CONCOLIC EXECUTION TAILORED FOR HYBRID FUZZING

A Dissertation
Presented to
The Academic Faculty

Insu Yun

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Computing
Department of Computer Science

Georgia Institute of Technology

December 2020

© Insu Yun 2020

CONCOLIC EXECUTION TAILORED FOR HYBRID FUZZING

Thesis committee:

Dr. Taesoo Kim (Advisor)
School of Computer Science
Georgia Institute of Technology

Dr. Wenke Lee
School of Computer Science
Georgia Institute of Technology

Dr. Alessandro Orso
School of Computer Science
Georgia Institute of Technology

Dr. Weidong Cui
Microsoft Research Lab — Redmond
Microsoft

Dr. Mayur Naik

The Department of Computer and Informa-
tion Science

University of Pennsylvania

Date approved: November 18, 2020

ACKNOWLEDGEMENTS

First of all, I would like to thank to Prof. Taesoo Kim for his guidance and support
through my entire Ph.D. program. He was indeed a perfect advisor. He nurtured me to
become an independent researcher in system security, and he kindly taught me how to
discover a worthwhile research problem, how to explore it, and how to illustrate my idea
technically. He is not only an exceptional advisor but also a wonderful person. I always
enjoyed chatting with him, and our talks helped me relax from the stress of graduate studies.
I hope one day I can become an outstanding advisor to my future students like Prof. Taesoo
has been for me.

I also would like to acknowledge my thesis committee: Dr. Weidong Cui, Prof. Wenke
Lee, Prof. Mayur Naik, and Prof. Alessandro Orso, for their invaluable comments and
suggestions for my dissertation. Dr. Weidong Cui mentored me to develop a background in
system security at Microsoft Research, and I am grateful to Prof. Mayur Naik for his help
on my first research at Georgia Institute of Technology.

I have been fortunate to collaborate with many brilliant and friendly researchers at
System Software and Security Lab and Microsoft research: Prof. Sanidhya Kashyap, Prof.
Meng Xu, Dr. Ming-Wei Shih, Dr. Steffen Maass, Dr. Mohan Kumar, Dr. Sangho Lee,
Prof. Changwoo Min, Prof. Byoungyoung Lee, Prof. Chengyu Song, Prof. Kangjie Lu,
Prof. Hong Hu, Wen Xu, Jinho Jung, Ren Ding, Dr. Chanil Jeon, Dr. Woonhak Kang,
Soyeon Park, ChangSeok Oh, Fan Sang, Seulbae Kim, Dr. Daehee Jang, Dr. Hyunjoon Koo,
Hanqing Zhao, Yechan Bae, Sujin Park, Mansour Alharthi, Ammar Askar, Jungwon Lim,
Yonghwi Jin, Prof. Hyungon Moon, Jungyeon Yoon, Dr. Xinyang Ge, Dr. Ben Niu, and
Prof. Ryuou Wang. I also want to express my special thanks to Prof. Yeongjin Jang for
being a good friend, a great collaborator, and an attentive mentor since my undergraduate
days.

I would like to thank my parents, Nanhui Lee and Deokgwon Kang, and my parents-in-

1l

law, Byeongseok So and Hyunju Lee. I am especially grateful to my mother for her endless
love and support. I also wish to thank my wife, Eunhye, and my lovely daughter, Lily. I
could not finish this journey without my wife. Like the meaning of her name, she is an

amazing grace. Lastly, I give my thanks to God for everything in my life.

v

TABLE OF CONTENTS

Acknowledgments i ittt e e e e e iii
Listof Tables ¢ i i i i it i i e i et e ittt et et et a s e anas viii
Listof Figures ittt it ittt ittt it e X
SUMMATY . & & v v i vt e e e e vt o ot o oo ot o oo o oo o oo oeesoees Xiv
Chapter 1: Introduction i 0 i i i i it it ittt oo e oo nas 1
1.1 Problem Statement 1
1.2 ResearchOutline0.... 3
Chapter 2: Related work0 i i i i it it i it ittt e e 6
2.1 Coverage-guided Fuzzing 6
2.2 Concolic eXecution i it e e e 7
2.3 HybridFuzzing 9
24 Filesystemfuzzing Lo 9

Chapter 3: QsyM: A Binary-Level Concolic Execution Engine Tailed for Hy-

bridFuzzing 0 i i e e e e e e e e
3.1 Introduction e
3.2 Motivation: Performance Bottlenecks

3.2.1 Pl. Slow Symbolic Emulation

3.2.2 P2. Ineffective Snapshot,

3.2.3 P3. Slow and Inflexible Sound Analysis

33 Design e
3.3.1 Taming Concolic Executor

3.3.2 Optimistic Solving L o

3.3.3 BasicBlockPruning,

34 Implementation
3.5 Evaluation
3.5.1 Scaling to Real-world Software

3.5.2 Code Coverage Effectiveness

3.5.3 Fast Symbolic Emulation

3.5.4 Optimistic Solving

3.5.5 PruningBasicBlocks oL

3.6 Analysisof NewBugsFound
3.6.1 ffmpeg.
362 file.

37 DisCUSSION oL e e e
Chapter 4: HYBRIDRA: Hybrid Fuzzing for Kernel File Systems
4.1 Introduction
4.2 Motivation and Challenges
4.2.1 PI1. Large and checksum-protected file system images

vi

422 P2.Giganticcodesize

423 P3.Complex constraints

43 Design e e e e
4.3.1 Perfilesystemmodule

4.3.2 Compilation-based Concolic Execution

43.3 StagedReduction Lo

4.4 TImplementation
45 Evaluation
4.5.1 Newly Discovered Bugs,

4.5.2 Compilation-based Concolic Execution

453 StagedReduction oL

4.6 Discussion and Limitation
Chapter 5: Conclusion and Futurework
5.1 Conclusion L
5.2 Futurework
References i i ittt it ittt ittt

Vil

1.1

3.1

3.2

33

34

3.5

3.6

LIST OF TABLES

Summary of techniques used to build concolic execution tailored for hybrid
fuzzing in QSYM and HYBRIDRA.

The emulation overhead of KLEE and angr compared to native execu-
tion, which are underlying symbolic executors of S2E and Driller, respec-
tively. We used chksum, md5sum, and shalsum in coreutils to test KLEE,
and md5sum (mosml) [74] to test angr because angr does not support the
fadvise syscall, which is used in the coreutils applications.

QSYM’s main components and their lines of code.

Bugs found by QSYM and known fuzzers that are previously used to fuzz the
binaries, and the reason they cannot be detected by the existing fuzzer and
hybrid fuzzer. CVE-2017-11543* and CVE-2017-1000249* are concurrently
found by QSYM before being patched [83, 84]. The failure of the fuzzer in
the tcpdump bug marked by * is not crucial since a fuzzer also can find the
bug, but in our experiment, QSYM found the bug 3 hours earlier than pure
fuzzing.

Incomplete or incorrect system call handling by Driller that prohibits from
applying Driller to real-world software. Driller’s mmap () had an error: it
ignored a file descriptor. We detected these errors dynamically using basic
test cases in each project. Therefore, other incorrect or unsupported system
calls could exist in unexplored paths.

The number of instructions in the CGC challenges that are not emulated due
to the limitation of QSYM: no floating point operation supports.

The number of bugs found by existing techniques and QSYM in the LAVA-M
dataset. VUzzer (R) represents the number of bugs that are found by VUzzer
in our machine settings, and VUzzer (P) represents the number of bugs in
the VUzzer paper.

viil

3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

The size of a raw file image and its metadata in each file system. Even
though Hydra’s approach significantly reduces the size of data to fuzz (from
a raw image to metadata), it is still huge for effective fuzzing.

The lines of code for four popular user-space applications — libjpeg, libpng,
libtiff, and file — and file systems in Linux Kernel. It shows that a file
system is much larger than a typical application (on average 4.5 x) even
without considering other features in Kernel.

The memory layout of HYBRIDRA for shadow memory.

Failures from SymCC to run HYBRIDRA’s LibOS-based executor. In most
of cases, it fails to support multi-threading and suffers from deadlock.

HYBRIDRA’s components and their linesof code.

Bugs in various file systems that HYBRIDRA discovered. Concolic repre-
sents that the bugs are directly discovered by concolic execution, and New
represents that the bugs are newly discovered.

The average, ratio to HYBRIDRA, and standard deviation of symbolic execu-
tion for QSYM, SymCC, and HYBRIDRA for four file systems. It shows that
HYBRIDRA is order-of-magnitude faster than QSYM and 56% faster than
SymCC. e e

1X

1.1

3.1

3.2

33

34

LIST OF FIGURES

Examples that shows negative impacts of completeness and soundness in
hybrid fuzzing. Completeness often blocks further exploration of concolic
execution in hybrid fuzzing (Figure 1.1a), and soundness incurs significant
overhead due to repetitive analysis (Figure 1.1b).

The number of instructions in symbolic basic blocks and the number of
symbolic instructions in popular open-source software. More than half of
the instructions in the basic blocks are not symbolic instructions, which can
be executed natively.

The first example shows that collecting complete constraints for complicated
routines such as file_zmagic() could prohibit finding new paths. The
second example shows that if a given concrete input follows a true path
of looks_ascii(), it over-constrains the path not to find a true path of
file_tryelf (). e e e e

Overview of QSYM’s architecture as a hybrid fuzzer. QSYM takes a test
case and a target binary as inputs and attempts to generate new test cases
that might explore new paths. It uses Dynamic Binary Translation (DBT)
to natively execute the input binary as well as to select basic blocks for
symbolic execution. Since QSYM applies various heuristics to trade strict
soundness for better performance in constraint solving, the new test cases
will be validated later by the fuzzer.

An example that shows the effect of instruction-level symbolic execution.
If a size is symbolic at __memset_sse2(), the instruction-level symbolic
execution only executes symbolic instructions, which are in the dashed box.
However, the basic-block-level one needs to execute other instructions that
can be executed natively, including punpcklwd, which is complex to handle
as shown in the right-side angrcode.

3.5

3.6

3.7

3.8

39

3.10

The test cases generated by QSYM and Driller that explore the same code
path from the same seed. They are different because QSYM uses unrelated
constraint elimination as their underlying optimization techniques whereas
Driller uses incremental solving. Unrelated constraint elimination can re-
move unnecessary constraints, for example, constraints for the user names,
on the existence of a concrete input. oL

Code coverage of libpng after a six-hour run of QSYM and AFL (two AFL
instances for a fair comparison) with an increasing number of seeding inputs.
In the 0% case, we put an invalid PNG file consisting of 256 ‘A’s as an initial
input. The 100% case includes 141 sample PNG image files provided by the
libpng project. This experiment result highlights the effectiveness of code
coverage that the concolic execution approach contributes to hybrid fuzzing,
depending on the availability of quality seeding inputs.

This color map depicts the relative code coverage for five minutes that
compares QSYM’s with Driller’s: the blue color means that QSYM found
more code than Driller, and the red color means the opposite (see §3.5.3 for
the exact formula). Each cell represents each CGC challenge in alphabetical
order (from left to right and top to bottom). QSYM outperforms Driller in
discovering new code paths; QSYM results in better code coverage in 104
challenges (82.5% cases) and Driller does better in 18 challenges (14.3%
cases)outof 126.

Comparing QSYM (5-min timeout) with Driller while increasing the time for
constraints solving (from 5-min to 30-min). It shows that the reason Driller
could not generate new test cases is not due to the limited time budget for
solving the generated constraints.

Average time breakdown of QSYM and Diriller for 126 CGC binaries with
initial PoVs as initial seed files, and the number of instructions that are
executed symbolically. ‘Norm’ is the product of the number of instructions
of QSYM and the average rate of increase of VEX IR, 4.69.

The cumulative number of bugs found in the LAVA dataset with or without
optimistic solving by time.

X1

3.11

3.12

3.13

3.14

4.1

4.2

Time elapsed for optimistic solving and the number of unique bugs found
in the LAVA dataset in a single execution of QSYM with an initial test
case according to the number of constraints in optimistic solving. The
minus symbol (-) represents the absence of optimistic solving; therefore,
its elapsed time is zero in every case. Opt is our optimistic solving that
only uses the last constraint in an execution path, and the number after
the plus symbol (+) represents the number of additional constraints used
for optimistic solving. For example, +1 represents that QSYM uses one
additional constraint; therefore, it uses two constraints for optimistic solving,
the last one and the additional one. The graph shows that our decision uses
the last constraint helps QSYM find the most bugs while spending less time.

Total newly found coverage and elapsed time for libjpeg, libpng, libtiff, and
file with five seed files, except for libjpeg, which has only four files, that
have the largest code coverage in each project.

The ffmpeg code about the bug found by QSYM and the test case generated
by QSYM to reach it. AFL alone was unable to reach the bug because it
is almost infeasible to randomly generate input to pass the complicated
conditionin Lines 3—-10. oL Lo oL

The file bug that QSYM found. The check for descsz is always true due to
the incorrect use of logical OR operator.

Overview of HYBRIDRA and details for its concolic execution module.
HYBRIDRA generally adopts Hydra’s design for exploring two dimensional
space of file systems: an image and system calls. HYBRIDRA improves
Hydra with its concolic execution. Its concolic execution selectively sym-
bolizes metadata of a given file image and craft symbolic expressions us-
ing its LibOS-based executor instrumented for concolic execution. Then,
HYBRIDRA invokes constraint solving after reducing its complexity for
efficient solving. HYBRIDRA finally returns a new input by fixing broken
checksum using its per-file system module.

Overview of compilation-based concolic execution in HYBRIDRA. HYBRIDRA
relies on Kirenenko for its concolic execution; it instruments code for con-
colic execution following semantics from concrete execution. This is con-
ceptually equivalent to SymCC [10]. It is worth noting that this example
code is almost same with the one in the SymCC paper [10] to clarify its
difference from Kirenenko.,

Xii

4.3

4.4

4.5

4.6

4.7

4.8

Differences between Kirenenko and SymCC in their instrumentation. Both
code snippets are semantically same; however, Kirenenko improves perfor-
mance by avoiding logarithmic std: :map lookup and memory allocation.

Pseudocode for multiple reduction mechanisms.

Pseudocode for scheduling in HYBRIDRA. HYBRIDRA first applies random
mutation (i.e., fuzzing) for finding new test cases. If it fails, it starts concolic
execution, which has internal stages. HYBRIDRA only runs concolic exe-
cution to favored test cases, which are the most efficient ones for covering
specific code. It prefers concolic execution in earlier stages, which is cheaper
than laterones. L

Code coverage of HYBRIDRA in concolic-only mode with various reduc-
tion mechanisms. By taking advantage of several reduction mechanisms,
HYBRIDRA with staged reduction outperforms others even using the same
tmeout. e

Code coverage of Hydra and HYBRIDRA in hybrid fuzzing with various
reduction mechanisms. L L o

Eventual code coverage achieved by HYBRIDRA with its standard deviation.
In summary, HYBRIDRA outperforms the fuzzing-only approach, Hydra.

Xiil

SUMMARY

Recently, hybrid fuzzing, which combines fuzzing and concolic execution, has been
highlighted to overcome limitations of both techniques. Despite its success in contrived
programs such as DARPA Cyber Grand Challenge (CGC), it still falls short in finding bugs
in real-world software due to its low performance of existing concolic executors.

To address this issue, this dissertation suggests and demonstrates concolic execution
tailored for hybrid fuzzing with two systems; QSYM and HYBRIDRA. First, we present
QSYM, a binary-only concolic executor tailored for hybrid fuzzing. It significantly improves
the performance of conventional concolic executors by removing redundant symbolic
emulations for a binary. Moreover, to efficiently produce test cases for fuzzing, even
sacrificing its soundness, QSYM introduces two key techniques: optimistic solving and
basic block pruning. As a result, QSYM outperforms state-of-the-art fuzzers, and, more
importantly, it found 13 new bugs in eight real-world programs, including file, ffmpeg,
and OpenJPEG.

Enhancing the key idea of QSYM, we discuss HYBRIDRA, a new concolic executor for
file systems. To apply hybrid fuzzing for file systems, which are gigantic and convoluted,
HYBRIDRA employs compilation-based concolic execution to boost concolic execution
leveraging the existing of source code. Moreover, HYBRIDRA introduces a new technique
called staged reduction, which combines existing heuristics to efficiently generate test cases
for file systems. As a result, HYBRIDRA outperforms a state-of-the-art file system fuzzer,
Hydra, by achieving higher code coverage, and successfully discovered four new bugs in

btrfs, which has been heavily tested by other fuzzers.

X1V

CHAPTER 1
INTRODUCTION

1.1 Problem Statement

The computer science community has developed two notable technologies to automatically
find vulnerabilities in software: coverage-guided fuzzing [1, 2, 3] and concolic execution [4,
5]. Coverage-guided fuzzing can quickly explore the input space at nearly native speed,
but it is only good at discovering inputs that lead to an execution path with loose branch
conditions because of its random exploration. On the contrary, concolic execution is good
at finding inputs that drive the program into tight and complex branch conditions, but it is
very expensive and slow to formulate and solve these constraints. More seriously, it suffers
from a fundamental limitation, namely, path explosion; the number of paths of a program
grows exponentially based on the program size. To take advantage of both worlds, a hybrid
approach [6, 7, 8], called hybrid fuzzing, was recently proposed. It combines both fuzzing
and concolic execution, with the hope that the fuzzer will quickly explore trivial input spaces
(i.e., loose conditions) and the concolic execution will solve the complex branches (i.e., tight
conditions). By selectively applying concolic execution, hybrid fuzzing can avoid its high
cost and path explosion problem. For example, Driller [8] demonstrates the effectiveness
of the hybrid fuzzing in DARPA Cyber Grand Challenge (CGC) binaries—generating six
new crashing inputs out of 126 binaries that are not possible when running either fuzzing or
concolic execution alone.

Unfortunately, these hybrid fuzzers still suffer from scaling to find bugs in non-trivial,
real-world applications. We observed two main performance bottlenecks of their concolic
executors. First, the symbolic emulation of concolic executors is too slow in formulating

path constraints. This overhead has been underestimated in classical concolic execution

1 // ’buf’ and ’x’ are symbolic
2 int completeness(char® buf, int x) {
3 very_complicated_logic(buf);

if (x % x == 1234 * 1234)
crash(Q);

N o w»n A

(a) This example shows that completeness of concolic execution may result in inefficiency in test case
generation. In particular, very_complicated_logic() in concolic execution blocks its further exploration,
failing in discovering crash().

1 // ’x’ is symbolic and ’x’ == 0 in a given input
2 int soundess(int x) {
3 if (x == 0)

4 do_something();

5

6 if (x % x == 1234 * 1234)
7 crash(Q);

8 }

(b) Similarly, this example shows a negative impact of soundness in concolic execution. Since x is concretely
less than zero, it makes a path for finding crash() unsatisfiable. To discover this crash, concolic execution
needs to be re-executed, which requires non-trivial efforts.

Figure 1.1: Examples that shows negative impacts of completeness and soundness in hybrid fuzzing.
Completeness often blocks further exploration of concolic execution in hybrid fuzzing (Figure 1.1a),
and soundness incurs significant overhead due to repetitive analysis (Figure 1.1b).

because it can be alleviated using state forking [9]. State forking, which utilizes knowledge
from previous executions in exploring neighboring execution paths, can avoid the recurrent
cost from the symbolic emulation. However, hybrid fuzzing explores paths randomly, which
is different from concolic execution’s systematic exploration; therefore, state forking is
limited in hybrid fuzzing because of the few neighboring paths. Thus, concolic execution in
hybrid fuzzing needs to repeat symbolic emulation, making its overhead more serious than
the classical one.

Second, classical concolic executors aim to maximize completeness and soundness,
resulting in inefficient test case generation for hybrid fuzzing. In any analysis including
concolic execution, completeness and soundness are desirable but not without trade offs.
As shown in Figure 1.1, complete concolic execution attempts to analyze every logic in a

program. This can block further exploration of concolic execution if concolic execution

Table 1.1: Summary of techniques used to build concolic execution tailored for hybrid fuzzing in
QsYM and HYBRIDRA.

Fast symbolic emulation Heuristics for generating test cases
QsYM Instruction-level concolic execution Optimistic solving (§3.3.2)

(For binary, §3.3.1) Basic block pruning (§3.3.3)

Compilation-based concolic execution Staged reduction (§4.3.3)
HYBRIDRA

(For source code, §4.3.2) + Heuristics from QSYM

encounters an extremely complicated routine, making it give up other interesting, yet
accessible, paths. Moreover, soundness requires conservative analysis; This often incurs
redundant re-executions, whose costs can be significant in hybrid fuzzing. For example,
in Figure 1.1b, if x is concretely defined as zero, concolic execution will conclude that a
branch in Line 7 is unsatisfiable because {x == 0} and {x * x == 1234 * 1234} conflict.
However, in this example, if a program hits Line 7 regardless of do_something(), it is safe
to ignore the conflicting constraint, {x == 0}, from Line 4. This relaxation is not always
acceptable because of implicit data or control flow. Therefore, classical concolic execution
waits for a new input that can satisfy Line 7 without breaking its completeness. In hybrid
fuzzing, this strategy significantly delays the discovery of crash(), particularly in a large
program; concolic execution can encounter such a good input after consuming enormous

number of other test cases from fuzzing.

1.2 Research Outline

To overcome the aforementioned issues, this thesis proposes concolic execution tailored
for hybrid fuzzing. Unlike classical concolic execution, this specialized concolic execution
employs two fundamental techniques: (D systematic approaches for fast symbolic emulation
and @ heuristics for generating test cases in hybrid fuzzing. We demonstrate our ideas with
two systems: QSYM (§3) and HYBRIDRA (§4).

Table 1.1 summarizes techniques used for hybrid fuzzing in this dissertation. In particular,

this dissertation presents (D instruction-level concolic execution (§3.3.1) and an alternative

design for compilation-based concolic execution (§4.3.2) [10, 11, 12] for fast symbolic
emulation in binary-only and open-source applications, respectively. Moreover, it proposes
@ several heuristics for test case generations: optimistic solving (§3.3.2), basic block
pruning (§3.3.3), and staged reduction (§4.3.3). Optimistic solving and basic block pruning
makes concolic execution efficiently generate test cases while sacrificing soundness and
completeness of concolic execution. This is based on our key observation in hybrid fuzzing,
in which coverage-guided fuzzing can act as an efficient validator to filter out incorrect test
cases. Moreover, staged reduction combines existing heuristics for test case generation to
take an specific advantage of each mechanism.

In the following, we briefly introduce QSYM and HYBRIDRA. QSYM is a fast concolic
execution engine to support hybrid fuzzing in real-world user applications. Its key idea is
to tightly integrate the symbolic emulation with the native execution using dynamic binary
translation, making it possible to implement more fine-grained, and thus faster, instruction-
level symbolic emulation. Additionally, QSYM loosens the strict soundness requirements of
conventional concolic executors for better performance, but takes advantage of a faster fuzzer
for validation, providing unprecedented opportunities for performance optimizations, e.g.,
optimistically solving constraints and pruning uninteresting basic blocks. Our evaluation
shows that QSYM does not just outperform state-of-the-art fuzzers (i.e., found 14x more
bugs than VUzzer in the LAVA-M dataset, and outperformed Driller in 104 binaries out of
126), but also found 13 previously unknown security bugs in eight real-world programs like
Dropbox Lepton, ffmpeg, and OpenJPEG, which have already been intensively tested by
state-of-the-art fuzzers, AFL and OSS-Fuzz. QSYM was published in USENIX Security
Symposium 2018 in collaboration with Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo
Kim [13].

HYBRIDRA extends this idea to a more gigantic system, file systems in Linux Kernel.
To reduce the overhead from binary translation, HYBRIDRA benefits from the existence of

source code by instrumenting it for concolic execution. Unlike SymCC [10], HYBRIDRA

adopts shadow-memory-based memory modeling from Kirenenko [14], which is faster and
more resilient to multi-threading. Moreover, HYBRIDRA adopts a new test case generation
mechanism, called stage reduction, which gradually applies various reduction mechanisms
to generate test cases. We applied HYBRIDRA to four popular file systems: btrfs, ext4,
ftfs, and xfs; HYBRIDRA discovered 10 crashes with four new bugs. Hybrid fuzzing
directly helps HYBRIDRA discover these bugs by understanding buggy conditions in Linux
Kernel. Moreover, our evaluation shows that stage reduction outperforms other reduc-
tion mechanisms, and HYBRIDRA can achieve more code coverage than the fuzzing-only

approach [15], which shows its effectiveness.

CHAPTER 2
RELATED WORK

In this chapter, we introduce the current state-of-the-art approaches for fuzzing, concolic exe-

cution, and hybrid fuzzing and compare them with our approaches, QSYM and HYBRIDRA.

2.1 Coverage-guided Fuzzing

Fuzzing is a dynamic software testing technique that controls a program’s execution by
randomly generating an input. Fuzzing runs a program with mutated inputs and hopes that
the input will eventually drive the program to an erroneous program state, such as a crash
or an assertion error (i.e., a bug). Thanks to its simple nature, fuzzing is largely scalable
and applicable to any type of program. Consequently, fuzzing has been largely used for
finding bugs in various fields [16], including file parsers [1, 17, 18], compilers [19, 20, 21,
22], browsers [23, 24, 25, 26, 27, 28], and operating systems [29, 30, 31, 32, 15, 33].

Coverage-guided fuzzing has become popular, especially since AFL [1] has shown its
effectiveness. AFL prioritizes inputs that likely reveal new paths by collecting coverage
information during program execution to assess generated inputs, enabling quick coverage
expansion. Also, AFLFast [34] uses a Markov chain model to prioritize paths with low
reachability, and CollAFL [35] provides accurate coverage information to mitigate path
collisions. libFuzzer [36] provides a useful set of library functions for in-memory, coverage-
guided fuzzing. Entropic [37] suggests an entropy-based power schedule to boost the
efficiently of coverage-guided fuzzing.

However, fuzzing has a fundamental limitation: it cannot traverse paths beyond narrow-
ranged input constraints (e.g., a magic value). To overcome such a limitation, BuzzFuzz and
VUzzer [38, 39] develop application-aware mutation techniques by performing taint analysis.

Steelix [40] recovers the correct magic values by collecting comparison progress information

during program execution. FairFuzz [41] discovers magic values and prevents their mutations
with program analysis and heuristics. Angora [42] adopts taint tracking, shape and type
inference, and a gradient-descent-based search strategy to solve path constraints efficiently.
Neuzz [43] suggests neural program smoothing and utilizes gradient-guided fuzzing instead
of using the evolutionary algorithm. REDQUEEN [44] suggests efficient fuzzing using input-
to-state correspondence, in which part of a given input appears in the program state without
any modification. TaintScope [45] suggests an automatic way to avoid a checksum routine
in a program leveraging the inherent properties of a checksum — imbalanced dependencies
between the checksum field and the calculated one. Eclipser [46] suggests gray-box concolic
testing, which can efficiently handle linear and monotonic constraints. These approaches,
however, can only handle certain types of constraints. In contrast, QSYM and HYBRIDRA

rely on symbolic execution such that it has a chance to satisfy any kinds of constraints.

2.2 Concolic execution

Symbolic execution [47, 48, 49, 50] has been widely used for software testing; it represents
a program’s execution in the form of symbolic expressions instead of concretely running it.
Then, it systematically explores a program by flipping each symbolic constraint and generates
a corresponding test case using a constraints solver — a tool that engenders a test case from
symbolic constraints. CUTE [12] and DART [11] suggest concolic execution to overcome
the limitations of their underlying constraint solver, which combines symbolic execution with
a concrete one. In particular, their solver fails to support non-linear arithmetic or symbolic
array indexing; therefore, they replace these unsupported expressions with concrete values
from concrete execution. Equipped with a more powerful solver — STP [51] — EXE [52]
successfully handles non-linear arithmetic expressions and symbolic dereferences, and its
successor, KLEE [9], redesigns EXE to use LLVM IR and found 56 bugs in GNU coreutils.
Even with such a powerful solver, concolic execution is still helpful; KLEE [9] relies on

concrete values to emulate unmodeled operations, including system calls. S2E [5] suggests

full system concolic execution by leveraging KLEE and QEMU [53]. Accordingly, S2E is
capable of analyzing any part of a system, including third-party libraries and even a kernel.
Mousse [54] further supports concolic execution even in an untamed environment, which
cannot be emulated.

However, concolic execution suffers from an infamous limitation, called path explosion,
in which the number of paths to explore grows exponentially with program size. To mitigate
this problem, SAGE [4, 55] proposes a generational search to maximize the number of
test cases in one execution and applies unrelated constraint solving [12]. Cloud9 [56] and
Veritesting [57] merge states to reduce their numbers using static analysis and dynamic
symbolic execution. Dowser [58] and DASE [59] suggest techniques to prioritize concolic
execution for more interesting paths; to guide concolic execution, they leverage the charac-
teristics of buffer overflow vulnerabilities and documentations, respectively. Mayhem [60]
combines forking-based symbolic execution and re-execution-based symbolic execution to
balance performance and memory usage.

On the contrary, QSYM and HYBRIDRA use (1) fuzzing to explore most paths to avoid
the path explosion problem, (2) generic heuristics (e.g., basic block pruning) without
assuming any specific bug type or domain-specific knowledge, and (3) re-execution-based
symbolic execution for better performance. QSYM and HYBRIDRA are highly inspired by
whitebox fuzzers (e.g., SAGE) and have adopted SAGE’s design, including the generational
search algorithm and unrelated constraint solving. However, this dissertation has several
differences from whitebox fuzzers. First, our goal is to make interesting test cases for
fuzzing but not to explore the program individually. This makes a big difference in our
design decisions; for example, if an algorithm can generate a number of interesting test
cases, which can also be discovered by fuzzing, the algorithm would not be useful for our
purpose. Second, in hybrid fuzzing, our exploration of a program is random, not systematic.
Thus, optimization techniques based on systematic exploration [9, 60] are no longer useful

in hybrid fuzzing. Third, coverage-guided fuzzing [1] allows us to adopt more aggressive

strategies for test case generation. Thanks to its high performance for evaluating incorrect
test cases, we can apply several techniques that are expected to generate many incorrect test

cases, €.g., optimistic solving in QSYM.

2.3 Hybrid Fuzzing

The concept of hybrid fuzzing was first proposed by Majumdar and Sen [6]. Later, Driller [8]
demonstrated its effectiveness in DARPA CGC with a refined implementation. In both
studies, the majority of path exploration is offloaded to the fuzzer, while concolic execution
is selectively used to drive execution across the paths that are guarded by narrow-ranged
constraints. Pak [7] also proposes a similar idea, but it is limited to the frontier nodes that
are mainly magic value checks at early execution stages. However, these hybrid fuzzers use
general concolic executors that are not only slow but also incompatible with hybrid fuzzing.
On the contrary, QSYM is tailored for hybrid fuzzing, so that it can scale to detect bugs
from real-world software. Similar to HYBRIDRA, SymCC [10] recently revisits compilation-
based concolic execution from CUTE [12] and DART [11]. HYBRIDRA takes an alternative
design for compilation-based concolic execution using shadow memory, which has lower
overhead than SymCC’s [61]. HFL [62] combines Syzkaller with S2E for kernel hybrid
fuzzing; however, it fails to address the technical challenges in a file system fuzzing unlike
HYBRIDRA. DigFuzz [63] and MEUZZ [64] suggest special seed selection algorithms for

hybrid fuzzing, which can be applied to QSYM and HYBRIDRA.

2.4 File system fuzzing

To discover bugs in file systems, numerous fuzzing frameworks for file systems have been
proposed. Because of the popularity of file systems, generic kernel fuzzing frameworks [65,
29, 66, 67] such as Syzkaller include file systems as part of their fuzzing targets; how-
ever, such systems are limited to evaluate system calls without considering file system

images, which also heavily determine the behaviors of file systems. To overcome this issue,

Janus [68] proposes two-dimensional fuzzing for file systems; Janus randomly generates not
only system calls but also file system images to discover memory corruption vulnerabilities
in file systems. Hydra [15] further extends Janus to discover other types of file system
bugs beyond memory corruptions. Compared to these solutions, HYBRIDRA improves
two-dimensional fuzzing by supporting powerful concolic execution that can resolve the

fundamental limitations of existing fuzzing.

10

CHAPTER 3
QSYM: A BINARY-LEVEL CONCOLIC EXECUTION ENGINE TAILED FOR
HYBRID FUZZING

3.1 Introduction

In this work, we first systematically analyze the performance bottlenecks of concolic
execution and then overcome the problem by tailoring the concolic executor to support
hybrid fuzzing (§3.2). The key idea of QSYM is to tightly integrate the symbolic emulation
to the native execution using dynamic binary translation. Such an approach provides
unprecedented opportunities to implement more fine-grained, instruction-level symbolic
emulation that can minimize the use of expensive symbolic execution (§3.3.1). Unlike our
approach, current concolic executors employ coarse-grained, basic-block-level taint tracking
and symbolic emulation, which incur non-negligible overheads to the concolic execution.

Additionally, we alleviate the strict soundness requirements of conventional concolic
executors to achieve better performance as well as to make it scalable to real-world programs.
Such incompleteness or unsoundness of constraints is not a problem in a hybrid fuzzer
where a co-running fuzzer can quickly validate the newly generated test cases; the fuzzer
can quickly discard them if they are invalid. Moreover, this approach makes it possible
to implement a few practical techniques to generate new test cases, i.e., by optimistically
solving some parts of constraints (§3.3.2), and to improve the performance, i.e., by pruning
uninteresting basic blocks (§3.3.3). These new techniques and optimizations together allow
QSYM to scale to test real-world programs.

Our evaluation shows that the hybrid fuzzer, QSYM, —built on top of our concolic ex-
ecutor, and the state-of-the-art fuzzer, AFL—outperforms all existing fuzzers like Driller [8]

and VUzzer [39]. QSYM achieved significantly better code coverage than Driller in 104 out

of 126 DARPA CGC binaries (tied in five challenges). Further, QSYM discovered 1,368
bugs out of 2,265 bugs in the LAVA-M test set [69], whereas VUzzer found 95 bugs.

More importantly, QSYM scales to testing complex real-world applications. It has

found 13 previously unknown vulnerabilities in eight non-trivial programs, including ffmpeg
and OpenJPEG. It is worth noting that these programs have been thoroughly tested by
other state-of-the-art fuzzers such as AFL and OSS-Fuzz, highlighting the effectiveness
of our concolic executor. OSS-Fuzz running on a distributed fuzzing infrastructure with
hundreds of servers [70] was unable to find these bugs, but QSYM found them by using
a single workstation. For further research, we open-source the prototype of QSYM at
https://github.com/sslab-gatech/qsym.

This work makes the following contributions:

* Fast concolic execution through efficient emulation. We improved the performance
of concolic execution by optimizing emulation speed and reducing emulation usage.
Our analysis identified that symbol generation emulation was the major performance
bottleneck of concolic execution such that we resolved it with instruction-level se-
lective symbolic execution, advanced constraints optimization techniques, and tied
symbolic and concolic executions.

* Efficient repetitive testing and concrete environment. The efficiency of QSYM
makes re-execution-based repetitive testing and the concrete execution of external
environments practical. Because of this, QSYM is free from snapshots incurring
significant performance degradation and incomplete environment models resulting in
incorrect symbolic execution due to its non-reusable nature.

* New heuristics for hybrid fuzzing. We proposed new heuristics tailored for hybrid
fuzzing to solve unsatisfiable paths optimistically and to prune out compute-intensive
back blocks, thereby making QSYM proceed.

* Real-world bugs. A QsYM-based hybrid fuzzer outperformed state-of-the-art auto-

matic bug finding tools (e.g., Driller and VUzzer) in the DARPA CGC and LAVA test

https://github.com/sslab-gatech/qsym

sets. Further, QSYM discovered 13 new bugs in eight real-world software. We believe
these results clearly demonstrate the effectiveness of QSYM.
The rest of this work is organized as follows. §3.2 analyzes the performance bottleneck
of current hybrid fuzzing. §3.3 and §3.4 depict the design and implementation of QSYM,
respectively. §3.5 evaluates QSYM with benchmarks, test sets, and real-world test cases.

§3.7 explains QSYM’s limitations and possible solutions.

3.2 Motivation: Performance Bottlenecks

In this section, we systematically analyze the performance bottlenecks of the conventional
concolic executor used for hybrid fuzzers. The following are the main reasons that block the

adoption of hybrid fuzzers to the real world beyond a small-scale study.

3.2.1 PI1. Slow Symbolic Emulation

The emulation layer in conventional concolic executors that handles symbolic memory
model is extremely slow, resulting in a significant slowdown in overall concolic execution.
This is surprising because the community believes that symbolic and concolic executions are
slow due to path explosion and constraint solving. Table 3.1 shows this significant overhead
in symbolic emulation when we execute several programs without branching out to the
other paths (no path explosion) or solving constraints on the path in widely-used symbolic
executors, KLEE and angr. Compared to the native execution, KLEE is around 3000 times
slower and angr is more than 321 000 times slower, which are significant.

Why is symbolic emulation so slow?. In our analysis, we observed that the current
design of concolic executors, particularly adopting IR in their symbolic emulation, makes
the emulation slow. Existing concolic executors adopt IR to reduce their implementation
complexity a lot; however, this sacrifices the performance. Additionally, optimizations that
speed up this use of IR prohibit further optimization opportunities, particularly by translating

the program into IRs in a basic-block granularity. This design does not allow skipping

Table 3.1: The emulation overhead of KLEE and angr compared to native execution, which are
underlying symbolic executors of S2E and Driller, respectively. We used chksum, md5sum, and
shalsum in coreutils to test KLEE, and md5sum (mosml) [74] to test angr because angr does not
support the fadvise syscall, which is used in the coreutils applications.

Executor chksum mdSsum shalsum mdSsum(mosml)

Native 0.008 0.014 0.014 0.001
KLEE 26.243 32.212 73.675 0.285
angr - - - 462.418

the emulation that does not involve in symbolic execution instruction by instruction. We

describe the details of these in the following.

Why IR: IR makes emulator implementation easy. Existing symbolic emulators trans-
late a machine instruction to one or more IR instructions before emulating the execution.
This is mainly to make the implementation of symbolic modeling easy. To model symbolic
memory, the emulator needs to interpret how an instruction affects the symbolic memory
status when supplied with symbolic operands. Unfortunately, interpreting each machine
instruction is a massive task. For instance, the most popular Intel 64-bit instruction set
architecture (i.e., the amd64 ISA) contains 1795 instructions [71] described in a 2000-page
manual [72]. Moreover, the amd64 ISA is not machine-interpretable, so human effort is
required to interpret each instruction for its symbolic semantic.

To reduce this massive complexity in implementation, existing emulators have adopted
the IR. For example, KLEE uses the LLVM IR and angr uses the VEX IR. These IRs have
much smaller sets of instructions (e.g., 62 for the LLVM IR [73]) and are simpler than
native instructions. Consequently, the use of IR significantly reduces the implementation
complexity because the emulator will have a much smaller number of interpretation handlers
than when it directly works with machine instructions (e.g., 1795 versus 62).

Why not: IR incurs additional overhead. Despite making implementation easy, the use
of IR incurs overhead in symbolic emulation. First, the IR translation itself adds overhead.
Because the amd64 architecture is a complex instruction set computer (CISC), whereas the

IRs model a reduced instruction set computer (RISC), in most cases, a translation of a

206 k

200k | mmm Block
8 Instruction
2
2 100k - S0k
Z 56 k
= B . Bk g
11k 10k
.. =
libjpeg libtiff libpng file

Figure 3.1: The number of instructions in symbolic basic blocks and the number of symbolic
instructions in popular open-source software. More than half of the instructions in the basic blocks
are not symbolic instructions, which can be executed natively.

machine instruction results in multiple IR instructions. For instance, based on our evaluation,
the VEX IR [75], used by angr, increases the number of instructions by 4.69 times on

average (versus machine instructions) in the CGC binaries, resulting in much symbolic

emulation handling.

Why not: IR blocks further optimization. Second, using IR prohibits further optimiza-
tion opportunities. For example, existing symbolic emulators have an optimization strategy
that minimizes the use of emulation because it is slow. Particularly, they do not execute a
basic block in the emulator if the block does not deal with any symbolic variables. Although
this effectively cuts off the overhead, it still has room for optimization. According to our
measurement with the real-world software (Figure 3.1), such as libjpeg, libpng, libtiff,
and file, only 30% of instructions in symbolic basic blocks require symbolic execution.
This implies that an instruction-level approach has an opportunity to reduce the number of
unnecessary symbolic executions. However, current concolic executors cannot easily adopt
this approach due to IR caching. To use IR, they need to convert native instructions into
IR, which has significant overhead. To avoid repetitive overhead, they transform and cache
basic blocks into IRs, instead of individual instructions, to save space and time for cache
management. This caching forces existing symbolic emulators to execute instructions in a

basic block level and prevent further optimization.

Our approach. Remove the IR translation layer and pay for the implementation
complexity to reduce execution overhead and to further optimize towards the minimal

use of symbolic emulation.

3.2.2 P2. Ineffective Snapshot

Why snapshot: eliminating re-execution overhead. Conventional concolic execution
engines use snapshot techniques to reduce the overhead of re-executing a target program
when exploring its multiple paths. The snapshot mechanism is also mandatory for hybrid
fuzzing whose concolic re-execution is significantly slow, such as Driller. For example, we
measured the code coverage by turning off the snapshot mechanism in Driller with 126 CGC
binaries and given proof of vulnerabilities (PoVs) as initial seed files. As a result, Driller
with snapshot achieved more code coverage in 76 binaries, but without snapshot achieved

more code coverage in only /7 binaries, and others are the same.

Why not: fuzzing input does not share a common branch. Snapshots in hybrid fuzzing
are not effective because concolic executions in hybrid fuzzing merely share a common
branch. In particular, for conventional concolic engines, a snapshot is taken when the engine
splits the path exploration from one conditional branch (i.e., the taken and untaken paths).
The main purpose of taking a snapshot is to reuse a symbolic program state when exploring
both paths at the same branch. In this regard, the engine backs up the symbolic state of the
program in one branch, and then explores one of the paths (e.g., the taken path). When the
path is exhausted or stuck, the engine restores the symbolic state to the previous state at the
branch and moves to another path (i.e., the untaken path). The engine can explore the path
without paying overhead for re-executing the program to the branch.

On the contrary, the concolic execution engine in hybrid fuzzing fetches multiple test
cases from the fuzzer with which they are associated different paths of the program (i.e.,
sharing no common branch). This is because random mutation generates such test cases.

This could 1) lead the program to a different code path or 2) concretize values differently on

handling symbolic memory access [76]. Therefore, snapshots taken from one test case path

cannot be re-used in the other test case path such that they do not optimize the performance.

Why not: snapshot cannot reflect external status. Worse yet, the snapshot mechanism
becomes problematic in supporting external environments since it breaks process boundaries.
Supporting external environments is required since the program heavily interacts with the
external environment during its execution. Such interactions include the use of a file system
and a memory management system, and these would be able to change the symbolic status of
the program. When a program is being executed, it does not consider external environments
since the underlying kernel maintains internal states related to them. Unfortunately, the
snapshot mechanism breaks the assumption that the kernel holds: when a process diverges
through fork ()-like system calls, the kernel no longer maintains the states. Thus, concolic
execution engines should maintain the states by itself.

Existing tools try to solve this problem through either full system concolic execution or
external environment modeling, but they result in significant performance slowdown and

inaccurate testing, respectively.

Full system concolic execution. Concolic testing tools such as S2E apply concolic
execution for both the target program and the external environment. Although this approach
ensures completeness and correctness, the tools cannot test the program in a reasonable time
because conventional concolic executors are too slow and the complexity of the external
environment is high. Moreover, a full system concolic execution requires expensive state
backup and recovery. This overhead could be mitigated by copy-on-write under normal
circumstances, but it is not applicable for hybrid fuzzing due to its non-shareable nature.

External environment modeling. Hybrid fuzzers, such as Driller, model or emulate
the execution in the external environment. This approach has clear performance benefits
by avoiding concolic execution, but it results in inaccurate models because it is almost
impossible to completely and correctly model all system calls in practice. For example,

Linux kernel 2.6 has 337 system calls, but angr only supports 22 system calls out of

// @funcs.c:221 in file v5.6
if ((ms->flags & MAGIC_NO_CHECK_COMPRESS) == 0) {
m = file_zmagic(ms, &b, inname); // zlib decompress

}

// other interesting code

1 // @funcs.c:177 in file v5.6
2 // looks_ascii()
3 if (ch >= 0x20 && ch < 0x7f)

// file_tryelf()
if (ch == 0x7f)

N o w B

Figure 3.2: The first example shows that collecting complete constraints for complicated routines
such as file_zmagic() could prohibit finding new paths. The second example shows that if a given
concrete input follows a true path of looks_ascii(), it over-constrains the path not to find a true
path of file_tryelfQ).

them. Further, despite excessive efforts of the developers, angr models many functions
incompletely, such as mmap(). The current implementation of mmap() in angr ignores a
valid file descriptor given to the function. It just returns empty memory instead of memory

containing the file content.

Our approach. Optimize repetitive concolic testing, remove the snapshot mechanism

that is inefficient in hybrid fuzzing, and use concrete execution to model external

environments.

3.2.3 P3. Slow and Inflexible Sound Analysis

Why sound analysis?. Concolic execution tries to guarantee soundness by collecting
complete constraints. This completeness assures that an input satisfying the constraints will
lead the execution to the expected path. Thus, concolic execution can produce inputs to
explore other paths of a program without worrying about false expectations.

Why not: never-ending analysis for complex logic. = However, computing complete
constraints could be expensive in various situations. In particular, computing the constraints

for complex operations such as cryptographic functions or compression is often problematic.

The upper part of Figure 3.2 shows a code snippet of the file program. If concolic execution
visits file_zmagic(), it sticks there to compute complex constraints for z1ib decompression

and cannot search other interesting code.

Why not: sound analysis could over-constraint a path. The complete constraints can
also over-constrain [5] a path that limits concolic execution to find future paths. In particular,
a constraint that is inserted to follow the native execution can cause the over-constraint
problem. In the lower code of Figure 3.2, if ch is defined as ‘A’ by a given concrete input,
concolic execution will put the constraint, {ch >= 0x20 A ch < 0x7f}, at looks_ascii()
because the native execution will execute the true branch of the if statement. When it
arrives at file_tryelf(), the concolic execution cannot generate any test case because
the final constraint is unsatisfiable, which is {ch >= 0x20 A ch < 0x7f A ch == 0x7f}.
However, if file_tryelf() does not depend on the true branch of looks_ascii(), this
is the over-constraint problem because an input generated by concolic execution without

caring about the path constraint, ch == 0x7£, will explore a path in file_tryelf().

Our approach. Collect an incomplete set of constraints for efficiency and solve only a

portion of constraints if a path is overly-constrained.

3.3 Design

In this section, we explain our design decisions to realize QSYM. Figure 3.3 shows an
overview of QSYM’s architecture. QSYM aims at achieving fast concolic execution by
reducing the efforts in symbolic emulation, which is the major performance bottleneck of
existing concolic executors. To this end, QSYM first instruments and then runs a target
program utilizing Dynamic Binary Translation (DBT) along with an input test case provided
by a coverage-guided fuzzer. The DBT produces basic blocks for native execution and
prunes them for symbolic execution, allowing us to quickly switch between two execution
models. Then, QSYM selectively emulates only the instructions necessary to generate

symbolic constraints, unlike existing approaches that emulate all instructions in the tainted

Target Fuzzer

program binary (e.g., afl)
Input Output test cases potentially .
test cases exploring new paths Concolic executor
4 o Symbolic emulation Constraint solving)
Dynamic Binary
Translation (e.g., pin) Inst-level Executor Eliminating Unrelated
Native Basic blocks (§3.1) Constraints (§3.1)
execution to be executed
Pruning Basic Blocks Concrete Env. Modeling Optimistic Solving
(§3.3) (§3.1) (§3.2)

/

Figure 3.3: Overview of QSYM’s architecture as a hybrid fuzzer. QSYM takes a test case and a
target binary as inputs and attempts to generate new test cases that might explore new paths. It uses
Dynamic Binary Translation (DBT) to natively execute the input binary as well as to select basic
blocks for symbolic execution. Since QSYM applies various heuristics to trade strict soundness for
better performance in constraint solving, the new test cases will be validated later by the fuzzer.

basic blocks. By doing this, QSYM reduced the number of symbolic emulations by a
significant magnitude (5, see Figure 3.9 in §3.5.3) and hence achieved a faster execution
speed. Thanks to its efficient execution, QSYM can execute symbolic execution repeatedly
instead of using snapshots that require external environment modeling. In particular, QSYM
can interact with the external environment in a concrete fashion instead of relying on the
contrived environment models. To improve the performance of constraint solving, QSYM
applies various heuristics that trade off strict soundness for better performance. Such a
relaxation provides an unprecedented opportunity to the concolic executor for a hybrid
fuzzer, in which the paired-up fuzzer can quickly validate the newly produced test cases—it
will simply discard them if they are not interesting. The rest of this section describes our

approaches to scale the concolic executor for the hybrid fuzzer to test real-world programs.

3.3.1 Taming Concolic Executor

We explain in detail four new techniques to optimize the concolic executor for the hybrid

fuzzer.

// If rdx (size) is symbolic gef op generic_InterleavelO(self, args):

__memset_sse2: s = self. vector_size
movd xmm@,es1i ¢ = self._vector_count
mov rax,rdi left_vector = [args[O][(i+1)*s-1:i*s]
punpcklbw xmm@,xmmo for i in xrange(c/2)]
punpcklwd xmm@,xmm® T right_vector = [args[1][(i+1)*s-1:1*s]
Fpgnuignzmm9¢xmmg¢9xg for i in xrange(c/2)]
f cmp rdx, 0x40 i return claripy.Concat(*itertools.chain.from iterable(
ija___memset sse2+80} reversed(zip(left_vector, right_vector))))

Figure 3.4: An example that shows the effect of instruction-level symbolic execution. If a size
is symbolic at __memset_sse2 (), the instruction-level symbolic execution only executes symbolic
instructions, which are in the dashed box. However, the basic-block-level one needs to execute other
instructions that can be executed natively, including punpcklwd, which is complex to handle as shown
in the right-side angr code.

Instruction-level symbolic execution. QSYM symbolically executes a small set of instruc-
tions that are required to generate symbolic constraints. Unlike existing concolic executors,
which apply a block-level taint analysis and so symbolically execute all instructions in the
tainted basic blocks, QSYM employs an instruction-level taint tracking and symbolic execu-
tion on the tainted instructions. The existing concolic executors take such a coarse-grained
approach because they suffer from high performance overheads when switching between
native and symbolic executions. However, for QSYM, the efficient DBT makes it possible to
implement a fine-grained, instruction-level taint tracking and symbolic execution, helping
us to avoid unnecessary emulation overheads.

This method significantly improves the performance of QSYM’s symbolic execution in
practice. Take memset() as an example (Figure 3.4), where only its size parameter (rdx)
is tainted. Unlike a block-level approach, such as angr, that should symbolically execute
all instructions, QSYM can generate symbolic constraints by executing only the last two
instructions. This problem is more critical in real-world problems where modern compilers
produce highly optimized code to minimize control-flow changes (e.g., using a conditional
move like cmov). For example, in angr, any symbolic arguments to the memset () can prevent
its symbolic execution because memset () relies on complex instructions like punpcklbw.

QsYM runs both native and symbolic executions in a single process by utilizing the

DBT, making such mode switches extremely lightweight (i.e., a normal function call). It is

1 # create user 1 # create user 1 # create user

userone userone \xfb\xfb\xfb\xfb\xf4\xf1l\xfl
1 # create user 1 # create user 1 # create user

usertwo usertwo \xfb\xfb\xfb\xfb\x0b\xfb\xfl
2 # login 2 # login 2 # login

userone userone \xfb\xfb\xfb\xfb\xf4\xf1\xfl

1 # send message | 4 # delete message | 4 % delete message

Initial PoV Qsym Driller

Figure 3.5: The test cases generated by QSYM and Driller that explore the same code path from
the same seed. They are different because QSYM uses unrelated constraint elimination as their
underlying optimization techniques whereas Driller uses incremental solving. Unrelated constraint
elimination can remove unnecessary constraints, for example, constraints for the user names, on the
existence of a concrete input.

worth noting that this approach is drastically different from most of the existing concolic
engines, such as angr, where two execution modes should make non-trivial communications
such as updating memory maps to make a mode switch. Accordingly, many optimizations
made by angr are to reduce such mode switching, e.g., striving to run one mode as long as

possible.

Solving only relevant constraints. QSYM solves constraints relevant to the target branch
that it attempts to flip, and generates new test cases by applying the solved constraints to the
original input. Unlike QSYM, other concolic executors such as S2E and Driller incrementally
solve constraints; that is, they focus on solving the updated parts of constraints in the current
run by utilizing lemmas learned from the previous execution. For pure symbolic executors
that do not have any initial inputs for exploration, this incremental approach is effective
in enumerating all possible input spaces [77]. However, this is not a favorable design for
hybrid fuzzers for the following two reasons.

First, the incremental approach in hybrid fuzzers repeatedly solves the constraints that
are explored by other test cases. For example, Figure 3.5 shows an initial test case and new
test cases generated by QSYM and Driller when exploring the same code paths: the red
marker shows the differences between the original input and the generated test cases. By

solving only constraints relevant to the branch (i.e., selecting a menu for deleting a message),

QSYM generates the new test case by updating a small part of the initial input. However,
Driller generates new test cases that look drastically different from the original input. This
indicates that Driller wastes time on solving irrelevant constraints that are repeatedly tested
by fuzzers (e.g., constraints on usernames).

Second, the incremental approach is effective only when complete constraints are
provided. Unfortunately, due to the emulation overheads, existing concolic executors cannot
formulate symbolic constraints for complex, real-world programs. However, focusing only
on relevant constraints gives us a higher chance to solve the constraints and produce new
test cases that potentially take different code paths. For example, the test cases that are only
relevant to the command menu will not be affected by the incomplete constraints generated
for usernames (Figure 3.5). Moreover, due to its environment support (§3.3.1) or various
heuristics (§3.3.2, §3.3.3), QSYM tends to generate more relaxed (i.e., incomplete) forms
of constraints that can be easily solved. This makes QSYM scale enough to test real-world

programs.

Preferring re-execution to snapshoting. QSYM’s fast concolic execution makes re-
execution much preferable to taking a snapshot for repetitive concolic testing. The snapshot
approach, which creates an image of a target process and reuses it later, is chosen to
overcome the performance bottleneck of the concolic execution; re-executing a program
to reach a certain execution path with a valid state can take much longer than restoring
the corresponding snapshot. However, as QSYM’s concolic executor becomes faster, the

overhead of the snapshotting is no longer smaller than that of re-execution.

Concrete external environment. QSYM avoids problems resulting from an incomplete
or erroneous modeling of external environments by concretely interacting with external
environments. Since the incompleteness and incorrectness of modeling deviate symbolic
execution and native execution and mislead additional exploration, we should avoid them for
further analysis. Instead of these erroneous models, QSYM considers external environments

as “black-boxes” and simply executes them by concrete values. This is a common way to

handle functions that cannot be emulated in symbolic execution [4, 11], but it is difficult to
apply to forking-based symbolic execution, which breaks process boundaries [78]. Since
QSYM can achieve performance without introducing forking-based symbolic execution [60],
QSYM can utilize the old but complete technique to support external environments. However,
this approach can result in unsound test cases that do not produce any new coverage, unlike
its claim. If QSYM blindly believes concolic execution, QSYM will waste its resources to
explore paths using test cases that do not introduce any new coverage. To alleviate this,

QsSYM relies on a fuzzer to quickly check and discard the test cases to stop further analysis.

3.3.2 Optimistic Solving

Concolic execution is susceptible to over-constraint problems in which a target branch is
associated with complicated constraints generated in the current execution path (Figure 3.2).
This problem is prevalent in real-world programs, but existing solvers give up too early
(i.e., timeout) without trying to utilize the generated constraints, which took most of their
execution time (Figure 3.9). In hybrid fuzzing, a symbolic solver’s role is to assist a fuzzer to
get over simple obstacles (e.g., narrow-ranged constraints like {ch == 0x7£} in Figure 3.2)
and go deeper in the program’s logic. Thus, as a hybrid fuzzer, it is well justified to formulate
potentially new test inputs, regardless of reaching unexplored code via the current path or
other paths.

QSYM strives to generate interesting new test cases from the generated constraints by
optimistically selecting and solving some portion of the constraints, if not solvable as a
whole. As the emulation overheads dominate the overheads of constraint solving in complex
programs, it economically makes sense to leverage this opportunity. In particular, QSYM
chooses the last constraint of a path for optimistic solving for the two following reasons.
First, it typically has a very simple form, making it efficient for constraints solving. Another
candidate would be the complement of unsat_core, which is the smallest set of constraints

that introduces unsatisfiability. However, computing unsat_core is very expensive and

sometimes crashes the underlying constraint solver [79]. Second, test cases generated
from solving the last constraint likely explore the target path as they at least meet the local
constraints when reaching the target branch. Since QSYM first eliminates constraints that
are not related to the last constraint, all irrelevant constraints do not impact the result of the

optimistic solving.

3.3.3 Basic Block Pruning

We observed that constraints repetitively generated by the same code are not useful for
finding new code coverage in real-world software. In particular, the constraints generated by
compute-intensive operations in a program are unlikely solvable (i.e., non-linear) at the end
even if their constraints are formulated. Even worse, they tend to block the possibility of
exploring other parts that are not relevant yet are interesting enough for further exploration.
For example, in the second example of Figure 3.2, even though concolic execution produces
constraints for the z1ib decompression, a constraint solver will not be able to solve the
constraints because of their complexity [80].

To mitigate this problem, QSYM attempts to detect repetitive basic blocks and then
prunes them for symbolic execution and generates only a subset of constraints. More
specifically, QSYM measures the frequency of each basic block execution at runtime and
selects repetitive blocks to prune. If a basic block has been executed too frequently, QSYM
stops generating further constraints from it. One exception is when a block contains constant
instructions that do not introduce any new symbolic expressions, e.g., mov instructions in the
x86 architecture and shifting or masking instructions with a constant.

QsYM decides to use exponential back-off to prune basic blocks since it rapidly truncates
overly frequent blocks. It only executes blocks whose frequency number is a power of two.
However, if it excessively prunes basic blocks, it could miss some of the solvable paths and
thus could fail to discover new paths. To this end, QSYM builds two heuristic approaches to

prevent excessive pruning: grouping multiple executions and context-sensitivity.

Table 3.2: QSYM’s main components and their lines of code.

Component Lines of code

Concolic execution core 12,528 LoC of C++

Expression generation 1,913 LoC of C++
System call abstraction 1,577 LoC of C++
Hybrid fuzzing 565 LoC of Python

Grouping multiple executions is a knob that minimizes excessive pruning of basic blocks.
When we count the frequency of a basic block’s execution, we regard a group of executions
as one in frequency counting. For instance, suppose the group size is eight. Then, only after
executing the block eight times, we count the frequency as one. This will allow QSYM to
execute the block eight times once it decided not to prune. This helps not to lose constraints
that are essential to discover a new path and also does not affect much on the symbolic
execution because running such basic blocks a small number of times would not make the
constraints too complex.

Context-sensitivity acts as a tool for distinguishing running the same basic block in
a different context for frequency counting. If we do not distinguish a context (i.e., at
which point is this basic block called?), we may lose essential constraints by pruning
more blocks. For example, when there are two strcmp() calls, say strcmp (buf, “GO0D™)
and strcmp(buf, “EVIL”), these two calls must be considered as a different basic block
execution for frequency counting. Otherwise, the execution of the same block in the other
part of the program, which is irrelevant to the current execution, could affect pruning. QSYM
maintains a call stack of the current execution, and uses a hash of it to differentiate distinct

contexts.

3.4 Implementation

We implement the concolic executor from scratch. QSYM consists of 16K lines of code (LoC)
in total, and Table 3.2 summarizes the complexity of each of its components. QSYM relies

on Intel Pin [81] for DBT, and its core components are implemented as Pin plugins written

in C++: 12K LoC for the concolic execution core, 1.9K LoC for expression generation, and
1.5K LoC for handling system calls. QSYM also exposes Python APIs (0.5K LoC) such
that users can easily extend the concolic executor; the hybrid fuzzer is built as a showcase
using these APIs. QSYM uses libdft [82] in handling system calls while adding support
for the 64-bit environments. The current implementation of QSYM supports part of Intel
64-bit instructions that are essential for vulnerability discovery such as arithmetic, bitwise,
logical, and AVX instructions. QSYM will be open-sourced and support different types of

instructions, including floating point instructions in the future.

3.5 Evaluation

To evaluate QSYM, this section attempts to answer the following questions:

* Scaling to real-world programs. How effective is QSYM’s approach in discovering
new bugs and achieving better code coverage when fuzzing complex, real-world
software? (§3.5.1, §3.5.2)

 Justifying design decisions. How effective are the design decisions made by QSYM

in terms of bug finding? (§3.5.3, §3.5.4, §3.5.5)

1. Instruction-level symbolic execution. How effective is our fine-grained, instruction-

level symbolic execution in terms of the number of instructions saved and the
overall performance of the hybrid fuzzer? (§3.5.3)
2. Optimistic constraints solving. How reasonable is QSYM’s optimistic con-
straints solving in terms of finding bugs? (§3.5.4)
3. Pruning basic blocks. How effective is our approach to prune basic blocks in
terms of the overall performance and code coverage? (§3.5.5)
Experimental setup. We ran all the following experiments on Ubuntu 14.04 LTS equipped
with Intel Xeon E7-4820 (having eight 2.0GHz cores) and 256 GB RAM. We used three
cores respectively for master AFL, slave AFL, and QSYM for end-to-end evaluations (§3.5.1,

§3.5.2, and §3.5.4) and one core for testing concolic execution only (§3.5.3 and §3.5.5).

Even though we used a server machine with many cores, we did not exploit all cores to run

QsYM, but we aimed to run multiple experiments concurrently.

3.5.1 Scaling to Real-world Software

QsYM’s approach scales to complex, real-world software. To highlight the effectiveness of
our concolic execution engine, we applied QSYM to non-trivial programs that are not just
large in size but also well-tested by the state-of-the-art fuzzer for a longer period of time.
Thus, we considered all applications and libraries tested by OSS-Fuzz as ideal candidates for
QsyM: libjpeg, libpng, libtiff, lepton, openjpeg, tcpdump, file, libarchive, audiofile, ffmpeg,
and binutils. Among them, QSYM was able to detect 13 previously unknown bugs in eight
programs and libraries, including stack and heap overflows, and NULL dereferences (as
shown in Table 3.3). It is worth noting that Google’s OSS-Fuzz generated 10 trillion test
inputs a day [85] for a few months to fuzz these applications, but QSYM ran them for three
hours using a single workstation. In other words, all the bugs found by QSYM require the
accurate formulation of inputs to trigger, showing the effectiveness of our concolic executor.
§3.6 provides in-depth analysis of some of the bugs that QSYM found.

Compared to QSYM, other hybrid fuzzers are not scalable to support these real-world
applications. We tested Driller, a known state-of-the-art hybrid fuzzer, for comparison. For
testing purpose, we modified Driller to accept file input because these applications receive
input from files, while the original Driller accepts only the standard input. We followed
the direction of Driller’s authors for this modification. As a result, Driller was able to
generate only a few test cases due to its slow emulation. Driller generated less than 10 test
cases on average for 30 minutes of running, whereas QSYM generated hundreds (more than
10x) of test cases in the same duration. Moreover, Driller was not able to support 5 out of
11 applications for lack of environment modelings and system call supports as shown in

Table 3.4.

syred opoo doop aro1dxg sjurensuod xo[dwod 199N 14V PpeaI spunog-jo-inQ 080LI-L10Z-HAD duwmnplqo
SJUQWIUOIIAUD [BUI)X? Joddng sjurensuod xo[dwod 109N zzng-SSO Peal Spunoq-jo-mQ 180LT-LT0Z-AAD Sodwyy
e[AIOWIA yojed 10J JTBAN
€ x mopIaao deay yojed J10J 1repp
syred opoo doop axojdxg sonjea d13ew sAAQ-NNIA 1AV mopIaao deoy 9€89-L102-dAD °[yoipne
SJUQWUOIIAUD [BUINXA Joddng sjurensuod xo[dwod 19N 2zZn-SSO DU TINN yojed 10J J1BAN QATYDIRQI]
syred opoo doop arodxg sjurensuod xo[dwod 19N 2Zn-SSO MOPIAA0 YOBIS ,6+20001-L10Z-HAD Iy
SJUQWIUOIIAUD [BUIIXQ 1oddng LA3ueyd 01 a19YM pul] T4V mopIaao deay VSTT-L102-AD dwnpdo
QOUQIQJAIdP TINN yoed 1o1p0 AQ paxig
SJUQUIUOIIAUQ [euId) X9 1oddng sjurensuod xo[dwod 109| zzng-SSO mopIaao deay QL8TI-LI0Z-AAD 3Sodlfuado
syred opod doop aro1dxg syurensuod xo[dwod J9N TIV PeaI spunoqg-jo-inQ 1688-L102-AAD uoldog
(PLIqAH) e (1dzZNnyY) reqg REV/ALR | adL], Sng AAD weIgord

‘3u1zznj 2ind uey) JorjIe

sinoy ¢ Snq ay) punoj WASQ uawriadxa Ino ur 1nq ‘Snq Sy} puy ued os[e I9ZznJ B 90UIS [BIONID Jou ST , Aq payrewr Snq dunpdd) ay) ur 19zznJ oy

Jo anrej oy, [+8 ‘€8] paydred Suraq a10Joq WASQ Aq punoj Apuaimdu0d e 6+70001-L10T-HAD PUe LE¥STI-LT0T-AAD 1ozznj PLUQAY pue 10zzny
3unsIxo ay) Aq pa109lep 9q J0UURD AU} UOSBAI AU} PUR ‘SILIBUI]) ZZNJ 0) Pasn A[snoraaid are jey) s19zznj umowy pue WASC) Aq punoj s3ng :€°¢€ dqeL

Table 3.4: Incomplete or incorrect system call handling by Driller that prohibits from applying Driller
to real-world software. Driller’s mmap () had an error: it ignored a file descriptor. We detected these
errors dynamically using basic test cases in each project. Therefore, other incorrect or unsupported
system calls could exist in unexplored paths.

Program Bug Type Syscall

libtiff Erroneous system calls mmap

openjpeg Unsupported system calls set_robust_list
tcpdump Erroneous system calls mmap

libarchive Unsupported system calls fcntl

ffmpeg Unsupported system calls rt_sigaction

3.5.2 Code Coverage Effectiveness

To show how effectively our concolic executor can assist a fuzzer in discovering new code
paths, we measured the achieved code coverage during the fuzzing process by using QSYM
(a hybrid fuzzer) and AFL (a fuzzer) with a varying number of input seed files. We selected
libpng as a fuzzing target because it contained various narrow-ranged checks (e.g., checking
the 4-byte magic value for chunk identification) that were non-trivial to satisfy without
proper seeding inputs in the fuzzing-only approach. As seeding inputs, we collected high-
quality (i.e., including various types of chunks) 141 PNG image files from the libpng project
and incrementally (by 20%) applied to the fuzzers. For the 0% case, we provided a dummy
ASCII file containing 256 ‘A’s as a seeding input as both fuzzers required at least one
input to begin with. For fair comparisons with the fuzzing-only approach, we prepared
a hybrid fuzzer consisting of one master and one slave AFL instance with QSYM, and a
fuzzer consisting of one master and two slave AFL instances so that both fuzzers utilized
the same computing resources given the execution time. We ran both fuzzers for six hours
and measured the explored code coverage.

The hybrid fuzzing approach was particularly effective in discovering new code paths
when no or limited initial inputs were provided (Figure 3.6). In the 0% case (only with
a dummy input), AFL did not make much progress as libpng checked the PNG header

identifier in an early phase of execution. On the contrary, QSYM not only formulated and

30 4 MM Seed AFL W QSYM
25.9 26.1 264 59268

Code coverage (%)

0% 20% 40% 60% 80% 100%
Initial seed ratio

Figure 3.6: Code coverage of libpng after a six-hour run of QsYM and AFL (two AFL instances
for a fair comparison) with an increasing number of seeding inputs. In the 0% case, we put an
invalid PNG file consisting of 256 ‘A’s as an initial input. The 100% case includes 141 sample PNG
image files provided by the libpng project. This experiment result highlights the effectiveness of
code coverage that the concolic execution approach contributes to hybrid fuzzing, depending on the
availability of quality seeding inputs.

solved the constraints for checking the PNG’s magic header identifier but also explored more
than 20% of code paths of libpng, which was 3% higher than the code coverage of fuzzing
with valid images, i.e., the 20% AFL case. Even when enough seeding inputs were provided,
the concolic executor still allowed fuzzers to find more interesting paths. For example, the
hIST chunk was not included in any of the 141 test cases, but QSYM was able to successfully
generate new test cases by solving the symbolic constraints. It is worth noting that the hIST
chunk needs to satisfy complex pre- and post-conditions to be a valid chunk in PNG: the
hIST chunk should come after the PLTE chunk but before the IDAT chunk [86]. This example

also hints at the difficulty of constructing complete test cases that cover all the features

implemented in software, where we believe QSYM’s approach can shed some light on.

3.5.3 Fast Symbolic Emulation

To show the performance benefits of QSYM’s symbolic emulation, we used the DARPA

CGC dataset [87] to compare QSYM with Driller, which placed third in the CGC competi-

1.0

- 0.5

L

[
HEEN EEE EE
HEEE EEEENEEN
HEE BNNE BN =

- 0.0

-1.0

Figure 3.7: This color map depicts the relative code coverage for five minutes that compares QSYM’s
with Driller’s: the blue color means that QSYM found more code than Driller, and the red color
means the opposite (see §3.5.3 for the exact formula). Each cell represents each CGC challenge in
alphabetical order (from left to right and top to bottom). QSYM outperforms Driller in discovering
new code paths; QSYM results in better code coverage in 104 challenges (82.5% cases) and Driller
does better in 18 challenges (14.3% cases) out of 126.

tion [8]. The CGC dataset included a wide range of programs from simple login services to
sophisticated programs that attempt to mimic real-world protocols. CGC has released 131
challenge programs used in the CGC qualification event with PoVs—the inputs that trigger
the vulnerabilities of the target program. Among the 131 challenge programs, we ignored
five programs requiring Inter-Process Communication (IPC) that both QSYM and Driller did
not support. We chose the PoVs as initial seed inputs because challenge writers intentionally
hid bugs in the deep code path, so that PoVs tend to have good code coverage. To make our
analysis simpler, we selected the first PoV (only one) as a seeding input for both fuzzers.
To show the fuzzing result, we used the code coverage that we measured from all the
test cases generated while fuzzing each CGC challenge. Since the CGC programs did not
support libgcov, a de-facto standard tool to measure code coverage, we used the AFL
bitmap [88] instead to indicate their code coverage. The AFL bitmap consists of 65 536
entries to represent code coverage, which is reasonable enough for our comparison purpose.

Since the direct comparison of simple code coverage numbers might not properly indicate

which fuzzer explored more and different code paths, we relatively compared their code
coverage (see below). Additionally, we removed the bitmap entries that are already covered
by initial PoVs for a fair comparison of newly explored paths. Based on this, we used
the following formula to compare and visualize both coverage results relatively. For code

coverage A (QsYM) and B (Driller), we can quantify the coverage differences by using:

|A-B|-|B-A] .
aus)—anpy fAF B

d(A, B) =
0 otherwise

It intuitively represents how many more unique paths that A explored out of the total discrete
paths that only either A or B explored. For example, if QSYM found more unique paths
than Driller, d(A, B) will render a positive number, and it will be 1.0 when QSYM not only
found more paths than Driller, but also covered all the paths that Driller found.

Figure 3.7 visualizes the results of the CGC code coverage for five minutes. Each cell
represents each CGC challenge we tested in alphabetical order (from left to right and top to
bottom). For example, the top-most left cell represents CROMU_00001 and the bottom-most
right cell represents YANO1_00012. The blue color represents the cases in which QSYM
resulted in better code coverage, and the red color represents the ones that Driller did better.
The darkest colors indicate that one fuzzer dominated the code coverage of another.

QsSYM outperforms Driller in terms of code coverage; QSYM explored more code paths
in 104 challenges (82.5%) out of 126 challenges, whereas Driller did better only in 18
challenges (14.3%). More importantly, QSYM fully dominated Driller in 37 challenges,
where QSYM also covered all paths explored by Driller. It is worth noting that increasing the
timeout for Driller (i.g., giving more time for constraints solving) does not help to improve
the result of the code coverage. To show this, we ran Driller with varying timeouts from 5

to 30 minutes while fixing the timeout of QSYM to 5 minutes (Figure 3.8). Even with the

B Driller QSYM W Equal

S
l

120 — o T T T T e
100 ~
@ 80 -
=
g
© 60 A
G
@]
3=
40
i _j l
5 10 15 20 25 30

Timeout (min)

Figure 3.8: Comparing QSYM (5-min timeout) with Driller while increasing the time for constraints
solving (from 5-min to 30-min). It shows that the reason Driller could not generate new test cases is
not due to the limited time budget for solving the generated constraints.

30-min timeout of Driller, QSYM explored more paths in 98 out of 126 binaries, whereas
Driller’s coverage map was more or less saturated after the 10-min of the timeout.
Instruction-level symbolic execution. To understand how QSYM achieves a better perfor-
mance than Driller, we break down the performance factors of QSYM and Driller. At a high
level, Driller spent 27% of its execution time for creating snapshots and 70% for symbolic
emulation (see, Figure 3.9(a)) In other words, Driller spent 2 x more time than QSYM for
concolic execution, but most of its time was spent for emulation and snapshot.

The instruction-level symbolic execution implemented in QSYM played a major role
in speeding up the symbolic emulation. One way to demonstrate the effectiveness of this

technique is to measure the number of instructions symbolically executed by both systems.

However, QSYM and Diriller took a different notion of symbolic instructions, making it hard

300 A 800 k -

I Emulation
Snapshot Z 600k -
3 200 | mmm Solving g
) Q .
§ 00 § 400 k
= = 200k -
0 I O -
QSYM Diriller QSYM Norm Driller

Figure 3.9: Average time breakdown of QSYM and Driller for 126 CGC binaries with initial PoVs
as initial seed files, and the number of instructions that are executed symbolically. ‘Norm’ is the
product of the number of instructions of QSYM and the average rate of increase of VEX IR, 4.69.

to compare both directly: QSYM uses the native x86 instructions, whereas Driller uses VEX
IR for symbolic execution. Instead of counting and comparing the symbolically executed
instructions, we took the amplification factor (i.e., 4.69) into consideration, the conversion
rate from x86 to VEX IR when lifting all CGC binaries to use VEX IR. Even with this
amplification factor (assuming an instruction in amd64 is equivalent to 4.69 instructions),
QsYM executed only 1/5 of instructions symbolically when compared with Driller. More-
over, QSYM’s fast emulator helps us eliminate the ineffective snapshot mechanism. All
these improvements applied together make constraints solving another important factor for
the overall performance of the concolic execution.

Further case analysis. We could find several tendencies from further investigation of the
results:

1) QsYM explores more paths than Driller in large programs and with long PoVs (i.e.,
in exploring deeper path). For example, QSYM covers more code coverage than Driller
in NRFIN_00039, whose binary size is the largest among the challenges, about 12 MB.
Moreover, QSYM can find test cases that cover code deep in the binaries. For example,
CROMU_00001 is a service that can send messages between users. To read a message, an
attacker should go through the following process: (/) create a new user (userl), (2) create

another user (user2), (3) log in as user1, (4) send a message to user2, (5) logout, (6) log in as

Table 3.5: The number of instructions in the CGC challenges that are not emulated due to the
limitation of QSYM: no floating point operation supports.

Challenge Not emulated Total
NRFIN_00026 4 (0.02 %) 24315
NRFIN_00032 4(0.00 %) 4784433
CROMU_00016 18 (0.06 %) 31988
KPRCA_00045 25 (0.00 %) 81920092
KPRCA_00009 27 (0.23 %) 11512
NRFIN_00027 178 (0.73 %) 24449
CROMU_000238 1154 (0.01 %) 18626977
CROMU_00010 1467 (0.18 %) 811819
CROMU_00020 3492 (11.15 %) 31306
KPRCA_00013 4589 (0.02 %) 18746620
CROMU_00002 14977 (3.92 %) 381793
NRFIN_00021 18821 (33.26 %) 56583
KPRCA_00029 31800 (0.16 %) 19604 258

user2, and (7) read a message by sending a message id to read. QSYM reaches the 7th step
that reads a message and generates test cases in the function, but Driller fails to reach the
function. This shows that QSYM’s efficient symbolic emulation is effective in discovering
sophisticated bugs hidden deeper in the program’s path.

2) With a limited time budget (5 to 30 minutes), Driller gets more coverage in applications
with multiple nested branches within quickly reachable paths (i.e., shallow paths) because
its snapshot mechanism is optimized for this case. Due to its slow emulation, Driller can
search only the branches close to the start of a program in a limited time (5 to 30 minutes).
When Diriller reaches a nested branch (i.e., a chunked multiple cmp instructions), Driller can
fully leverage its snapshot to quickly explore these branches without involving re-execution.
In contrast, QSYM should re-execute the emulation with a newly generated input to reach
to the next branch. However, QSYM can gradually find the path via re-execution, and this
exploration will be efficient since the branches are also easily reachable by QSYM.
Incomplete emulation. Currently, QSYM does not completely emulate all instructions
(e.g., it cannot emulate floating point operations with symbolic operands), so that one can

think that its performance improvement is due to non-emulated instructions. To refute

uniq base64

404 | 7 o

20 1

0 - ,

who

1000 1
500

0 -+ . , . : .

Time (h) w/ optimistic =~ =—€=— w/o optimistic

Figure 3.10: The cumulative number of bugs found in the LAVA dataset with or without optimistic
solving by time.

Table 3.6: The number of bugs found by existing techniques and QSYM in the LAVA-M dataset.
VUzzer (R) represents the number of bugs that are found by VUzzer in our machine settings, and
VUzzer (P) represents the number of bugs in the VUzzer paper.

uniq base64 mdSsum who
FUZZER 7025%) 7(16 %) 2 (4 %) 0(0 %)
SES 00%) 921 %) 0 (0 %) 18 (1 %)

VUzzer (R) 27 (96 %) 1(2 %) 0 (0 %) 23 (1 %)
VUzzer (P) 27 (96 %) 17 (39 %) 0 (0 %) 50 (2 %)
Qsym 28 (100 %) 44 (100 %) 57 (100 %) 1238 (58 %)

Total 28 44 57 2136

this hypothesis, we measured the number of instructions that were not emulated by QSYM
(Table 3.5). Note that only 13 binaries out of 126 binaries have at least one instruction
that is not handled by QSYM. Moreover, only three of them have not-emulated instructions
that are more than 1% of their total instructions. Thus, we conclude that the performance
improvement was not due to the incompleteness of QSYM’s instruction modeling but to our

instruction-level symbolic execution.

uniq base64

20000
"g 1000
- 20
~ - 20
.Qg) 10000 500 -
= L 10 ye—¢ %
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
- opt +1 +2 +4 +8 +1 - opt +1 +2 +4 +8 +1
mdSsum who
- 250
2000 A &
2000 L 40 - 200 2
L=
1000 A L 150 :‘i
- 20
0 = T T T T T T 0 = T T T T T T
- opt +1 +2 +4 +8 +16 - opt +1 +2 +4 +8 +16

—>— Time for optimistic solving —S— # of bues

Figure 3.11: Time elapsed for optimistic solving and the number of unique bugs found in the LAVA
dataset in a single execution of QSYM with an initial test case according to the number of constraints
in optimistic solving. The minus symbol () represents the absence of optimistic solving; therefore,
its elapsed time is zero in every case. Opt is our optimistic solving that only uses the last constraint
in an execution path, and the number after the plus symbol (+) represents the number of additional
constraints used for optimistic solving. For example, +1 represents that QSYM uses one additional
constraint; therefore, it uses two constraints for optimistic solving, the last one and the additional
one. The graph shows that our decision uses the last constraint helps QSYM find the most bugs while
spending less time.

3.5.4 Optimistic Solving

To evaluate the effect of optimistic solving, we compared QSYM with others using the LAVA
dataset [69]. LAVA is a test suite that injects hard-to-find bugs in Linux utilities to evaluate
bug-finding techniques, so the test is adequate for demonstrating the fitness of the technique.
LAVA consists of two datasets, LAVA-1 and LAVA-M, and we decided to use LAVA-M
consisting of four buggy programs, file, base64, md5sum and who, which have been used
for testing other systems such as VUzzer. We ran QSYM with and without the optimistic
solving on the LAVA-M dataset for five hours, which is the test duration set by the original
LAVA work [69]. To identify unique bugs, we used built-in bug identifiers provided by the

LAVA project.

The optimistic solving helps QSYM find more bugs by relaxing over-constrained vari-
ables. Figure 3.10 shows the cumulative number of unique bugs found by QSYM with or
without optimistic solving. In all test cases, running QSYM with optimistic solving super-
sedes the run without it by finding more bugs even at an early stage (within three minutes).
This result supports our design hypothesis that relaxing overly constrained variables would
benefit path exploration, and fuzzing will assist this well to pruning out false-positive cases
due to missing constraints. Take an example in base64; the program decodes an input string
using a table lookup (i.e., table[input[0]]) and further comparisons will be restricted
by that concrete value. In such a case, concolic execution concretizes the entire symbolic
constraints to the current input because the table lookup over-constrains input symbols to
have only one solution that is identical to an initial test case. Therefore, without optimistic
solving, although QSYM arrived at branches that must pass to trigger crashes, constraint
solver will return unsatisfiability. However, with the optimistic solving, even if the constraint
is unsatisfiable, the solver will solve only the last constraint and generate a potential crash
input, which helps fuzzer move forward if this optimistic speculation is correct.

We also compared QSYM with other state-of-the-art systems; QSYM outperformed them
(Table 3.6). At first, we tested VUzzer [39] in our environment. However, our results were
either equal (in md5sum and uniq) or worse (in base64 and who) than the original paper’s
results because our workstation has slow cores (2.0GHz). Instead, we decided to borrow
the original results. We also borrowed the other results from the evaluation of LAVA [39]
due to its anonymized testing systems. In Table 3.6, FUZZER represents the results of a
coverage-oriented fuzzer and SES represents the results of the symbolic execution. QSYM
found 14 x more bugs than VUzzer and any other prior techniques in the LAVA-M dataset.

To evaluate our decision for optimistic solving that uses only the last constraint among
constraints in an execution path, we measured the elapsed time and the number of bugs
found in the LAVA-M dataset while changing the number of additional constraints. When

we include additional constraints, we chose constraints in the order in which they were

13.2 94.2 I Coverage Time

. 11.8

S 10.4 10.6 .
< 10 A 63.6 574 g
o 52.0 : k)
= 50 g
@)

0 0
W/ pruning w/0 pruning - grouping - context

sensitivity

Figure 3.12: Total newly found coverage and elapsed time for libjpeg, libpng, libtiff, and file with
five seed files, except for libjpeg, which has only four files, that have the largest code coverage in
each project.

recently added. We used a single execution with the initial test case given by the dataset
author instead of end-to-end evaluation to limit the impact by fuzzing. The results are shown
in Figure 3.11. QSYM with optimistic solving always found more bugs than QSYM without
optimistic solving. However, considering additional constraints did not help find more bugs
and just increased solving time in most cases. In certain cases, adding more constraints can

reduce the time required for optimistic solving. This is not surprising since adding more

constraints might help to decide unsatisfiability.

3.5.5 Pruning Basic Blocks

To show the effect of the basic block pruning, we evaluated this technique with four widely-
used open-source programs, namely, libjpeg, libpng, libtiff, and file. We chose five seed test
cases that exhibit the largest code coverage (libjpeg has only four test cases so used just
four) from each project. We ran QSYM with 5-min timeout for running concolic execution
per each test case (19 cases in total, 5-min timeout for each test case, and up to 95 minutes)
and then measured execution time and newly found code coverage.

Figure 3.12 shows that basic block pruning not only reduced execution time (63.6 min
versus 94.2 min) but also helped to find more code coverage (13.2% versus 11.8%) in the real-
world software. Take an example of libtiff; the function TIFFReadDirectoryFindFieldInfo()

keeps introducing new constraints because it contains a loop with a symbolic branch. Basic

block pruning made QSYM concretely execute the function and focus on other interesting
code, whereas running without it made the emulation stuck there for generating constraints.

The other design decisions, context-sensitivity and grouping, are essential to increase
code coverage. Figure 3.12 also shows code coverage and time when we disabled each
grouping and context-sensitivity. If we disable grouping and use the AFL’s algorithm
as is, the pruning is too fine-grained, so it harms code coverage. A similar result was
observed when we disabled context-sensitivity. In this case, QSYM prunes basic blocks
too aggressively, prohibiting the generation of solvable constraints. Thus, these two design

decisions are necessary to minimize the loss of code coverage.

3.6 Analysis of New Bugs Found

Out of 13 new bugs QSsYM found, we took two interesting cases from ffmpeg and file in
which we can clearly convey our idea. For each case, we attempt to answer how QSYM was
able to find them, which features of QSYM helped find them, and most importantly, why

OSS-Fuzz missed them.

3.6.1 ffmpeg

Figure 3.13 shows the simplified code of the ffmpeg bug that QSYM found, and the test
case generated by QSYM to trigger it. To trigger the bug, a test case should meet very
complicated constraints (Lines 3—10), which is nearly impossible for fuzzing. In contrast,
QsYM successfully generated a new test case that can pass the complicated branch by
modifying the seven bytes of a given input. AFL was able to pass the branch with the new

test case and eventually reached the bug.

3.6.2 file

Figure 3.14 shows the simplified code of the file bug that QSYM found. The bug is that the

check of descsz becomes a tautology because of the incorrect use of the logical OR operator

// @libavcodec/x86/mpegvideodsp.c:58 (ffmpeg 3.4)

1

2 if (((ox *» (ox + dxw))

3 | Cox » (ox + dxh))

4 | (Cox * (ox + dxw + dxh))

s | Coy » (oy + dyw))

6 | Coy » (oy + dyh))

7 | Coy *» (oy + dyw + dyh))) >> (16 + shift)

8 | (dxx | dxy | dyx | dyy) & 15

9 || (need_emu & (h > MAX_H || stride > MAX_STRIDE)))

o { ... return; }
u // the bug is here

// input

< 00000010: 0120 0040 7800 000e 0001 0000 0820 8403
< 00000020: 0747 013f 303f 3f3f 7f£7f 7fff 0080 8080
// output

> 00000010: 0120 0040 7800 000e 0008 0020 0020 47c3
> 00000020: 4040 013f 303f 3f3f 7f7f 7fff 0080 8080

Figure 3.13: The ffmpeg code about the bug found by QSYM and the test case generated by QSYM
to reach it. AFL alone was unable to reach the bug because it is almost infeasible to randomly
generate input to pass the complicated condition in Lines 3—10.

1 // @src/readelf.c:513 (file 5.31)

2 if (namesz == 4

3 && strcmp((char *)&nbuf[noff], "GNU") == 0
4 && type == NT_GNU_BUILD_ID

5 && (descsz >= 4 || descsz <= 20)) {...}

Figure 3.14: The file bug that QSYM found. The check for descsz is always true due to the incorrect
use of logical OR operator.

while parsing the ELF’s note section. Interestingly, even though the bug is triggered when
parsing an ELF file, initial seed files that we extracted from the tests directory in the file
project do not contain any ELF files. In other words, QSYM successfully crafted a valid ELF
file with a note section and triggered the vulnerability. This bug is difficult to be detected by
a fuzzer because randomly crafting a valid ELF file with a note section starting with “GNU”
is almost infeasible. Note that a concurrent bug report [84] detected this bug using a static

analysis tool cppcheck [89].

3.7 Discussion

We discuss the potentials of QSYM’s technique beyond hybrid fuzzing, using QSYM with

other fuzzers, and the limitations of QSYM.

Adoption beyond fuzzing. Basic block pruning (§3.3.3) can directly be applied to the
other concolic executors as a heuristic path exploration strategy. Take an example of testing
file parsers; this technique allows QSYM to focus on control data (i.e., headers), which leads
to new code coverage [90], rather than payloads, which will consume a lot more time to
analyze but do not discover any new code coverage. We envision that the same strategy may
help other concolic executors on testing programs with complex data processing logic such
as data compression, Fourier transform, and cryptographic logic. By adopting this, concolic
executors can automatically truncate such complex yet irrelevant logic and stay focused on
the input fields that determine a program’s control flow.

Optimistic solving (in §3.3.2) could also be applied to other domains to speed up
symbolic execution, with a condition if the domain runs an efficient validator like a fuzzer.
This cannot be directly applied to general concolic executors because optimistic solving
relaxes an overly-constrained path to generate some potentially correct inputs. It will
generate a haystack of false positives that deviate the program state from the expected state.
However, in hybrid fuzzing like QSYM, because the fuzzer can efficiently validate whether
the input drives the program to an expected state (i.e., finding a new code coverage) or not,
we can quickly extract some useful results from the haystack. Likewise, other domains,
for instance, automatic exploit generation, can adapt this technique to speed up for quickly
reaching to the vulnerable state and crafting an exploit. After that, it could also efficiently
validate a crafted exploit by just executing it and observe the core dump to check if it is a

false positive.

Complementing each other with other fuzzers. Hybriding QSYM with other fuzzers

better than AFL will show better results. While other fuzzers exist that enhance AFL, such

as VUzzer [39] and AFLFast [34], in this work, we applied QSYM to AFL in order to fairly
present the enhancement only by the concolic execution. QSYM can complement the others
by quickly reaching the branch with narrow-ranged, complex constraints and solving them
to generate test cases for that point. Moreover, QSYM can also be complemented by other
fuzzers. Frequency-based analysis step and Markov chain modeling in AFLFast, as well
as error-handler detection in VUzzer, could generate more meaningful input, which would

result in using QSYM’s concolic executor more efficiently.

Limitations. Although fast, QSYM is a concolic executor, so its performance is still
bound to theoretical limits like constraint solving. Currently, QSYM is specialized to test
programs that run on the x86_64 architecture. Unlike other executors that adopted IR,
QSYM cannot test programs that run on other architectures. We plan to overcome this
limitation by improving QSYM to work with architecture specifications [71, 91] rather than a
specific architecture implementation. Additionally, QSYM currently supports only memory,
arithmetic, bitwise, and vector instructions, all of which are essential for vulnerability
discovery. We plan to support other instructions including floating-point operations to

extend QSYM’s testing capability.

CHAPTER 4
HYBRIDRA: HYBRID FUZZING FOR KERNEL FILE SYSTEMS

4.1 Introduction

In this work, we propose HYBRIDRA, a hybrid fuzzer for Linux file systems. HYBRIDRA
improves the state-of-the art file fuzzer, Hydra, by introducing concolic execution. To
tackle the challenges in concolic execution for file systems, we have reformulated Hydra’s
approach for concolic execution; HYBRIDRA focuses on the metadata of file system images
like Hydra and fixes the checksum using its file-system-specific modules. Moreover, to
reduce emulation overhead from large software like Linux Kernel, HYBRIDRA adopts a
technique called compilation-based concolic execution [10, 11, 12], instruments a binary
for concolic execution to eliminate the overhead from symbolic emulation in concolic
execution. Unlike SymCC [10], which recently proposed the same technique, HYBRIDRA
chooses another design from Kirenenko [14], which uses different memory modeling using
shadow memory. This design is more preferable for HYBRIDRA because of its support of
multi-threading as well as better performance (i.e., 1.57x in our evaluation).

Additionally, HYBRIDRA suggests new heuristics called staged reduction to efficiently
generate test cases for hybrid fuzzing. Instead of relying on a single strategy in test case
generation, staged reduction combines multiple strategies in the process of hybrid fuzzing.
For example, the current HYBRIDRA uses three reduction mechanisms: linear reduction [4],
basic block reduction, and no reduction. By gradually applying cheaper strategies to more
expensive ones, HYBRIDRA can generate diverse test cases and thereby explore input space
more efficiently, while preserving the completeness of concolic execution.

Our evaluation shows that HYBRIDRA outperforms the state-of-the-art file system fuzzer

Hydra by achieving higher code coverage in all file systems — btrfs, ext4, ftfs, and xfs—

that we tested. More importantly, HYBRIDRA discovered 10 bugs, and four of which are
new ones in btrfs, which have been highly tested by other fuzzers, Hydra and Syzkaller.
Notably, four out of the 10 bugs were directly discovered by our newly introduced concolic
execution module, which shows its effectiveness in bug finding for file systems.

This work makes the following contributions:

» System design of hybrid fuzzing for file systems We design and implement a full-
fledged hybrid fuzzer for file systems, HYBRIDRA, by applying concolic execution
to the state-of-the-art file system fuzzer, Hydra. For efficient concolic execution, it
instruments Hydra’s executor based on library OS(LibOS) using Kirenenko, which
is a compilation-based concolic executor supporting multi-threaded applications.
Moreover, we reformulate Hydra’s module to overcome the challenges in concolic
execution; this makes HYBRIDRA focus on metadata of a file system image to com-
plement the limited scalability of concolic execution, and it uses pre-defined rules
to correct the checksum, which is difficult for concolic execution due to its complex
constraints [45].

* New heuristics for hybrid fuzzing We propose new heuristics to combine existing
heuristics for test case generation in concolic execution, called staged reduction.
Staged reduction gradually applies multiple heuristics for test case generation from
cheaper to more expensive ones. Consequently, it quickly explores the input space of
file systems and also eventually reaches deep states that are only accessible using the
expensive analysis.

* Practical impacts HYBRIDRA found 10 bugs including four new ones in btrfs,
which has been thoroughly tested by fuzzing. Our evaluation shows that concolic
execution directly discovers many of these bugs, which shows its usefulness in bug
finding.

The rest of this work is organized as follows. §4.2 shows motivation and challenges to

design a hybrid fuzzer for file systems. §4.3 and §4.4 depict the design and implementation

Table 4.1: The size of a raw file image and its metadata in each file system. Even though Hydra’s
approach significantly reduces the size of data to fuzz (from a raw image to metadata), it is still huge
for effective fuzzing.

File system btrfs ext4 f2fs xfs

Image size (MB) 100 2 38 16
Metadata size (KB) 40 197 48 50

of HYBRIDRA, respectively. §4.5 evaluates HYBRIDRA’s design decisions and compare it
with the-state-of-the-art file system fuzzer, Hydra. §4.6 explains HYBRIDRA’s limitations

and potential applications.

4.2 Motivation and Challenges

A file system is one of the most essential features of operating systems. It provides ab-
straction of hardware resources for files (e.g., disks) for efficiency and security. Users can
utilize it by mounting a disk image and can interact using system calls for file systems (e.g.,
open(), read(), and write()). Most commodity OSes implement the file system as part of
the kernel; therefore, a single vulnerability in the file system can subvert the entire system
because of its high privilege [92, 93, 94].

Many file system fuzzers have been proposed to discover vulnerabilities in file systems.
They randomly generate either file images or system calls until a system crashes. Recently,
Janus [68] combined them to explore this two-dimensional space of a file system: images
and system calls. Hydra [15] improves on Janus’s method to discover other types of bugs
beyond memory corruptions; it provides an extensible framework for supporting multiple
types of checkers for various bug types.

Fuzzing for file systems is fundamentally weaker than one for other applications due
to its large input size. Even though Hydra focuses only on the metadata of file system
images, the metadata are still too large (i.e., a few KB); therefore, Hydra has disabled
deterministic fuzzing, which is effective in discovering immediate test cases from the current

one. Concolic execution can help fuzzing by systematically exploring paths from the current

test case and generating immediate test cases; however, it is challenging to apply concolic
execution in file systems due to its large image size, use of checksums, and gigantic code

size.

4.2.1 PI1. Large and checksum-protected file system images

Concolic execution is challenging to test file systems due to its special form of input, a
file system image. Unlike the inputs of other common software, a file system image has
several restrictions for its minimum size and a sector size alignment, which inflates its size.
Consequently, a raw file image size often exceeds the size of the fuzzing input suggested by
AFL (IMB), as shown in Table 4.1. Moreover, a file system introduces checksums to protect
its data from unexpected corruptions. This is troublesome for concolic execution due to its
complex constraints. More seriously, an existing automated method to fix the checksum [45]
cannot be applied to a file system because it assumes the unique checksum, but a checksum

routine in a file system is often hierarchical to support extremely large disk data.

Our approach. Reformulate Hydra’s approach to tame a file system image for fuzzing
to concolic execution. In particular, HYBRIDRA selectively symbolizes the metadata
of a file system image, which is only a few KBs (see Table 4.1). Moreover, we have
adopted Hydra’s checksum correction module, which is implemented by a pre-defined

rule for each file system.

4.2.2 P2. Gigantic code size

Concolic execution on a file system is also non-trivial because of its large code size. The
file system is implemented as part of the most gigantic and complex software in the world:
operating systems. For example, Linux consists of more than 27 million lines of code [95],
and each file system is much larger than usual applications, as shown in Table 4.2. We have
compared file systems with four popular applications — libjpeg, libpng, libtiff, and file —

and conclude that file systems have 4.5 X more code on average. It is worth noting that this

Table 4.2: The lines of code for four popular user-space applications — libjpeg, libpng, libtiff, and
file — and file systems in Linux Kernel. It shows that a file system is much larger than a typical
application (on average 4.5 x) even without considering other features in Kernel.

Type Name Version Lines

libjpeg vod 28,420
libpng v1.6.37 25,876

Userspace yiff v4.1.0 34,303
file v5.39 16,288
ext4 90,619
. btrfs 150,181
Filesystems . ° V530 1yeh1
f2fs 79,922

result excludes core functionalities in Linux Kernel, which needs to be analyzed for correct
concolic execution. In particular, if we fail to analyze a library function from Linux Kernel
that is used in a file system, it engenders incomplete constraints, making it lose interesting
test cases for the file system.

To analyze file systems, full system emulation has been used, which is fundamentally
inefficient. S2E and its successors [5, 62, 54] aim at generic concolic execution tools for
kernel and fully emulate it using QEMU [53]. This is beneficial to test various features in an
operating system; however, it is overkill for testing file systems, which can be emulated by
library OSes(LibOS) such as LKL [96]. Since LKL is an application in userland, existing
binary concolic executors [97, 63, 98, 64] can be applied. Unfortunately, these solutions
fail to take advantages of having source code like Linux Kernel, which can make concolic

execution more efficient.

Our approach. Instrument a LibOS-based executor for concolic execution, which is
known as compilation-based concolic execution [10, 12, 11], using Kirenenko [14].
This allows us to perform concolic execution on a file system more efficiently by
utilizing the underlying host kernel and existence of source code. We choose Kirenenko

thanks to its several advantages for file systems: better performance and multi-threading

support.

4.2.3 P3. Complex constraints

Theoretically, concolic execution is a desirable solution for test case generation; however,
it is limited due to complex constraints from real-world software. Concolic execution first
extracts symbolic constraints from its execution and make test cases using a technique
called constraint solving. Constraint solving is inherently inefficient; it is NP-complete,
according to computational complexity theory. Thus, constraint solving often fails to
generate interesting test cases even with complete constraints.

To address this problem, many constraint reduction mechanisms have been proposed.
For example, SAGE [4] reduces constraints into linear expressions, which have an efficient
algorithm to solve [99]. Moreover, QSYM discards constraints from repeatedly executed
code based on the practical observation that such constraints are less interesting in bug
finding and often stall further exploration of concolic execution. Unfortunately, there is no
single winner among these mechanisms; they have their own pros and cons. For example,
SAGE’s linear reduction can generate test cases quickly; however it limits the power of
concolic execution to support only certain types of expressions and thereby loses other
interesting cases. On the contrary, QSYM’s basic block reduction is more expressive, but it

is more expensive than SAGE’s without any algorithmic improvement.

Our approach. We suggest a new mechanism called staged reduction, inspired by
ensemble systems [100, 101]. Staged reduction takes multiple reduction mechanisms
ordered by their speed and gradually applies them. Consequently, it can efficiently

explore the input space for file systems while preserving the power of concolic execution.

4.3 Design

To address the limitations of classical fuzzing, we have applied concolic execution to Hydra,

designing a new hybrid fuzzer, HYBRIDRA. Figure 4.1 shows an overview of HYBRIDRA.

g[npowr wsAs [y-1ad s31 Jursn wnsYoayo uayoIq Surxy
Aq ndur mau e suInjal A[[euy VIAIdgAH “SUIAOS JUAIOLJe 10 AJxa[duwod s31 3uronpalr 19)je SUIA[OS JUIBIISUOD SAOAUI VIAIYIAH ‘U], "UOIINIAX
OI[0OU0D 10J PAIUSWNISUT J0INJIXS Paseq-SOqr si Suisn suorssardxa OI[oquIAS 1JeId pue 938wl o[UAIS € JO BIBPERIOW SOZI[OqUIAS A[QANDI[SS
UONNJAXA JI[OJUOD)] "UONNIIX JI[OIUOI SII Y)IM RIPAH SQAOIdWI VIAIMEAH ‘S[[BO WAISAS pue 936wl UR :SWIISAS J[Y JO doevds [euoIsuawIp
om) Sunro[dxo 10§ u3rsop s eIpAH sidope A[[eIoUsS VIAIIIAH 9[NPOW UONNIIXI JI[OIUOD SIT JOJ S[IBIOP PUB VIATIIAH JO MIIAIIAQ ' NS

\ sayseI) / \A
4 ™ 28142400 2p0d A0f
(cz 5 ndur MaN ndur maN poruopnsUI
€2 “8) e
124108 JUID3S U0 ndur udyoIq-wns}HIIYD) U [[eosAS 7 Ju agew U [[eosAs 7 \u agewr 7 401122x2 pasvq-SOqI7
U [[e0sAS 7 u oFewr 7 Mﬁ
(r€§) syurensuod (p°€8) ampowt wiaysds ajrf-1ag saoppnu ynduy 95849409 3p0)
pasnpay -
ﬁ Burxy wnsyy) uoneIW || UonEINW |[UOHEINUI
O £ o3eur [1eosAS ageut
ndur pazijoquAig ﬁ Sunoenxe eIEpeIN o:ooﬁo.U wopuey wopuey
U [[eosAs 7 u uquL 1 snd10o induy
(€8 L
uoyNI2xX2 21102102 10f ndur 4 /
payudWNSU1) 'PIO ndut p[o 7 u [[eosAs _ u ofewr 7
A0in22x2 pasvq-SOqIT 7 u [[eosAs 7 u oFew 7 7 U [[eosAs 7 u oFewn 7

7c=mo@$ __._ummE_ 7

uonejnw 3w A[0IU0))

//

_&IPHAAH

HYBRIDRA mostly adopts Hydra’s design, which is the state-of-the-art file system fuzzer.
Unlike other file system fuzzers [32, 65, 102, 29] that modify either file system images
or system calls, Hydra mutates both of them to explore the two-dimensional input space
of file systems. From its input corpus, Hydra picks an input and modifies its images or
system calls to generate new test cases. Similar to other gray-box fuzzing, Hydra runs
an instrumented binary to efficiently measure the code coverage of its execution. After
execution, Hydra reports crashing inputs or inserts interesting test cases to its input corpus
for further exploration. Hydra’s binary is based on LibOS, particularly LKL, for its efficiency
and reproducibility.

HYBRIDRA improves Hydra by introducing a new concolic mutation module. HYBRIDRA's
concolic module consists of three components: per-file system module (§4.3.1), a LibOS-
based executor that is compiled for concolic execution (§4.3.2), and constraint reduction
(§4.3.3). HYBRIDRA works as follows: First, HYBRIDRA’s per-file system module sym-
bolizes the metadata of its input image to reduce its scope of analysis. Second, it runs a
LibOS-based executor instrumented for concolic execution to craft symbolic constraints.
From its symbolic constraints, HYBRIDRA reduces their complexity according to the current
strategy, which is described in §4.3.3. Then, a constraint solver will generate a new input by

solving the given constraints and fixes its checksum to make it legitimate.

4.3.1 Per-file system module

HYBRIDRA’s per-file system module is in charge of (1) selectively symbolizing a given
image and (2) fixing the checksum of a new input from a constraint solver. HYBRIDRA
only symbolizes the metadata of its image because most of the interesting behaviors are
determined by its metadata even though a raw file system image is extremely large (e.g.,
100MB 1in btrfs). Moreover, it fixes the checksum of inputs from a constraints solver. Similar
to other concolic executors [9, 5], HYBRIDRA relies on an external constraint solver to make

test cases from constraints. However, its constraint is incomplete for efficiency (see, §4.3.3);

therefore, the checksum of its test case is often incorrect. To prevent rejection due to this
incorrect checksum, HYBRIDRA’s per-file system module repairs it using domain specific

rules.

Interface. To support a specific file system, we need to write the following two functions.
* compress: Returns metadata and their offsets from a given image.
e fix_checksum: Corrects the checksum of a given image.
HYBRIDRA universally defines the decompress function; it recovers an image from given
metadata. It can be constructed using an original image and the above two functions:
compress and fix_checksum. In particular, decompress overwrites metadata to the original

image at the offsets from compress and repairs the checksum using fix_checksum.

Complexity. Even though such a module needs to be implemented for each file system,
it is still tractable. To specify metadata and checksum information in a file system, we
need to follow the specification for a file system; however, this requires only a shallow
understanding of the file system format, and many file system utilities (e.g., f2fsprogs or
xfsprogs) already have code base regarding this information. Therefore, we have reused
these utilities and successfully implemented this module with only a few hundred lines of
code, as shown in Table 4.5. We also have observed that these issues (i.e., huge image size
and checksum) are also problematic for fuzzing; Hydra already has implemented similar
functionalities for fuzzing. Therefore, we mostly reformulate its component for concolic
execution. The current HYBRIDRA supports four file systems — btrfs, ext4, ftfs, and

xfs— which Hydra includes in its open-source code.

4.3.2 Compilation-based Concolic Execution

To improve the execution performance of concolic execution, HYBRIDRA adopts compilation-
based concolic execution [10, 11, 12]. Unlike emulation-based concolic execution, which
relies on Dynamic Binary Translation (DBT) to produce symbolic expressions, compilation-

based concolic execution instruments and compiles a program for concolic execution. This

Table 4.3: The memory layout of HYBRIDRA for shadow memory.

Start End Description
0x000000000000 0x000000010000 Reserved by Kernel
0x000000010000 0x400000000000 Shadow memory
0x400000000000 0x400c00000000 Symbol table
0x4000c0000000 0x400d00000000 Hash table
0x400d00000000 0x700000008000 Unused
0x700000008000 0x800000000000 Application memory

can improve performance significantly because it can (1) completely eliminate complex anal-
yses in DBT such as IR transformation and (2) execute non-symbolic instructions natively
without interpretation. Compilation-based concolic execution has been widely adopted in
early concolic execution works [11, 12], and recently, SymCC [10] has revisited this concept
with modern compiler techniques. As a result, it speeds up the existing concolic execution

by up to three orders of magnitude compared to QSYM.

Workflow. Instead of using SymCC, HYBRIDRA employs Kirenenko [14], which is
another compilation-based concolic executor. As shown in Figure 4.2, Kirenenko first
converts code written in C/C++ to LLVM IRs. Then, following concrete execution, it inserts
functions for symbolic execution, which starts with _kirenenko in the example. These
functions build symbolic expressions based on the symbolic and concrete values of current
execution. If a binary hits symbolic and is worth solving, it generate test cases by invoking

a constraint solver. HYBRIDRA evaluates this worthiness based on code coverage similar to
other works [4, 8].

Comparison with SymCC. Conceptually, SymCC and Kirenenko are equivalent; however,
they are different in implementations, particularly for memory modeling and symbol genera-
tion as shown in Figure 4.3. Concolic execution needs to maintain mappings between an
address and a symbolic expression to obtain corresponding symbolic expressions in memory.
SymCC models memory by emulating a page table, while Kirenenko uses linear shadow
memory similar to AddressSanitizer [61]. Since shadow memory only requires constant

time complexity, shadow memory is more efficient than a page table for memory modeling,

"OUQUQILS] WO} 9OUAIMIP S AJure[d 03 [] Joded DHWAS ay3 ur auo ay) [Im awes Jsowe st 9pod spdurexa siy) jeyy sunou
quom ST [01] DDWAS 01 JusreAnba A1en3daouod SI SIYJ, "UOIINOIXS 9J2IOU0D WOLJ SONUBUIIS SUIMO[[0F UOIINIIXS JI[OIUOD J0J IPOI SJUSWNISUT
JI {UONNOIXD OI[OOUOD SII JOJ ONUSUAILY UO SAI[AI VIAINIIAH "VIAIYIIAH Ul UONNIIXD OI[OOU0D PIseq-uone[idwod Jo MIIAIDAQ :g'p dangig

9POJ PIAUSWINISUI-ONUIUAITY] (9)

€1% ZET 3=
(6% ZET)uoTssaiadxad UINIDI 39S OMUDUSITY p PTOA TTED

ZET 03 ZI% 1T 3IxX92
TT% ‘0T% z€T bs duoT
T ‘1% TET Msu Tys
0% +CET ‘ZET peotl

(210799 S®) UOT3INOIXD 938IDU0D !

(8% zE€T)s3aTq 03 T0Oq PTTNG OYUSUSITY 9

(L% ZET ' p% zEeT)Tenbe pTTNg OjUSULITY)

(9% ZET ' G% ZET)3IFST 3ITUS PITNG ONUSUSITY)
(T $9T)a9623UT PTING ONUSUSITY p

(Z€ ZET ‘€% »gET)AIoWwew pesal ONUSUSITY)

(1 8T)uorssaxdxa xojoweaed 306 OULUSITY p

(0 gT)uoTrssaadxs xojowered 306 ONUSUSITY jp

(osusuaITy) UOTINOOXD OTTOqUAS !
} (Z€ET ‘xzET)OTANOP STY CZET SUTIOP

CET
CET
ceT
CcET
CET
ceT
CcEeT

TT®e2
TR0
TT®2
TT®2
T2
TT®2
TT®2

€T1%
[
I1%
0T%

1

6%
8%
L%
9%
9%
73
€%

1

9pod WATT(9) c
9% ZET 381 opod) (&)
ZET 03 G% IT 3IXdZ = 9% {
¥% ‘€% Ze€T be dwdT = 69 g s 7 == ex uiIniax
T ‘1% CTET MSuU TYS = ¥% } (9 3uT ‘e 43UT)STqnOp ST 3IUT
0% #ZET ‘ZET PeOT = €%
} (Z€T ‘xzET)OTqNOP STP ZET SUTISP

int _last_symbol;
int *_shadow_memory;
SymExpr _symbols[MAX_SYMBOLS];

int _kirenenko_read_memory(void* memory) {
return _shadow_memory[memory];

}

© e N ;R W N =

int _kirenenko_build_symbol(Kind kind, int symboll, symbol2) {
int new_symbol = _last_symbol++;

11 _symbols[new_symbol] = {kind, symboll, symbol2};

12 return new_symbol;

13}

S)

(a) Pseudocode for instrumentation in Kirenenko.

std: :map<void®, SymExpr*> _shadow_memory;

SymExpr* _symcc_read_memory(void* memory) {
return _shadow_memory[memory];

}

SymExpr* _symcc_build_symbol (Kind kind, SymExpr* symboll, SymExpr* symbol2) {
return new SymExpr(kind, symboll, symbol2);

O ® N U R W N =

}

(b) Pseudocode for instrumentation in SymCC.

Figure 4.3: Differences between Kirenenko and SymCC in their instrumentation. Both code snippets
are semantically same; however, Kirenenko improves performance by avoiding logarithmic std: :map
lookup and memory allocation.

which requires logarithmic time [61]. Moreover, HYBRIDRA uses pre-allocated memory for
making symbols. This can eliminate expensive memory allocations for symbol generation;
however, it limits the number of symbols in concolic execution. Currently, HYBRIDRA
allows 230 symbols, which is enough for evaluating file systems in Linux. Therefore, we
did not adopt any advanced technique to resolve the shortage of limited symbols [103].
SymCC claims that its performance difference is insignificant because page table lookup is
logarithmic in the number of pages; however, it is fairly slow (i.e. 1.57 x according to our

evaluation) for large software such as Linux Kernel.

Memory Layout. To utilize shadow memory and pre-allocated symbols, we used a

specially designed memory layout, as shown in Table 4.3. Theoretically, an application can

Table 4.4: Failures from SymCC to run HYBRIDRA’s LibOS-based executor. In most of cases, it
fails to support multi-threading and suffers from deadlock.

File system Failure

btrfs z3 exception
ext4 Deadlock
f2fs Deadlock
xfs Deadlock
use 2°% memory, which will have one-to-one mapping with its shadow memory. Since each

symbol is 4-bytes, the shadow memory is 4 x larger than the application’s memory. The pre-
allocated symbol table occupies 48 GB of memory, and each symbol is 48-bytes;therefore,
the symbol table can hold 23° symbols. The hash table in the memory layout serves as
a cache for generating a symbol. To reduce the number of symbols, HYBRIDRA checks
the hash table before making a new symbol whether the equivalent one has been already
constructed. In this case, HYBRIDRA reuses the existing symbol instead of making a new

one. This design is equivalent to SynFuzz [103] as well as LLVM’s DataflowSanitizer [104].

Multi-threading. Kirenenko’s design is more suitable for HYBRIDRA because of its multi-
threading support. Notably, the Linux Kernel Library (LKL) uses multi-threading to emulate
kernel. Therefore, our concolic execution needs to support multi-threading to run our LKL-
based executor. Unfortunately, SymCC does not support multi-threading. More seriously,
its design is fundamentally limited because its centralized memory requires exclusiveness
for every memory operation. In particular, its memory is managed by std: :map, which
is essentially a red-black tree. This type of data structures requires locking whenever
its content is being modified, which is equivalent to an application’s memory write in
concolic execution. Therefore, SymCC currently fails to support HYBRIDRA’s LibOS-based
executor for file systems for various reasons (see Table 4.4). Unlike SymCC, HYBRIDRA’s
flat memory model is safe if a program itself is thread-safe (i.e., no race condition). In
HYBRIDRA, each address has its own slot in the shadow memory; there is no concurrent

memory modification without race condition.

However, the current implementation of HYBRIDRA is still incomplete for full thread-
safety; it assumes a single user for its internal data structures, e.g., a symbol hash table. We
leave full thread-safety as future work because current design is acceptable for HYBRIDRA;
only a main thread in LKL performs file system operations and thus uses our internal data
structures to introduce new symbols even though memory can be modified by multiple
threads. We believe that this issue can be resolved by replacing existing data structures into

thread-safe ones [105].

Improvements from Kirenenko. For HYBRIDRA, we improved Kirenenko largely in
three aspects. First, we introduce several heuristics for test case generation, including staged
reduction (§4.3.3) and unrelated constraint elimination [4, 12]. In particular, unrelated
constraint elimination significantly improves performance of hybrid fuzzing; it reduces the
number of constraints to solve by leveraging concrete inputs [4]. Second, we introduce
partial symbolization to Kirenenko. Similar to other concolic executors [10], Kirenenko
can only symbolize an entire file. To symbolic only metadata of a file system image,
we introduce new APIs (i.e., _kirenenko_set_concolic) for specifying a symbolic range.
Lastly, we improve Kirenenko’s sequence symbol simplification [4]; if t is a 16-bit symbol,
and t; = extract(t,0,8) and ty = extract(t,8, 16), Kirenenko converts concat(t,,ts) into
t for optimization. Such sub-symbols are frequent in concolic execution because memory is
byte granularity but registers are multi-byte one. Therefore, if concolic execution attempts
to store a symbolic value from a register to memory, it first needs to split the symbol into
byte-size sub-symbols. Because of its popularity, all concolic executors, including QSYM
and KLEE, have implemented this feature, particularly, in their symbol generation. However,
this can introduce a temporary symbol (e.g., 24-bit symbol in computing 32-bit one), which
is restricted in Kirenenko because of its limited number of symbols. Thus, Kirenenko adopts
SynFuzz’s [103] method; it optimizes load/store directly from symbolic inputs. Particularly,
Kirenenko introduces one special symbol, called Load, when it is just sequence of symbolic

inputs instead of making multiple byte-per-byte concatenations. We further optimize this by

checking the most frequent cases in symbol generation; a final symbol can be represented
with the parent of sub-symbols (e.g., the previous ¢, and ¢, case). This can further reduce the
number of symbols even sub-symbols are not directly from symbolic inputs. As an immature
project, we also helped to fix several bugs and other minor improvements in Kirenenko [106,

107, 108].

4.3.3 Staged Reduction

Constraint solving, which is the final step for making test cases in concolic execution,
is arguably expensive. Theoretically, constraint solving is NP complete; no polynomial
solution has been discovered. Therefore, constraint solving often becomes a bottleneck in
concolic execution, and many techniques have been suggested for making constraint solving
efficient in concolic execution [109, 110].

One of the common ways to speed up constraint solving is reduction, so-called con-
cretization or pruning, which simplifies the constraints to solve. Historically, there are two
types of reduction: (1) reduction for complexity of constraints and (2) reduction for the
number of constraints. Definitely, such reduction has trade-offs; it breaks the soundness
and completeness of concolic execution. As pointed out in QSYM, broken soundness is
acceptable in hybrid fuzzing because coverage-guided fuzzing will efficiently filter out
incorrect test cases from unsound concolic execution. However, incompleteness could be
troublesome; it makes concolic execution miss interesting test cases for fuzzing. Existing
concolic executors sacrifice this loss of information because of the benefits of reduction.

In this section, we discuss several reduction mechanisms as well as our newly proposed
one, staged reduction, which benefits from multiple reduction mechanisms inspired from
ensemble systems [101].

Linear reduction. Linear reduction converts non-linear expressions into linear ones by
substituting concrete values from a given test case. A linear expression is attractive for

software testing because it turns constraints solving into linear system solving, which has

def evaluate_concolic_linear(self, tc, expr):

1

2 if self.is_non_linear(expr.kind) \
3 and self.is_symbolic(expr.left) \

4 and self.is_symbolic(expr.right):

5 return self.evaluate_concrete(tc, expr)
6 else:

7 return self.evaluate_symbolic(tc, expr)

(a) Pseudocode for linear reduction. For brevity, we assume that there are only two types of expressions:
addition and multiplications; however, this can be easily generalized to other operations.

def evaluate_concolic_bb(self, tc, expr):

1

2 if self.is_too_frequent(expr):

3 return self.evaluate_concrete(tc, expr)
4 else:

5 return self.evaluate_symbolic(tc, expr)

(b) Pseudocode for basic block reduction. Currently, is_too_frequent is defined in the same way of QSYM
using bucketization based on call stacks and a current program counter.

1 def evaluate_concolic_stage(tc, expr):

2 if tc.stage ==

3 return self.evaluate_concolic_linear(tc, expr)
4 elif tc.stage == 2:

5 return self.evaluate_concolic_bb(tc, expr)

6 else:

7 assert(tc.stage == 3)

8

return self.evaluate_symbolic(tc, expr)

(¢) Pseudocode for staged pruning.

Figure 4.4: Pseudocode for multiple reduction mechanisms.

an efficient algorithm (e.g., Simplex method [99]). Moreover, many branch constraints in
real-world software can be covered by linear expressions, as shown in various research [111,
112, 46]. One of the most famous projects using this linear reduction is SAGE [4], and
recently, Eclipser [46] has suggested a novel way to solve this problem without using
constraint solving, which is inherently expensive.

Figure 4.4a shows the pseudocode for linear reduction. HYBRIDRA considers several
linear expressions, including arithmetic addition, logical addition, symbol extraction, and
symbol concatenation. The algorithm works as follows: if our symbolic expression is
non-linear with symbolic operands, it returns a concrete value based on a current input.

Consequently, the final constraints should contain only linear expressions, which can be

efficiently solvable.

Basic block reduction. On the contrary, QSYM suggests another way, so-called basic
block reduction, which limits the number of constraints from the frequently executed basic
blocks. It is based on a practical observation for bug finding; repeatedly executing code is
generally not interesting and makes analysis complex. A few such examples are encryption,
hashing, and decompression, which can stall further exploration of concolic execution.
Unlike linear reduction, it can express arbitrary types of expressions but has no theoretical
promise for efficient solving.

Figure 4.4b shows the pseudocode for basic block reduction. Similar to linear reduction,
it concretizes a symbolic expression if its code is too frequently executed. The definition
of is_too_frequent depends on the internal policy of concolic execution; HYBRIDRA
borrows one from QSYM. In more details, HYBRIDRA relies on bitmap-style tracking for
coverage with context sensitivity; it symbolizes only a logarithmic number of expressions

from one basic block.

Staged reduction. To achieve both effectiveness of reduction and completeness of analysis,
HYBRIDRA leverages a new technique called staged reduction. The key idea of staged
reduction is to chain multiple reduction mechanisms ordered by their difficulty, similar to
ensemble [101, 100]. As shown in Figure 4.4c, HYBRIDRA gradually moves towards a
more expensive strategy only when its exploration is blocked (i.e., no progress from one
stage). Currently, HYBRIDRA uses three reduction mechanisms: linear reduction, basic
block reduction, and no reduction. Consequently, it can boost the exploration of concolic
execution using more efficient algorithms and can escape blockage using more powerful
ones.

Figure 4.5 shows how HYBRIDRA schedules multiple mutation strategies. Largely,
HYBRIDRA has three mutation strategies: random image mutation, concolic image mutation,
and system call mutation. Following Hydra, HYBRIDRA performs image mutation before

system call one; it makes HYBRIDRA fully explore corrupted images before executing

1 # class Hybridra
> def fuzz_one(self):

3 tc = self.corpus.pick()

4 found_new = self.random_img_mutator.fuzz(tc)

5 if found_new: return

6

7 # Newly introduced in Hybridra compared to Hydra

8 + found_new = self.concolic_img_mutator.fuzz(tc)
9 + 1if found_new: return

11 found_new = self.syscall_mutator.fuzz(tc)
12 if found_new: return

14 # class ConcolicImageMutator
15 def fuzz(self, tc):

16 if not will_concolic(tc): return

17

18 timedout = self.fuzz_internal(tc)

19

20 # Move to the next stage if concolic execution successfully finishes,
21 # or it fails to complete even after pre-defined trials.
2 if not timedout or tc.trial >= MAX_TRIAL:

23 tc.trial = 0

24 tc.stage += 1

25 self.update_stage()

26 else:

27 tc.trial += 1

29 def will_concolic(self, tc):
30 # ’favored’ test case is the most efficient one for specific code coverage
31 return tc.favored and tc.stage <= self.cur_stage

33 def update_stage(self):

34 # Prioritize lower stages for efficient test case generation
35 self.cur_stage = MAX_STAGE

36 for tc in self.corpus:

37 self.cur_stage = min(self.cur_stage, tc.stage)

Figure 4.5: Pseudocode for scheduling in HYBRIDRA. HYBRIDRA first applies random mutation
(i.e., fuzzing) for finding new test cases. If it fails, it starts concolic execution, which has internal
stages. HYBRIDRA only runs concolic execution to favored test cases, which are the most efficient
ones for covering specific code. It prefers concolic execution in earlier stages, which is cheaper than
later ones.

system calls to make erroneous cases. In concolic execution, HYBRIDRA prefers concolic
execution with a lower stage, to quickly discover useful test cases for fuzzing. Accordingly,

HYBRIDRA maintains the globally minimum stage (i.e., self.cur_stage) and runs concolic

execution only if the stage for the test case is equal to the minimum one. Moreover,

Table 4.5: HYBRIDRA’s components and their lines of code.

Component LoC Language
Concolic Execution
Instrumentation 1,767 C++
Runtime library 4254 C++
Compiler wrapper 135 C
Hydra Modification
Concolic support 144 C++
285 Python
AFL Integration 162 C++
Per file system module
btrfs 346 C++
ext4 176 C++
f2fs 273 C++
xfs 130 C++
Total 7,672

HYBRIDRA limits its concolic execution for favored test cases, which are the most efficient
ones for specific coverage [1]. HYBRIDRA also limits the number of trials for each stage to

prevent HYBRIDRA from staying in a single stage due to an exceptionally slow test case.

4.4 Implementation

HYBRIDRA is implemented by 7.7K lines of code (LoC), as shown in Table 4.5: 6.2K lines
of code for concolic execution, which is based on Kirenenko [14], 0.6K lines of code for
supporting concolic execution in the state-of-the-art file system fuzzer, Hydra, and 0.9 lines
of code for per file system modules.

In the remainder of this section, we discuss the unique implementation details of
HYBRIDRA.
Assembly-defined symbols. Linux Kernel heavily uses assembly-specific features, which
have no equivalent concepts in C, including symbol definitions. For instance, by co-utilizing
.weak and .set directives in assembly, Linux Kernel can define a weak function that has

a default behavior without duplicating code. Using this technique, Linux Kernel specifies

system calls to invoke sys_ni_syscall by default if they have no architecture-dependent
implementations.

To successfully compile Linux Kernel for concolic execution, HYBRIDRA needs to
specially handle assembly-defined functions. In particular, HYBRIDRA modifies the ABI of
each function in the module for instrumentation [104]; however, HYBRIDRA cannot detect
an assembly-defined function because it relies on an IR-level analysis, resulting in a linking
error. To respond to this issue, we have manually modified Linux Kernel to change the ABI
of exceptional functions if a certain macro (i.e., CONFIG_CONCOLIC) is defined. Then, when
compiling Linux Kernel for concolic execution, we specify the macro to avoid the linking

€ITor.

Kernel de-optimization. Compiler optimizations, which focus on speeding up native
execution, are often harmful to concolic execution. For example, compilers introduce several
intrinsics to optimize code. If LLVM identifies code for determining whether a number is a
power of two, LLVM introduces 11vm. ctpop for optimization, which is an intrinsic to count
the number of bits set [113]. Without correctly defining the semantics of such intrinsics,
concolic execution will fail to interpret the intrinsics properly and cannot generate interesting
test cases regarding them. Moreover, compilers try to transform arithmetic operations into
equivalent bit-wise ones, which are more efficient in modern computers; however, algebraic
structures of arithmetic operations can help solvers find solutions. Therefore, KLEE [9]
selectively applies certain optimizations instead of compiler-defined ones to compile a
program for symbolic execution.

HYBRIDRA also compiles Kernel without optimization for efficient concolic execution;
however, it requires not only modifying a compiler flag but also patching code. Since
Linux Kernel is full of undefined behaviors according to the C language standard (e.g.,
hardware features), Linux has to assume certain behaviors of compilers to handle these
undefined behaviors. Thus, Linux builds on top of the pre-defined optimization level, 02 in

gcc, and utilizes several features, which are unavailable if we disable optimizations, namely

00. One such feature is function inlining. Linux assumes that a certain function should be
inlined. However, in fact, a compiler can choose how to inline a function depending on
the optimization level. Thus, we have manually fixed Linux to be compiled even without

optimizations.

4.5 Evaluation

To evaluate HYBRIDRA, this section attempts to answer the following questions:
* How effective is HYBRIDRA’s approach in discovering new bugs in file systems?
(84.5.1)

* How effective is HYBRIDRA’s compilation-based concolic execution in overall per-

formance of hybrid fuzzing? (§4.5.2)

* How effective is HYBRIDRA's staged reduction in terms of code coverage? (§4.5.3)
Experimental Setup. We evaluate HYBRIDRA on a machine with the Intel Xeon CPU
E7-4820 processor and 256GB RAM running Ubuntu 18.04. For the experiment in §4.5.2,
we have used a dedicated machine with the Intel Xeon CPU E5620 processor 4GB RAM
running Ubuntu 16.04 because QSYM cannot run on the latest kernel due to its kernel

dependency.

4.5.1 Newly Discovered Bugs

We ran HYBRIDRA to fuzz four file systems for two weeks — btrfs, ext4, ftfs, and xfs—
in Linux v5.3, which is the latest kernel version that LKL supports. In particular, we ran
HYBRIDRA for 24 hours in every fuzzing campaign with 48 instances targeting a single type
of file systems. Table 4.6 shows the bugs that are discovered by HYBRIDRA. In summary,
HYBRIDRA has discovered 10 bugs, and four of which are new. Note that even though
the latest kernel at the time of this writing is v5.8, HYBRIDRA uses v5.3 since LKL does
not support the latest one. Therefore, some bugs were stale; their root causes have been

patched in the latest kernel. These stale bugs show that many file system bugs are quickly

peal spunog-jo-inQ Jogeuew jJuow3es pIng Sj7) 9)uow39s/SJ 7/} S1Zd

0Oong 119" ewnol 1ea[o” %9 o'1adns/H1%x9/sy 71X
M 013z Aq 9pIAI(] Y3ud) odins oed J'SoWIN[0A/SJ11q/S]
M Onng JI9sur 10 swr dmyes 0'99130/8J11q/S
M M 0Oong 1001 puy” synq 0°9913-)001/SJ11q/S]
0Oong 100X O0[aI 9310w J'UOTN}BI0[Q1/SJ11q/S]

N Onong o0xd umop Yyem 0°931)-1UAIX/SJNQ/ST 5314
0Oong joysdeus—doxp~synq 0'901)-)UdIX/SJ1q/SJ
M 0Oong JOSJJO MASUL 921} 9°9yoBI-90eds-0213/SJ1q/S)
M M 90ud19)210p 1durod [N orued 9313 0T JUIIXD 0°01 JUQIX9/SJNq/S]

MAN J1[00u0)) adA], uonouny I WISAS A

"PRI12A0DSIP A[mau are s3nq 9y Jey) siuasaidar maN pue
‘UONNIAXA JI[0IU0D AQ PAISAOISIP A[I0AIIP a1k s3nq oY) 1By SIUSSAIdAI II[0IU0)) "PAISAOISIP VIATIIAH I8y} SWAISAS 9[J SNOLIBA UI S3ng :9°p IqRLL

captured by developers thanks to continuous fuzzing efforts [29] and on-going research
projects for file system fuzzing including Janus [68] and Hydra [15]. It makes discovering
bugs in file systems extremely difficult; however, HYBRIDRA successfully discovered four
bugs in btrfs, and we reported them to developers.

Concolic execution is helpful in discovering bugs in file systems. The Concolic column
in Table 4.6 represents that HYBRIDRA found the bugs directly from concolic execution;
the final mutation strategy for finding the bug is concolic execution. As a random process,
fuzzing makes it difficult to understand the impacts of newly introduced strategies [114]. We
believe that concolic execution is likely to help find other bugs by providing interesting test
cases for fuzzing. However, this direct relationship can more clearly show the impacts of
concolic execution. Linux Kernel’s coding convention actually helps HYBRIDRA discover
bugs in file systems. To mitigate the impacts from incorrect assumptions, Linux Kernel heav-
ily uses the BUG() macro, which is equivalent to assert() in many programming languages.
Unlike fuzzing, concolic execution can understand meanings of BUG() as constraints and
produces test cases that violate the assertions. This helps HYBRIDRA discover many bugs

regarding BUG(), as shown in the table.

4.5.2 Compilation-based Concolic Execution

To show the effectiveness of compilation-based concolic execution in HYBRIDRA, we have
compared HYBRIDRA with QSYM and SymCC [10]. QSYM is an emulation-based concolic
executor, and SymCC is a compilation-based one, but it uses page-table modeling instead of
shadow memory, unlike HYBRIDRA. We have compiled HYBRIDRA’s executor with a native
compiler for QSYM and with SymCC’s compiler for four file systems: btrfs, ext4, ftfs,
and xfs. To measure the overhead for symbolic execution excluding solving, we disable
symbolic inputs; we ran QSYM with an interactive mode without any standard input, and
we ran SymCC by setting the environment variable, SYMCC_NO_SYMBOLIC_INPUT, following

the author’s guidelines. Similarly, we intentionally modified the metadata information for

000 01°0 4! 00°0 00 L9T 00°0 €00 LS'T 000 100 v6'C Ps

- 881 LSPSC - 09'T IT16l - IL'T 1¥'69C - LO'T ¢C6v0C oney
89°0 8C' 1T 8I'¢LI €60 8Vl ¥V LLI £€9°0 LO'T €L°891 LO'1 VPI'T 0S8IC UBIA
VIAINIAH DOWAS WAS) VIANIAH DDWAS WAS) VIANIAH DDWAS WASQO VIAINIAH DDWAS WASO
SIX s¥dd 1225 sjnq

"DDWAS UeY) I91SeJ 996 pue IWASQ) Ueyl 19)SeJ opmIusew-Jo-IapIo ST VIAIIgAH 18yl SMoys 1]
"SWAISAS [IN0J 10J VIAAIYIAH PUB ‘DDWAS ‘WASQ J0J UONINIIXS J[[OQUIAS JO UOIIBIASD PIBPUR)S PUB ‘VIAIAIAH 0} o1l ‘93eIoAe AU, : L' dqeL

a file system to make HYBRIDRA symbolize nothing. For seed inputs, we used default
seed images (e.g., btrfs-10.img) and system call sequences (e.g., open_link_fsync®)
from Hydra. We repeated this experiment three times and report its average and standard
deviation.

As shown in Table 4.7, HYBRIDRA outperforms both QSYM and SymCC; HYBRIDRA
is 230 faster than QSYM and 1.57 x faster than SymCC on average. This is because QSYM
requires expensive dynamic binary translation for its binary-only concolic execution. On
the contrary, HYBRIDRA can eliminate this translation overhead by implanting functions
for symbolic execution before compilation. Moreover, HYBRIDRA can outperform SymCC
by reducing memory lookup cost using shadow memory, avoiding expensive page-table
modeling. According to our profiling, the majority of overhead (i.e. 30%) comes from
memory modeling in SymCC. It is worth noting that we failed to run concolic execution with

SymCC for file systems due to its failures in supporting multi-threading (see, Table 4.4).

4.5.3 Staged Reduction

In this subsection, we evaluate the impacts of staged reduction, which is described in §4.3.3.
In this evaluation, HYBRIDRA disables its system call mutation to compare our hybrid image

mutation with random image mutation.

Concolic only. To understand the benefits of various reduction mechanisms, we first
evaluate HYBRIDRA with concolic-only mode without fuzzing. In particular, we have
used four variants of HYBRIDRA: HYBRIDRA with (1) staged reduction, (2) basic block
reduction, (3) linear reduction, and (4) no reduction. To fairly compare, HYBRIDRA allows
9 minutes for one test case; for example, HYBRIDRA with staged reduction uses 3 minutes
per stage, and one with other reduction uses 9 minutes for its single concolic execution. We
have run three experiments for 24 hours and report their average values. It is worth noting
that HYBRIDRA with concolic-only mode can be terminated earlier than a given timeout

(i.e., 24 hours) if it fails to generate new test cases after consuming every case.

btrfs ext4

PP—
15
14
[13 4 (]
(o)} o>
o 12 4 o
[q] f (7]
2 i 2
O 11 4 o
10 1
T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 0 5000 10000 15000 20000 25000
Time (s) Time (s)
f2fs xfs
5.0
< 481 <
X X
S a6 | 2
o o
(] (9]
3 4.4+ 3
o o
4.2
4.0
T T T T T T T T T T T T T
0 2000 4000 6000 8000 100001200014000 0 5000 10000 15000 20000
Time (s) Time (s)
- Hybridra (Staged reduction) = === Hybridra (BB reduction)
Hybridra (Linear reduction) = Hybridra (No reduction)

Figure 4.6: Code coverage of HYBRIDRA in concolic-only mode with various reduction mechanisms.
By taking advantage of several reduction mechanisms, HYBRIDRA with staged reduction outperforms
others even using the same timeout.

As shown in Figure 4.6, staged reduction has achieved more code coverage than other
reductions, which shows its effectiveness. Interestingly, linear reduction works fairly well
thanks to its efficient solving; however, its limited expressiveness makes it converge too
early (see, flat lines in ext4, ftfs, and xfs). Compared to that, our staged reduction initially
works similar to the linear reduction but still can make more complex test cases from other
reductions (i.e., basic block reduction and no reduction); it eventually has achieved the

highest code coverage.

Hybrid fuzzing. @ We also evaluate the end-to-end effectiveness of various reduction
mechanisms with fuzzing. Compared to the previous one, this evaluation has two major

differences: (1) HYBRIDRA re-enables random image mutation, and (2) it has no time limit

btrfs ext4
1 -
16 4 0
9 -
8 14 - g g
(D <1J
g g
o g
3 12 3
o O 6
10 5
4 4
20000 40000 60000 80000 20000 40000 60000 80000
Time (s) Time (s)
f2fs xfs
5.4
5.2 107
—~ 5.0 1 . 94
X X
g 487 S s
© ©
© 4.6 o
2 >
o o 74
O 4.4 A o
4.2 6 -
4.0
5 -
20000 40000 60000 80000 20000 40000 60000 80000
Time (s) Time (s)
—— Hybridra (Staged reduction) = Hybridra (BB reduction) = Hydra

= Hybridra (Linear reduction)

= Hybridra (No reduction)

Figure 4.7: Code coverage of Hydra and HYBRIDRA in hybrid fuzzing with various reduction

mechanisms.

btrfs

ext4

17.5

5.0 1

15.0 1
12.5 1
10.0 1
7.5

10
8
6 -
4 -

2 -4
2.5
0.0 - 0 -
Staged Linear Hydra Staged Linear No Hydra
reduction reduction reductlon reductlon reduction reduction reductlon reduction
f2fs
5 10
4 8
3 6
2 4 4
1 2 4
0 - 0 -
Staged Linear Hydra Staged Linear No Hydra

reduction reduction reductlon reductlon

reduction reduction reductlon reduction

Figure 4.8: Eventual code coverage achieved by HYBRIDRA with its standard deviation. In summary,
HYBRIDRA outperforms the fuzzing-only approach, Hydra.

for one concolic execution instance. In particular, we used the same scheduling algorithm for
every reduction mechanism, as shown in Figure 4.5; HYBRIDRA retries concolic execution
until it successfully terminates.

As shown in Figure 4.7 and Figure 4.8, hybrid fuzzing is helpful in exploring more code
in file systems. In particular, HYBRIDRA with staged reduction has achieved the best code
coverage on average among various reduction mechanisms. More importantly, HYBRIDRA
outperforms fuzzing-only solution, Hydra, in all four file systems that we tested. This is
because concolic execution has provided interesting test cases, which are difficult for fuzzing

to discover.

4.6 Discussion and Limitation

Adoption beyond file systems. HYBRIDRA is based on the Linux Kernel Library (LKL)
for efficient hybrid fuzzing. We only have focused on file systems; however, LKL also
supports emulating network interfaces. Therefore, we believe HYBRIDRA can be extended
to test the Linux’s networking stack without substantial effort. Moreover, HYBRIDRA can
work with other user mode Linux, including KUnit [115], a unit testing framework for Linux
Kernel. Integration KUnit with HYBRIDRA would be interesting because it can diversify
HYBRIDRA’s scope to various features in Linux Kernel.

Limitations. Currently, HYBRIDRA limitedly supports thread safety under the assumption
that only one thread modifies symbolic variables. We plan to overcome this limitation by
re-designing thread-unsafe data structures in HYBRIDRA, including the symbol hash table.
Moreover, it only supports symbolic integer values whose lengths are less than or equal
to 64 bits. This is sufficient for testing major features in file systems; however, we plan to

support floating-point and integers beyond 64 bits.

CHAPTER §
CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation, we discuss concolic execution tailored for hybrid fuzzing to overcome
limited scalability of exiting hybrid fuzzers. Particularly, we propose two key approaches to
make hybrid fuzzing scalable to real-world software and even kernel file systems: (1) sys-
tematic design for fast symbolic emulation and (2) efficient test case generation mechanisms
by temporarily sacrificing soundness and completeness of concolic execution.

We first introduce QSYM, which is a binary-only concolic execution engine for hybrid
fuzzing. QSYM redesigns existing binary-only concolic executors for performance to
eliminate redundant symbolic emulations. QSYM also proposes two new techniques for
efficient test case generation — optimistic solving and basic block pruning — based on
the observation that coverage-guided fuzzing can act as an efficient validator to filter out
incorrect test cases from concolic execution. Our evaluation results showed that QSYM
outperformed Driller in the DARPA CGC binaries and VUzzer in the LAVA-M test set. More
importantly, QSYM found 13 previously unknown bugs in the eight non-trivial programs,
such as ffmpeg and OpenJPEG, which have heavily been tested by the state-of-the-art fuzzer,
OSS-Fuzz, on Google’s distributed fuzzing infrastructure.

We also propose HYBRIDRA to apply hybrid fuzzing to a more gigantic and convo-
luted target, a kernel file system. Since many issues for testing a file system are common
for fuzzing and concolic execution, HYBRIDRA reformulates Hydra’s approaches for con-
colic execution, which is the state-of-the-art file system fuzzer. Moreover, to fully utilize
availability of source code, HYBRIDRA adopts compilation-based concolic execution with

multi-threading support. HYBRIDRA also suggests staged reduction, which can combine

multiple reduction mechanisms for efficient test case generation. As a result, HYBRIDRA
outperforms Hydra by achieving higher code coverage in every file system that we tested

(btrfs, ext4, ftfs, and x£s) and found four new bugs in btrfs.

5.2 Future work

This dissertation presents concepts and techniques for designing concolic execution for

hybrid fuzzing. In this section, we discuss three research topics that are worth exploring.

Stateful Hybrid Fuzzing. Currently, concolic execution and its application, hybrid fuzzing,
only focus on stateless software, mostly file parsers, but not stateful ones. Behaviors of a
stateless program can be easily representable through symbolic constraints by emulating
low-level execution such as machine instructions or IRs. However, a state of a certain
program requires higher-level analysis, including data flows. In particular, two symbolic
branches could be equivalent in control flow analysis, which have the same call stacks
and addresses; however, they could have different data flows from different states. A data
flow is difficult to handle because it is more sensitive and disorganized than a control flow.
Since every execution has its own data flow, we need bucketization or summarization for
grouping multiple data flows; however, there is no appropriate one for arbitrary programs.
Therefore, existing concolic execution relies on domain-specific abstractions to convert state
information into symbolic constraints [116]. Unfortunately, defining such an abstraction
requires a lot of manual effort, which is not feasible in complex software such as Linux
Kernel. HYBRIDRA also suffers from this limitation, and it only focuses on concolic

execution for file system images, not system calls, which are stateful.

Verified Binary Concolic Execution. For instruction-level symbolic execution, QSYM
manually embeds a symbolic representation for each instruction. Obviously, this is error-
prone and fails to support many x86 instructions including floating point instructions.
Moreover, it is also challenging to adopt QSYM’s idea to other architectures such as ARM

or MIPS due to a large amount of manual efforts.

One opportunity to resolve this issue is to use formal semantics of instruction set
architectures (ISA) [117, 118]. A symbolic expression for a instruction is a different
way of representing its semantics; we can auto-generate a symbolic expression from the
formal semantics. We can still rely on high-performance DBT for concrete execution.
Accordingly, concolic execution can support more instructions in a verified manner for
multiple architectures without sacrificing performance.

Formalization. Concolic execution has been widely used for various goals, including sound
analysis, whitebox fuzzing, and hybrid fuzzing. Even though this dissertation discusses
the differences between classical concolic execution and one for hybrid fuzzing from
observations in practice, it has no formal definition. Formally defining concolic execution
for hybrid fuzzing can help further exploration of this space by clarifying underlying
problems. It would also be helpful to organize existing work; a number of hybrid fuzzing
works have been published after QSYM. Due to the absence of formalization, it is still

ambiguous whether a specific work is for hybrid fuzzing or for generic concolic execution.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

M. Zalewski, American fuzzy lop, http://Icamtuf.coredump.cx/afl/, 2015.
Google, Honggfuzz, https://github.com/google/honggfuzz, 2010.

——, OSS-Fuzz - continuous fuzzing of open source software, https://github.com/
google/oss-fuzz, 2016.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in
Proceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2008.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-vivo multi-
path analysis of software systems,” in Proceedings of the 16th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Newport Beach, CA, Mar. 2011.

R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE), Minneapolis, MN, May
2007.

B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic
execution,” Master’s thesis, Carnegie Mellon University Pittsburgh, PA, 2012.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic
execution,” in Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2016.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs,” in Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), San

Diego, CA, Dec. 2008.

S. Poeplau and A. Francillon, “Symbolic execution with SYMCC: Don’t interpret,
compile!” In Proceedings of the 29th USENIX Security Symposium (Security), Aug.
2020.

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random testing,”
in Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Chicago, IL, Jun. 2005.

http://lcamtuf.coredump.cx/afl/
https://github.com/google/honggfuzz
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine for C,”
in Proceedings of the 10th European Software Engineering Conference (ESEC) /
13th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE),
Lisbon, Portugal, Sep. 2005.

L. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing,” in Proceedings of the 29th USENIX Security
Symposium (Security), Aug. 2020.

C. Song, Kirenenko: Super fast concolic execution engine based on source code
taint tracing, https://github.com/ChengyuSong/Kirenenko, 2020.

S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding Semantic Bugs
in File Systems with an Extensible Fuzzing Framework,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), Ontario, Canada, Oct.
2019.

V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo,
“The art, science, and engineering of fuzzing: A survey,” IEEE Transactions on
Software Engineering, 2019.

OpenRCE, Sulley, https://github.com/OpenRCE/sulley.git, 2012.
PeachTech, Peach fuzzer, https://www.peach.tech/products/peach-fuzzer/, 2007.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in ¢
compilers,” in Proceedings of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), San Jose, CA, Jun. 2011.

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case reduction
for ¢ compiler bugs,” in Proceedings of the 2012 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Beijing, China, Jun.
2012.

V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence modulo inputs,”
in Proceedings of the 2014 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Edinburgh, UK, Jun. 2014.

Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and J. Regehr, “Taming
compiler fuzzers,” in Proceedings of the 2013 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Seattle, WA, Jun.
2013.

https://github.com/ChengyuSong/Kirenenko
https://github.com/OpenRCE/sulley.git
https://www.peach.tech/products/peach-fuzzer/

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware greybox fuzzing,”
in Proceedings of the 41st International Conference on Software Engineering (ICSE),
Montreal, QC, Canada, May 2019.

C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert,
“Nautilus: Fishing for deep bugs with grammars.,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

W. Xu, S. Park, and T. Kim, “FREEDOM: Engineering a State-of-the-Art DOM
Fuzzer,” in Proceedings of the 27th ACM Conference on Computer and Communi-
cations Security (CCS), Orlando, FL, Nov. 2020.

S. Park, W. Xu, L. Yun, D. Jang, and T. Kim, “Fuzzing javascript engines with aspect-
preserving mutation,” in Proceedings of the 41th IEEE Symposium on Security and
Privacy (Oakland), May 2020.

S. GroB, “Fuzzil: Coverage guided fuzzing for javascript engines,” Master’s thesis,
Karlsruhe Institute of Technology, 2018.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in Proceedings
of the 21st USENIX Security Symposium (Security), Bellevue, WA, Aug. 2012.

Google, syzkaller is an unsupervised, coverage-guided kernel fuzzer, https://github.
com/google/syzkaller, 2018.

S. Pailoor, A. Aday, and S. Jana, “Moonshine: Optimizing OS fuzzer seed selection
with trace distillation,” in Proceedings of the 29th USENIX Security Symposium
(Security), Aug. 2020.

H. Han and S. K. Cha, “IMF: Inferred model-based fuzzer,” in Proceedings of the
24th ACM Conference on Computer and Communications Security (CCS), Dallas,
TX, Oct. 2017.

I. van Sprundel, LMH, S. Grubb, E. Sandeen, and J. Wilson, Fsfuzzer, http://people.
redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz.

M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data Race Fuzzing for Kernel
File Systems,” in Proceedings of the 41th IEEE Symposium on Security and Privacy
(Oakland), May 2020.

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox Fuzzing
as Markov Chain,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path
sensitive fuzzing,” in Proceedings of the 39th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2018.

K. Serebryany, “Libfuzzer—a library for coverage-guided fuzz testing,” LLVM project,
2015.

M. Bohme, V. Manes, and S. K. Cha, “Boosting fuzzer efficiency: An informa-
tion theoretic perspective,” in Proceedings of the European Software Engineering
Conference (ESEC)/ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE) 2020, Nov. 2020.

V. Ganesh, T. Leek, and M. Rinard, “Taint-based Directed Whitebox Fuzzing,” in
Proceedings of the 31st International Conference on Software Engineering (ICSE),
Vancouver, Canada, May 2009.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “VUzzer:
Application-aware evolutionary fuzzing,” in Proceedings of the 2017 Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2017.

Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix: Program-
State Based Binary Fuzzing,” in Proceedings of the 11th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), Paderborn, Germany, Sep. 2017.

C. Lemieux and K. Sen, “FairFuzz: Targeting Rare Branches to Rapidly Increase
Greybox Fuzz Testing Coverage,” ArXiv e-prints, Sep. 2017.

P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” in Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz: Efficient fuzzing
with neural program smoothing,” in Proceedings of the 40th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2019.

C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “Redqueen:
Fuzzing with input-to-state correspondence.,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection,” in Proceedings of the
31th IEEE Symposium on Security and Privacy (Oakland), Oakland, CA, May 2010.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing on binary
code,” in Proceedings of the 41st International Conference on Software Engineering
(ICSE), Montreal, QC, Canada, May 2019.

J. C. King, “Symbolic execution and program testing,” Communications of the ACM,
vol. 19, no. 7, pp. 385-394, 1976.

D. Beyer, A.J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar, “Generating
tests from counterexamples,” in Proceedings of the 26th International Conference
on Software Engineering (ICSE), Scotland, UK, May 2004.

W. Visser, C. S. Pasdreanu, and S. Khurshid, “Test input generation with java
pathfinder,” in Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), Boston, MA, Jun. 2004.

C. Csallner and Y. Smaragdakis, “Check’n’crash: Combining static checking and
testing,” in Proceedings of the 27th International Conference on Software Engineer-
ing (ICSE), St. Louis, MO, May 2005.

V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and arrays,” in
International Conference on Computer Aided Verification, Springer, 2007, pp. 519—
531.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE: Auto-
matically Generating Inputs of Death,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS), Alexandria, VA, Oct. 2006.

F. Bellard, “QEMU, a fast and portable dynamic translator.,” in Proceedings of the
2005 USENIX Annual Technical Conference (ATC), Anaheim, CA, Apr. 2005.

Y. Liu, H.-W. Hung, and A. A. Sani, “Mousse: A system for selective symbolic
execution of programs with untamed environments,” in Proceedings of the 15th

European Conference on Computer Systems (EuroSys), Heraklion, Crete, Greece,
Apr. 2020.

E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of constraints:
Whitebox fuzz testing in production,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), San Francisco, CA, May 2013.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in
symbolic execution,” in Proceedings of the 2012 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Beijing, China, Jun.
2012.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic execution
with veritesting,” in Proceedings of the 36th International Conference on Software
Engineering (ICSE), Hyderabad, India, May 2014.

I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing for Overflows:
A Guided Fuzzer to Find Buffer Boundary Violations,” in Proceedings of the 22th
USENIX Security Symposium (Security), Washington, DC, Aug. 2013.

E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan, “DASE: Document-assisted
symbolic execution for improving automated software testing,” in Proceedings of

the 37th International Conference on Software Engineering (ICSE), Florence, Italy,
May 2015.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on
binary code,” in Proceedings of the 33rd IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2012.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “AddressSanitizer: A
fast address sanity checker,” in Proceedings of the 2012 USENIX Annual Technical
Conference (ATC), Boston, MA, Jun. 2012.

K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “HFL: Hybrid fuzzing
on the linux kernel,” in Proceedings of the 2020 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2020.

L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my way: Probabilistic
path prioritization for hybrid fuzzing.,” in Proceedings of the 2019 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2019.

Y. Chen, M. Ahmadi, B. Wang, L. Lu, et al., “Meuzz: Smart seed scheduling for
hybrid fuzzing,” in Proceedings of the 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), Oct. 2020.

D. Jones, Linux system call fuzzer, https://github.com/kernelslacker/trinity, 2018.

MWR Labs, Cross Platform Kernel Fuzzer Framework, https://github.com/mwrlabs/
KernelFuzzer, 2016.

S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kafl: Hardware-
assisted feedback fuzzing for OS kernels,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, Canada, Aug. 2017.

W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File Systems
via Two-Dimensional Input Space Exploration,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA, May 2019.

https://github.com/kernelslacker/trinity
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/KernelFuzzer

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan, “LAVA: Large-scale automated vulnerability addition,” in Proceed-
ings of the 37th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA,
May 2016.

Google, Fuzzing for Security, https://blog.chromium.org/2012/04/fuzzing - for-
security.html, 2012.

S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified synthesis: Automatically
learning the x86-64 instruction set,” in Proceedings of the 2016 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), Santa
Barbara, CA, Jun. 2016.

Intel, “Intel® 64 and ia-32 architectures software developer’s manual,” Volume 2:
Instruction Set Reference, A—Z, 2016.

L. Project, LLVM language reference manual, https://llvm.org/docs/LangRef.html,
2003.

X. Leroy and D. Doligez, Mosml/md5sum.c at master, https://github.com/kfl/mosml/
blob/master/src/runtime/mdSsum.c, 2014.

N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation,” in Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), San Diego, CA, Jun.
2007.

R. David, S. Bardin, J. Feist, L. Mounier, M.-L. Potet, T. D. Ta, and J.-Y. Marion,
“Specification of concretization and symbolization policies in symbolic execution.,”
in Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA), Saarbriicken, Germany, Jul. 2016.

T. Liu, M. Aratjo, M. d’ Amorim, and M. Taghdiri, “A comparative study of incre-
mental constraint solving approaches in symbolic execution,” in Proceedings of the
Haifa Verification Conference(HVC’14), Haifa, Israel, Nov. 2014.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War: Of-
fensive Techniques in Binary Analysis,” in Proceedings of the 37th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2016.

T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is mine: Au-
tomatic shellcode transplant for remote exploits,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2017.

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://llvm.org/docs/LangRef.html
https://github.com/kfl/mosml/blob/master/src/runtime/md5sum.c
https://github.com/kfl/mosml/blob/master/src/runtime/md5sum.c

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

J. Hendrix and B. F. Jones, “Bounded integer linear constraint solving via lattice
search,” in Proceedings of the International Workshop on Satisfiability Modulo
Theories, 2015.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Chicago, IL, Jun.
2005.

K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D. Keromytis,
“A general approach for efficiently accelerating software-based dynamic data flow
tracking on commodity hardware.,” in Proceedings of the 19th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2012.

CVE-2017-11543, https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2017-
11543.

CVE-2017-1000249, https://cve.mitre.org/cgi-bin/cvename.cginame=CVE-2017-
1000249.

O. Chang, A. Arya, K. Serebryany, and J. Armour, OSS-Fuzz: Five months later,
and rewarding projects, https://opensource.googleblog.com/2017/05/0ss-fuzz-five-
months-later-and.html, 2017.

PNG specification: Chunk specifications, https://www.w3.org/TR/PNG-Chunks.
html, 1996.

DARPA, Cyber Grand Challenge, https://www.cybergrandchallenge.com/, 2016.

Shellphish, Shellphish AFL package, https://github.com/shellphish/shellphish-afi,
2016.

Cppcheck: A tool for static C/C++ code analysis, http://cppcheck.sourceforge.net/.

M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural byte sieve for
fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,
O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end verification of processors with
isa-formal,” in Proceedings of the 28th International Conference on Computer Aided
Verification (CAV), Toronto, Canada, Jul. 2016.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000249
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000249
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.w3.org/TR/PNG-Chunks.html
https://www.w3.org/TR/PNG-Chunks.html
http://cppcheck.sourceforge.net/

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

M. Cai, H. Huang, and J. Huang, “Understanding security vulnerabilities in file
systems,” in Proceedings of the 10th Asia-Pacific Workshop on Systems (APSYys),
Hangzhou, China, Aug. 2019.

CVE-2015-8660, https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-8660,
2015.

Bobfuzzer, https://github.com/bobfuzzer/CVE, 2019.

M. Larabel, The Linux kernel enters 2020 at 27.8 million lines in git but with less

developers for 2019, https://www.phoronix.com/scan.php?page=news_item&px=
Linux-Git-Stats-EOY2019.

O. Purdila, L. A. Grijincu, and N. Tapus, “Lkl: The linux kernel library,” in 9th
RoEduNet IEEE International Conference, IEEE, 2010.

M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint solving for hybrid
fuzzing,” in Proceedings of the 26th ACM Conference on Computer and Communi-
cations Security (CCS), London, UK, Nov. 2019.

Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu, “SAVIOR:
Towards bug-driven hybrid testing,” in Proceedings of the 41th IEEE Symposium on
Security and Privacy (Oakland), May 2020.

G. B. Dantzig, “Origins of the simplex method,” in A history of scientific computing,
1990, pp. 141-151.

B. V. Dasarathy and B. V. Sheela, “A composite classifier system design: Concepts
and methodology,” Proceedings of the IEEE, vol. 67, no. 5, pp. 708-713, 1979.

Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su, “Enfuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers,” in Proceedings
of the 28th USENIX Security Symposium (Security), Santa Clara, CA, Aug. 2019.

V. Nossum and Q. Casasnovas, “Filesystem Fuzzing with American Fuzzy Lop,” in
Vault Linux Storage and Filesystems Conference, 2016.

W. Han, M. L. Rahman, Y. Chen, C. Song, B. Lee, and 1. Shin, “SynFuzz: Efficient
concolic execution via branch condition synthesis,” arXiv preprint arXiv:1905.09532,

2019.

The Clang Team, “DataFlowSanitizer design document,” 2007.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8660
https://github.com/bobfuzzer/CVE
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

G. E. Blelloch, D. Anderson, and L. Dhulipala, “ParlayLib — a toolkit for parallel
algorithms on shared-memory multicore machines,” in Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), Jul. 2020.

C. Song, Merge load/store patch from @jakkdu, https://github.com/ChengyuSong/
Kirenenko/commit/3e0f02cb, 2020.

——, Add partial concrete test case from @jakkdu, https://github.com/ChengyuSong/
Kirenenko/commit/6e8d8bd0, 2020.

——, Add partial concrete test case from @jakkdu, https://github.com/ChengyuSong/
Kirenenko/commit/28997fca, 2020.

R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient sampling of sat solu-
tions for testing,” in Proceedings of the 40th International Conference on Software
Engineering (ICSE), Gothenburg, Sweden, May 2014.

H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental hybrid
fuzzing with polyhedral path abstraction,” in Proceedings of the 41th IEEE Sympo-
sium on Security and Privacy (Oakland), May 2020.

Y. Xie, A. Chou, and D. Engler, “Archer: Using symbolic, path-sensitive analysis to
detect memory access errors,” in Proceedings of the 25th International Conference
on Software Engineering (ICSE), Portland, OR, May 2003.

W. Le, “Segmented symbolic analysis,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), San Francisco, CA, May 2013.

LLVM Project, “LLVM language reference manual,” 2003.

L. S. J. Metzman, A. Arya, and L. Szekeres, “Fuzzbench: Fuzzer benchmarking as a
service,” Google Security Blog, 2020.

Google, KUnit, https://kunit.dev/, 2019.

L. Simon, S. Liang, A. Rahmati, and M. Grace, “Caterpillar: Iterative concolic
execution for seed generation,” in /st International KLEE Workshop on Symbolic
Execution (KLEE), 2018.

S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Rosu, “A complete for-
mal semantics of x86-64 user-level instruction set architecture,” in Proceedings
of the 2019 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Phoenix, AZ, Jun. 2019.

https://github.com/ChengyuSong/Kirenenko/commit/3e0f02cb
https://github.com/ChengyuSong/Kirenenko/commit/3e0f02cb
https://github.com/ChengyuSong/Kirenenko/commit/6e8d8bd0
https://github.com/ChengyuSong/Kirenenko/commit/6e8d8bd0
https://github.com/ChengyuSong/Kirenenko/commit/28997fca
https://github.com/ChengyuSong/Kirenenko/commit/28997fca
https://kunit.dev/

[118] A. Armstrong, C. Pulte, S. Flur, L. Stark, N. Krishnaswami, P. Sewell, T. Bauereiss,
B. Campbell, A. Reid, K. E. Gray, et al., “ISA semantics for ARMv8-a, RISC-v,
and CHERI-MIPS,” in Proceedings of the 46th ACM Symposium on Principles of
Programming Languages (POPL), Cascais, Portugal, Jan. 2012.

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Problem Statement
	Research Outline

	2 | Related work
	Coverage-guided Fuzzing
	Concolic execution
	Hybrid Fuzzing
	File system fuzzing

	3 | Qsym: A Binary-Level Concolic Execution Engine Tailed for Hybrid Fuzzing
	Introduction
	Motivation: Performance Bottlenecks
	Design
	Implementation
	Evaluation
	Analysis of New Bugs Found
	Discussion

	4 | Hybridra: Hybrid Fuzzing for Kernel File Systems
	Introduction
	Motivation and Challenges
	Design
	Implementation
	Evaluation
	Discussion and Limitation

	5 | Conclusion and Future work
	Conclusion
	Future work

	References

