
Contextual Concurrency Control

Sujin Park† Irina Calciu∗ Taesoo Kim† Sanidhya Kashyap‡

†Georgia Tech, ∗VMware Research, ‡EPFL

ABSTRACT

Kernel synchronization primitives are of paramount impor-
tance to achieving good performance and scalability for ap-
plications. However, they are usually invisible and out of
the reach of application developers. Instead, kernel devel-
opers and synchronization experts make all the decisions
regarding kernel lock design.
In this paper, we propose contextual concurrency control

(C3), a new paradigm that enables userspace applications to
tune concurrency control in the kernel.C3 allows developers
to change the behavior and parameters of kernel locks, to
switch between different lock implementations and to dy-
namically profile one or multiple locks for a specific scenario
of interest.
To showcase this idea, we designed and implemented

Concord, a framework that allows a privileged userspace
process tomodify kernel locks on the flywithout re-compiling
the existing code base. We performed a preliminary evalua-
tion on two locks showing that Concord allows userspace
tuning of kernel locks without incurring significant over-
head.

CCS CONCEPTS

• Computer systems organization→Multicore architec-
tures; • Software and its engineering → Mutual exclu-

sion; Concurrency control; Scheduling.

KEYWORDS

concurrency control, eBPF, Linux.
ACM Reference Format:

Sujin Park† Irina Calciu∗ Taesoo Kim† Sanidhya Kashyap‡ .
2021. Contextual Concurrency Control. In Workshop on Hot Topics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8438-4/21/05. . . $15.00
https://doi.org/10.1145/3458336.3465279

in Operating Systems (HotOS ’21), May 31-June 2, 2021, Ann Arbor,
MI, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3458336.3465279

1 INTRODUCTION

The end ofMoore’s law andDennard scaling have left applica-
tions scrambling for more performance and better optimiza-
tions. Developers can no longer rely on hardware to deliver
significant improvements every two years. Instead, theymust
resort to novel ways to improve application performance.
In particular, recent work in the industry and academia has
focused on eliminating inefficiencies in the system software
stack [29, 39, 49] or circumventing high overhead system
operations. Kernel bypass, for example, realizes this goal by
moving several operations in userspace [29, 32, 49]. Other
work restructures the underlying operating system (OS) for
certain classes of applications [42, 48].
In many domains, specialization seems to be the answer

in the pursuit of more performance. Across the board, spe-
cialization bridges the semantic gaps between applications
and the kernel [26, 48, 50], or even between different kernel
sub-systems [37]. In particular, specialization can establish
the context under which an application is requesting certain
functionality from the system. While application specializa-
tion and kernel bypass have been extensively studied for
storage [29], networking [28, 49], and accelerators [15], we
focus our attention on the part of the kernel that has been
traditionally not exposed to applications: concurrency con-
trol.

The kernel locks are of paramount importance to achiev-
ing good performance and scalability for applications [12, 13,
33, 35, 43]. However, kernel synchronization primitives are
usually invisible and out of the reach of application develop-
ers. Instead, kernel developers and synchronization experts
make all the decisions regarding kernel synchronization and
lock design.

This approach to kernel lock design raises two major con-
cerns. First, designing locking algorithms and verifying their
correctness is already challenging. Increasing hardware het-
erogeneity makes it exponentially more challenging because
lock designers try to optimize locks for each new platform to
decrease cache traffic and minimize contention [16, 22, 41].
Thus, synchronization experts need to develop manymore al-
gorithms and platform-dependent optimizations [4, 6, 45, 47].

167

https://doi.org/10.1145/3458336.3465279
https://doi.org/10.1145/3458336.3465279
https://doi.org/10.1145/3458336.3465279

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA S. Park et al.

Second, the locks and their developers lack awareness of the
context in which the lock is operating, leading to patholog-
ical cases, such as priority inversion [35, 37, 43], scheduler
subversion [46], and lock-holder preemption [36]. Prior work
addressed these problems but provided only point-solutions
without addressing the underlying lack-of-context issue.

In this paper, we propose contextual concurrency control
(C3), a new paradigm in which userspace applications can
tune concurrency control in the kernel. For example, users
can prioritize a certain task or system calls that hold a set of
locks. Moreover, users can enforce hardware-specific policies,
such as asymmetric multiprocessing-aware locking, and they
can decide to prioritize either readers or writers, based on
the given workload. C3 allows developers to tune various
locks in the kernel, change their parameters and behavior,
even change between different lock implementations, and
dynamically profile the observed lock(s) for a specific interest
(e.g., platform, workload, data distribution, etc.).

To showcase the C3 idea, we designed and implemented
Concord, a framework that allows a privileged userspace
process to modify kernel locks on the fly without recom-
piling the existing code base. Concord exposes a set of
well-defined lock-based APIs and uses eBPF [26] and live-
kernel patching [31] to update locks specified by a userspace
application dynamically. The APIs provided by Concord
are designed not to break mutual-exclusion invariants for
maintaining the correctness of the mutual-exclusion lock
property while implementing the user-defined policies. Also,
Concord enables better profiling for applications affected
by a lock in the kernel. For example, using Concord an appli-
cation developer can choose and profile a single contending
lock, unlike with current tools, which only allow developers
to profile all locks at the same time [56]. After profiling, the
developer can specialize the locking primitive to further im-
prove the application performance within a given context.
Developers can customize the lock based on a specific hard-
ware platform as well as a specific known application and
workload.

We used Concord on two existing locks, ShflLocks [33]
and BRAVO [20]. ShflLock allows lock developers to specify
lock policies, which can influence the acquisition order of
the lock. Concord allows application developers to define
new policies for the locks without modifying the kernel
code. Our initial investigation and preliminary results are
promising, showing that Concord does not incur signifi-
cant overhead when implementing known policies, such as
NUMA-awareness, or prioritizing readers over writers.

RealizingC3 is challenging on various levels, which opens
up interesting research directions. First, application develop-
ers require an in-depth understanding of the kernel to know
the problematic locks. Second, designing and composing

policies for the locks is not straightforward. Moreover, con-
flicting policies can sometimes lead to worse performance
and unexpected behavior. Finally, code generated from a
policy can have its own overhead, which can degrade appli-
cation performance.
C3 not only creates the opportunity to explore kernel con-

currency specialization in userspace but also opens up pos-
sibilities to explore hardware support. Moreover, we can
further extend this paradigm to other forms of concurrency
control mechanisms, such as optimistic locking, and relaxed
synchronization mechanisms.

2 BACKGROUND

We first discuss various kernel extensions and kernel bypass
techniques for improving application performance and later
discuss locks evolution.

2.1 Exposing Application Semantics

Software stack specialization is now the new norm for im-
proving application performance. The idea of co-designing
the entire software stack, including the kernel, started with
the Exokernel [23], which proposed pushing code to the ker-
nel for performance purposes. Corey [11] proposed three
new interfaces, such as shares, address ranges, and kernel
cores, to improve applications scalability by avoiding kernel
bottlenecks for increasing core count. Over time, even mono-
lithic kernels, such as Linux, have started to allow userspace
applications to customize the kernel behavior. Developers
can now use eBPF [26] to customize the kernel for tracing,
security, and even for performance purposes. For example,
eXpress Data Path (XDP) [50] provides a programmable net-
work data path to modify packets without compilation.

Moreover, there is an eBPF-enabled framework for accel-
erating some FUSE file system operations [8]. Besides eBPF,
Linux developers are using io_uring [7], a shared-memory
ring-buffer between userspace and the kernel, to expedite
asynchronous IO operations. In addition, applications today
can handle on-demand paging entirely in userspace with
the help of userfaultfd [18]. Following a similar ideology, we
take a step further in applying application specialization to
control concurrency mechanisms of the underlying kernel,
which opens up various opportunities for both lock designers
and application developers.

2.2 Locks: Past, Present, and Future?

Hardware is the dominant factor in determining the scalabil-
ity of locks, thereby impacting applications’ scalability. For
instance, queue-based locks [41] minimize excessive cache-
line traffic when multiple threads acquire the lock at the
same time. Meanwhile, hierarchical locks [16, 22] use batch-
ing to minimize the issue of cache-line bouncing in today’s

168

Contextual Concurrency Control HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

machines. CNA [21] and ShflLock [33] address the problem
of hierarchical locks: memory overhead and degraded per-
formance for a smaller number of cores. ShflLock presents
a new ideology of designing lock algorithms by decoupling
lock-policy from implementation. Instead of reinventing new
locks, it treats both hardware characteristics, such as NUMA-
awareness, or software behavior, such as parking threads, as
policies. They introduce the notion of a shuffler that reorders
the queue or modifies waiting threads’ states, mostly off the
critical path. Although ShflLocks provides an approach to
enforce policies, they try to focus on generic policies on a
set of simple lock acquire/release APIs. To cater to applica-
tions’ requirements, we expose a set of methods that allow
application developers to define their policies in a controlled
and safe manner.

3 USE CASES

C3 enables multiple use cases that were not possible before.
For example, application developers can useC3 to profile the
specific kernel locks that impact a given workload and to
update lock acquisition policies on the fly. We list some of
the use cases that expose context to the underlying locking
primitives for both performance and profiling. Although our
approach is applicable to any lock design, we apply C3 to
ShflLock [33] and we use the shuffler for enforcing policies.

3.1 Scheduling Threads Waiting for a Lock

The first category of use cases that we consider is re-ordering
the list of threads waiting to acquire the lock according to a
user-defined policy to improve performance under a certain
workload. Threads waiting for the lock can be scheduled in
two different manners: acquisition-aware scheduling, based
on the acquisition order of the lock, and occupancy-aware
scheduling, based on the time threads spend inside the criti-
cal section.

3.1.1 Acquisition-aware scheduling.

Lock switching. C3 enables developers to switch among
various lock algorithms. There are three prominent scenar-
ios. (i) Switch from a neutral readers-writer lock design
to a per-CPU or NUMA-based readers-intensive readers-
writer design for a read-intensive workload [16]. Examples
include page-faulting [35] and enumerating files in a di-
rectory [43]. The other scenario is switching from a neu-
tral readers-writer lock to a pure writers lock for a write-
intensive workload; an example is creating multiple files in
a directory. (ii) Switch from a NUMA-based lock design to a
NUMA-aware combining approach, in which the lock holder
executes the operation on behalf of a waiting thread [24].
This approach leads to better performance because it re-
moves at least one cache-line transfer. (iii) Switch between

blocking and non-blocking locks or vice versa, e.g., switch
blocking readers-writer lock (rwsem) to non-blocking readers-
writer lock (rwlock) by switching off the parking/wakeup
policy from the ShflLock ’s shuffler function. This approach
brings two benefits: First, developers can remove the ad-hoc
synchronization, such as using a non-blocking lock and im-
plementing a parking/wakeup strategy with wait events,
which is commonly used in the Btrfs file system. Second, C3

allows developers to unify the locking design bymultiplexing
multiple policies on the fly.

Lock inheritance. Aprocessmight acquiremultiple locks
to perform an operation. For example, a process in Linux
can acquire up to 12 locks (e.g., rename operation), or an
average of four locks to do memory or file metadata manage-
ment operations. Unfortunately, this locking pattern raises
a pathological case for queue-based locks, which we have
observed in our experiments—some threads have to wait for
a longer duration to acquire the top-level lock, which is held
by another thread waiting for another lock. For example,
suppose thread t1 wants to acquire two locks—L1 and then
L2 for an operation, while t2 only wants to acquire L1 for
its operation. Since these locking protocols are FIFO-based,
t1 might be at the end of the queue to acquire L2, while t2
is waiting to acquire L1. Thanks to C3, a developer can pro-
vide more context to the kernel: either t1 acquires all locks
together, or t1 declares which locks it already holds, so that
the shuffler can give it a higher priority for acquiring the
next lock (L2 in this case).

Lock priority boosting. An application might want to
prioritize either a system call path or a set of tasks over
others for better performance. With C3, a developer can
encode the task priority context by annotating it and pass
this information to the affected locks. For a system call, the
developer can share information about a set of locks and the
prioritized threads on the critical path. The shuffler will then
prioritize these threads over other threads waiting for the
locks for the specified application.

Exposing scheduler semantics. Often, over-subscribing
hardware resources, such as CPU or memory, can lead to
better resource utilization, for both userspace runtime sys-
tems [17], as well as virtual machines [55]. Although over-
subscription improves hardware utilization, it introduces the
issue of a double scheduling problem [25, 52]. The hyper-
visor may schedule out a vCPU being the lock holder or the
very next lock waiter in a VM. With C3, the hypervisor can
expose the vCPU scheduling information to the shuffler to
prioritize waiters based on their running time quota.

Adaptable parking/wake-up strategy. All blocking
locks follow spin-then-park strategy, in which they park
themselves after spinning for a while [44]. This spin time

169

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA S. Park et al.

is mostly ad-hoc [35], i.e., waiters either spin for a certain
duration based on a time quota, or keep on spinning if no
tasks are present to execute. Now, application developers can
expose the timing context after either analyzing the length
of the critical section to minimize energy consumption and
wake-up information to schedule the next waiters on time to
minimize the wake-up latency. Moreover, developers can fur-
ther encode sleeping information to wake up waiters right
before the lock is about to be acquired to minimize long
wake-up latency. This approach is also applicable for para-
virtualized spinlocks [34] to avoid the convoy effect [10].

3.1.2 Occupancy-aware Scheduling.

Priority inheritance. Priority inversion occurs when a
low priority task holding a lock is scheduled out by a nor-
mal priority task, waiting for the same lock. Kim et al. [37]
illustrated this issue in the Linux IO stack: when scheduling
IO requests, a normal task that wants to acquire a lock can
schedule out a lower priority background task that is holding
the same lock. The scheduling out of the lock holder, i.e., the
background task, leads to degraded IO performance. C3 en-
ables application developers to allow inheriting the priority
of the normal task (called priority inheritance) and avoid
such anomalies.

Task-fair co-operative scheduling. Patel et al. [46] in-
troduce a new class of problem, called the scheduler sub-
version problem, in which two tasks acquire the lock for
varying time. The task with longer holding time subverts
the scheduling goal of the OS. They address this problem
by keeping track of the critical section length and penaliz-
ing tasks that hold the lock for a longer duration. Although
this solution addresses the problem, it enforces scheduling
fairness even for applications that might not benefit from it.
C3 allows application developers to encode this information
by injecting code at exposed lock APIs and overcome the
problem of scheduler subversion only when needed.

Task-fair locks on AMP machines. Asymmetric multi-
core processors (AMP) have varying computation capability
cores in one processor [4, 5, 19]. The basic locking primitives
used on such an architecture suffer from a type of scheduler
subversion problem, and applications throughput can col-
lapse because of the slower computing capability of weaker
cores. For faster progress, developers can either assign crit-
ical locks on faster cores or reorder the queue of threads
waiting to acquire the lock in such a way that improves the
lock throughout.

Realtime scheduling. Similar to scheduling in realtime
systems, application developers can create lock policies that
always schedule threads to guarantee SLOs. Here, lock de-
velopers can design an algorithm based on the phase-fair

Specify lock
policy

Load BPF program Verify lock's
policy

BPF
Notify user

Store BPF program

BPF
file system Create patch to specify

target point
and patch lock
fucntion to
execute BPF

Patched locking
function

Patch

BPF
program

pass

Lock
policy Verifier

fd

BPF

BPF

User Kernel

hook

Locking
function

Figure 1: An overview of Concord’s workflow.

property [14]. This approach allows us to also eliminate
jitters and guarantees an upper bound on tail latency for
latency-critical applications.

3.2 Dynamic Lock Profiling

With C3, application developers can profile information
about any kernel lock, unlike current tools [56], in which
all locks are profiled together. The ability to select which
locks to profile enables developers to profile locks at dif-
ferent levels of granularity. For example, they can profile
all spinlocks running in the kernel, locks in a specific func-
tion, code path or namespace, or even a single lock instance.
This approach benefits application developers by enabling
them to understand better the underlying synchronization
by profiling only the interesting parts.

In the future, a developer could also reason about perfor-
mance contracts [30] by encoding performance contracts
that affect an application’s performance due to various shuf-
fling policies and even reason about some of the guarantees
provided by a set of policies.

4 THE CONCORD FRAMEWORK

To demonstrate the C3 potential to improve application per-
formance and simplify profiling kernel bottlenecks, we im-
plemented the Concord framework. Concord modularizes
decisions and behaviors used by locking functions and ex-
poses them as APIs. By replacing these exposed APIs with
user-defined code, users can customize locking functions
for their needs. For example, whether to spin before joining
a waiting queue can be an API so that users can make the
decision. A user first writes her own code to modify lock
protocols in the kernel based on her use case (§3). Then
Concord takes this code and replaces the annotated lock
functions inside the kernel. This replacement can range from
one lock instance to every lock in the kernel.

170

Contextual Concurrency Control HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

APIs Description Hazard

bool cmp_node(lock, shuffler_node, curr_node) Decide whether to move current node forward Fairness
bool skip_shuffle(lock, shuffler_node) Skip shuffling on this shuffler and hand over shuffler Fairness
bool schedule_waiter(lock, curr_node) Waking/parking/priority for a lock Performance
void lock_acquire(lock) Invoked when trying to acquire a lock Increase critical section
void lock_contended(lock) Invoked when trylock failed and need to wait Increase critical section
void lock_acquired(lock) Invoked when actually acquired a lock Increase critical section
void lock_release(lock) Invoked when release a lock Increase critical section

Table 1: APIs and their potential hazards provided by Concord with ShflLocks.

4.1 Overview

Figure 1 shows the workflow of Concord. A user specifies
a lock policy (1), which the eBPF verifier validates after
compilation, considering both eBPF restrictions and mutual
exclusion safety properties (2 , 3). Then the verifier notifies
the user of the verification outcome (4) and, in case of suc-
cess, stores the compiled eBPF code in the file system (5).
Finally, Concord uses the livepatch module [31] to replace
the annotated functions for the specified locks(6).

4.2 Safety and APIs

Although the onus lies on the user, Concord provides vari-
ous APIs to support flexible implementation of locking pol-
icy while ensuring safety. The underlying implementation
of Concord relies on eBPF to modify kernel locks. By us-
ing eBPF and the lock APIs (Table 1), users implement their
required policies for a set of lock instances in the kernel.
A user can encode multiple policies [33] in a C-style code,
which is translated into native code and is checked by an
eBPF verifier for safety. The verifier performs symbolic exe-
cution before loading the native code into the kernel, such as
memory access control or allowing only whitelisted helper
functions.
In addition to the eBPF verifier, Concord provides more

safety properties with respect to locks. Table 1 presents an
example of Concord APIs to manipulate ShflLocks and
their potential side effects on pathological policy. ShflLocks
is a suitable target to introduce our framework as it has
separate lock acquiring phase and a phase for reordering
waiting queue.

The first two APIs customize shuffling behavior for a wait-
ing queue. cmp_node() function returns a boolean result that
is used as a comparison function when reordering waiting
nodes of a lock. A user relies on this function to compare the
current node and the shuffler node to whether reorder the
current node. For example, a user can define a NUMA-aware
policy by grouping waiters from the same socket. On the
other hand, one can design scheduler cooperative lock [46]
by giving less priority to nodes by prioritizing nodes with
small critical section length. Although users can incorrectly

implement policy that may break fairness guarantees, our
runtime checks ensure the correct mutual exclusion prop-
erties. Moreover, the kernel does not have any liveness of
deadlock issues because our APIs, such as cmp_node() does
not modify the locking behavior but only returns the decision
for moving a node. Our second API, i.e., skip_shuffle(), is
called right before the shuffling phase that decides whether
to skip shuffling for current shuffler.
The last four APIs are designed for lock profiling. They

enable developers to profile their locks in fine-grained man-
ner by implementing the desired behavior for each invoca-
tion. Although they do not alter the behavior of the locking
function, heavy profiling policies can increase the length of
critical sections, thereby leading to performance degradation.
In addition to Concord APIs, we can further introduce

additional invariants to guarantee further safety of lock al-
gorithms. For example, statically bounding the number of
shuffling rounds minimizes starvation, while comparing the
length of the waiting node before and after the shuffling
phase ensures that the linked list is correct.

Although our APIs allow developers to compose multiple
policies for various use cases (§3), we rely on eBPF because
of its maturity and well defined interfaces that allow us to
not only implement such policies easily but also are already a
standard that are regularly used by developers. For example,
we use eBPF helper functions [1], such as CPU ID, NUMA ID
and time along with its map data structure to store informa-
tion at runtime. Moreover, eBPF exposes the functionality
of chaining multiple eBPF programs, which users can use
for composing policies. Finally, we also rely on livepatching
shadow data structures [2] for modifying data structures that
are used by locking primitives. For example, we can extend
the node data structure of the queue based lock with extra
information for encoding information for specific use cases.

5 PRELIMINARY EVALUATION

We evaluate the overhead of the Concord framework by
comparing the overhead of dynamically changing lock de-
signs using Concord with the pre-compiled versions of
the same locks. We evaluate on an eight-socket, 80-core
machine, and modify two lock algorithms: BRAVO [20] and

171

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA S. Park et al.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 10 20 30 40 50 60 70 80

O
ps
/m

se
c

#thread

Stock
BRAVO

Concord-BRAVO

(a) page_fault2

#thread

Stock
ShflLock

Concord-ShflLock

(b) lock2

0
0.2
0.4
0.6
0.8
1

1.2
1.4

1 2 4 8 10 20 30 40 50 60 70 80N
or
m
al
iz
ed

Th
ro
ug

hp
ut

#thread

(c) Hashtable

Figure 2: Impact of Concord on BRAVO and ShflLock.

ShflLock [33]. For the BRAVO, we explicitly switch between
a neutral readers-writer lock to a distributed version for
readers. In the case of ShflLock, we implement the NUMA-
awareness policy.

In Figure 2 (a) and (b), we use two micro-benchmarks [9]
that severely stress readers for BRAVO and writers for the
ShflLock, respectively. We observe that Concord has al-
most negligible overhead, while providing the flexibility to
modify the behavior of the lock on the fly. Figure 2 (c) shows
the worst-case slowdown of Concord. We use a bench-
mark [54] that uses a global lock to protect the hash table. The
benchmark shows the normalized throughput of ShflLock
and Concord-ShflLock. We observe that dynamically mod-
ifying lock algorithms can incur up to 20% overhead in the
worst-case scenario when no userspace code is executed.

6 DISCUSSION

C3 opens up a new research direction for tuning concur-
rency control: applications can have even more control of
the software stack, by tuning the kernel concurrency control.
However, there are multiple challenges to comprehensively
realize C3.

Composing policies. Application developers provide a
set of policies that locks need to apply. Composing multiple
policies is a difficult task, especiallywhen some of the policies
could be conflicting. We would like to automate this process
by leveraging program synthesis [38, 51], that can move the
verification of the safety properties entirely in userspace and
also provide a safe way to compose conflicting policies.

Overhead in applying policies. A user cannot add too
many policies, as their execution may fall on the critical
path. Moreover, eBPF also has some overhead, which we

have noticed while designing the lock profiler. In the future,
we would like to address such challenges by revisiting the
eBPF design in the context of lightweight profiling.

Safety. Currently, our model allows a privileged user to
modify kernel locks. This model is only applicable to one user
using the whole system. However, to handle multi-tenancy
in cloud environments, we need a tenant-aware policy com-
poser that does not violate isolation among users. We will
try to address this issue with two approaches: synthesizing
policies in the userspace to avoid such conflicts and also add
runtime checks in the lock algorithms, which are only used
if a policy can affect a particular behavior.

Other synchronization mechanisms. Besides locks,
there are other synchronization mechanisms, that are heav-
ily used in the kernel, such as RCU [40], seqlocks [27], wait
events [53], etc. Extending Concord to support them will
further allow applications to improve their performance.
Our approach also opens up new ways to expose various
system-based higher level synchronization mechanisms that
are important for overall correctness [3].

Modifying locks in userspace applications. In addi-
tion to kernel locks, userspace applications have their own
locks that are generic in nature. We plan to extend Concord
for userspace applications that provides more control of the
concurrency control in a dynamic manner, while the appli-
cation is running. In contrast, existing techniques, such as
library interposition, allow only a one time change to a dif-
ferent lock implementation when the application starts its
execution.

7 CONCLUSION

Kernel synchronization primitives have a huge impact on
some applications’ performance and scalability. However,
controlling kernel synchronization primitives is out of reach
for application developers. This paper proposes a new para-
digm, called contextual concurrency control (C3) that allows
userspace applications to fine tune the kernel concurrency
primitives. C3 opens up a new way to think about special-
izing the software stack and accelerates innovation in the
field of kernel synchronization.

8 ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feed-
back. This research was supported, in part, by the NSF
award CNS-1563848, CNS-1704701, CRI-1629851 and CNS-
1749711 ONR under grant N00014-18-1-2662, N00014-15-
1-2162, N00014-17-1-2895, DARPA AIMEE grant under
Agreement No. HR00112090034 and ETRI IITP/KEIT[2014-3-
00035], and gifts from Facebook, Mozilla, Intel, VMware and
Google.

172

Contextual Concurrency Control HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

REFERENCES

[1] 2020. Linux eBPF helper functions (version: 5.4). (2020).
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/include/uapi/linux/bpf.h?h=v5.4.

[2] 2020. Shadow Variables. (2020). https://www.kernel.org/doc/html/
latest/livepatch/shadow-vars.html.

[3] Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t Shoot down
TLB Shootdowns!. In Proceedings of the 15th European Conference on
Computer Systems (EuroSys). Virtual, 14.

[4] Apple. 2020. Small chip. Giant leap. (2020). https://www.apple.com/
mac/m1/.

[5] ARM. [n. d.]. Processing Architecture for Power Efficiency and Per-
formance. ([n. d.]).

[6] ARM. 2016. The ARMv8-A Architecture Reference Manual.
(2016). http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
subset.architecture.reference/index.html.

[7] Jens Axboe. 2019. Ringing in a new asynchronous I/O API. (2019).
https://lwn.net/Articles/776703/.

[8] Ashish Bijlani and Umakishore Ramachandran. 2019. Extension Frame-
work for File Systems in User space. In Proceedings of the 2019 USENIX
Annual Technical Conference (ATC). Renton, WA, 121–134.

[9] Anton Blanchard. 2013. will-it-scale. (2013). https://github.com/
antonblanchard/will-it-scale.

[10] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. 1979. The
Convoy Phenomenon. SIGOPS Oper. Syst. Rev. 13, 2 (April 1979), 20–
25.

[11] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M. Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: An Operating
System for Many Cores. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). San Diego,
CA.

[12] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2010. An Analysis of Linux Scalability to Many Cores. In Proceed-
ings of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Vancouver, Canada, 1–16.

[13] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. 2012. Non-scalable locks are dangerous. In Proceedings of
the Linux Symposium. Ottawa, Canada.

[14] B. B. Brandenburg and J. H. Anderson. 2011. Spin-based reader-writer
synchronization for multiprocessor real-time systems. In Real Time
Systems. 184–193. https://doi.org/10.1109/ECRTS.2009.14

[15] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salva-
tore Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-
marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. 2020.
hXDP: Efficient Software Packet Processing on FPGA NICs. In Pro-
ceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Virtual, 973–990.

[16] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J.
Marathe, and Nir Shavit. 2013. NUMA-aware Reader-writer Locks. In
Proceedings of the 18th ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP). Shenzhen, China, 157–166.

[17] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software
Runtimes for DisaggregatedMemory. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems

(ASPLOS).
[18] Jonathan Corbet. 2015. User-space page fault handling. (2015). https:

//lwn.net/Articles/636226/.
[19] Ian Cutress. 2020. Intel Alder Lake: Confirmed x86

Hybrid with Golden Cove and Gracemont for 2021.
(2020). https://www.anandtech.com/show/15979/
intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021.

[20] Dave Dice and Alex Kogan. 2019. BRAVO: Biased Locking for Reader-
Writer Locks. In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC). USENIX Association, Renton, WA, 315–328.

[21] Dave Dice and Alex Kogan. 2019. Compact NUMA-aware Locks. In
Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19).
ACM, New York, NY, USA, Article 12, 15 pages.

[22] David Dice, Virendra J. Marathe, and Nir Shavit. 2012. Lock Cohorting:
A General Technique for Designing NUMA Locks. In Proceedings of the
17th ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP). New Orleans, LA, 247–256.

[23] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole. 1995.
Exokernel: An Operating System Architecture for Application-Level
Resource Management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP). Copper Mountain, CO.

[24] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the
Combining Synchronization Technique. In Proceedings of the 17th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP).
New Orleans, LA, 257–266.

[25] Thomas Friebel. 2008. How to Deal with Lock-Holder Preemption. Tech-
nical Report. Xen Summit.

[26] Brendan Greggs. 2019. BPF: A New Type of Software.
(2019). http://www.brendangregg.com/blog/2019-12-02/
bpf-a-new-type-of-software.html.

[27] Gregory Haskins. 2008. seqlock: serialize against writers. (2008).
https://lwn.net/Articles/296209/.

[28] IETF. 2007. A Remote Direct Memory Access Protocol Specification.
(2007). https://tools.ietf.org/html/rfc5040.

[29] Intel. 2016. Introduction to the Storage Perfor-
mance Development Kit (SPDK). (2016). https:
//software.intel.com/content/www/us/en/develop/articles/
introduction-to-the-storage-performance-development-kit-spdk.
html.

[30] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Ka-
terina Argyraki, and George Candea. 2019. Performance Contracts
for Software Network Functions. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
Boston, MA, 517–530.

[31] Seth Jennings. 2014. Kernel Live Patching. (2014). https://lwn.net/
Articles/619390/.

[32] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing
Software Overhead in File Systems for Persistent Memory. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP). Ontario, Canada.

[33] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Changwoo Min, and
Taesoo Kim. 2019. Scalable and Practical Locking With Shuffling. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP). Ontario, Canada.

173

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/bpf.h?h=v5.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/bpf.h?h=v5.4
https://www.kernel.org/doc/html/latest/livepatch/shadow-vars.html
https://www.kernel.org/doc/html/latest/livepatch/shadow-vars.html
https://www.apple.com/mac/m1/
https://www.apple.com/mac/m1/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
https://lwn.net/Articles/776703/
https://github.com/antonblanchard/will-it-scale
https://github.com/antonblanchard/will-it-scale
https://doi.org/10.1109/ECRTS.2009.14
https://lwn.net/Articles/636226/
https://lwn.net/Articles/636226/
https://www.anandtech.com/show/15979/intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021
https://www.anandtech.com/show/15979/intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021
http://www.brendangregg.com/blog/2019-12-02/bpf-a-new-type-of-software.html
http://www.brendangregg.com/blog/2019-12-02/bpf-a-new-type-of-software.html
https://lwn.net/Articles/296209/
https://tools.ietf.org/html/rfc5040
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-storage-performance-development-kit-spdk.html
https://lwn.net/Articles/619390/
https://lwn.net/Articles/619390/

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA S. Park et al.

[34] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2015. Scalability
In The Clouds! A Myth Or Reality?. In Proceedings of the 6th Asia-
Pacific Workshop on Systems (APSys). Tokyo, Japan.

[35] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Scalable
NUMA-aware Blocking Synchronization Primitives. In Proceedings of
the 2017 USENIX Annual Technical Conference (ATC). Santa Clara, CA.

[36] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2018. Scaling
Guest OS Critical Sections with eCS. In Proceedings of the 2018 USENIX
Annual Technical Conference (ATC). Boston, MA.

[37] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu Jeong. 2017.
Enlightening the I/O Path: A Holistic Approach for Application Per-
formance. In 15th USENIX Conference on File and Storage Technologies
(FAST). Santa Clara, CA, 345–358.

[38] Calvin Loncaric, Michael D. Ernst, and Emina Torlak. 2018. Generalized
Data Structure Synthesis. In Proceedings of the 40th International Con-
ference on Software Engineering (ICSE). Gothenburg, Sweden, 958–968.

[39] Madhavapeddy, Anil and Scott, David J. 2014. Unikernels: The Rise
of the Virtual Library Operating System. Commun. ACM (Jan. 2014),
61–69.

[40] Paul E. McKenney, Jonathan Appavoo, Andy Kleen, Orran Krieger,
Rusty Russell, Dipankar Sarma, and Maneesh Soni. 2002. Read-Copy
Update. In Ottawa Linux Symposium (OLS).

[41] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for
Scalable Synchronization on Shared-memory Multiprocessors. ACM
Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–65.

[42] Changwoo Min, Woon-Hak Kang, Mohan Kumar, Sanidhya Kashyap,
Steffen Maass, Heeseung Jo, and Taesoo Kim. 2018. SOLROS: A Data-
Centric Operating System Architecture for Heterogeneous Computing.
In Proceedings of the 13th European Conference on Computer Systems
(EuroSys). Porto, Portugal.

[43] Changwoo Min, Sanidhya Kashyap, Steffen Maass, Woonhak Kang,
and Taesoo Kim. 2016. Understanding Manycore Scalability of File
Systems. In Proceedings of the 2016 USENIXAnnual Technical Conference
(ATC). Denver, CO.

[44] Ingo Molnar and Davidlohr Bueso. 2017. Generic Mutex Subsys-
tem. (2017). https://www.kernel.org/doc/Documentation/locking/
mutex-design.txt.

[45] David Mulnix. 2017. Intel Xeon Processor Scalable Family Tech-
nical Overview. (2017). https://software.intel.com/en-us/articles/
intel-xeon-processor-scalable-family-technical-overview.

[46] Yuvraj Patel, Leon Yang, Leo Arulraj, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift. 2020. Avoiding
Scheduler Subversion Using Scheduler-Cooperative Locks. In Proceed-
ings of the 15th European Conference on Computer Systems (EuroSys).
Virtual, 17.

[47] Andy Patrizio. 2017. HPE refreshes its Superdome servers with SGI
technology. (2017). https://www.networkworld.com/article/3236789/
hpe-refreshes-its-superdome-servers-with-sgi-technology.html.

[48] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The
Operating System is the Control Plane. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Broomfield, Colorado.

[49] The Linux Foundation Projects. 2021. DPDK. (2021). https://www.
dpdk.org/.

[50] RedHat. 2021. Achieving high-performance, low-latency networking
with XDP. (2021). https://developers.redhat.com/blog/2018/12/06/

achieving-high-performance-low-latency-networking-with-xdp-part-1/.
[51] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D.

Dissertation. USA. Advisor(s) Bodik, Rastislav. AAI3353225.
[52] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. 2013. Schedule

Processes, Not VCPUs. In Proceedings of the 4th Asia-Pacific Workshop
on Systems (APSys). 7.

[53] Linus Torvalds. 2005. Linux Wait Queues. (2005). http://www.tldp.
org/LDP/tlk/kernel/kernel.html.

[54] Josh Triplett, Paul E. McKenney, and JonathanWalpole. 2011. Resizable,
Scalable, Concurrent Hash Tables via Relativistic Programming. In
Proceedings of the 2011 USENIX Annual Technical Conference (ATC).
Portland, OR, 11–11.

[55] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dan-
nowski. 2004. Towards Scalable Multiprocessor Virtual Machines. In
Proceedings of the 3rd Conference on Virtual Machine Research And
Technology Symposium - Volume 3 (VM). 14.

[56] Peter Zijlstra. 2003. lockstat: documentation. (2003). https://lwn.net/
Articles/252835/.

174

https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://www.networkworld.com/article/3236789/hpe-refreshes-its-superdome-servers-with-sgi-technology.html
https://www.networkworld.com/article/3236789/hpe-refreshes-its-superdome-servers-with-sgi-technology.html
https://www.dpdk.org/
https://www.dpdk.org/
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
https://developers.redhat.com/blog/2018/12/06/achieving-high-performance-low-latency-networking-with-xdp-part-1/
http://www.tldp.org/LDP/tlk/kernel/kernel.html
http://www.tldp.org/LDP/tlk/kernel/kernel.html
https://lwn.net/Articles/252835/
https://lwn.net/Articles/252835/

	Abstract
	1 Introduction
	2 Background
	2.1 Exposing Application Semantics
	2.2 Locks: Past, Present, and Future?

	3 Use Cases
	3.1 Scheduling Threads Waiting for a Lock
	3.2 Dynamic Lock Profiling

	4 The Concord Framework
	4.1 Overview
	4.2 Safety and APIs

	5 Preliminary Evaluation
	6 Discussion
	7 Conclusion
	8 Acknowledgment
	References

