.1, main() and f2() are executed when a document is

loaded and the <select> element loses focus, respectively. An event handler calls DOM

APIs declared by the specification to manipulate DOM objects. Typical DOM APIs include

object property accesses and object method invocations. Currently, all the popular browsers

expose DOM APIs in JavaScript.
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DOM fuzzer Year Type Method Str. Ctx. Cov. Active

domfuzz [26] 2008 D G - -
Bf3 [5] 2010 S G
cross_fuzz [27] 2011 D G - -
Dharma [2] 2015 S G ✓ ✓

Avalanche [4] 2016 S G ✓ ✓

Wadi [3] 2017 S G ✓

Domato [1] 2017 S G ✓ ✓

FreeDom 2020 S G/M ✓ ✓ ✓ ✓

Str.: Structure-aware, Ctx.: Context-aware, Cov.: Coverage-guided
D: Dynamic, S: Static, G: Generative, M: Mutational

Table 5.1: The classification of existing DOM fuzzers. Dynamic fuzzers themselves are web pages
executed by the target browser, while static fuzzers generate documents first and then test them.
FreeDom is a static DOM fuzzer, which supports both blackbox generation and coverage-guided
mutation in a context-aware manner.

5.1.2 DOM Engine Bugs

A browser runs a DOM engine (e.g., WebKit in Apple Safari and Blink in Google Chrome),

which literally implements the DOM specification so as to interpret an HTML document.

We aim to use FreeDom to find memory errors triggered by a DOM engine when operating

malformed documents. Such client-side bugs result in data breaches or even remote code

execution in the context of a renderer process and therefore have always been considered one

of the most significant security threats to end users over the past decade. Though browser

vendors exert endless efforts to eliminate DOM engine bugs [18, 19, 20, 21, 22], there still

have been quite a few full browser exploit chains that target DOM bugs in recent years [23,

24, 25], including one developed by us based on a bug found by FreeDom in Safari.

5.1.3 A Primer on DOM Fuzzing

The giant and rapidly growing DOM specification describes an extremely complex format for

an HTML document. Hence, fuzzing, which requires minimal knowledge about the internals

of the target software, becomes the most preferable approach for finding DOM engine

bugs in practice. Over the last decade, researchers have proposed numerous DOM fuzzers,
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which are summarized in Table 5.1. The earliest DOM fuzzers, such as domfuzz [26] and

cross_fuzz [27], ran the fuzzer code in JavaScript together with a seed document in the same

window. At runtime, it crawled the available elements on the page and invoked random

DOM API calls to manipulate them on-the-fly until the browser crashed. The popularity of

such dynamic fuzzers has declined because a target browser instance ages after a long run,

which results in unstable executions and irreproducible crashes. By contrast, most recent

fuzzers are static [5, 2, 3, 1] and generate syntactically correct documents from scratch

based on static rules or grammars that describe the specification and execute every document

with a fresh browser instance for a limited amount of time. Since the rules and grammars

used by those fuzzers are not fully context-sensitive, the generated documents suffer from

semantic errors. As typical blackbox fuzzers, they do not utilize existing testcases and

feedback information for input generation.

5.2 Motivation

In this section, we systematically analyze the defects of conventional generation-based

DOM fuzzers. Their common approach fails to construct inputs with complex semantics

and, more importantly, restricts the exploration of coverage-guided mutation-based DOM

fuzzing, which can be resolved by RPG IR.

5.2.1 On the Ineffectiveness of Static Grammars

Previous research has pointed out that one crux of fuzzing complex software effectively is to

avoid semantic errors [28], not excepting DOM engines. Nevertheless, recent DOM fuzzers

like Domato use various context-free grammars to describe an HTML document. Such a

static grammar largely guarantees the syntactic correctness of a generated input, but it is

unable to describe every data dependence throughout the input. As motivating examples,

we summarize the typical context-dependent values (CDVs) in a document that Domato’s

grammar cannot correctly describe.
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<elementid> = htmlvar0000<int min=1max=9>    
<svgelementid> = svgvar0000<int min=1max=9>
<class> = class<int min=0max=9>                            
<tagname> = a | abbr | acronym | ...  
<svgtagname> = a | altGlyph | altGlyphDef | ...

<cssurl> = #<elementid>
<cssurl> = #<svgelementid>

<svgelement_animate> = <lt>animate <animattr> <svgattrs_animate> /<gt>
<animattr> = attributeName="x" from="<x_value>"
<animattr> = attributeName="y" from="<y_value>"
<animattr> = attributeName="d" from="<d_value>"
... and many more.

(a) (b)

(c) (d)

<selector> = .<class>                                                   
<selector> = #<elementid>
<selector> = <element>
<element p=0.5> = <tagname>
<element p=0.4> = <svgtagname>

<cssproperty> = filter: <cssproperty_filter>
<cssproperty_filter> = url(<cssurl>)
<cssproperty> = clip-path: <cssproperty_clip-path>
<cssproperty_clip-path> = url(<cssurl>)
… and many more.

<form_value> = <elementid> 
<usemap_value> = #<elementid>

Figure 5.2: The grammar rules used by Domato that incorrectly generate four types of context-
dependent values, including (a) CSS selectors, (b) CSS property values, (c) attribute names, and (d)
attribute values.

CDV1: CSS selectors. CSS selectors explicitly refer to one or more elements to be styled

by id, class, or tag. Domato expresses such references as shown in Figure 5.2(a). Basically,

Domato only considers a fixed number of HTML and SVG elements, a fixed number of

predefined class names, and all the HTML and SVG tags for styling. The contradicted fact

is that the number of elements and the tags or class names available for reference in a

document randomly generated by Domato are undetermined before generation. In practice,

a document output by Domato probably has more than 30 HTML elements, only five SVG

elements, or simply no <abbr> elements, which are the counterexamples to the grammar

rules listed in Figure 5.2(a). In such cases, reference errors may occur; meanwhile, particular

valid elements are never utilized.

CDV2: CSS property. Certain CSS property values also refer to existing elements.

Normally, an element being referred to is required to not only be live but also have a

particular type according to the DOM standard. Nevertheless, Domato incorrectly describes

this data dependence as shown in Figure 5.2(b). Instead of any type of element, the standard

only allows an SVG <clipPath> element and an SVG <filter> element to be used in the

value of a clip-path CSS property and a filter CSS property, respectively. Thus, those

CSS properties generated by Domato are likely not functional.

CDV3: Attribute name values. The attributes of an element are referenced by their names

for manipulating them. The validity of such an attribute reference depends on the owner

element of the attribute, which is not fully presented by Domato’s grammar. For example, an

SVG <animate> element uses its attributeName attribute to indicate a particular attribute
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of its parent element to be animated [29]. Being unaware of what element the <animate>

element exactly serves, Domato randomly sets attributeName to any animatable SVG

attribute, as described in Figure 5.2(c). For instance, Domato probably generates a worthless

<animate> element that tries to change the non-existent x attribute of a <path> element.

CDV4: Attribute values. Similar to CSS selectors and property values, the value of a

particular attribute (e.g., form and usemap) involves a reference to an element of a specific

type (e.g., <form> and <map>), which is again not correctly described by Domato, as shown

in Figure 5.2(d).

Generally, the dilemma of an existing DOM fuzzer based on a context-free grammar is

that the grammar predefines a random approach to generate every possible unit of an HTML

document but cannot anticipate the exact unit values eventually concretized in a document.

Unfortunately, avoiding semantic errors during generation requires being aware of those

concrete values. By contrast, RPG IR always memorizes the values that have been generated

in its object-based context in the current document for generating new values afterwards.

5.2.2 Exploring Coverage-guided DOM Fuzzing

Most emerging fuzzers adopt a coverage-driven mutation-based approach, which is proven

to be effective in practice [30, 31, 7]. Nevertheless, as of now, pure generation-based

fuzzing with no runtime feedback is still the dominant approach for finding DOM engine

bugs. Meanwhile, no public research aims to understand whether or not coverage-guided

mutation-based fuzzing outperforms blackbox fuzzing against DOM engines. In other words,

the optimal design of a DOM fuzzer is still an open problem.

However, existing DOM fuzzers cannot be directly utilized to determine the answer.

Those fuzzers output final documents in plaintext for one-time testing. Due to the lack of the

detailed context that originates from the use of static grammars, it is difficult to extend such

fuzzers to comprehensively mutate the documents they generate. For instance, though the

author of Domato implements an extension that enables mutation [32], the only supported
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type of mutation is to append new data to an existing document. Meanwhile, all the other

known mutation strategies, such as flipping and splicing existing data [30, 31] and merging

two or more existing inputs [33, 28], are not feasible over plaintext. The extension is thus

incapable of achieving the full potential of mutation. By contrast, FreeDom uses RPG IR to

present a document with stateful structures. RPG IR carries detailed context information to

ensure the semantic correctness of a document after all sorts of mutations.

In summary, building a mutation-based DOM fuzzer requires describing documents in

mutable structures rather than in text. FreeDom achieves this by adopting RPG IR as its

context-aware representation for HTML documents.

5.3 Design

In this section, we introduce the design of FreeDom based on RPG IR.

5.3.1 Document Representation in RPG IR

An HTML document consists of three different parts as mentioned in §5.1.1, which have

distinct formats. Nevertheless, RPG IR still enables FreeDom to describe both the syntax

and semantics of an HTML document comprehensively.

Document context. An HTML document in RPG IR contains two types of scopes. The

global scope records all the elements contained in the initial DOM tree for reference. The

state of an element includes its tag and attributes, which are referred to by many DOM API

calls. Moreover, every JavaScript function creates a local scope, which contains DOM API

calls. Each local scope contains the DOM objects locally defined by a particular API call.

The recorded elements and DOM objects in the scopes serve as a basis for constructing four

types of context-dependent values, summarized in §5.2.1, in a document.

CSS rules. FreeDom treats every CSS rule as an API call, which contains two types of

arguments, including CSS selectors and a block of CSS properties. Both selectors and

properties may contain references to an element and thus require importing objects from the
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global scope.

Event handlers. An event handler contains a list of DOM API calls in JavaScript. As

mentioned in §5.1.1, all the three types of DOM API calls involve an optional return object

and zero or more arguments, which exactly fits the API model in RPG IR.

DOM tree. A DOM tree is an XML-based structure wherein each node represents an

element in the document. To describe a DOM tree in RPG IR, FreeDom considers each

element node as an API call. The arguments of such an API call are the attributes of the

corresponding element. In addition, FreeDom supposes that a new scope is created by the

API call, which contains the child nodes of the element. The outermost API call, namely the

root of the DOM tree, is a <body> element.

5.3.2 Context-aware DOM Fuzzing

FreeDom systematically generate and mutate random HTML documents in RPG IR in a

context-aware manner.

Document Generation

To generate a random input, FreeDom always starts with a blank document in RPG IR,

which only has a <body> element, an empty main event handler, and a list of empty event

handlers. Then, FreeDom uses various methods to construct the document content in the

order of a DOM tree, CSS rules, and event handlers, which involves heavy queries and

updates on the objects stored in the context.

DOM tree generation. Generating the DOM tree in a document has the highest priority

because the tree determines the available nodes to be styled and manipulated by CSS rules

and event handlers, respectively. In particular, FreeDom builds a DOM tree by repeatedly

invoking the following three methods.

(1) Gt1: Insert an element. FreeDom creates a new element and inserts it as the child

of an existing element in the tree. The index of the new element among all its
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siblings is random. Depending on the type of parent, FreeDom randomly decides the

corresponding element type of the new child by specification. FreeDom finally adds

the element into the global context.

(2) Gt2: Append an attribute. FreeDom creates a new attribute that is owned by an

existing element yet is not set. FreeDom relies on the global scope to generate the

initial value of the attribute, which is defined as an argument in RPG IR.

(3) Gt3: Insert a text node. FreeDom selects an existing element that is allowed to have

text content, generates a random string, and inserts the string into the tree as a child of

the selected element.

CSS Rule Generation. After having the DOM tree in a document, FreeDom further

generates a list CSS rules. The generation algorithm of a CSS rule, called Gc1, repeatedly

invokes two sub-routines.

(1) Gc2: Append a CSS selector. FreeDom generates a CSS selector and adds it into the

rule.

(2) Gc3: Append a CSS property. FreeDom constructs a CSS property and appends it into

the rule.

Both CSS selectors and properties are the arguments generated based on the objects con-

tained in the global scope.

Event Handler Generation. FreeDom fills every event handler in a document with

a sequence of DOM API calls. In the procedure of appending a random API call to a

particular event handler (notated as Gf), FreeDom first queries both global and local scopes

for available DOM objects that can be used as the arguments of an API call in the current

event handler. Then, FreeDom chooses a satisfiable DOM API (i.e., the types of all the

required arguments of such an API are supported by the context) defined by the specification

and generates a corresponding API call based on the context. If the API call returns a new

object, the object along with the location of its definition is recorded by the current local

scope.
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# Before After Wgt. New
Gt1 <select></select>

<select><option></option></select> M
Gt2 <select size="3"></select> M
Mt1 <select size="3"></select>

<select size="0"></select> H ✓
Mt2 <select autofocus=""></select> H ✓
Gt3 <option></option> <option>A</option> L ✓
Mt3 <option>A</option> <option>CCCCC</option> L ✓

Gc1

.class1 {font-size:15px;}

.class1 {font-size:15px;} div {color:red;} M
Mc1 div {color:red;} M ✓
Gc2 .class1, div {font-size:15px;} M
Mc2 div {font-size: 15px;} H ✓
Gc3 .class1 {font-size:15px; color:red;} M
Mc3 .class1 {font-size:1vmin;} H ✓

Gf

var v1 = window.getSelection();

var v1 = window.getSelection(); M
var v2 = v1.getRangeAt(0);

Mf1
document.createElement("div"); M ✓
var v1 = window.getSelection();

Mf2 document.createElement("div"); H ✓
Mf3 var v2 = v1.getRangeAt(0); var v2 = v1.getRangeAt(16); H ✓

Wgt.: Weight, H: High, M: Medium, L: Low

Table 5.2: The examples of the mutation algorithms used by FreeDom for three different parts of a
document. The Wgt. column indicates the preference of FreeDom to those algorithms. We mark the
algorithms that are beyond simple appending and difficult to support by extending old DOM fuzzers.

Single Document Mutation

FreeDom aims to mutate three different parts of an existing document in RPG IR with

various granularities, while maintaining context information during mutation. We present

the detailed mutation algorithms adopted by FreeDom as follows.

DOM tree mutation. FreeDom may call the generation routines, namely Gt1, Gt2 and and

Gt3, to grow the DOM tree in a document. In addition, FreeDom mutates existing nodes in

the tree in three ways.

(1) Mt1: Mutate an attribute value. FreeDom selects an existing attribute and regenerate

its value as an RPG IR argument based on the global context.

(2) Mt2: Replace an attribute. FreeDom first selects an element and randomly removes

one of its attributes. Then, FreeDom applies Gt2 to append a new attribute to the

element. Here, FreeDom never removes an attribute whose value is referred to by

other attribute values (e.g., attributeName of SVG <animate>).

(3) Mt3: Mutate a text node. FreeDom simply selects a text node and regenerates its

string content.
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CSS rule mutation. First, FreeDom may directly invokes Gc1, Gc2, or Gc3 to enlarge CSS

rules in a document. Meanwhile, the existing CSS rules can be mutated from the following

three aspects.

(1) Mc1: Replace a CSS rule. FreeDom removes an existing CSS rule from the document

and inserts a new one generated by Gc1.

(2) Mc2: Mutate a CSS selector. FreeDom selects and mutates a selector in an existing

rule.

(3) Mc3: Mutate a CSS property. FreeDom selects a CSS property, and similarly mutates

its value.

Event handler mutation. Furthermore, FreeDom is also able to mutate event handlers

in JavaScript. In particular, FreeDom first randomly selects a target event handler in the

document. Note that main event handler has a much higher probability to be selected, as it is

triggered most of the time. Besides appending a new API call (i.e., Gf) to the target handler,

FreeDom may also run the following three mutation methods.

(1) Mf1: Insert an API call. FreeDom first chooses a particular line of the JavaScript

function as the insertion point. After that, FreeDom generates a new API call similar

to how FreeDom does in Gf. The only difference is that when FreeDom queries the

context for available DOM objects, all the elements in the global scope are still usable.

Meanwhile, only the local objects defined before the insertion point can serve as the

arguments of the API call. The generated API call is eventually placed at the chosen

line. In addition, the birth location of the definition of every DOM object created

below the line is incremented by one.

(2) Mf2: Replace an API call. FreeDom first selects a random line within the event

handler. The original API call at this line is removed. Then, FreeDom generates a

new API call and inserts it into the event handler at the line in the exact same way

Mf1 does. Note that FreeDom avoids removing any API call at a particular line that

returns an object, because the object may be used in the later API calls and removing
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such a call introduces reference errors.

(3) Mf3: Mutate API arguments. FreeDom first randomly selects an existing API call in

the event handler and regenerates any of the arguments of the API call in a random

way based on both global and local scopes.

Table 5.2 summarizes the document mutation algorithms supported by FreeDom with

examples. FreeDom assigns each algorithm a specific weight for random sampling at

runtime. We empirically set text-related mutations with low priority, as the exact text content

is generally not crucial to trigger a crash. In general, FreeDom prefers to modify existing

document content instead of adding new data to fully explore the states of existing DOM

objects and avoid a rapid increase in testcase sizes.

Document Merging

Besides mutating a single document, FreeDom also supports merging two or more docu-

ments in RPG IR into a new document without breaking the document context due to the

effectiveness of combining existing seed inputs for testing proven by [34, 35, 28]. Given

two documents Da and Db, we present a random algorithm to merge Db into Da part by part.

Merging initial DOM trees. First, algorithm 2 presents how FreeDom makes Da consume

every node of the DOM tree in Db, which starts from the direct child elements of Db’s tree

root. For such an element nb belonging to Db, FreeDom randomly selects an element node

nt in Da that has the same type (i.e., tag) and the same or smaller tree depth. Next, FreeDom

copies every missing attribute and all the text content from nb into nt. In addition, FreeDom

uses an object map (i.e., ObjectMap in algorithm 2) to record the mapping from nb to nt. The

child elements of nb are then recursively merged with the offspring of nt in the same way. In

this case, nb no longer exists in the new DOM tree. Sometimes, an element of the same type

as that to be merged with does not exist in Da. Then, FreeDom directly inserts nb along with

its offspring into a random location in the DOM tree of Da, which has the same tree depth

as nb. At the end, FreeDom records every element that originates from Db and is directly
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Algorithm 2: Merging two DOM trees in FreeDom.
Input: Two DOM trees Ta and Tb in two documents, an object map
Result: Ta being enlarged by merging with the nodes in Tb

// ObjectMap: a global object map used throughout merging.
1 Procedure mergeElement(na, nb, ObjectMap)
2 TargetSet← ∅;
3 for each n ∈ getOffsprings(na) do
4 if getType(n) = getType(nb) then
5 TargetSet← TargetSet ∪ {n};
6 end
7 end
8 if TargetSet = ∅ then

// Move the sub-tree rooted at nb to be a child of na.
9 insertChild(na, nb);

10 else
11 nt ∼ TargetSet; // Randomly sample a node from the set.
12 mergeAttributesAndText(nt, nb);
13 ObjectMap[nb]← nt;
14 for each n ∈ getChildren(nb) do
15 mergeElement(nt, n, ObjectMap);
16 end
17 end
18 Procedure mergeTree(Ta, Tb, ObjectMap)
19 ra← getRoot(Ta); rb← getRoot(Tb); // The tree root is the <body>

element.
20 for each nb ∈ getChildren(rb) do
21 mergeElement(ra, nb, ObjectMap);
22 end
23 for each nb ∈ Tb − {rb} do
24 if ¬∃ ObjectMap[nb] then
25 addElementIntoGlobalContext(nb);
26 end
27 end

inserted into Da without merging in Da’s global context.

Merging CSS rules. Second, FreeDom directly copies the CSS rules from Db into Da,

which does not involve any merging conflicts.

Merging event handlers. Next, FreeDom merges the event handlers in Da and Db. As

every document in FreeDom is initialized with a fixed number of event handlers, FreeDom

simply shuffles two paired event handlers Fa and Fb by inserting every API call from Fb
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into a random line in Fa (see Mf1 mentioned previously). Note that the relative order of any

two API calls from Fb is not changed.

Fixing references. FreeDom finally uses ObjectMap to fix every reference in the new Da

that points to an element that originates from Db but vanishes when merging the DOM trees.

FreeDom’s merging algorithm ensures that the resulting document takes on the char-

acteristics of the two input documents such as their DOM tree hierarchies and API call

sequences while not introducing semantic errors.

5.4 Evaluation

In this section, we evaluate FreeDom to reveal the effectiveness of RPG IR in DOM fuzzing.

In particular, we answer the following questions:

• Q1. How effective is FreeDom in discovering new bugs in the mainstream browsers?

(§5.4.1)

• Q2. Does FreeDom become a state-of-the-art DOM fuzzer due to its RPG-IR-based

approach? (§5.4.2)

• Q3. How effective is coverage-driven mutation in fuzzing DOM engines? (§5.4.3)

Experimental Setup. We run FreeDom and other DOM fuzzers in a small fuzzing cluster

that consists of five 24-core servers running Ubuntu 18.04 with AMD Ryzen 9 3900X

(3.8GHz) processors and 64GB memory. To display browser windows on a server without

a graphical device, we leverage X virtual frame buffer (Xvfb), which is the most common

solution in DOM fuzzing. Each fuzzer instance owns a separated Xvfb session for running

its generated inputs.

5.4.1 Discovering New DOM Engine Bugs

We have intermittently run FreeDom for finding zero-day vulnerabilities in the DOM

engines of all the mainstream browsers for two months. By default, FreeDom fuzzes

the HTML, CSS, and SVG standards together since their corresponding implementations
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# Browser Report ID Component Summary Status

1 Safari 12.0.2 705074056 SVG Use-after-free CVE-2019-6212
2 Safari 12.1.0 709777313 WebGL Arbitrary memory access CVE-2019-8596
3† Safari 12.1.0 - SVG Heap overflow CVE-2019-8609
4 Safari 13.0.1 710042930 SVG Heap overflow CVE-2019-8720
5 Safari 13.0.5 727800575 SVG Null dereference Patched
6 Safari 13.0.5 729340941 SVG Race condition Patched
7 Safari 13.0.5 729379682 SVG/CSS Use-after-free Patched
8 Safari 13.0.5 729429465 SVG Use-after-free CVE-2020-9803
9 Safari 13.0.5 - CSS Null dereference Patched
10* Safari 13.0.5 - HTML/SVG Use-after-free Patched
11 Safari 13.0.5 730447379 HTML/SVG/CSS Use-after-free CVE-2020-9806
12 Safari 13.1.0 732608208 HTML/SVG/CSS Use-after-free CVE-2020-9807
13 Safari 13.1.0 734414767 HTML/CSS Use-after-free CVE-2020-9895
14‡ WebKitGTK 2.24.0 - WebGL Out-of-bound memory access Patched
15‡ * WebKitGTK 2.28.0 731291111 HTML Use-after-free Patched

16† Chrome 73.0 943087 WebGL2 Integer overflow CVE-2019-5806
17† Chrome 73.0 943709 WebGL2 Heap overflow CVE-2019-5817
18† Chrome 74.0 (beta) 943424 WebGL2 Use-after-free Patched
19† Chrome 74.0 (beta) 943538 WebGL2 Use-after-free Patched

20 Firefox 76.0 1625051 HTML/CSS Out-of-bound access Patched
21 Firefox 76.0 1625187 HTML/CSS Rust assertion Acknowledged
22 Firefox 76.0 1625252 HTML/SVG/CSS Null dereference Acknowledged
23 Firefox 76.0 1625369 HTML Correctness issue Patched
24 Firefox 76.0 1626152 SVG/CSS Use-after-free Patched
† The bugs which earn bug bounty rewards.
‡ The WebKit bugs that only affect WebKitGTK builds on Linux and do not affect Safari on macOS.
* The duplicated bugs which are also reported from internal efforts or other external researchers.

Table 5.3: The reported bugs found by FreeDom in Apple Safari (WebKit), Google Chrome, and
Mozilla Firefox. We mark out the latest browser versions that are affected by the bugs. The
Component column indicates what specific DOM components a document is required to contain for
triggering the bugs. In particular, bugs #18, #19, and #24 only affect the beta version and are never
shipped into a release; though they are security bugs, there are no CVEs assigned for them.

in a browser are closely related. FreeDom separately fuzzes WebGL on different OS

platforms, whose implementation is independent of other browser components but involves

platform-dependent code. Table 5.3 lists a total of 24 bugs found by FreeDom that have been

confirmed by the browser vendors, including 14 bugs in Safari/WebKit, four bugs in Chrome,

and five bugs in Firefox. Besides a few assertions, null dereferences, and correctness issues,

the vast majority of the bugs are security-critical, which have helped us gain 10 CVEs and

65K USD bug bounty rewards so far. The fuzzing results reflect that FreeDom is effective

in discovering new bugs in the latest DOM engines.
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5.4.2 Effectiveness of Context-aware Fuzzing

To prove that FreeDom is state of the art with its context-aware fuzzing approach driven by

RPG IR, we compare the fuzzing performance of FreeDom with that of Dharma [2] and

Domato [1]. In this evaluation, we always run 100 instances of every fuzzer in study on five

machines against an ASan build of WebKitGTK 2.28.0 on Linux for 24 hours. According

to public record [1], Domato has found the most bugs in WebKit, which is thus selected as

our evaluation target. To retrieve the code coverage of a document generated during the

experiment, we re-run it with an instrumented WebKit that profiles the visited basic blocks

of the DOM engine part (i.e., Source/WebCore/).

Comparison with Dharma

We first evaluate FreeDom with Dharma, a generation-based fuzzer based on context-free

grammars. Dharma officially only provides the grammar file for SVG documents with no

support of HTML tags, CSS rules, and DOM APIs. For a fair comparison, we use the

original Dharma and modify FreeDom to only generate the initial DOM tree with SVG tags

and attributes and skip the other two parts in a document. We also configure the number

of <svg> elements, SVG nodes rooted in an <svg> element, and attributes of a node in a

document output by FreeDom to ensure that both fuzzers generate the inputs of similar size

and complexity. Both fuzzers execute a document for at most 5 seconds. The experiment is

repeated for three times.

Figure 5.3 presents the experimental result. FreeDom visits 13.96% more code blocks

than Dharma on average. More importantly, FreeDom stably triggers at least 7 unique

crashes during each fuzzing run and totally discovers 18 unique ones. Meanwhile, Dharma

fails to find any crashes during the experiment. There is a higher chance that Dharma

may trigger a few of FreeDom’s crashes by adding more random options for generating

certain constant values like integers and images into its grammar. Nevertheless, we observe

that around 60% of the crashes triggered by FreeDom involve SVG animations. Similar
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Figure 5.3: Achieved code coverage and triggered crashes of FreeDom and Dharma when fuzzing
SVG documents in WebKit with 100 cores for 24 hours. Dharma fails to find any crash during three
fuzzing runs. In (b), we differentiate unique crashes found by FreeDom based on their crashing PC
values.

to Domato discussed in §5.2.1, Dharma, based on its context-free grammar, is not aware

of the exact element whose attributes are to be animated and simply animates an attribute

that is randomly selected from 30 candidates that are neither all animatable nor always

owned by the element. Therefore, Dharma rarely constructs a valid SVG animation. By

contrast, FreeDom is more likely to generate working animations and manages to trigger

those crashes, which preliminarily reflects the effectiveness of context-aware generation in

DOM fuzzing.

Comparison with Domato

We then evaluate FreeDom and Domato, both of which fuzz the HTML, SVG, and CSS

specifications together by default. Although the two fuzzers have completely different

designs, we do not introduce any change to Domato’s fuzzing engine and take great effort

to configure FreeDom to generate the documents that have complexity similar to those

generated by Domato. In addition, both fuzzers run with a 5-second timeout and are

evaluated three times.
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Figure 5.4: Achieved code coverage and triggered crashes of FreeDom and Domato for a 24-hour
run with 100 cores. Note that we use a log scale on the right side to present the total number of
crashes. We differentiate unique crashes based on their crashing PC values.

Figure 5.4 presents the evaluation results. With nearly 3% more executions, the overall

code coverage of Domato is slightly higher than that of FreeDom by 2.69% on average.

Nevertheless, FreeDom triggers around 9.7× more crashes and 3× more unique ones than

Domato. In particular, FreeDom discovers 112 unique crashes in three runs, 11 of which

have explicit security implications reported by ASan (i.e., heap buffer overflow and use-after-

free bugs rather than null pointer dereferences and infinite recursions). By contrast, Domato

only finds a total of 39 unique crashes, three of which are security-related. More importantly,

34 (87%) crashes found by Domato are also triggered by FreeDom. The evaluation results

indicate that the ability of FreeDom to find bugs in the latest DOM engine largely surpasses

that of the state-of-the-art DOM fuzzer.

To further understand how context awareness enables FreeDom to outperform Domato,

we minimize the inputs of 117 unique crashes found by both fuzzers into PoCs with

the HTML minimizer provided by ClusterFuzz. We then determine what types of data

dependencies (see §5.2.1) every PoC file involves through manual inspection, which is

presented in Table 5.4. Among the PoCs of 39 crashes found by Domato, a majority of them

do not contain any context-dependent part. Around 25% of them have context-dependent
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#Crashes Data Dependence
None CDV1 CDV2 CDV3 CDV4

Domato 5 4 (80.00%) 1 (20.00%) N/A N/A N/A
FreeDom 78 21 (26.92%) 49 (62.82%) 20 (25.64%) 8 (10.25%) 14 (17.94%)
Both 34 20 (58.82%) 9 (26.47%) N/A N/A 1 (2.94%)

Table 5.4: The unique crashes discovered by Domato, FreeDom, and both fuzzers during three 24-
hour runs. We also count the number of crashes that have one of the four types of context-dependent
values (CDVs) described in §5.2.1. Note that some crashes that involve more than one type of CDVs
are counted more than once.

CSS selectors (i.e., CDV1), which Domato has certain chances to construct correctly through

a fixed number of predefined elements, classes, and tags. At most times, a minimized PoC

generated by Domato only remains the universal selector (i.e., *), which is context-free.

Meanwhile, the context-dependent selectors generated by FreeDom are much more likely

to be valid and thus FreeDom manages to find another 49 crashes that require specific live

elements to be styled. Furthermore, during nearly 5 million executions in total, Domato fails

to trigger any crash but one that involves any of the other three types of data dependencies,

which are largely not addressed by its static grammar. Contrary to Domato, FreeDom

manages to generate a number of PoCs that cover from CDV1 to CDV4.

In a nutshell, our in-depth analysis shows that (1) the RPG-IR-based approach adopted

by FreeDom still manages to find the old types of bugs that existing DOM fuzzers target

by their context-free grammars, and (2) the additional context information maintained by

FreeDom in RPG IR is effective in finding many more bugs in the latest DOM engines that

have not been explored. Therefore, we believe FreeDom’s IR-based design fundamentally

outperforms the state-of-the-art DOM fuzzer, Domato.

5.4.3 Effectiveness of Coverage-driven Fuzzing

We now evaluate FreeDom to understand the effectiveness of coverage guidance in DOM

fuzzing. Similarly, we launch 100 FreeDom instances to fuzz the optimized build of

WebKitGTK 2.28.0 with the mutation strategies described in §5.3.2 on 100 cores for 24

hours. The DOM engine part of WebKit is instrumented for block coverage measurement.
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Figure 5.5: (a) Average block coverage rate of running FreeDom with random generation and
coverage-guided mutation to fuzz WebKit for 24 hours; (b) Number of basic blocks covered by the
PoCs of seven security-related crashes that are not visited by coverage-guided mutation at different
times during a 24-hour fuzzing process. FDG and FDM represent FreeDom in the generation mode
and mutation mode, respectively.

In this experiment, FreeDom bootstraps with two simple seeds: a blank document and a

document with a single <svg> element under <body>. Table 5.5 presents the fuzzing results,

and the average coverage growth is illustrated by Figure 5.5(a). We interpret the evaluation

results as follows.

Effectiveness of context-aware mutation. Compared to generation-based fuzzing by

FreeDom, coverage-guided mutation helps to visit around 1.2% and 2.62% more code blocks,

respectively. More importantly, mutation-based fuzzing enables FreeDom to successfully

discover three new crashes, including two security-related ones that are never triggered by

FreeDom through pure generation. A generation-based fuzzer intends to generate a large-

size document that contains a lot of randomly chosen elements, attributes, and CSS rules and

hopefully covers various DOM features within one execution. Meanwhile, mutation-based

fuzzing focuses on repetitive mutations and gradual growth of its inputs, which is more

likely to trigger the crashes that require strict or subtle settings. For example, one crash

missed by FreeDom when performing generation-based fuzzing is triggered by an SVG

<text> element that has a single attribute x="8192em". The element is required to have no
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Fuzzer Execs/s Coverage rate #Crash #Unique #Security #New

FDG 18.17 47.40(±0.05)% 47058.67 79.67 11 -
FDM 63.94 48.64(±0.13)% 331.67 21 6 3

Table 5.5: Fuzzing results of running FreeDom with random generation (FDG) and coverage-guided
mutation (FDM) against WebKit for 24 hours. We list the total number of unique security-related
crashes found in three fuzzing runs and the average values for other metrics. The New column
presents the number of distinct crashes that are only found by the coverage-guided mutation-based
fuzzing.

surrounding elements and no additional attributes or CSS styles that affect its text position,

which is difficult to find in a document output by random generation that has a deep element

tree, 10 attributes for an element, and 50 CSS rules. The PoC of another new crash has

three sibling <set> elements to animate the same attribute of their parent. FreeDom in the

generation mode selects child elements and a parent attribute to be animated uniformly

from various available candidates and therefore rarely generates such a document from a

statistical perspective. By contrast, FreeDom’s fine-grained mutation strategies manages to

grow a blank document into the inputs of these new crashes step by step.

Limitation of coverage-guided mutation. Unfortunately, we witness the weak implication

of code coverage for finding bugs when comparing the fuzzing results of random generation

and coverage-guided mutation enabled by FreeDom. With 3.5× more executions and a

2.62% coverage improvement, mutation-based fuzzing finds nearly 3.8× fewer unique

crashes on average compared to random generation. Around 75% unique crashes are missed

by FreeDom in this experiment, including seven security-related ones previously found

during three 24-hour runs. To further study the failure of coverage-guided fuzzing, we

determine the minimal basic blocks required to be covered for triggering the seven crashes

and observe how FreeDom approaches the crashes (i.e., covers those code blocks) during

this fuzzing run. Figure 5.5(b) presents the result, which shows that FreeDom is extremely

close to most of the crashes after four hours. However, due to an increasing number of

interesting testcases waiting to be mutated, FreeDom in the mutation mode tries to expand

its coverage without any particular direction and thus fails to make a final push to trigger any
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of the crashes in the remaining 20 hours. Though FreeDom in the generation mode blindly

generates the documents that can never explore the browser code thoroughly in process of

time, at least certain deep code paths are consistently tested through every execution due to

the fact that a generated document has a large size and rich semantics. By contrast, code

coverage makes FreeDom in the mutation mode that starts with a blank document wander

around numerous shallow code paths and cannot move downward for a long time because

of the extreme complexity of a DOM engine.

In general, blackbox generation is not comprehensive but is still recommended for

discovering a vast number of bugs in a DOM engine in a reasonable time. Meanwhile,

coverage-driven mutation is also considered an irreplaceable approach, especially for finding

the bugs that occur with exacting conditions. One more advantage of mutation-based fuzzing

is that minimizing its crashing documents of much smaller sizes is less time consuming. We

also believe that the performance can be largely improved with more computing resources

and better seeding inputs.

5.5 Conclusion

To prove that RPG IR can address the syntax and semantics of DOM APIs for fuzzing, we

propose FreeDom, a context-aware DOM fuzzer that relies on RPG IR to describe both

structures and context information of a document so as to avoid semantic errors. We have

reported 24 bugs found by FreeDom in mainstream web browsers with 10 CVEs assigned.

Due to its context-awareness, FreeDom finds 3× more unique crashes in WebKit than the

state-of-the-art DOM fuzzer, Domato. In addition, RPG IR enables FreeDom to perform

context-aware coverage-guided mutation, which is more effective in visiting new code

blocks (2.62%) and finds three complex bugs that the generative approach fails to find.
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CHAPTER 6

JANUS: CONTEXT-AWARE FILE SYSTEM FUZZING VIA RPG IR

To further show the effectiveness of RPG IR in API fuzzing, we present Janus, a context-

aware file system fuzzer that models Linux system calls in the way RPG IR suggests and

has discovered numerous unknown bugs in the Linux kernel.

6.1 File System Fuzzing

File systems are one of the most basic system services of an operating system that play

an important role in managing the files of users and tolerating system crashes without

losing data consistency. Currently, most of the conventional file systems, such as ext4 [36],

XFS [37], Btrfs [38], and F2FS [39], run in the OS kernel. Hence, bugs in file systems

cause devastating errors, such as system reboots, OS deadlock, and unrecoverable errors

of the whole file system image. In addition, they also pose severe security threats. For

instance, attackers exploit various file system issues by mounting a crafted disk image [40]

or invoking vulnerable file system-specific operations [41] to achieve code execution or

privilege escalation on victim machines. However, manually eliminating every bug in a file

system that has sheer complexity is a challenge, even for an expert. At the same time, many

widely used file systems are still under active development. File system developers consis-

tently optimize performance [42] and add new features [43, 44], meanwhile introducing

new bugs [45, 46, 47]. Therefore, we consider fuzzing as a viable approach to automatically

discover bugs in a wide range of file systems, which only requires minimal knowledge about

the target software. Generally, a disk file system has two-dimensional input space for a

fuzzer to explore: (1) the structured file system image; and (2) file operations that users

invoke to access files stored on a mounted image.
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6.1.1 Disk Image Fuzzing

A disk image is a large structured binary blob. The blob has (1) user data and (2) several

management structures, called metadata, that a file system needs to access, load, recover,

and search data or to fulfill other specific requirements of a file system. The size of metadata

constitutes merely 1% of the image size [48]. Meanwhile, the minimal size of a valid

image can be 100 MBs. Coverage-driven mutation proves to be one of the most effective

approaches in fuzzing structured binary data, not excepting disk images. Nevertheless,

blindly mutating an entire disk image introduces two issues: (1) Large input size leads to

an exponential increase in the input space exploration. Meanwhile, important metadata are

mutated infrequently. (2) To detect metadata corruption, several file systems (e.g., XFS

v5, GFS, F2FS, etc.) introduce checksums to protect on-disk metadata. Hence, the kernel

rejects a corrupt image, with mutated metadata blocks without correct checksums, during

initialization. To overcome the issues, an image fuzzer should effectively fuzz a complicated,

large disk image by (1) mutating scattered metadata in the image that are probably hardened

by checksum, and (2) mitigating frequent disk I/O due to input manipulation.

6.1.2 File Operation Fuzzer

As part of the OS, a kernel file system are considered a API-based system, where users

can invoke a set of system calls, namely the file system APIs, to operate the files in the

system. Although researchers have proposed a number of system call fuzzers [7, 8, 49] and

porting these fuzzers to target file system operations is straightforward, existing fuzzers fail

to effectively fuzz file operations due to their context unawareness. First, file operations

modify only file objects (e.g., directories, symbolic links, etc.) that exist on the image,

and a completed operation affects particular objects. However, existing OS fuzzers do

not consider the dynamic dependence between an image and file operations. They blindly

generate system calls without context awareness, which explore a file system superficially.

For example, the state-of-the-art OS fuzzer, Syzkaller, generates system calls based upon
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Figure 6.1: An overview of Janus.

static grammar rules describing the data types of every argument and return value for every

target system call. Therefore, Syzkaller is able to generate a single semantically correct

system call but fails to explore the collective behavior of a set of system calls and the

modified file system image. For instance, Syzkaller may use a file descriptor that has been

closed by open(). In addition, Syzkaller may emit multiples of open() calls on a file with

its old path that has been either renamed (rename()) or removed (unlink()).

6.2 Design

6.2.1 Overview

Janus is a feedback-driven fuzzer that mutates the metadata of a seed image, while generating

context-aware file operations (i.e., system calls) modeled by RPG IR to comprehensively

explore a file system. More specifically, Janus merely stores the metadata extracted from

the seed image as its mutation target, which is critical for a file system to manage user data.

In addition, Janus re-calculates every metadata checksum value after mutation. Since the

metadata occupy a small space (1%), the size of an input test case is much smaller than

that of an entire disk image, which enables high fuzzing throughput. More importantly,

unlike Syzkaller, Janus does not rely on manually specified information about the files

stored on a seed image, as it becomes stale over time and results in generating ineffective file
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operations. Instead, Janus considers system call effects and generates new file operations

based upon the deduced status of the file objects on an image after completing old operations

in a workload. Moreover, Janus manages to explore the two-dimensional input space of

a file system by wisely scheduling image fuzzing and file operation fuzzing. To improve

the fuzzing throughput, Janus relies on a library OS to test kernel functions in user space.

A library OS instance with file system support runs as a user application, which can be

re-launched with negligible overhead, and also helps to increase the chance of reproducing

a found bug.

Figure 6.1 presents the detailed design of Janus. An input for Janus consists of three

parts: (1) a binary blob comprising the metadata blocks of a seed image, (2) a serialized

program (i.e., file system workload) that describes a sequence of system calls in a context-

aware manner, and (3) a program context, namely the speculated status of the file objects

on the image after the program operates the image. In the beginning, Janus relies on a file

system-specific parser to extract metadata from a seed image. Janus also inspects the seed

image to retrieve initial image status as the starting context of an empty system call program.

Janus initiates fuzzing with both the image mutator and the system call fuzzer by selecting a

test case from the corpus for exploring the two-dimensional input space in an infinite loop.

First, the fuzzing engine invokes the image mutator to flip the bytes of the metadata blob

in several ways and outputs mutated blobs. At the same time, the program in the test case

remains unchanged. Later on, the system call fuzzer based on RPG IR enables Janus to

either mutate the argument values of existing system calls in the program or append new

ones to the program. The system call fuzzer also produces new image status according to

the newly generated program. Meanwhile, the metadata part remains intact. The output

metadata is combined with other unchanged parts (i.e., user data) to produce a full-size

image with all the checksum values re-calculated by Janus. And the output program is

also serialized and saved onto the disk. A user-space system call executor, which relies

on a library OS, launches a new instance to mount the full-size image and perform the
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file operations involved in the program loaded from the disk. The runtime path coverage

of the executor is profiled into a bitmap shared with Janus’s fuzzing engine. The fuzzing

engine inspects the bitmap; on discovering a new path, Janus saves the shrunken image, the

serialized program, and the speculated file object states into one binary input for further

mutation in successive runs. Note that for each test case, Janus always launches the image

mutator first for certain rounds and invokes the system call fuzzer if no interesting test case

is discovered.

6.2.2 Building Corpus

Janus relies on its image parser and system call fuzzer to build its initial corpus upon a

seed image. The first part of the test cases in the corpus is the essential metadata blocks

of the seed image, which constitutes around 1% of the total size, thereby overcoming the

challenges of fuzzing a disk image, as described in §6.1. Specifically, Janus first maps the

entire image into a memory buffer. Then a file system-specific image parser scans the image

and locates all the on-disk metadata according to the specification of the applied file system.

Janus reassembles these metadata into a shrunken blob for mutation afterward and records

their sizes and in-image offsets. For any metadata structure protected by checksum, Janus

records the in-metadata offset of the checksum field recognized by the image parser. Second,

the starting test cases also include the information of every file and directory on the image

that allows Janus to use that knowledge for generating context-aware workloads afterward.

In particular, Janus probes the seed image and retrieves the path, type and extended attributes

of every file object on it, which forms the starting context of an empty system call program.

6.2.3 Fuzzing Images

Janus relies on the image mutator to fuzz images. In particular, the image mutator loads the

metadata blocks of a test case, and applies several common fuzzing strategies [30] (e.g.,

bit flipping, arithmetic operation on random bytes, etc.) to randomly mutate the bytes of
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the metadata. Similar to existing fuzzers [50], Janus prefers a group of specific integers

such as -1, 0, INT_MAX, etc., instead of purely random values to mutate the metadata. In our

evaluation, these special values enable the image mutator to produce more corner cases,

which are not correctly handled by the file system (e.g., bug #1, #6, #14, #28, #33, etc.

in Table 6.2 found by Janus) and also more extreme cases that increase the probability of

crashing the kernel by triggering a specific bug at runtime (e.g., most of the out-of-bound

access bugs discovered by Janus).

After mutating the entire metadata blob, Janus copies each metadata block in the blob

back to its corresponding position inside the memory buffer, which stores the original

full-size image. To maintain the sanctity of the image, the image parser recalculates the

checksum value of every metadata block by following the specific algorithm adopted by the

target file system, and fills the value at the recorded offset of the checksum field.

6.2.4 File Operations in RPG IR

Generally, a testcase of Janus in RPG IR consists of a sequence of system calls and a context

that stores the file objects being operated by the system calls.

Program context. A system call program in RPG IR only involves one global scope,

which stores all the file objects in the file system. For every file object, Janus records its path,

type (e.g., normal file, directory, symbolic link, FIFO file, etc.), and extended attributes as

its object state. Those file information is used and meanwhile, updated by different system

calls. The global scope also contains a list of active file descriptors that are opened by

open() calls and have not been closed by the program.

System calls. Each system call is a tuple of a syscall number, a list of arguments and a

return value, which perfectly fits the API model depicted by RPG IR. A system call can

have context-free arguments such as flags and operation modes and meanwhile, context-

dependent arguments including file descriptors, file paths and extended attributes, which are

either object references or property values of the file objects stored in the context.
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6.2.5 File Operation Generation and Mutation

The system call fuzzer generates new programs from an input program in RPG IR in two

ways: (1) Syscall mutation. The system call fuzzer randomly selects one system call in the

program, and mutates the value of a randomly selected argument; (2) Syscall generation.

The system call fuzzer appends a new system call to the program, whose arguments have

randomly generated values. In particular, Janus adopts the same strategies that Syzkaller

uses to generate values for the trivial arguments of a system call. The candidate values of

these arguments are independent of the program context. For any argument that has a clearly

defined set of its available values, Janus randomly selects values from the set for it. (e.g.,

int whence for lseek()). Moreover, Janus generates random numbers in a certain range for

the arguments of an integer type (e.g., size_t count for write()). Furthermore, a number

of file operations requires an argument of a pointer type. Such a pointer normally points to a

buffer that is used to store either user data (e.g., void *buf for write()) or kernel output

(e.g., void *buf for read()). For the former case, the system call fuzzer declares an array

object filled with random values for the argument. A fixed array object is always used in

the latter case, since Janus is not driven by what the kernel outputs at runtime except for its

code coverage.

Nevertheless, for those non-trivial arguments whose proper values depend on the file

objects in a file system, Janus generates their values based not only on their expected types,

but more importantly, on the file information maintained in the global context by following

mainly three rules: (1) If a file descriptor is required, the system call fuzzer randomly

picks an opened file descriptor of proper type. For instance, write() requires a normal

file descriptor, while getdents() asks for the file descriptor of a directory; (2) If a path is

required, the system call fuzzer randomly selects the path of an existing file or directory, or a

stale file or directory that is removed by recent operations. For instance, Janus provides the

path of a normal file or a directory to rename(), but delivers only that of a valid directory

required by rmdir(). If the path is used to create a new file or directory, Janus may also
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randomly generate a brand new path that is located under an existing directory; (3) If a

system call operates the existing extended attribute of a particular file (e.g., getxattr() and

setxattr()), the system call fuzzer randomly picks a recorded extended attribute name of

the file. The generation strategies enable Janus to emit context-aware workloads on fresh

file objects that are free of runtime errors and achieve high code coverage.

For a newly generated system call, Janus appends it to the program, summarizes the

potential changes to the file system caused by the system call (i.e., the API effects) and

updates the states of the involved objects correspondingly. Note that the three types of

API effects defined by RPG IR (see §3.3.3) fully address the semantics of file operations.

For instance, open(), mkdir(), link(), or symlink() may create a new file or directory,

while open() also introduces an active file descriptor; rmdir() or unlink() removes a

file or a directory from the image; rename() updates the path of a file and setxattr() or

removexattr() updates a particular extended attribute.

Note that in the current design, Janus maintains only the speculated status of the file

objects after completing the execution of a program. Therefore, Janus avoids any mutation

on the existing arguments that result in potential changes to the context. For instance, Janus

may mutate fd of a write() in the program while never touching path of unlink(), since

such a mutation may invalidate the system calls after the mutated ones (e.g., changing

unlink("A") to unlink("B") affect all the existing file operations afterward on file B in a

test case).

6.2.6 Exploring Two-Dimensional Input Space

To fuzz both metadata and system calls together, Janus schedules its two core fuzzers in

order. Specifically, for an input test case, which contains a shrunken image and a program,

Janus first launches the image mutator to mutate random bytes on the shrunken image. If

no new code path is discovered with the unchanged program, Janus invokes the system call

fuzzer to mutate the argument values of an existing system call in the program for certain
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rounds. If still no new code path is explored, Janus eventually tries to append new system

calls to the program. Note that rounds in every fuzzing stage are user defined.

Scheduling image fuzzing and file operation fuzzing in such an order is effective as

follows: (1) The extracted metadata indicate the initial state of an image, whose impacts on

the executions of file operations gradually decreases when the image has been operated by

several system calls. Hence, Janus always tries to mutate metadata first. (2) Introducing new

file operations exponentially increases the mutation space of a program and may also erase

the changes from past operations of the image. Therefore, Janus prefers mutating existing

system calls rather than generating new ones.

6.2.7 Library OS based Kernel Execution Environment

To avoid using an aging OS or file system that results in unstable executions and irrepro-

ducible bugs, Janus relies on a library OS based application (i.e., executor) to fuzz OS

functionalities. Specifically, Janus forks a new instance of the executor to test every newly

generated image and workload from the fuzzing engine. Note that forking a user application

incurs negligible time compared with resetting a VM instance. Hence, Janus guarantees a

clean-slate kernel for every test case with low overhead. Moreover, as both fuzzing engine

and executor run in user space on one machine, sharing input files and coverage bitmap

between them is straightforward, which is challenging for VM-based fuzzers that run the

fuzzing engine outside VM instances. In addition, a library OS instance requires far less

computing resources compared with any type of VMs. Therefore, we can deploy Janus

instances on a large scale without severe contention.

6.3 Evaluation

In this section, we evaluate the effectiveness of Janus in terms of its ability to find bugs in

the latest file systems and achieve higher code coverage than existing file system fuzzers. In

particular, we answer the following questions:
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• Q1: How effective is Janus in discovering previously unknown bugs in file systems?

(§6.3.1)

• Q2: How effective is Janus in exploring (1) file operations and (2) the two-dimensional

input space including images and file operations by adopting a context-aware approach

based on RPG IR? (§6.3.2 and §6.3.3)

Experimental Setup. We evaluate Janus on a 2-socket, 24-core machine running Ubuntu

16.04 with Intel Xeon E5-2670 processors and 256GB memory. We use Janus to fuzz

file systems in Linux v4.18-rc1, unless otherwise stated. In particular, we test eight file

systems including ext4, XFS, Btrfs, F2FS, GFS2, HFS+, ReiserFS, and VFAT. We create a

seed image for each file system with most features enabled except ext4 and XFS. For ext4,

we create two seed images: one compatible with ext2/3 and the other with ext4 features.

Similarly, we do the same for XFS representing XFS v4 and XFS v5, which introduces

on-disk checksums to enforce metadata integrity. In total, we evaluate 10 seed images. In

addition, we compare our results with Syzkaller, which is the state-of-the-art OS fuzzer. We

run Syzkaller with KVM instances, each of which has two cores and 2GB of memory.

Note that Syzkaller relies on KCOV to profile code coverage, while Janus relies on the

method of AFL. For an apples-to-apples comparison between Syzkaller and Janus, after

fuzzing 12 hours, we mount every image mutated by Janus, and execute the corresponding

program generated by Janus on a KCOV-enabled kernel to get the KCOV-style coverage.

6.3.1 Bug Discovery in the Upstream File Systems

We intermittently ran Janus for four months (i.e., from April 2018 to July 2018) to fuzz

the aforementioned file systems in upstream kernels from v4.16 to v4.18. Over the span of

few days to a week, we ran three instances of Janus to test each file system. Janus found

90 unique bugs that resulted in kernel panics or deadlocks, which we reported to the Linux

kernel community. We differentiated bugs on the basis of KASAN reports and call stack

traces. Among them, developers confirmed 62 as previously unknown bugs, including 36 in
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File Systems #Reported #Confirmed #Fixed #Patches #CVEs
ext4 18 16 16 20 13
XFS 17 11 7 9 5
Btrfs 9 9 8 10 5
F2FS 11 11 11 12 8
GFS2 14 0 0 0 0
HFS+ 8 7 1 1 1
ReiserFS 13 8 0 0 0
VFAT 0 0 0 0 0

Total 90 62 43 52 32

Table 6.1: An overview of bugs found by Janus in eight widely-used file systems in upstream Linux
kernels. The column #Reported shows the number of bugs reported to the Linux kernel community;
#Confirmed presents the number of reported bugs that are previously unknown and confirmed by
kernel developers; #Fixed indicates the number of bugs that have already been fixed, at least in the
development branch, and #Patches reports the number of git commits for fixing found bugs; #CVEs
lists the number of CVEs assigned for confirmed bugs.

ext4, XFS, and Btrfs—the three most widely used file systems on Linux. 32 bugs have been

assigned with CVEs (see Table 6.1). Another important finding is that some bugs, (e.g., four

bugs related to log recovery in XFS and six bugs about extended attributes in HFS+) are not

going to be fixed by developers in the near future, as these bugs require large-scale code

refactoring. In addition, ReiserFS developers will not fix five bugs that lead to the BUG()

condition, as ReiserFS is in maintenance mode.

Note that there are other notable efforts on finding file system bugs through fuzzing or

manual auditing.

• Syzkaller, the state-of-the-art system call fuzzer that started to support mutating file

system images in March, 2018. Note that Google deployed many more instances

of Syzkaller (i.e., syzbot) than those of Janus for continuously fuzzing the upstream

kernel. Although syzbot fuzzes the whole kernel, we found more file system bugs with

Janus in four months. According to our investigation, Syzkaller reported only two

ext4 bugs, one XFS bug, four F2FS bugs, and one HFS+ bug during our evaluation

period, among which one of the ext4 bugs, the XFS bug, and the HFS+ bug were also

found by Janus. Janus missed one ext4 bug requiring a 4K block size, which is larger
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than that of our seed images. And we started using Janus to fuzz F2FS after these four

F2FS bugs were fixed.

• Google Project Zero, a team of security researchers seeking zero-day vulnerabilities

who found one ext4 bug through source review. The bug was also discovered by

Janus.

• Internal efforts from the file system development community. XFS developers noticed

four XFS bugs found by Janus before we reported them. Unfortunately, we were

unable to provide the total number of memory safety bugs found by developers whose

patches cannot easily be differentiated from the ones for fixing functionalities.

6.3.2 Exploring File Operations

We now evaluate the effectiveness of Janus in only fuzzing file operations without mutating

the file system image, i.e., we discard the image fuzzing stage. We compare Janus with

Syzkaller by fuzzing 27 file system-specific system calls1 and executing generated programs

on a seed image after being mounted. We hardcode the paths of all available files and

directories on a seed image in the description file for Syzkaller to fill the values of certain

arguments when fuzzing particular system calls. We run both of these fuzzers against eight

file systems for 12 hours. In particular, we launch one Janus instance and one KVM instance

for Syzkaller in this experiment. Moreover, we re-execute all the programs generated by

Janus to obtain comparable path coverage in KCOV style.

Figure 6.2 presents the evaluation result, which shows that with a context-aware approach

based on RPG IR, Janus keeps exploring more code paths than Syzkaller in the span of 12

hours. In particular, Janus eventually visits 2.24×, 1.27×, and 1.25× more unique code

paths than Syzkaller when fuzzing the three most popular file systems, XFS v5, Btrfs, and

ext4, respectively. Moreover, Janus also outperforms Syzkaller 1.72× and 1.49× on HFS+

1Syzkaller and Janus fuzz the following system calls: read(), write(), open(), lseek(), getdents64(),
pread64(), pwrite64(), stat(), lstat(), rename(), fsync(), fdatasync(), access(), ftruncate(),
truncate(), utimes(), mkdir(), rmdir(), link(), unlink(), symlink(), readlink(), chmod(),
setxattr(), fallocate(), listxattr() and removexattr()
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Figure 6.2: The overall path coverage of using Syzkaller and Janus to fuzz eight file system images
for 12 hours. The y-axis represents the number of unique code paths of each file system visited during
the fuzzing process. In particular, Januss and Syzkallers generate random system calls to be executed
on a fixed seed image, in which Januss achieves up to 2.24× higher coverage than Syzkallers. Janus
and Syzkaller fuzz both image bytes and file operations, and Janus visits at most 4.19× unique paths.

and GFS2, respectively.

In brief, Janus generating semantically correct workloads explores more code paths than

Syzkaller in all eight popular file systems when only targeting the system calls related to file

operations. In particular, the programs generated by Janus manage to visit at most 2.24×

more paths. The evaluation result fully demonstrates the effectiveness of RPG IR in terms

of file operation fuzzing.
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6.3.3 Exploring Two-Dimensional Input Space

To demonstrate the effectiveness of Janus in mutating both image bytes and file operations,

we run Janus and Syzkaller on the eight aforementioned file systems with the same seed im-

ages for 12 hours. We provide syz_mount_image() in the description file to make Syzkaller

not only generate system calls but also mutate the bytes in a seed image while invoking

27 file system-specific system calls (see §6.3.2). In this experiment, we simultaneously

launch three instances for both Janus and Syzkaller for parallel fuzzing. Moreover, both

fuzzers share generated test cases for each corresponding file systems. Figure 6.2 presents

the results of this experiment.

We observe that mutating both images and file operations achieves more code coverage

than mutating file operations only, which reveals the importance of fuzzing both images

and file operations to comprehensively explore a file system. More important, Janus further

outperforms Syzkaller on all tested file systems. In particular, Janus achieves at most 4.19×,

4.04×, and 3.11× higher code coverage than Syzkaller when fuzzing Btrfs, GFS2, and

F2FS, respectively. For ext4, Janus also hits 2.01× more unique code paths. One reason

for such difference is that Janus fuzzes every testcase with a clean LKL instance while

Syzkaller keeps using one VM instance to run numerous system calls for a long time and

an aging OS may show non-deterministic behaviors when getting the same input and thus

miss crashes. More importantly, Syzkaller completely forgoes the context awareness of the

file system being fuzzed and blindly emits many file operations that have semantic issues.

Meanwhile, Janus being aware of the status of the file objects generates many more valid

file operations.

In summary, the end-to-end evaluation of Janus proves the importance of mutating both

images and operations in file system fuzzing. Moreover, Janus outperforms Syzkaller on all

eight file systems, which originates from the context awareness of Janus enabled via RPG

IR. In particular, Janus outperforms Syzkaller at most 4.19× on Btrfs, one of the popular

file systems that has an extremely complex design.

62



6.4 Conclusion

Janus is an evolutionary file system fuzzer that explores an in-kernel file system by exploring

its two-dimensional input space, namely images and file operations. By modeling file

operations in a context-aware manner as suggested by RPG IR, Janus manages to generate

more semantically correct file operations compared to the state-of-the-art system call fuzzer,

Syzkaller. We have reported 90 bugs found by Janus in the upstream kernel with 32 CVEs

assigned. Moreover, Janus outperforms Syzkaller by exploring at most 4.19× more code

paths when fuzzing popular file systems for 12 hours.
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# File system CVE File Function Type
1

ext4

CVE-2018-1092 fs/ext4/inode.c ext4_iget Use-after-free
2 CVE-2018-1093 fs/ext4/balloc.c ext4_valid_block_bitmap Out-of-bounds access
3 CVE-2018-1094 fs/ext4/super.c ext4_fill_super Null pointer dereference
4 CVE-2018-1095 fs/ext4/xattr.c ext4_xattr_check_entries Out-of-bounds access
5 CVE-2018-10840 fs/ext4/xattr.c ext4_xattr_set_entry Heap overflow
6 CVE-2018-10876 fs/ext4/extents.c ext4_ext_remove_space Use-after-free
7 CVE-2018-10877 fs/ext4/extents.c ext4_ext_drop_refs Out-of-bounds access
8 CVE-2018-10878 fs/ext4/balloc.c ext4_init_block_bitmap Out-of-bounds access
9 CVE-2018-10879 fs/ext4/xattr.c ext4_xattr_set_entry Use-after-free
10 CVE-2018-10880 fs/ext4/inline.c ext4_update_inline_data Out-of-bounds access
11 CVE-2018-10881 fs/ext4/ext4.h ext4_get_group_info Uninitialized memory
12 CVE-2018-10882 fs/jbd2/transaction.c start_this_handle BUG()
13 CVE-2018-10883 fs/jbd2/transaction.c jbd2_journal_dirty_metadata BUG()
14 - fs/ext4/xattr.c ext4_xattr_set_entry Heap overflow
15 - fs/ext4/namei.c ext4_rename Use-after-free
16 - fs/ext4/inline.c empty_inline_dir Divide by zero

17

XFS

CVE-2018-13093 fs/xfs/xfs_icache.c xfs_iget_cache_hit Use-after-free
18 CVE-2018-10322 fs/xfs/xfs_inode.c xfs_ilock_attr_map_shared Null pointer dereference
19 CVE-2018-10323 fs/xfs/libxfs/xfs_bmap.c xfs_bmapi_write Null pointer dereference
20 CVE-2018-13094 fs/xfs/xfs_trans_buf.c xfs_trans_binval Null pointer dereference
21 CVE-2018-13095 fs/xfs/libxfs/xfs_bmap.c xfs_bmap_extents_to_btree Out-of-bounds access
22 - fs/xfs/libxfs/xfs_alloc.c xfs_alloc_get_freelist Null pointer dereference
23 - fs/xfs/libxfs/xfs_dir2.c xfs_dir_isempty Null pointer dereference

24

Btrfs

CVE-2018-14609 fs/btrfs/relocation.c __del_reloc_root Null pointer dereference
25 CVE-2018-14610 fs/btrfs/extent_io.c write_extent_buffer Out-of-bounds access
26 CVE-2018-14611 fs/btrfs/free-space-cache.c try_merge_free_space Use-after-free
27 CVE-2018-14612 fs/btrfs/ctree.c btrfs_root_node Null pointer dereference
28 CVE-2018-14613 fs/btrfs/free-space-cache.c io_ctl_map_page Null pointer dereference
29 - fs/btrfs/volumes.c btrfs_free_dev_extent BUG()
30 - fs/btrfs/locking.c btrfs_tree_lock Deadlock
31 - fs/btrfs/volumes.c read_one_chunk BUG()

32

F2FS

CVE-2018-13096 fs/f2fs/segment.c build_sit_info Heap overflow
33 CVE-2018-13097 fs/f2fs/segment.h utilization Divide by zero
34 CVE-2018-13098 fs/f2fs/inode.c f2fs_iget Out-of-bounds access
35 - fs/f2fs/segment.h verify_block_addr BUG()
36 CVE-2018-13099 fs/f2fs/segment.c update_sit_entry Use-after-free
37 CVE-2018-13100 fs/f2fs/segment.c reset_curseg Divide by zero
38 - fs/inode.c clear_inode BUG()
39 - fs/f2fs/node.c f2fs_truncate_inode_blocks BUG()
40 CVE-2018-14614 fs/f2fs/segment.c __remove_dirty_segment Out-of-bounds access
41 CVE-2018-14615 fs/f2fs/inline.c f2fs_truncate_inline_inode Heap overflow
42 CVE-2018-14616 fs/crypto/crypto.c fscrypt_do_page_crypto Null pointer dereference

43 HFS+ CVE-2018-14617 fs/hfsplus/dir.c hfsplus_lookup Null pointer dereference

Table 6.2: The list of previously unknown bugs in widely used file systems found by Janus that have
already been fixed in Linux kernel v4.16, v4.17, and v4.18.
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CHAPTER 7

RPG: RANDOM PROGRAM GENERATOR

To figure out a more generic approach to utilize RPG IR for context-aware API fuzzing in

different domains, we propose RPG (Random Program Generator) in this chapter.

7.1 Overview

RPG proposes a formal approach to randomly generate the API programs that can be

described by RPG IR. Figure 7.1 presents an overview of RPG by showing the workflow of

generating a random call of the DOM API Document.createElement() as an example.

To make RPG generate random API programs for a targeted API-based system, one

needs to provide a number of ASL (API Specification Language) files as the input. ASL is a

specification language elaborated by RPG for users to formally describe the concerned APIs,

including the objects they access (i.e., object type and state declarations), the arguments

that compose them (i.e., argument definitions), and their syntax and semantics (i.e., API

definitions). After validating the input ASL files, RPG compiles them into a JSON object

(see 1 ).

Next, RPG relies on a transpiler to automatically translate the JSON object into the

fuzzer code that manages to generate random calls of described APIs in RPG IR according to

the fuzzing algorithms mentioned in §4 (see 2 ). More specifically, a class implementation

is emitted by RPG for each API that realizes the following:

• The representation of an API call in RPG IR, including arguments and returned

objects, etc.

• The context-aware generation of such an API call based on the context via generate().

• The translation from the API call in RPG IR into plain text via __str__() for testing.

For instance, the createElement_input class in Figure 7.1 implements not only how an
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API specifications in ASL (§4) 

type Document extends 

DocumentOrShadowRoot, EventTarget {}

type HTMLElement extends Element 

{ string tag; }

type HTMLInputElement extends HTMLElement {}

api HTMLInputElement createElement_input {

  args {

    DocumentRef $document;

    string $tag = "input";

  }

  effects { $return["tag"] = "input"; }

  print "var ".$return." = ".$document

          .".createElement(".$tag.");";

}

arg Document DocumentRef {

  require { Document $obj; }

  is $obj;

}

var v3 = document.

createElement("input");

Object declarations

Argument definitions

API definitions (syntax & semantics)
"createElement_input": {

  "ret": "HTMLInputElement", 

  "scope": "LOCAL", 

  "args": {

    "document": {"type": "DocumentRef"}, 

    "tag": {"type": "string", "value": ...}

  }, 

  "effects": [{

    "type": "SET_PROPERTY", "variable": "return", 

    "property": "tag", "value": ...

  }], 

  "print": {"type": "STRING_SEQ", "exps": [...]}

}

"DocumentRef": {

  "type": "Document", 

  "imports": {

    "obj": {"type": "Document"}

  }, 

  "value": {"type": "OBJECT", "variable": "obj"}

}

...

"HTMLElement": {

  "prototypes": ["Element"],

  "shape": { "tag": "string" }

}

... 

Parsed API specifications in JSON

compile

createElement_input

document

tag
ARGS

RETURN

class createElement_input(Api):

  class Arg_document(DocumentRef): ...

  class Arg_tag(StringArg): ...

  def __init__(self):

    super().__init__("createElement_input")

    self.args = {

      "document": self.Arg_document(self),

      "tag": self.Arg_tag(self),

    }

  def generate_args(self, ctx): ...

  def generate_return(self, ctx): ...

  def apply_effects(self, ctx):

    self.generate_return(ctx)

    self.ret.set_property("tag", "input")

  def generate(ctx): ...

  def __str__(self): ...

Fuzzing engine Context manager

librpg

DocumentRef

objIMPORT

Document

ID document

tagSTATE

HTMLInputElement

ID

"input"

v3

API Impl. of RPG IR 

global scope

local scope

print

input.html

translate

API call in RPG IR (§3)

context-aware generation

①

②

③ ④

Figure 7.1: Overview of RPG, including major components and their interactions. Users describe
the APIs to be fuzzed in ASL (API Specification Language). RPG compiles the ASL files into a
JSON object ( 1 ), which is further translated into the fuzzer code ( 2 ) that randomly generates the
described APIs in RPG IR ( 3 ) with the help of a shared library, librpg. A generated API program
in RPG IR can be converted into a text file for testing at the end.

API call of Document.createElement("input") is described in RPG IR but also how to

randomly generate such an API call.

As part of the toolchain of RPG, librpg is a shared library that utilizes the emitted
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classes to conduct program generation. First, librpg involves a context implementation

(i.e., context manager) to maintain scopes and objects in an RPG IR program. More

importantly, the fuzzing engine in librpg drives the actual API generation by cooperating

with the emitted code and the context manager. As shown in Figure 7.1, to generate a call

of Document.createElement("input") at a given program location, the fuzzing engine

instantiates the createElement_input class and invokes its generate() method with the

program context maintained by the context manager (see 3 ).

An API program output by RPG is composed of a number of generated API calls in

RPG IR and the present context. The API program is eventually converted into plain text

for testing (see 4 ). One can also implement a custom executor of the program that directly

accesses the generated API calls through the interfaces of RPG IR and tests them in a

preferred way.

Caveat. RPG, as its name suggests, focuses only on producing random API programs

with reduced semantic errors, which is the most important task of an end-to-end API

fuzzer. RPG is not in charge of scheduling or evaluating the generated programs. As an

input generator with a self-contained design, RPG can be seamlessly integrated into existing

fuzzing platforms, such as Google ClusterFuzz [18] and Mozilla Grizzly [19], which manage

the jobs that are beyond the scope of RPG.

7.2 ASL

ASL (API Specification Language) is designed for users to formally describe API specifi-

cations based on the API model proposed by RPG IR. RPG automatically compiles ASL

files into the fuzzer code that generates random API programs in RPG IR. In other words,

ASL is used to implement an API fuzzer driven by RPG IR at a high level of abstraction.

Therefore, ASL has two design goals:

• Describing an API by strictly following the model proposed by RPG IR.

• Defining the randomness of an API. Unlike an API call in RPG IR whose argument
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values are deterministic for testing, ASL aims to specify every possible values for an

API argument, which is randomly decided during generation.

In this chapter, we present the detailed design of ASL.

7.2.1 Object Declaration

Before defining APIs, one needs to first declare all types of objects being created and used by

the APIs in ASL. ASL provides the type statement to declare a custom object type, which

describes its type name, the optional parent types it extends from, and a list of properties

including their names and types. Figure 7.2 specifies the syntax of a type statement.

1 type name extends [basetype1 [,basetype2] ... [,basetypeN]] {
2 [type1 key1; [type2 key2;] ... [typeN keyN;]]
3 }

Figure 7.2: Syntax of object type specification in ASL.

The properties form the state of an object defined in RPG IR. Note that an object of

a child type also owns the properties from its inherited type. In addition, when an object

of a specific type T is wanted by an API call, the objects of the types that extend from T

should also be considered. In Figure 7.1, we present the declarations of three object types:

Document, HTMLElement, and HTMLInputElement. All of them are extended from specific

base types. Moreover, both HTMLElement and HTMLInputElement have a tag property in

their states due to type inheritance.

Object declaration in ASL strictly follows the object model of RPG IR (see §3.2).

Meanwhile, type inheritance makes object declaration concise in ASL when describing

API-based systems like DOM engines that involve numerous object types extending from

each other, such as a DOM engine.

7.2.2 Macro

A macro is a context-free expression that represents a random value not depending on

any object. ASL’s macros are similar to symbols in the context-free grammars adopted by
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existing fuzzers. A macro is defined by a macro statement, which specifies its type, name,

and an expression calculating a random value. For reference, we list several macros defined

in the ASL file for DOM fuzzing in Figure 7.3. ASL mainly supports the following types of

macro expressions besides simple string and number literals.

Number intervals. The expression samples a random number, which can be either integers

or floats, from the given interval (see Equation 7.1).

exp := number ∼ number (7.1)

String concatenations. As described by Equation 7.2, dots are used to concatenate a list

of string values into one string.

exp := exp1.exp2. ... .expn (7.2)

Macro calls. As described by Equation 7.3, a macro can be recursively constructed by

other defined macros. This is the main purpose of introducing macros in ASL, which eases

the description of a random value that has a complicated structure. When a macro is used in

an expression, it is surrounded by a pair of angle brackets.

exp := <macro> (7.3)

Choices. A choice expression defined in Equation 7.4 enumerates a list of possible values

by commas for random selection during generation.

exp := exp1, exp2, ... , expn (7.4)

Repeats. As shown in Equation 7.5, the curly braces, enclosing one or two integers by a

comma indicate that its decorated value is repeated for A times or any times between A and
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1 // A random integer from [0, 100].
2 macro int Int100 = 0~100;
3

4 // A random string that is either "on" or "off".
5 macro string OnOrOff = "on", "off";
6

7 // A random percentage value.
8 macro string Percent = "0%", "100%", <Int100>."%";
9

10 // A random value for the CSS property: border-width.
11 macro string BorderWidth = <LineWidth>{1,4};
12

13 // A random value for the CSS property: border.
14 macro string Border = ||[<LineWidth>, <LineStyle>, <Color>];
15

16 // A random value for the CSS transform function: matrix().
17 macro string MatrixFunction = "matrix(".<Number>#{6}.")";

Figure 7.3: Examples of ASL macros, which are used to describe DOM specification. See [51] for
the specification of the CSS properties and CSS function.

B, respectively. By default, the repeated values are joined with spaces. One can also specify

the optional hash symbol to set the separator to be a comma, which is also commonly used

for connecting a list of values in common APIs.

exp := exp’ (#)?{A(,B)?} (7.5)

Ordered samples. Equation 7.6 presents an expression consisting of a list of unit values

led by a || operator. Those unit values are randomly selected to be joined into a string,

where each unit value is optionally present.

exp := ||[exp1, exp2, ... , expn] (7.6)

The last three types of expressions are additionally supported by ASL to get rid of repeated

efforts when describing common random values.

In general, the macros guarantee that ASL is able to describe what existing context-free

grammars can describe. ASL relies on macros to specify random values for the context-free

arguments of an API call in RPG IR (see §7.2.3).
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7.2.3 Argument Definition

ASL uses arg statements to describe API arguments in RPG IR (see §3.3.2). Figure 7.5

lists examples of various argument specifications. Basically, arg statements have two forms,

whose syntax is demonstrated in Figure 7.4.

1 // Simple form
2 arg type name = expression;
3

4 // Complete form
5 arg type name {
6 [require { type1 $obj1; [type2 $obj2;...[typeN $objN;]] }]
7 [assert { cond1; [cond2; ... [condN;]] }]
8 [args { argname1 $arg1; [argname2 $arg2;...[argnameN $argN;]] }]
9 is expression;

10 }

Figure 7.4: Syntax of argument specification in ASL. For specifying an argument, only its type,
name, and the is statement that calculates the argument value are mandatory.

The arg statement in a simple form (line 2 in Figure 7.4) describes an argument that

does not explicitly depend on any imported object or other arguments with its name, type,

and value expression. The value expression is normally a literal or a macro. For instance,

the argument MutationEventType (line 2) is such a simple one that has a random string

value returned by the macro <MutationEvent>. Not only that, one can use an arg statement

associated with a block (line 5-10 in Figure 7.4) to describe the complete form of an

argument in RPG IR, which consists of its name, type, dependent objects and their state

checks, sub-arguments, and value expression (see Equation 3.14).

The require block in an arg block specifies the imported objects, including their wanted

types. Similarly, the internal args block describes a list of sub-arguments. Every imported

object and sub-argument are assigned a unique identifier starting with $ and becomes a

named variable being used in object state assertions and argument value expressions.

Object state assertions are described in the assert block. Table 7.1 summarizes how

ASL describes the three types of asserting conditions defined in RPG IR. In ASL, $obj["k"]

represents the value of property k in the state of an object obj. For example, the argument
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1 // Name of a random mutation event in DOM.
2 arg string MutationEventType = <MutationEvent>;
3

4 // Reference to a write file descriptor for syscalls.
5 arg FD WriteFDRef {
6 require { FD $obj; }
7 assert { $obj["W"] == 1; }
8 is $obj;
9 }

10

11 // A random CSS ID selector.
12 arg unquoted HTMLElementSelector {
13 require { HTMLElement $element; }
14 is "#".$element;
15 }
16

17 // A random :focus CSS pseudo-class.
18 arg unquoted FocusPseudoClass {
19 args {
20 BaseSelector $base;
21 }
22 is $base.":focus";
23 }

Figure 7.5: Specifications of four different types of arguments in ASL. Note that unquoted on lines
12 and 18 is the primitive type of a string value whose text representation is not surrounded by two
quotes.

WriteFDRef defined on line 5 in Figure 7.5 represents a reference to a write file descriptor

object. The argument requires its imported object called $obj to have the W property equal

to 1.

Assertion in ASL Assertion in RPG IR

"k" in $obj HAS_PROPERTY(OBJ, K)
$obj["k"] == v PROPERTY_EQ(OBJ, K, V)
$obj["k"] != v PROPERTY_NEQ(OBJ, K, V)

Table 7.1: Syntax of object state assertions in ASL and their corresponding definitions in RPG IR.

Lastly, is in an arg block is followed by the argument value. Table 7.2 lists various

expressions used by ASL to describe the argument value, which strictly follow the definition

in RPG IR (see Equation 3.24). Similar to macro expressions, argument value expressions

are also concatenated by dots. Note that when $obj is directly used as the argument value,

the argument is a reference to the corresponding imported object. A typical example
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is the argument WriteFDRef presented in Figure 7.5. Meanwhile, $obj being used in a

string concatenation represents the identifier of the object. For instance, the argument

HTMLElementSelector described at line 12 in Figure 7.5 has a CSS selector value starting

with the hash symbol followed by the ID of a random HTML Element.

Expression in ASL Expression in RPG IR Concatenable

$obj OBJ

1 or <macro> number literal
"AAAA" or <macro> string literal ✓

$obj OBJ[ID] ✓

$obj["k"] OBJ[STATE][K] -
$arg ARG[VALUE] ✓

exp1.exp2. ... .expn EXP1 + EXP2 + ...+ EXPn

Table 7.2: Syntax of argument value expressions in ASL and their corresponding definitions in RPG
IR (see §3.3.2). The - mark in the table indicates that only object property values of a string type can
be used in string concatenations.

In general, the arg statement clearly specifies the following for an API argument: (1) its

contextual structure in RPG IR and (2) its random values for fuzzing. The two forms of the

statement also increase the flexibility of ASL in argument specification.

7.2.4 API Definition

The api statements in ASL describe API specifications based on RPG IR. Figure 7.6 briefly

illustrates the syntax of an api statement. We also present two examples of describing API

specifications in ASL in Figure 7.7.

1 api returntype[/g] name {
2 [args { argname1 $arg1; [argname2 $arg2;...[argnameN $argN;]] }]
3 [effects { effect1; [effect2;...[effectN;]] }]
4 [child { api1; [api2;...[apiN;]] }]
5 print expression;
6 [eprint expression;]
7 }

Figure 7.6: Syntax of API specification in ASL. For specifying an API, only its return type, name,
and the print statement are mandatory. The suffix of the return type, /g, is optional, which implies
that the returned object has a global scope.
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1 // DOM API: Document.createElement("input")
2 api HTMLInputElement createElement_input {
3 args {
4 DocumentRef $document;
5 string $tag = "input";
6 }
7 effects {
8 $return["tag"] = "input";
9 }

10 print "var ".$return." = ".$document.".createElement(".$tag.");";
11 }
12

13 // File system syscall: close(fd)
14 api void close {
15 args { FDRef $fd; }
16 effects { delete $fd::obj; }
17 print "close(".$fd.");";
18 }

Figure 7.7: Specifications of a DOM API and a file system call.

By default, ASL assumes that an API mostly has one returned object. Therefore, an

api statement first declares the type of the returned object. For example, the DOM API

Document.createElement("input") returns an HTMLInputElement object as specified on

line 2 in Figure 7.7. Meanwhile, void is a special return type for the APIs that do not

return any new object, such as the system call close described on lines 14-18 in Figure 7.7.

ASL predefines a variable called $return to represent the returned object referenced in API

effects and print functions.

Next, the optional args statement in the block of an api statement declares the arguments

of an API. Every declared argument is also associated with a variable name tagged by $

for references in object operations (i.e., API effects) and print functions. Most arguments

like $document of the API createElement_input and $fd of the API close are defined by

specific arg statements externally. Meanwhile, an inline argument such as $tag on line 5 in

Figure 7.7 is directly defined by an expression in the args statement.

Furthermore, the optional effects argument describes the object operations performed

by an API. Table 7.3 lists the syntax of the operations in ASL, which are formally defined

by RPG IR in §3.3.3. In particular, object creation is implied by the returned type of an API
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Effect in ASL Effect in RPG IR

Indicated by the return type
NEW_OBJECT(API, OBJ)
NEW_GOBJECT(OBJ)

delete $obj DEL_OBJECT(API, OBJ)
$obj["k"] = v SET_STATE(OBJ, K, V)

Table 7.3: Syntax of API effects in ASL, including their corresponding definitions in RPG IR (see
§3.3.3).

described in ASL and thus omitted in the effects statement. Regarding the examples in

Figure 7.7, the effect of createElement_input is to update the state of the returned object

(line 8). Meanwhile, close invalidates the file descriptor imported by the only argument

$fd (line 16).

The child statement is designed for the API creating a new scope. More specifically,

the statement enumerates the APIs that can be called in the created scope. Lastly, the

print and eprint statements describe the string representation of an API, which is a string

concatenation of string literals, argument values, and the identifier of returned objects as

defined by RPG IR.

In brief, RPG IR models an API call as a tuple of six elements (see Equation 3.11), each

of which is described by a corresponding statement mentioned above in ASL. Therefore, it

becomes straightforward to translate the specification of an API in ASL into the fuzzer code

that can generate random API calls in RPG IR.

7.2.5 Further Notes

In this section, we further explain certain details of ASL that are not covered so far.

Predefined global objects. An API-based systems may predefine certain global objects

with specific identifiers. For example, document and window can be globally used without

explicit creation in an HTML document. ASL supports defining such an object with the

global statement, as shown in Figure 7.8.

Object notations. Due to the recursive definition of an argument, referencing an imported
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1 // A predefined global object
2 global type identifier;

Figure 7.8: Syntax of declaring a predefined global object in ASL.

object in an api statement requires locating the underlying argument that exactly imports

the object. This is achievable because every argument declared in the args statement is

tagged with an identifier. More specifically, ASL introduces the :: operator to notate an

object outside where it is imported. Considering a general api F as described in Figure 7.9,

the object $obj is notated as $arg1::arg2:: ... ::argN::obj when being used in the

description block of F. For instance, in Figure 7.7, the object imported by the argument $fd

is notated as $fd::obj for describing the API effect.

1 api string F { args { ARG1 $arg1; } }
2 arg string ARG1 { args { ARG2 $arg2; } }
3 arg string ARG2 { args { ARG3 $arg3; } }
4 ...
5 arg string ARGN { require { T $obj; } }

Figure 7.9: Specification of an example API F for explaining the external notation of an imported
object declared in an args statement.

User extensions. Similar to existing grammar-based approaches, ASL supports calling

external functions for generating the values that cannot be described by ASL itself, such as a

current timestamp. An external function call starts with the % symbol (e.g., %timestamp()).

One needs to implement such a function manually, which is imported by the fuzzing engine

of RPG.

Comment. For the convenience of users, ASL files support line comments and block

comments via // and /*...*/, respectively.

7.2.6 Summary

ASL is designed for users to formally program a context-aware API fuzzer based on RPG

IR. Particularly, ASL strictly follows the model of RPG IR to describe APIs.

It is thus straightforward for RPG to automatically compile ASL files into the class
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implementations for describing and generating API calls, which does not require any manual

effort. Meanwhile, ASL has a clean design, which is easy to master by developers who are

not even familiar with fuzzing. Compared to the previous context-aware API fuzzers such

as Janus and FreeDom that do not rely on any description language, ASL makes RPG IR

much more usable in practice.

7.3 Implementation

We implement a prototype of RPG that internally supports end-to-end DOM fuzzing and

SVG fuzzing by default. Table 7.4 presents the lines of code (LoC) of each part of RPG.

Except for the ASL grammar file and the internal ASL files that describe DOM specifications,

LoC Language

RPG
ASL grammar 340 ANTLR v4
ASL compiler 540

PythonTranspiler 930
librpg 250

Default fuzzing support
DOM specifications 51,150 ASL
SVG specifications 21,282 ASL
Specification extractor 3,960 Python
Executor 180 Python

Table 7.4: Implementation complexity of prototyping RPG, including the ASL files for describing
DOM and SVG APIs.

all the other parts of RPG are implemented in Python 3.8. In this chapter, we describe the

implementation details of several main parts.

7.3.1 ASL Compiler and Transpiler

We write ASL grammar for ANTLR v4, a popular LL parser generator [52]. ANTLR turns

the grammar into corresponding lexer and parser code in Python. The ASL compiler accepts

a group of ASL files as input and compiles them by leveraging the lexer and parser generated
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by ANTLR. During the compilation, the compiler performs essential semantic checks on the

input files and parses them into a JSON object. The transpiler of RPG further translates the

JSON object into the class implementations for the described APIs and their arguments. The

macros described in the ASL files are also translated into Python functions to be invoked for

specific random values.

7.3.2 LIBRPG

librpg is a Python library that contains two parts: (1) the fuzzing engine, which guides the

generation of an API program and (2) the context manager, which implements scopes in

RPG IR, whose design is presented in §4.

7.3.3 DOM Fuzzing via RPG

Our prototype of RPG has a default support for generating random HTML and SVG

documents to fuzz web browsers. More specifically, we provide the ASL files that describe

the specification of DOM and SVG APIs. Note that modern web browsers support thousands

of APIs in HTML and SVG documents. To reduce manual efforts on writing those ASL

files, we create Python scripts to crawl the definitions of the related APIs from two sources,

including Mozilla MDN Web Docs [53] and the IDL files in the source of WebKit that

contains DOM API declarations, and translate them into ASL. We still need to manually

specify the API effects which are not formally described in the sources. In addition, we

also implement an executor to test the generated HTML and SVG documents in WebKit, a

mainstream web browser, on multiple cores and collect crashes at runtime.

7.4 Evaluation

In this section, we evaluate RPG and ASL by answering the following questions.

• Q1. Compared to existing grammars for API fuzzing, is ASL more capable of

describing distinct API syntax and semantics? (§7.4.1)
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• Q2. Does RPG have the same ability as existing context-aware API fuzzers to generate

random API programs with reduced semantic errors? (§7.4.2)

In our experiments, we run RPG on a 24-core machine running Ubuntu 18.04 with Intel

Xeon Gold 6126 processors and 384 GB memory.

7.4.1 Comparison between ASL and Existing Grammars

To objectively evaluate the capability of ASL in terms of API description, we compare ASL

with the grammars adopted by existing fuzzers in Table 7.5 from two aspects.

Syntactic Features

First, we compare the abilities of ASL and existing grammars to address API syntax.

Context-free grammars. Dharma [2], Avalanche [4] and Domato [1] rely on similar

context-free grammars to describe APIs. In such grammars, one can define a symbol 1

that describes the generation rule for a specific type of random value. The symbols and

literals can be freely combined with various operators to define new symbols that represent

more complicated values such as an API argument and ultimately a complete API call.

Theoretically, such a symbol-based approach manages to output API calls in any format.

In addition, those context-free grammars support extensions through external functions

implemented by users to calculate the values not covered in a grammar file.

ASL is as expressive as the context-free grammars adopted by Dharma, Avalanche,

and Domato in terms of API syntax description. In particular, the macros in ASL and the

symbols in those grammars are functionally the same. Moreover, one can program the print

argument (see §7.2.4) to output an API call in any preferred string representation.

Syzlang. Similarly, syzlang, the grammar of Syzkaller [7], allows for recursively defining

random values in a complicated structure via arrays and structs. Syzlang also supports

custom system calls externally implemented by users. Nevertheless, syzlang hardcodes its

1We refer to Domato and Avalanche for this naming.
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Fuzzer Syntactic Features Semantic Features

Format Symbol Operation External Ref Type State Effect

Dharma ✓ ✓ ✓ ✓ ✓
Avalanche ✓ ✓ ✓ ✓ ✓
Domato ✓ ✓ ✓ ✓ △ △
syzlang ✓ ✓ ✓ ✓ ✓

ASL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Format: Customizable API formats.
Symbol: An identifier representing a specific random value (i.e., macro in ASL).
Operation: Symbol operations for describing random values.
External: Extension via user-defined functions.

Table 7.5: Comparing ASL with other grammars to describe API specifications. Syzlang is the name
of the grammar used by Syzkaller.

API format based on system call interfaces. In other words, syzlang organizes the return

value and arguments of an API call in a fixed way. Therefore, syzlang cannot describe any

other types of APIs beyond system calls. By contrast, ASL and those context-free grammars

have no assumption imposed on the API format and are considered more expressive.

Semantic Features

We now compare the semantic awareness of ASL with that of existing grammars for fuzzing.

Dharma and Avalanche. Dharma and Avalanche support marking a created object with

an identifier in their grammars, which can be used for references afterward. Nevertheless,

unlike ASL, their grammars are typeless and do not describe object states or API effects in

any form.

Domato. The context-free grammar used by Domato marks created objects with their types

for DOM APIs in JavaScript. Nevertheless, we still observe reference and type errors in

CSS rules and HTML element nodes (see §5.2.1), which indicates its incomplete awareness

of object references and types. Similar to Dharma and Avalanche, the grammar used by

Domato does not tackle object states and API effects.

Syzlang. Syzlang uses a resource to represent the object of a specific type being created

or used by an API. Therefore, Syzlang outperforms the context-free grammars in terms of
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avoiding reference and type errors. Nevertheless, Syzlang does not consider object states

and API effects as well.

Summary

Compared to existing grammars for API fuzzing, ASL is effective in describing distinct API

formats and addresses object-related API semantics to the greatest extent. Therefore, we

consider ASL as a more generic and advanced language to describe APIs for the fuzzing

purpose.

7.4.2 Effectiveness of RPG

DOM Fuzzing

To prove that RPG manages to generate random API calls in a context-aware manner, we

compare the fuzzing performance of RPG with that of Domato, a typical DOM fuzzer based

on a context-free grammar, and FreeDom, the state-of-the-art DOM fuzzer performing

context-aware generation. More specifically, we run 40 instances of every fuzzer to fuzz an

ASan (AddressSanitizer [54]) build of WebKitGTK 2.28.0 with random HTML documents

for 24 hours. For a fair comparison, we ensure that the ASL files used by RPG in this

experiment exactly describe the DOM APIs covered by the other two fuzzers. We expect

that RPG and FreeDom have similar evaluation results, largely outperforming Domato.

Figure 7.10 presents the experimental results. Compared to Domato, RPG triggers

around 3× more unique crashes with similar code coverage. More importantly, RPG covers

17 out of 18 (94%) unique crashes found by Domato. §5.2.1 summarizes four types of

context dependencies in an HTML document. To further verify that context-awareness

enables RPG to outperform Domato, we minimize the inputs of 53 unique crashes found by

RPG and observe that 53% of the inputs involve at least one type of context dependency.

Especially among the inputs of 37 crashes missed by Domato, around 60% contain object-

dependent values. Different from RPG, Domato’s being unaware of the context suffers from
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Figure 7.10: Code coverage and discovered unique crashes of Domato, FreeDom, and RPG when
fuzzing HTML documents against WebKit with 40 cores for 24 hours.

semantic errors when it tries to generate those values. Meanwhile, RPG has almost the same

experimental results as FreeDom. More specifically, the difference of the code coverage

achieved by two fuzzers is less than 2%. Meanwhile, FreeDom discovers 51 unique crashes,

55% out of which are contextual ones.

SVG Fuzzing

We also evaluate the effectiveness of RPG by fuzzing SVG documents described by the

corresponding specifications in ASL. We compare the fuzzing result with that of FreeDom

and also Dharma, another known context-free grammar-based fuzzer developed by Mozilla.

Again, the targeted API-based system is WebKit 2.28.0 and we run 40 instances of every

fuzzer for 24 hours.

As shown in Figure 7.11, RPG visits around 12% more basic blocks than Dharma and

discovers 12 unique crashes in total. Meanwhile, Dharma fails to find any crash during the

experiment. §5.4.2 mentions that Dharma is not aware of the exact SVG element whose

attributes are to be animated and rarely constructs a valid SVG animation, which is a

requisite for a majority of the crashes found by RPG. Moreover, RPG manages to generate
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Figure 7.11: Code coverage and discovered unique crashes of Dharma, FreeDom, and RPG when
fuzzing HTML documents against WebKit with 40 cores for 24 hours. During the experiment,
Dharma failed to trigger any crash and RPG triggered four more crashes than FreeDom.

random SVG attributes that involve the reference to an SVG element of a specific type,

such as xlink:href, marker and filter, which are not correctly described by the typeless

grammar of Dharma. On the other hand, RPG achieves similar code coverage as FreeDom.

In addition, RPG triggers all the crashes discovered by FreeDom in the fuzzing run.

Summary

Similar as FreeDom, RPG adopts a context-aware approach to generate random HTML

or SVG documents and thus fundamentally outperforms the leading fuzzers based on

context-free grammars. More importantly, RPG proves to be as effective as FreeDom, which

indicates that RPG is able to fully resolve the complex semantics of DOM and SVG APIs as

the state-of-the-art context-aware fuzzer does with the help of ASL.
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CHAPTER 8

DISCUSSION

In this chapter, we discuss the limitations and future directions of the IR-based context-aware

fuzzing approach presented by this thesis.

8.1 Comparison between RPG IR and Existing Input Representations

To judge the effectiveness of RPG IR in practice, we compare it with several input represen-

tations adopted by existing fuzzers. Table 8.1 presents the comparison results.

Fuzzer Supposed target Reference Type State Effect Scope

Syzkaller OS kernels ✓ ✓

Fuzzilli
Language processors

✓ ✓ ✓

PolyGlot ✓ ✓ ✓

Nyx Hypervisors ✓ ✓ △

RPG IR - ✓ ✓ ✓ ✓ ✓

Table 8.1: Comparing RPG IR with the representations adopted by existing fuzzers for describing
random inputs.

Syzkaller. Syzkaller guarantees that only defined objects (i.e., resources) of correct types

serve as the input of a system call in a generated program. Nevertheless, compared to RPG

IR, the program model of Syzkaller does not record and validate object states and evaluate

API effects, which results in semantic errors, as pointed out in §6.1.2.

Nyx. Nyx [15] is a greybox hypervisor fuzzer, which encodes hypercalls and MMIOs

in a similar way as Syzkaller encodes system calls. In addition, Nyx evaluates whether

an API deletes an existing object, which is one type of API effect considered by RPG IR.

Nevertheless, Nyx does not maintain any additional state information for an object except for

its lifetime. Moreover, such an approach adopted by Syzkaller or Nyx to program encoding
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is mostly suitable for low-level APIs only.

Fuzzilli and PolyGlot. We also compare RPG IR with the IRs used by two language

fuzzers: Fuzzilli [34] and PolyGlot [55]. Their IR programs are expected to have no

reference and type errors. Nevertheless, object state evaluation is beyond their scopes. It is

noteworthy that their IRs support branches and union types for an object. Those language

features are not the focus of API fuzzing and currently not supported by RPG IR.

Generally, existing IRs fail to record, check, and evaluate object states for API calls,

which results in the three types of semantic errors as mentioned in §2. Only RPG IR allows

for a comprehensive interpretation of object state based semantics of an API.

8.2 Limited API Semantics by RPG IR

We claim that RPG IR cannot deliver the semantics of any APIs in practice. Instead, RPG

IR focuses on modeling the API semantics that are related to object states in order to help

a context-aware fuzzer generate random API calls that operates the objects in a valid way.

For example, certain APIs that are normally exposed by computation platforms such as

TensorFlow [56] requires the values of several arguments meet a computational condition.

Meanwhile, some API systems require developers to call API A always before API B, where

API A and B do not depend on any common object. Such semantics cannot be addressed by

RPG IR. Nevertheless, API fuzzing is a random process where it is meaningful to reduce

semantic errors but impossible to completely avoid them. RPG IR enables a fuzzer to be

context-aware and helps to prevent a large class of semantic errors in common APIs indeed,

which still demonstrates its practical value.

8.3 Automated ASL Programming

Currently, we only have the ASL files that describe the DOM specifications, which are

extracted from the public sources that list the DOM APIs systematically. To further evaluate

the effectiveness of RPG in practice, we need the specifications in ASL for more API-based
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systems. However, the API specifications of certain systems are not well-documented or

even infeasible, especially for the API semantics. Meanwhile, various research works have

been proposed to automatically infer the syntax and semantics of targeted inputs through

static or dynamic analysis, such as RESTler [57] for REST APIs, WINNIE [58] for Windows

library APIs, and [59] for programming languages. We note that such retrieved information

can largely be described by RPG IR, including syntax definition in context-free grammars,

argument types of an API, object dependence of an API, etc. Considering the fact that ASL

strictly follows the API model of RPG IR, it is not difficult to further translate those analysis

results into corresponding ASL files automatically.

8.4 Potential Improvements in RPG IR

We observe several features of existing fuzzing approaches that are not supported by RPG

IR. For example, Syzlang supports describing random values at the bit level and using

len, bytesize and bitsize to represent the length of a value. Meanwhile, the IRs used by

language fuzzers supports branches and union typing. First, those missing features do not

affect the context-awareness of RPG in terms of API fuzzing. More importantly, RPG can

be easily extended to accomplish those features by referring to the existing approaches.

8.5 Potential Improvements in ASL

In an ASL file, users now can specify a list of simple object checks and API effects in the

assert statement and effects statement, respectively (see §7.2.3 and §7.2.4). To allows

users to deliver more complicated semantics of an API, we plan to introduce conditional and

loop statements for systematically programming the object checks and API effects based on

context information.
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CHAPTER 9

RELATED WORK

In this chapter, we introduce existing API fuzzers, description-based fuzzers, and semantic-

aware fuzzers and compare them with the context-aware fuzzing approach based on RPG

IR.

9.1 API Fuzzing

Numerous API fuzzers have been proposed in recent years. Syzkaller [7], Trinity [8],

Razzer [16], IMF [10], kAFL [11], TriforceAFL [49], CAB-FUZZ [12], and Moonshine [60]

fuzz OS kernels with random system calls. Meanwhile, known DOM fuzzers include

Dharma [2], Avalanche [4], Wadi [3], and Domato [1]. In addition, HYPER-CUBE [14],

VDF [17], and Nyx [15] fuzz hypervisors with random hypercalls and I/O operations. Those

fuzzers use different approaches to improve the effectiveness and efficiency of API fuzzing

in their domains. For example, Syzkaller, kAFL, and Nyx use code coverage to drive

input generation. Meanwhile, CAB-FUZZ and Razzer takes a hybrid approach to generate

syscall arguments. Moreover, IMF and Moonshine focus on inferring the dependence model

between APIs. On the other side, kAFL, HYPER-CUBE, and Nyx propose novel methods

to increase the fuzzing throughput of their targets. This thesis presents context-aware API

fuzzing, which focuses on reducing semantic errors by maintaining the program context

when generating random API calls.

9.2 Description-based Fuzzing

Description-based fuzzers use formal methods to describe a class of input formats based on

expert knowledge (i.e., specification) and generate random inputs that match the description.
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For example, Dharma [2], Avalanche [4], and Domato [1] generate random documents

described in context-free grammars. Peach [61] is known for fuzzing structured inputs

expressed by its XML-based data model. Syzkaller [7] relies on a grammar called syzlang to

specify the system calls for testing. In addition, ProtoFuzz [62] and libprotobuf-mutator [63]

are generic fuzzers for structured data serialized in Google Protocol Buffers [64]. In this

thesis, we propose ASL in RPG, which is a formal language for API description. Compared

to most existing descriptions that focus on presenting the syntax format of an input, ASL is

designed to address not only the syntax but also the semantics of APIs.

9.3 Semantics-aware Fuzzing

Semantics-aware fuzzers aim to clarify input semantics and avoid semantic errors in their

generated inputs. For example, DIE [65] performs random mutation over the typed AST of

a JavaScript program to get rid of type errors. CodeAlchemist [28] interprets the semantics

of JavaScript code blocks and assembles them into a semantically correct program for

testing. PolyGlot [55], a generic language fuzzer, utilizes a semantic validator to verify

the reference and type correctness of a generated program. Compared to programming

languages, APIs have more complicated high-level semantics related to the states of the

objects being operated by the APIs, which is modeled by RPG IR proposed in this thesis.
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CHAPTER 10

CONCLUSION

This thesis summarizes common semantic errors introduced by existing API fuzzers and

proposes a context-aware fuzzing approach based on RPG IR. RPG IR is a formal and

contextual representation of an API program for fuzzing. To reduce such semantic errors,

RPG IR maintains a program context for an API program, which reserves the states of the

objects being operated by the API calls in the program, and models the effects of every

generated API call to the object states. To evaluate the effectiveness of API fuzzing based

on RPG IR, we present two context-aware fuzzers, FreeDom and Janus, for finding bugs

in web browsers and file systems, respectively. Both fuzzers rely on RPG IR to describe

their targeted APIs and prove the importance of context awareness in API fuzzing by

discovering numerous bugs in mainstream browsers and Linux file systems with totally

42 CVEs assigned. In addition, both fuzzers largely outperform the existing API fuzzers

relying on context-free grammars to generate semantically incorrect API calls.

To generally adopt context-aware API fuzzing via RPG IR for finding bugs in different

API-based systems, we further present RPG in this thesis. RPG accepts API description

in ASL, which is automatically compiled into a context-aware API fuzzer targeting the

described APIs. In particular, ASL is a formal language for developers to describe API

syntax and semantics in a context-aware manner. When being used to fuzz WebKit with the

ASL files that describe DOM and SVG specifications, RPG is as effective as FreeDom and

finds 3× more unique crashes than Domato, a context-free grammar-based fuzzer.
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