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SUMMARY

Recently, hybrid fuzzing, which combines fuzzing and concolic execution, has been

highlighted to overcome limitations of both techniques. Despite its success in contrived

programs such as DARPA Cyber Grand Challenge (CGC), it still falls short in finding bugs

in real-world software due to its low performance of existing concolic executors.

To address this issue, this dissertation suggests and demonstrates concolic execution

tailored for hybrid fuzzing with two systems; QSYM and HYBRIDRA. First, we present

QSYM, a binary-only concolic executor tailored for hybrid fuzzing. It significantly improves

the performance of conventional concolic executors by removing redundant symbolic

emulations for a binary. Moreover, to efficiently produce test cases for fuzzing, even

sacrificing its soundness, QSYM introduces two key techniques: optimistic solving and

basic block pruning. As a result, QSYM outperforms state-of-the-art fuzzers, and, more

importantly, it found 13 new bugs in eight real-world programs, including file, ffmpeg,

and OpenJPEG.

Enhancing the key idea of QSYM, we discuss HYBRIDRA, a new concolic executor for

file systems. To apply hybrid fuzzing for file systems, which are gigantic and convoluted,

HYBRIDRA employs compilation-based concolic execution to boost concolic execution

leveraging the existing of source code. Moreover, HYBRIDRA introduces a new technique

called staged reduction, which combines existing heuristics to efficiently generate test cases

for file systems. As a result, HYBRIDRA outperforms a state-of-the-art file system fuzzer,

Hydra, by achieving higher code coverage, and successfully discovered four new bugs in

btrfs, which has been heavily tested by other fuzzers.

xiv



CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The computer science community has developed two notable technologies to automatically

find vulnerabilities in software: coverage-guided fuzzing [1, 2, 3] and concolic execution [4,

5]. Coverage-guided fuzzing can quickly explore the input space at nearly native speed,

but it is only good at discovering inputs that lead to an execution path with loose branch

conditions because of its random exploration. On the contrary, concolic execution is good

at finding inputs that drive the program into tight and complex branch conditions, but it is

very expensive and slow to formulate and solve these constraints. More seriously, it suffers

from a fundamental limitation, namely, path explosion; the number of paths of a program

grows exponentially based on the program size. To take advantage of both worlds, a hybrid

approach [6, 7, 8], called hybrid fuzzing, was recently proposed. It combines both fuzzing

and concolic execution, with the hope that the fuzzer will quickly explore trivial input spaces

(i.e., loose conditions) and the concolic execution will solve the complex branches (i.e., tight

conditions). By selectively applying concolic execution, hybrid fuzzing can avoid its high

cost and path explosion problem. For example, Driller [8] demonstrates the effectiveness

of the hybrid fuzzing in DARPA Cyber Grand Challenge (CGC) binaries—generating six

new crashing inputs out of 126 binaries that are not possible when running either fuzzing or

concolic execution alone.

Unfortunately, these hybrid fuzzers still suffer from scaling to find bugs in non-trivial,

real-world applications. We observed two main performance bottlenecks of their concolic

executors. First, the symbolic emulation of concolic executors is too slow in formulating

path constraints. This overhead has been underestimated in classical concolic execution

1



1 // ’buf’ and ’x’ are symbolic
2 int completeness(char* buf, int x) {
3 very_complicated_logic(buf);
4

5 if (x * x == 1234 * 1234)
6 crash();
7 }

(a) This example shows that completeness of concolic execution may result in inefficiency in test case
generation. In particular, very_complicated_logic() in concolic execution blocks its further exploration,
failing in discovering crash().

1 // ’x’ is symbolic and ’x’ == 0 in a given input
2 int soundess(int x) {
3 if (x == 0)
4 do_something();
5

6 if (x * x == 1234 * 1234)
7 crash();
8 }

(b) Similarly, this example shows a negative impact of soundness in concolic execution. Since x is concretely
less than zero, it makes a path for finding crash() unsatisfiable. To discover this crash, concolic execution
needs to be re-executed, which requires non-trivial efforts.

Figure 1.1: Examples that shows negative impacts of completeness and soundness in hybrid fuzzing.
Completeness often blocks further exploration of concolic execution in hybrid fuzzing (Figure 1.1a),
and soundness incurs significant overhead due to repetitive analysis (Figure 1.1b).

because it can be alleviated using state forking [9]. State forking, which utilizes knowledge

from previous executions in exploring neighboring execution paths, can avoid the recurrent

cost from the symbolic emulation. However, hybrid fuzzing explores paths randomly, which

is different from concolic execution’s systematic exploration; therefore, state forking is

limited in hybrid fuzzing because of the few neighboring paths. Thus, concolic execution in

hybrid fuzzing needs to repeat symbolic emulation, making its overhead more serious than

the classical one.

Second, classical concolic executors aim to maximize completeness and soundness,

resulting in inefficient test case generation for hybrid fuzzing. In any analysis including

concolic execution, completeness and soundness are desirable but not without trade offs.

As shown in Figure 1.1, complete concolic execution attempts to analyze every logic in a

program. This can block further exploration of concolic execution if concolic execution

2



Table 1.1: Summary of techniques used to build concolic execution tailored for hybrid fuzzing in
QSYM and HYBRIDRA.

Fast symbolic emulation Heuristics for generating test cases

QSYM
Instruction-level concolic execution
(For binary, §3.3.1)

Optimistic solving (§3.3.2)
Basic block pruning (§3.3.3)

HYBRIDRA
Compilation-based concolic execution
(For source code, §4.3.2)

Staged reduction (§4.3.3)
+ Heuristics from QSYM

encounters an extremely complicated routine, making it give up other interesting, yet

accessible, paths. Moreover, soundness requires conservative analysis; This often incurs

redundant re-executions, whose costs can be significant in hybrid fuzzing. For example,

in Figure 1.1b, if x is concretely defined as zero, concolic execution will conclude that a

branch in Line 7 is unsatisfiable because {x == 0} and {x * x == 1234 * 1234} conflict.

However, in this example, if a program hits Line 7 regardless of do_something(), it is safe

to ignore the conflicting constraint, {x == 0}, from Line 4. This relaxation is not always

acceptable because of implicit data or control flow. Therefore, classical concolic execution

waits for a new input that can satisfy Line 7 without breaking its completeness. In hybrid

fuzzing, this strategy significantly delays the discovery of crash(), particularly in a large

program; concolic execution can encounter such a good input after consuming enormous

number of other test cases from fuzzing.

1.2 Research Outline

To overcome the aforementioned issues, this thesis proposes concolic execution tailored

for hybrid fuzzing. Unlike classical concolic execution, this specialized concolic execution

employs two fundamental techniques: 1 systematic approaches for fast symbolic emulation

and 2 heuristics for generating test cases in hybrid fuzzing. We demonstrate our ideas with

two systems: QSYM (§3) and HYBRIDRA (§4).

Table 1.1 summarizes techniques used for hybrid fuzzing in this dissertation. In particular,

this dissertation presents 1 instruction-level concolic execution (§3.3.1) and an alternative
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design for compilation-based concolic execution (§4.3.2) [10, 11, 12] for fast symbolic

emulation in binary-only and open-source applications, respectively. Moreover, it proposes

2 several heuristics for test case generations: optimistic solving (§3.3.2), basic block

pruning (§3.3.3), and staged reduction (§4.3.3). Optimistic solving and basic block pruning

makes concolic execution efficiently generate test cases while sacrificing soundness and

completeness of concolic execution. This is based on our key observation in hybrid fuzzing,

in which coverage-guided fuzzing can act as an efficient validator to filter out incorrect test

cases. Moreover, staged reduction combines existing heuristics for test case generation to

take an specific advantage of each mechanism.

In the following, we briefly introduce QSYM and HYBRIDRA. QSYM is a fast concolic

execution engine to support hybrid fuzzing in real-world user applications. Its key idea is

to tightly integrate the symbolic emulation with the native execution using dynamic binary

translation, making it possible to implement more fine-grained, and thus faster, instruction-

level symbolic emulation. Additionally, QSYM loosens the strict soundness requirements of

conventional concolic executors for better performance, but takes advantage of a faster fuzzer

for validation, providing unprecedented opportunities for performance optimizations, e.g.,

optimistically solving constraints and pruning uninteresting basic blocks. Our evaluation

shows that QSYM does not just outperform state-of-the-art fuzzers (i.e., found 14× more

bugs than VUzzer in the LAVA-M dataset, and outperformed Driller in 104 binaries out of

126), but also found 13 previously unknown security bugs in eight real-world programs like

Dropbox Lepton, ffmpeg, and OpenJPEG, which have already been intensively tested by

state-of-the-art fuzzers, AFL and OSS-Fuzz. QSYM was published in USENIX Security

Symposium 2018 in collaboration with Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo

Kim [13].

HYBRIDRA extends this idea to a more gigantic system, file systems in Linux Kernel.

To reduce the overhead from binary translation, HYBRIDRA benefits from the existence of

source code by instrumenting it for concolic execution. Unlike SymCC [10], HYBRIDRA
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adopts shadow-memory-based memory modeling from Kirenenko [14], which is faster and

more resilient to multi-threading. Moreover, HYBRIDRA adopts a new test case generation

mechanism, called stage reduction, which gradually applies various reduction mechanisms

to generate test cases. We applied HYBRIDRA to four popular file systems: btrfs, ext4,

ftfs, and xfs; HYBRIDRA discovered 10 crashes with four new bugs. Hybrid fuzzing

directly helps HYBRIDRA discover these bugs by understanding buggy conditions in Linux

Kernel. Moreover, our evaluation shows that stage reduction outperforms other reduc-

tion mechanisms, and HYBRIDRA can achieve more code coverage than the fuzzing-only

approach [15], which shows its effectiveness.
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CHAPTER 2

RELATED WORK

In this chapter, we introduce the current state-of-the-art approaches for fuzzing, concolic exe-

cution, and hybrid fuzzing and compare them with our approaches, QSYM and HYBRIDRA.

2.1 Coverage-guided Fuzzing

Fuzzing is a dynamic software testing technique that controls a program’s execution by

randomly generating an input. Fuzzing runs a program with mutated inputs and hopes that

the input will eventually drive the program to an erroneous program state, such as a crash

or an assertion error (i.e., a bug). Thanks to its simple nature, fuzzing is largely scalable

and applicable to any type of program. Consequently, fuzzing has been largely used for

finding bugs in various fields [16], including file parsers [1, 17, 18], compilers [19, 20, 21,

22], browsers [23, 24, 25, 26, 27, 28], and operating systems [29, 30, 31, 32, 15, 33].

Coverage-guided fuzzing has become popular, especially since AFL [1] has shown its

effectiveness. AFL prioritizes inputs that likely reveal new paths by collecting coverage

information during program execution to assess generated inputs, enabling quick coverage

expansion. Also, AFLFast [34] uses a Markov chain model to prioritize paths with low

reachability, and CollAFL [35] provides accurate coverage information to mitigate path

collisions. libFuzzer [36] provides a useful set of library functions for in-memory, coverage-

guided fuzzing. Entropic [37] suggests an entropy-based power schedule to boost the

efficiently of coverage-guided fuzzing.

However, fuzzing has a fundamental limitation: it cannot traverse paths beyond narrow-

ranged input constraints (e.g., a magic value). To overcome such a limitation, BuzzFuzz and

VUzzer [38, 39] develop application-aware mutation techniques by performing taint analysis.

Steelix [40] recovers the correct magic values by collecting comparison progress information
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during program execution. FairFuzz [41] discovers magic values and prevents their mutations

with program analysis and heuristics. Angora [42] adopts taint tracking, shape and type

inference, and a gradient-descent-based search strategy to solve path constraints efficiently.

Neuzz [43] suggests neural program smoothing and utilizes gradient-guided fuzzing instead

of using the evolutionary algorithm. REDQUEEN [44] suggests efficient fuzzing using input-

to-state correspondence, in which part of a given input appears in the program state without

any modification. TaintScope [45] suggests an automatic way to avoid a checksum routine

in a program leveraging the inherent properties of a checksum — imbalanced dependencies

between the checksum field and the calculated one. Eclipser [46] suggests gray-box concolic

testing, which can efficiently handle linear and monotonic constraints. These approaches,

however, can only handle certain types of constraints. In contrast, QSYM and HYBRIDRA

rely on symbolic execution such that it has a chance to satisfy any kinds of constraints.

2.2 Concolic execution

Symbolic execution [47, 48, 49, 50] has been widely used for software testing; it represents

a program’s execution in the form of symbolic expressions instead of concretely running it.

Then, it systematically explores a program by flipping each symbolic constraint and generates

a corresponding test case using a constraints solver — a tool that engenders a test case from

symbolic constraints. CUTE [12] and DART [11] suggest concolic execution to overcome

the limitations of their underlying constraint solver, which combines symbolic execution with

a concrete one. In particular, their solver fails to support non-linear arithmetic or symbolic

array indexing; therefore, they replace these unsupported expressions with concrete values

from concrete execution. Equipped with a more powerful solver — STP [51] — EXE [52]

successfully handles non-linear arithmetic expressions and symbolic dereferences, and its

successor, KLEE [9], redesigns EXE to use LLVM IR and found 56 bugs in GNU coreutils.

Even with such a powerful solver, concolic execution is still helpful; KLEE [9] relies on

concrete values to emulate unmodeled operations, including system calls. S2E [5] suggests
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full system concolic execution by leveraging KLEE and QEMU [53]. Accordingly, S2E is

capable of analyzing any part of a system, including third-party libraries and even a kernel.

Mousse [54] further supports concolic execution even in an untamed environment, which

cannot be emulated.

However, concolic execution suffers from an infamous limitation, called path explosion,

in which the number of paths to explore grows exponentially with program size. To mitigate

this problem, SAGE [4, 55] proposes a generational search to maximize the number of

test cases in one execution and applies unrelated constraint solving [12]. Cloud9 [56] and

Veritesting [57] merge states to reduce their numbers using static analysis and dynamic

symbolic execution. Dowser [58] and DASE [59] suggest techniques to prioritize concolic

execution for more interesting paths; to guide concolic execution, they leverage the charac-

teristics of buffer overflow vulnerabilities and documentations, respectively. Mayhem [60]

combines forking-based symbolic execution and re-execution-based symbolic execution to

balance performance and memory usage.

On the contrary, QSYM and HYBRIDRA use (1) fuzzing to explore most paths to avoid

the path explosion problem, (2) generic heuristics (e.g., basic block pruning) without

assuming any specific bug type or domain-specific knowledge, and (3) re-execution-based

symbolic execution for better performance. QSYM and HYBRIDRA are highly inspired by

whitebox fuzzers (e.g., SAGE) and have adopted SAGE’s design, including the generational

search algorithm and unrelated constraint solving. However, this dissertation has several

differences from whitebox fuzzers. First, our goal is to make interesting test cases for

fuzzing but not to explore the program individually. This makes a big difference in our

design decisions; for example, if an algorithm can generate a number of interesting test

cases, which can also be discovered by fuzzing, the algorithm would not be useful for our

purpose. Second, in hybrid fuzzing, our exploration of a program is random, not systematic.

Thus, optimization techniques based on systematic exploration [9, 60] are no longer useful

in hybrid fuzzing. Third, coverage-guided fuzzing [1] allows us to adopt more aggressive
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strategies for test case generation. Thanks to its high performance for evaluating incorrect

test cases, we can apply several techniques that are expected to generate many incorrect test

cases, e.g., optimistic solving in QSYM.

2.3 Hybrid Fuzzing

The concept of hybrid fuzzing was first proposed by Majumdar and Sen [6]. Later, Driller [8]

demonstrated its effectiveness in DARPA CGC with a refined implementation. In both

studies, the majority of path exploration is offloaded to the fuzzer, while concolic execution

is selectively used to drive execution across the paths that are guarded by narrow-ranged

constraints. Pak [7] also proposes a similar idea, but it is limited to the frontier nodes that

are mainly magic value checks at early execution stages. However, these hybrid fuzzers use

general concolic executors that are not only slow but also incompatible with hybrid fuzzing.

On the contrary, QSYM is tailored for hybrid fuzzing, so that it can scale to detect bugs

from real-world software. Similar to HYBRIDRA, SymCC [10] recently revisits compilation-

based concolic execution from CUTE [12] and DART [11]. HYBRIDRA takes an alternative

design for compilation-based concolic execution using shadow memory, which has lower

overhead than SymCC’s [61]. HFL [62] combines Syzkaller with S2E for kernel hybrid

fuzzing; however, it fails to address the technical challenges in a file system fuzzing unlike

HYBRIDRA. DigFuzz [63] and MEUZZ [64] suggest special seed selection algorithms for

hybrid fuzzing, which can be applied to QSYM and HYBRIDRA.

2.4 File system fuzzing

To discover bugs in file systems, numerous fuzzing frameworks for file systems have been

proposed. Because of the popularity of file systems, generic kernel fuzzing frameworks [65,

29, 66, 67] such as Syzkaller include file systems as part of their fuzzing targets; how-

ever, such systems are limited to evaluate system calls without considering file system

images, which also heavily determine the behaviors of file systems. To overcome this issue,
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Janus [68] proposes two-dimensional fuzzing for file systems; Janus randomly generates not

only system calls but also file system images to discover memory corruption vulnerabilities

in file systems. Hydra [15] further extends Janus to discover other types of file system

bugs beyond memory corruptions. Compared to these solutions, HYBRIDRA improves

two-dimensional fuzzing by supporting powerful concolic execution that can resolve the

fundamental limitations of existing fuzzing.
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CHAPTER 3

QSYM: A BINARY-LEVEL CONCOLIC EXECUTION ENGINE TAILED FOR

HYBRID FUZZING

3.1 Introduction

In this work, we first systematically analyze the performance bottlenecks of concolic

execution and then overcome the problem by tailoring the concolic executor to support

hybrid fuzzing (§3.2). The key idea of QSYM is to tightly integrate the symbolic emulation

to the native execution using dynamic binary translation. Such an approach provides

unprecedented opportunities to implement more fine-grained, instruction-level symbolic

emulation that can minimize the use of expensive symbolic execution (§3.3.1). Unlike our

approach, current concolic executors employ coarse-grained, basic-block-level taint tracking

and symbolic emulation, which incur non-negligible overheads to the concolic execution.

Additionally, we alleviate the strict soundness requirements of conventional concolic

executors to achieve better performance as well as to make it scalable to real-world programs.

Such incompleteness or unsoundness of constraints is not a problem in a hybrid fuzzer

where a co-running fuzzer can quickly validate the newly generated test cases; the fuzzer

can quickly discard them if they are invalid. Moreover, this approach makes it possible

to implement a few practical techniques to generate new test cases, i.e., by optimistically

solving some parts of constraints (§3.3.2), and to improve the performance, i.e., by pruning

uninteresting basic blocks (§3.3.3). These new techniques and optimizations together allow

QSYM to scale to test real-world programs.

Our evaluation shows that the hybrid fuzzer, QSYM, —built on top of our concolic ex-

ecutor, and the state-of-the-art fuzzer, AFL—outperforms all existing fuzzers like Driller [8]

and VUzzer [39]. QSYM achieved significantly better code coverage than Driller in 104 out



of 126 DARPA CGC binaries (tied in five challenges). Further, QSYM discovered 1,368

bugs out of 2,265 bugs in the LAVA-M test set [69], whereas VUzzer found 95 bugs.

More importantly, QSYM scales to testing complex real-world applications. It has

found 13 previously unknown vulnerabilities in eight non-trivial programs, including ffmpeg

and OpenJPEG. It is worth noting that these programs have been thoroughly tested by

other state-of-the-art fuzzers such as AFL and OSS-Fuzz, highlighting the effectiveness

of our concolic executor. OSS-Fuzz running on a distributed fuzzing infrastructure with

hundreds of servers [70] was unable to find these bugs, but QSYM found them by using

a single workstation. For further research, we open-source the prototype of QSYM at

https://github.com/sslab-gatech/qsym.

This work makes the following contributions:

• Fast concolic execution through efficient emulation. We improved the performance

of concolic execution by optimizing emulation speed and reducing emulation usage.

Our analysis identified that symbol generation emulation was the major performance

bottleneck of concolic execution such that we resolved it with instruction-level se-

lective symbolic execution, advanced constraints optimization techniques, and tied

symbolic and concolic executions.

• Efficient repetitive testing and concrete environment. The efficiency of QSYM

makes re-execution-based repetitive testing and the concrete execution of external

environments practical. Because of this, QSYM is free from snapshots incurring

significant performance degradation and incomplete environment models resulting in

incorrect symbolic execution due to its non-reusable nature.

• New heuristics for hybrid fuzzing. We proposed new heuristics tailored for hybrid

fuzzing to solve unsatisfiable paths optimistically and to prune out compute-intensive

back blocks, thereby making QSYM proceed.

• Real-world bugs. A QSYM-based hybrid fuzzer outperformed state-of-the-art auto-

matic bug finding tools (e.g., Driller and VUzzer) in the DARPA CGC and LAVA test

https://github.com/sslab-gatech/qsym


sets. Further, QSYM discovered 13 new bugs in eight real-world software. We believe

these results clearly demonstrate the effectiveness of QSYM.

The rest of this work is organized as follows. §3.2 analyzes the performance bottleneck

of current hybrid fuzzing. §3.3 and §3.4 depict the design and implementation of QSYM,

respectively. §3.5 evaluates QSYM with benchmarks, test sets, and real-world test cases.

§3.7 explains QSYM’s limitations and possible solutions.

3.2 Motivation: Performance Bottlenecks

In this section, we systematically analyze the performance bottlenecks of the conventional

concolic executor used for hybrid fuzzers. The following are the main reasons that block the

adoption of hybrid fuzzers to the real world beyond a small-scale study.

3.2.1 P1. Slow Symbolic Emulation

The emulation layer in conventional concolic executors that handles symbolic memory

model is extremely slow, resulting in a significant slowdown in overall concolic execution.

This is surprising because the community believes that symbolic and concolic executions are

slow due to path explosion and constraint solving. Table 3.1 shows this significant overhead

in symbolic emulation when we execute several programs without branching out to the

other paths (no path explosion) or solving constraints on the path in widely-used symbolic

executors, KLEE and angr. Compared to the native execution, KLEE is around 3000 times

slower and angr is more than 321 000 times slower, which are significant.

Why is symbolic emulation so slow?. In our analysis, we observed that the current

design of concolic executors, particularly adopting IR in their symbolic emulation, makes

the emulation slow. Existing concolic executors adopt IR to reduce their implementation

complexity a lot; however, this sacrifices the performance. Additionally, optimizations that

speed up this use of IR prohibit further optimization opportunities, particularly by translating

the program into IRs in a basic-block granularity. This design does not allow skipping



Table 3.1: The emulation overhead of KLEE and angr compared to native execution, which are
underlying symbolic executors of S2E and Driller, respectively. We used chksum, md5sum, and
sha1sum in coreutils to test KLEE, and md5sum (mosml) [74] to test angr because angr does not
support the fadvise syscall, which is used in the coreutils applications.

Executor chksum md5sum sha1sum md5sum(mosml)

Native 0.008 0.014 0.014 0.001
KLEE 26.243 32.212 73.675 0.285
angr - - - 462.418

the emulation that does not involve in symbolic execution instruction by instruction. We

describe the details of these in the following.

Why IR: IR makes emulator implementation easy. Existing symbolic emulators trans-

late a machine instruction to one or more IR instructions before emulating the execution.

This is mainly to make the implementation of symbolic modeling easy. To model symbolic

memory, the emulator needs to interpret how an instruction affects the symbolic memory

status when supplied with symbolic operands. Unfortunately, interpreting each machine

instruction is a massive task. For instance, the most popular Intel 64-bit instruction set

architecture (i.e., the amd64 ISA) contains 1795 instructions [71] described in a 2000-page

manual [72]. Moreover, the amd64 ISA is not machine-interpretable, so human effort is

required to interpret each instruction for its symbolic semantic.

To reduce this massive complexity in implementation, existing emulators have adopted

the IR. For example, KLEE uses the LLVM IR and angr uses the VEX IR. These IRs have

much smaller sets of instructions (e.g., 62 for the LLVM IR [73]) and are simpler than

native instructions. Consequently, the use of IR significantly reduces the implementation

complexity because the emulator will have a much smaller number of interpretation handlers

than when it directly works with machine instructions (e.g., 1795 versus 62).

Why not: IR incurs additional overhead. Despite making implementation easy, the use

of IR incurs overhead in symbolic emulation. First, the IR translation itself adds overhead.

Because the amd64 architecture is a complex instruction set computer (CISC), whereas the

IRs model a reduced instruction set computer (RISC), in most cases, a translation of a



Figure 3.1: The number of instructions in symbolic basic blocks and the number of symbolic
instructions in popular open-source software. More than half of the instructions in the basic blocks
are not symbolic instructions, which can be executed natively.

machine instruction results in multiple IR instructions. For instance, based on our evaluation,

the VEX IR [75], used by angr, increases the number of instructions by 4.69 times on

average (versus machine instructions) in the CGC binaries, resulting in much symbolic

emulation handling.

Why not: IR blocks further optimization. Second, using IR prohibits further optimiza-

tion opportunities. For example, existing symbolic emulators have an optimization strategy

that minimizes the use of emulation because it is slow. Particularly, they do not execute a

basic block in the emulator if the block does not deal with any symbolic variables. Although

this effectively cuts off the overhead, it still has room for optimization. According to our

measurement with the real-world software (Figure 3.1), such as libjpeg, libpng, libtiff,

and file, only 30% of instructions in symbolic basic blocks require symbolic execution.

This implies that an instruction-level approach has an opportunity to reduce the number of

unnecessary symbolic executions. However, current concolic executors cannot easily adopt

this approach due to IR caching. To use IR, they need to convert native instructions into

IR, which has significant overhead. To avoid repetitive overhead, they transform and cache

basic blocks into IRs, instead of individual instructions, to save space and time for cache

management. This caching forces existing symbolic emulators to execute instructions in a

basic block level and prevent further optimization.



Our approach. Remove the IR translation layer and pay for the implementation

complexity to reduce execution overhead and to further optimize towards the minimal

use of symbolic emulation.

3.2.2 P2. Ineffective Snapshot

Why snapshot: eliminating re-execution overhead. Conventional concolic execution

engines use snapshot techniques to reduce the overhead of re-executing a target program

when exploring its multiple paths. The snapshot mechanism is also mandatory for hybrid

fuzzing whose concolic re-execution is significantly slow, such as Driller. For example, we

measured the code coverage by turning off the snapshot mechanism in Driller with 126 CGC

binaries and given proof of vulnerabilities (PoVs) as initial seed files. As a result, Driller

with snapshot achieved more code coverage in 76 binaries, but without snapshot achieved

more code coverage in only 17 binaries, and others are the same.

Why not: fuzzing input does not share a common branch. Snapshots in hybrid fuzzing

are not effective because concolic executions in hybrid fuzzing merely share a common

branch. In particular, for conventional concolic engines, a snapshot is taken when the engine

splits the path exploration from one conditional branch (i.e., the taken and untaken paths).

The main purpose of taking a snapshot is to reuse a symbolic program state when exploring

both paths at the same branch. In this regard, the engine backs up the symbolic state of the

program in one branch, and then explores one of the paths (e.g., the taken path). When the

path is exhausted or stuck, the engine restores the symbolic state to the previous state at the

branch and moves to another path (i.e., the untaken path). The engine can explore the path

without paying overhead for re-executing the program to the branch.

On the contrary, the concolic execution engine in hybrid fuzzing fetches multiple test

cases from the fuzzer with which they are associated different paths of the program (i.e.,

sharing no common branch). This is because random mutation generates such test cases.

This could 1) lead the program to a different code path or 2) concretize values differently on



handling symbolic memory access [76]. Therefore, snapshots taken from one test case path

cannot be re-used in the other test case path such that they do not optimize the performance.

Why not: snapshot cannot reflect external status. Worse yet, the snapshot mechanism

becomes problematic in supporting external environments since it breaks process boundaries.

Supporting external environments is required since the program heavily interacts with the

external environment during its execution. Such interactions include the use of a file system

and a memory management system, and these would be able to change the symbolic status of

the program. When a program is being executed, it does not consider external environments

since the underlying kernel maintains internal states related to them. Unfortunately, the

snapshot mechanism breaks the assumption that the kernel holds: when a process diverges

through fork()-like system calls, the kernel no longer maintains the states. Thus, concolic

execution engines should maintain the states by itself.

Existing tools try to solve this problem through either full system concolic execution or

external environment modeling, but they result in significant performance slowdown and

inaccurate testing, respectively.

Full system concolic execution. Concolic testing tools such as S2E apply concolic

execution for both the target program and the external environment. Although this approach

ensures completeness and correctness, the tools cannot test the program in a reasonable time

because conventional concolic executors are too slow and the complexity of the external

environment is high. Moreover, a full system concolic execution requires expensive state

backup and recovery. This overhead could be mitigated by copy-on-write under normal

circumstances, but it is not applicable for hybrid fuzzing due to its non-shareable nature.

External environment modeling. Hybrid fuzzers, such as Driller, model or emulate

the execution in the external environment. This approach has clear performance benefits

by avoiding concolic execution, but it results in inaccurate models because it is almost

impossible to completely and correctly model all system calls in practice. For example,

Linux kernel 2.6 has 337 system calls, but angr only supports 22 system calls out of



1 // @funcs.c:221 in file v5.6
2 if ((ms->flags & MAGIC_NO_CHECK_COMPRESS) == 0) {
3 m = file_zmagic(ms, &b, inname); // zlib decompress
4 ...
5 }
6

7 // other interesting code

1 // @funcs.c:177 in file v5.6
2 // looks_ascii()
3 if (ch >= 0x20 && ch < 0x7f)
4 ...
5 // file_tryelf()
6 if (ch == 0x7f)
7 ...

Figure 3.2: The first example shows that collecting complete constraints for complicated routines
such as file_zmagic() could prohibit finding new paths. The second example shows that if a given
concrete input follows a true path of looks_ascii(), it over-constrains the path not to find a true
path of file_tryelf().

them. Further, despite excessive efforts of the developers, angr models many functions

incompletely, such as mmap(). The current implementation of mmap() in angr ignores a

valid file descriptor given to the function. It just returns empty memory instead of memory

containing the file content.

Our approach. Optimize repetitive concolic testing, remove the snapshot mechanism

that is inefficient in hybrid fuzzing, and use concrete execution to model external

environments.

3.2.3 P3. Slow and Inflexible Sound Analysis

Why sound analysis?. Concolic execution tries to guarantee soundness by collecting

complete constraints. This completeness assures that an input satisfying the constraints will

lead the execution to the expected path. Thus, concolic execution can produce inputs to

explore other paths of a program without worrying about false expectations.

Why not: never-ending analysis for complex logic. However, computing complete

constraints could be expensive in various situations. In particular, computing the constraints

for complex operations such as cryptographic functions or compression is often problematic.



The upper part of Figure 3.2 shows a code snippet of the file program. If concolic execution

visits file_zmagic(), it sticks there to compute complex constraints for zlib decompression

and cannot search other interesting code.

Why not: sound analysis could over-constraint a path. The complete constraints can

also over-constrain [5] a path that limits concolic execution to find future paths. In particular,

a constraint that is inserted to follow the native execution can cause the over-constraint

problem. In the lower code of Figure 3.2, if ch is defined as ‘A’ by a given concrete input,

concolic execution will put the constraint, {ch >= 0x20 ∧ ch < 0x7f}, at looks_ascii()

because the native execution will execute the true branch of the if statement. When it

arrives at file_tryelf(), the concolic execution cannot generate any test case because

the final constraint is unsatisfiable, which is {ch >= 0x20 ∧ ch < 0x7f ∧ ch == 0x7f}.

However, if file_tryelf() does not depend on the true branch of looks_ascii(), this

is the over-constraint problem because an input generated by concolic execution without

caring about the path constraint, ch == 0x7f, will explore a path in file_tryelf().

Our approach. Collect an incomplete set of constraints for efficiency and solve only a

portion of constraints if a path is overly-constrained.

3.3 Design

In this section, we explain our design decisions to realize QSYM. Figure 3.3 shows an

overview of QSYM’s architecture. QSYM aims at achieving fast concolic execution by

reducing the efforts in symbolic emulation, which is the major performance bottleneck of

existing concolic executors. To this end, QSYM first instruments and then runs a target

program utilizing Dynamic Binary Translation (DBT) along with an input test case provided

by a coverage-guided fuzzer. The DBT produces basic blocks for native execution and

prunes them for symbolic execution, allowing us to quickly switch between two execution

models. Then, QSYM selectively emulates only the instructions necessary to generate

symbolic constraints, unlike existing approaches that emulate all instructions in the tainted
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Figure 3.3: Overview of QSYM’s architecture as a hybrid fuzzer. QSYM takes a test case and a
target binary as inputs and attempts to generate new test cases that might explore new paths. It uses
Dynamic Binary Translation (DBT) to natively execute the input binary as well as to select basic
blocks for symbolic execution. Since QSYM applies various heuristics to trade strict soundness for
better performance in constraint solving, the new test cases will be validated later by the fuzzer.

basic blocks. By doing this, QSYM reduced the number of symbolic emulations by a

significant magnitude (5×, see Figure 3.9 in §3.5.3) and hence achieved a faster execution

speed. Thanks to its efficient execution, QSYM can execute symbolic execution repeatedly

instead of using snapshots that require external environment modeling. In particular, QSYM

can interact with the external environment in a concrete fashion instead of relying on the

contrived environment models. To improve the performance of constraint solving, QSYM

applies various heuristics that trade off strict soundness for better performance. Such a

relaxation provides an unprecedented opportunity to the concolic executor for a hybrid

fuzzer, in which the paired-up fuzzer can quickly validate the newly produced test cases—it

will simply discard them if they are not interesting. The rest of this section describes our

approaches to scale the concolic executor for the hybrid fuzzer to test real-world programs.

3.3.1 Taming Concolic Executor

We explain in detail four new techniques to optimize the concolic executor for the hybrid

fuzzer.



// If rdx (size) is symbolic
__memset_sse2:     
 movd   xmm0,esi
 mov    rax,rdi
 punpcklbw xmm0,xmm0
  punpcklwd xmm0,xmm0

 pshufd xmm0,xmm0,0x0
 cmp    rdx,0x40      
 ja __memset_sse2+80  

 def _op_generic_InterleaveLO(self, args):
   s = self._vector_size
   c = self._vector_count
   left_vector = [args[0][(i+1)*s-1:i*s] 
                          for i in xrange(c/2)]
   right_vector = [args[1][(i+1)*s-1:i*s] 
                          for i in xrange(c/2)]
   return claripy.Concat(*itertools.chain.from_iterable(
            reversed(zip(left_vector, right_vector))))

Figure 3.4: An example that shows the effect of instruction-level symbolic execution. If a size
is symbolic at __memset_sse2(), the instruction-level symbolic execution only executes symbolic
instructions, which are in the dashed box. However, the basic-block-level one needs to execute other
instructions that can be executed natively, including punpcklwd, which is complex to handle as shown
in the right-side angr code.

Instruction-level symbolic execution. QSYM symbolically executes a small set of instruc-

tions that are required to generate symbolic constraints. Unlike existing concolic executors,

which apply a block-level taint analysis and so symbolically execute all instructions in the

tainted basic blocks, QSYM employs an instruction-level taint tracking and symbolic execu-

tion on the tainted instructions. The existing concolic executors take such a coarse-grained

approach because they suffer from high performance overheads when switching between

native and symbolic executions. However, for QSYM, the efficient DBT makes it possible to

implement a fine-grained, instruction-level taint tracking and symbolic execution, helping

us to avoid unnecessary emulation overheads.

This method significantly improves the performance of QSYM’s symbolic execution in

practice. Take memset() as an example (Figure 3.4), where only its size parameter (rdx)

is tainted. Unlike a block-level approach, such as angr, that should symbolically execute

all instructions, QSYM can generate symbolic constraints by executing only the last two

instructions. This problem is more critical in real-world problems where modern compilers

produce highly optimized code to minimize control-flow changes (e.g., using a conditional

move like cmov). For example, in angr, any symbolic arguments to the memset() can prevent

its symbolic execution because memset() relies on complex instructions like punpcklbw.

QSYM runs both native and symbolic executions in a single process by utilizing the

DBT, making such mode switches extremely lightweight (i.e., a normal function call). It is



1 # create user

userone

1 # create user

usertwo

2 # login

userone

1 # send message

Initial PoV

1 # create user

userone

1 # create user

usertwo

2 # login

userone

4 # delete message

Qsym

1 # create user

\xfb\xfb\xfb\xfb\xf4\xf1\xf1

1 # create user

\xfb\xfb\xfb\xfb\x0b\xfb\xf1

2 # login

\xfb\xfb\xfb\xfb\xf4\xf1\xf1

4 # delete message

 Driller

Figure 3.5: The test cases generated by QSYM and Driller that explore the same code path from
the same seed. They are different because QSYM uses unrelated constraint elimination as their
underlying optimization techniques whereas Driller uses incremental solving. Unrelated constraint
elimination can remove unnecessary constraints, for example, constraints for the user names, on the
existence of a concrete input.

worth noting that this approach is drastically different from most of the existing concolic

engines, such as angr, where two execution modes should make non-trivial communications

such as updating memory maps to make a mode switch. Accordingly, many optimizations

made by angr are to reduce such mode switching, e.g., striving to run one mode as long as

possible.

Solving only relevant constraints. QSYM solves constraints relevant to the target branch

that it attempts to flip, and generates new test cases by applying the solved constraints to the

original input. Unlike QSYM, other concolic executors such as S2E and Driller incrementally

solve constraints; that is, they focus on solving the updated parts of constraints in the current

run by utilizing lemmas learned from the previous execution. For pure symbolic executors

that do not have any initial inputs for exploration, this incremental approach is effective

in enumerating all possible input spaces [77]. However, this is not a favorable design for

hybrid fuzzers for the following two reasons.

First, the incremental approach in hybrid fuzzers repeatedly solves the constraints that

are explored by other test cases. For example, Figure 3.5 shows an initial test case and new

test cases generated by QSYM and Driller when exploring the same code paths: the red

marker shows the differences between the original input and the generated test cases. By

solving only constraints relevant to the branch (i.e., selecting a menu for deleting a message),



QSYM generates the new test case by updating a small part of the initial input. However,

Driller generates new test cases that look drastically different from the original input. This

indicates that Driller wastes time on solving irrelevant constraints that are repeatedly tested

by fuzzers (e.g., constraints on usernames).

Second, the incremental approach is effective only when complete constraints are

provided. Unfortunately, due to the emulation overheads, existing concolic executors cannot

formulate symbolic constraints for complex, real-world programs. However, focusing only

on relevant constraints gives us a higher chance to solve the constraints and produce new

test cases that potentially take different code paths. For example, the test cases that are only

relevant to the command menu will not be affected by the incomplete constraints generated

for usernames (Figure 3.5). Moreover, due to its environment support (§3.3.1) or various

heuristics (§3.3.2, §3.3.3), QSYM tends to generate more relaxed (i.e., incomplete) forms

of constraints that can be easily solved. This makes QSYM scale enough to test real-world

programs.

Preferring re-execution to snapshoting. QSYM’s fast concolic execution makes re-

execution much preferable to taking a snapshot for repetitive concolic testing. The snapshot

approach, which creates an image of a target process and reuses it later, is chosen to

overcome the performance bottleneck of the concolic execution; re-executing a program

to reach a certain execution path with a valid state can take much longer than restoring

the corresponding snapshot. However, as QSYM’s concolic executor becomes faster, the

overhead of the snapshotting is no longer smaller than that of re-execution.

Concrete external environment. QSYM avoids problems resulting from an incomplete

or erroneous modeling of external environments by concretely interacting with external

environments. Since the incompleteness and incorrectness of modeling deviate symbolic

execution and native execution and mislead additional exploration, we should avoid them for

further analysis. Instead of these erroneous models, QSYM considers external environments

as “black-boxes” and simply executes them by concrete values. This is a common way to



handle functions that cannot be emulated in symbolic execution [4, 11], but it is difficult to

apply to forking-based symbolic execution, which breaks process boundaries [78]. Since

QSYM can achieve performance without introducing forking-based symbolic execution [60],

QSYM can utilize the old but complete technique to support external environments. However,

this approach can result in unsound test cases that do not produce any new coverage, unlike

its claim. If QSYM blindly believes concolic execution, QSYM will waste its resources to

explore paths using test cases that do not introduce any new coverage. To alleviate this,

QSYM relies on a fuzzer to quickly check and discard the test cases to stop further analysis.

3.3.2 Optimistic Solving

Concolic execution is susceptible to over-constraint problems in which a target branch is

associated with complicated constraints generated in the current execution path (Figure 3.2).

This problem is prevalent in real-world programs, but existing solvers give up too early

(i.e., timeout) without trying to utilize the generated constraints, which took most of their

execution time (Figure 3.9). In hybrid fuzzing, a symbolic solver’s role is to assist a fuzzer to

get over simple obstacles (e.g., narrow-ranged constraints like {ch == 0x7f} in Figure 3.2)

and go deeper in the program’s logic. Thus, as a hybrid fuzzer, it is well justified to formulate

potentially new test inputs, regardless of reaching unexplored code via the current path or

other paths.

QSYM strives to generate interesting new test cases from the generated constraints by

optimistically selecting and solving some portion of the constraints, if not solvable as a

whole. As the emulation overheads dominate the overheads of constraint solving in complex

programs, it economically makes sense to leverage this opportunity. In particular, QSYM

chooses the last constraint of a path for optimistic solving for the two following reasons.

First, it typically has a very simple form, making it efficient for constraints solving. Another

candidate would be the complement of unsat_core, which is the smallest set of constraints

that introduces unsatisfiability. However, computing unsat_core is very expensive and



sometimes crashes the underlying constraint solver [79]. Second, test cases generated

from solving the last constraint likely explore the target path as they at least meet the local

constraints when reaching the target branch. Since QSYM first eliminates constraints that

are not related to the last constraint, all irrelevant constraints do not impact the result of the

optimistic solving.

3.3.3 Basic Block Pruning

We observed that constraints repetitively generated by the same code are not useful for

finding new code coverage in real-world software. In particular, the constraints generated by

compute-intensive operations in a program are unlikely solvable (i.e., non-linear) at the end

even if their constraints are formulated. Even worse, they tend to block the possibility of

exploring other parts that are not relevant yet are interesting enough for further exploration.

For example, in the second example of Figure 3.2, even though concolic execution produces

constraints for the zlib decompression, a constraint solver will not be able to solve the

constraints because of their complexity [80].

To mitigate this problem, QSYM attempts to detect repetitive basic blocks and then

prunes them for symbolic execution and generates only a subset of constraints. More

specifically, QSYM measures the frequency of each basic block execution at runtime and

selects repetitive blocks to prune. If a basic block has been executed too frequently, QSYM

stops generating further constraints from it. One exception is when a block contains constant

instructions that do not introduce any new symbolic expressions, e.g., mov instructions in the

x86 architecture and shifting or masking instructions with a constant.

QSYM decides to use exponential back-off to prune basic blocks since it rapidly truncates

overly frequent blocks. It only executes blocks whose frequency number is a power of two.

However, if it excessively prunes basic blocks, it could miss some of the solvable paths and

thus could fail to discover new paths. To this end, QSYM builds two heuristic approaches to

prevent excessive pruning: grouping multiple executions and context-sensitivity.



Table 3.2: QSYM’s main components and their lines of code.

Component Lines of code

Concolic execution core 12,528 LoC of C++
Expression generation 1,913 LoC of C++
System call abstraction 1,577 LoC of C++
Hybrid fuzzing 565 LoC of Python

Grouping multiple executions is a knob that minimizes excessive pruning of basic blocks.

When we count the frequency of a basic block’s execution, we regard a group of executions

as one in frequency counting. For instance, suppose the group size is eight. Then, only after

executing the block eight times, we count the frequency as one. This will allow QSYM to

execute the block eight times once it decided not to prune. This helps not to lose constraints

that are essential to discover a new path and also does not affect much on the symbolic

execution because running such basic blocks a small number of times would not make the

constraints too complex.

Context-sensitivity acts as a tool for distinguishing running the same basic block in

a different context for frequency counting. If we do not distinguish a context (i.e., at

which point is this basic block called?), we may lose essential constraints by pruning

more blocks. For example, when there are two strcmp() calls, say strcmp(buf, “GOOD”)

and strcmp(buf, “EVIL”), these two calls must be considered as a different basic block

execution for frequency counting. Otherwise, the execution of the same block in the other

part of the program, which is irrelevant to the current execution, could affect pruning. QSYM

maintains a call stack of the current execution, and uses a hash of it to differentiate distinct

contexts.

3.4 Implementation

We implement the concolic executor from scratch. QSYM consists of 16K lines of code (LoC)

in total, and Table 3.2 summarizes the complexity of each of its components. QSYM relies

on Intel Pin [81] for DBT, and its core components are implemented as Pin plugins written



in C++: 12K LoC for the concolic execution core, 1.9K LoC for expression generation, and

1.5K LoC for handling system calls. QSYM also exposes Python APIs (0.5K LoC) such

that users can easily extend the concolic executor; the hybrid fuzzer is built as a showcase

using these APIs. QSYM uses libdft [82] in handling system calls while adding support

for the 64-bit environments. The current implementation of QSYM supports part of Intel

64-bit instructions that are essential for vulnerability discovery such as arithmetic, bitwise,

logical, and AVX instructions. QSYM will be open-sourced and support different types of

instructions, including floating point instructions in the future.

3.5 Evaluation

To evaluate QSYM, this section attempts to answer the following questions:

• Scaling to real-world programs. How effective is QSYM’s approach in discovering

new bugs and achieving better code coverage when fuzzing complex, real-world

software? (§3.5.1, §3.5.2)

• Justifying design decisions. How effective are the design decisions made by QSYM

in terms of bug finding? (§3.5.3, §3.5.4, §3.5.5)

1. Instruction-level symbolic execution. How effective is our fine-grained, instruction-

level symbolic execution in terms of the number of instructions saved and the

overall performance of the hybrid fuzzer? (§3.5.3)

2. Optimistic constraints solving. How reasonable is QSYM’s optimistic con-

straints solving in terms of finding bugs? (§3.5.4)

3. Pruning basic blocks. How effective is our approach to prune basic blocks in

terms of the overall performance and code coverage? (§3.5.5)

Experimental setup. We ran all the following experiments on Ubuntu 14.04 LTS equipped

with Intel Xeon E7-4820 (having eight 2.0GHz cores) and 256 GB RAM. We used three

cores respectively for master AFL, slave AFL, and QSYM for end-to-end evaluations (§3.5.1,

§3.5.2, and §3.5.4) and one core for testing concolic execution only (§3.5.3 and §3.5.5).



Even though we used a server machine with many cores, we did not exploit all cores to run

QSYM, but we aimed to run multiple experiments concurrently.

3.5.1 Scaling to Real-world Software

QSYM’s approach scales to complex, real-world software. To highlight the effectiveness of

our concolic execution engine, we applied QSYM to non-trivial programs that are not just

large in size but also well-tested by the state-of-the-art fuzzer for a longer period of time.

Thus, we considered all applications and libraries tested by OSS-Fuzz as ideal candidates for

QSYM: libjpeg, libpng, libtiff, lepton, openjpeg, tcpdump, file, libarchive, audiofile, ffmpeg,

and binutils. Among them, QSYM was able to detect 13 previously unknown bugs in eight

programs and libraries, including stack and heap overflows, and NULL dereferences (as

shown in Table 3.3). It is worth noting that Google’s OSS-Fuzz generated 10 trillion test

inputs a day [85] for a few months to fuzz these applications, but QSYM ran them for three

hours using a single workstation. In other words, all the bugs found by QSYM require the

accurate formulation of inputs to trigger, showing the effectiveness of our concolic executor.

§3.6 provides in-depth analysis of some of the bugs that QSYM found.

Compared to QSYM, other hybrid fuzzers are not scalable to support these real-world

applications. We tested Driller, a known state-of-the-art hybrid fuzzer, for comparison. For

testing purpose, we modified Driller to accept file input because these applications receive

input from files, while the original Driller accepts only the standard input. We followed

the direction of Driller’s authors for this modification. As a result, Driller was able to

generate only a few test cases due to its slow emulation. Driller generated less than 10 test

cases on average for 30 minutes of running, whereas QSYM generated hundreds (more than

10×) of test cases in the same duration. Moreover, Driller was not able to support 5 out of

11 applications for lack of environment modelings and system call supports as shown in

Table 3.4.
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Table 3.4: Incomplete or incorrect system call handling by Driller that prohibits from applying Driller
to real-world software. Driller’s mmap() had an error: it ignored a file descriptor. We detected these
errors dynamically using basic test cases in each project. Therefore, other incorrect or unsupported
system calls could exist in unexplored paths.

Program Bug Type Syscall

libtiff Erroneous system calls mmap

openjpeg Unsupported system calls set_robust_list

tcpdump Erroneous system calls mmap

libarchive Unsupported system calls fcntl

ffmpeg Unsupported system calls rt_sigaction

3.5.2 Code Coverage Effectiveness

To show how effectively our concolic executor can assist a fuzzer in discovering new code

paths, we measured the achieved code coverage during the fuzzing process by using QSYM

(a hybrid fuzzer) and AFL (a fuzzer) with a varying number of input seed files. We selected

libpng as a fuzzing target because it contained various narrow-ranged checks (e.g., checking

the 4-byte magic value for chunk identification) that were non-trivial to satisfy without

proper seeding inputs in the fuzzing-only approach. As seeding inputs, we collected high-

quality (i.e., including various types of chunks) 141 PNG image files from the libpng project

and incrementally (by 20%) applied to the fuzzers. For the 0% case, we provided a dummy

ASCII file containing 256 ‘A’s as a seeding input as both fuzzers required at least one

input to begin with. For fair comparisons with the fuzzing-only approach, we prepared

a hybrid fuzzer consisting of one master and one slave AFL instance with QSYM, and a

fuzzer consisting of one master and two slave AFL instances so that both fuzzers utilized

the same computing resources given the execution time. We ran both fuzzers for six hours

and measured the explored code coverage.

The hybrid fuzzing approach was particularly effective in discovering new code paths

when no or limited initial inputs were provided (Figure 3.6). In the 0% case (only with

a dummy input), AFL did not make much progress as libpng checked the PNG header

identifier in an early phase of execution. On the contrary, QSYM not only formulated and



Figure 3.6: Code coverage of libpng after a six-hour run of QSYM and AFL (two AFL instances
for a fair comparison) with an increasing number of seeding inputs. In the 0% case, we put an
invalid PNG file consisting of 256 ‘A’s as an initial input. The 100% case includes 141 sample PNG
image files provided by the libpng project. This experiment result highlights the effectiveness of
code coverage that the concolic execution approach contributes to hybrid fuzzing, depending on the
availability of quality seeding inputs.

solved the constraints for checking the PNG’s magic header identifier but also explored more

than 20% of code paths of libpng, which was 3% higher than the code coverage of fuzzing

with valid images, i.e., the 20% AFL case. Even when enough seeding inputs were provided,

the concolic executor still allowed fuzzers to find more interesting paths. For example, the

hIST chunk was not included in any of the 141 test cases, but QSYM was able to successfully

generate new test cases by solving the symbolic constraints. It is worth noting that the hIST

chunk needs to satisfy complex pre- and post-conditions to be a valid chunk in PNG: the

hIST chunk should come after the PLTE chunk but before the IDAT chunk [86]. This example

also hints at the difficulty of constructing complete test cases that cover all the features

implemented in software, where we believe QSYM’s approach can shed some light on.

3.5.3 Fast Symbolic Emulation

To show the performance benefits of QSYM’s symbolic emulation, we used the DARPA

CGC dataset [87] to compare QSYM with Driller, which placed third in the CGC competi-



Figure 3.7: This color map depicts the relative code coverage for five minutes that compares QSYM’s
with Driller’s: the blue color means that QSYM found more code than Driller, and the red color
means the opposite (see §3.5.3 for the exact formula). Each cell represents each CGC challenge in
alphabetical order (from left to right and top to bottom). QSYM outperforms Driller in discovering
new code paths; QSYM results in better code coverage in 104 challenges (82.5% cases) and Driller
does better in 18 challenges (14.3% cases) out of 126.

tion [8]. The CGC dataset included a wide range of programs from simple login services to

sophisticated programs that attempt to mimic real-world protocols. CGC has released 131

challenge programs used in the CGC qualification event with PoVs—the inputs that trigger

the vulnerabilities of the target program. Among the 131 challenge programs, we ignored

five programs requiring Inter-Process Communication (IPC) that both QSYM and Driller did

not support. We chose the PoVs as initial seed inputs because challenge writers intentionally

hid bugs in the deep code path, so that PoVs tend to have good code coverage. To make our

analysis simpler, we selected the first PoV (only one) as a seeding input for both fuzzers.

To show the fuzzing result, we used the code coverage that we measured from all the

test cases generated while fuzzing each CGC challenge. Since the CGC programs did not

support libgcov, a de-facto standard tool to measure code coverage, we used the AFL

bitmap [88] instead to indicate their code coverage. The AFL bitmap consists of 65 536

entries to represent code coverage, which is reasonable enough for our comparison purpose.

Since the direct comparison of simple code coverage numbers might not properly indicate



which fuzzer explored more and different code paths, we relatively compared their code

coverage (see below). Additionally, we removed the bitmap entries that are already covered

by initial PoVs for a fair comparison of newly explored paths. Based on this, we used

the following formula to compare and visualize both coverage results relatively. For code

coverage A (QSYM) and B (Driller), we can quantify the coverage differences by using:

d(A,B) =


|A−B|−|B−A|
|(A∪B)−(A∩B)| if A ̸= B

0 otherwise

It intuitively represents how many more unique paths that A explored out of the total discrete

paths that only either A or B explored. For example, if QSYM found more unique paths

than Driller, d(A,B) will render a positive number, and it will be 1.0 when QSYM not only

found more paths than Driller, but also covered all the paths that Driller found.

Figure 3.7 visualizes the results of the CGC code coverage for five minutes. Each cell

represents each CGC challenge we tested in alphabetical order (from left to right and top to

bottom). For example, the top-most left cell represents CROMU_00001 and the bottom-most

right cell represents YAN01_00012. The blue color represents the cases in which QSYM

resulted in better code coverage, and the red color represents the ones that Driller did better.

The darkest colors indicate that one fuzzer dominated the code coverage of another.

QSYM outperforms Driller in terms of code coverage; QSYM explored more code paths

in 104 challenges (82.5%) out of 126 challenges, whereas Driller did better only in 18

challenges (14.3%). More importantly, QSYM fully dominated Driller in 37 challenges,

where QSYM also covered all paths explored by Driller. It is worth noting that increasing the

timeout for Driller (i.g., giving more time for constraints solving) does not help to improve

the result of the code coverage. To show this, we ran Driller with varying timeouts from 5

to 30 minutes while fixing the timeout of QSYM to 5 minutes (Figure 3.8). Even with the



Figure 3.8: Comparing QSYM (5-min timeout) with Driller while increasing the time for constraints
solving (from 5-min to 30-min). It shows that the reason Driller could not generate new test cases is
not due to the limited time budget for solving the generated constraints.

30-min timeout of Driller, QSYM explored more paths in 98 out of 126 binaries, whereas

Driller’s coverage map was more or less saturated after the 10-min of the timeout.

Instruction-level symbolic execution. To understand how QSYM achieves a better perfor-

mance than Driller, we break down the performance factors of QSYM and Driller. At a high

level, Driller spent 27% of its execution time for creating snapshots and 70% for symbolic

emulation (see, Figure 3.9(a)) In other words, Driller spent 2× more time than QSYM for

concolic execution, but most of its time was spent for emulation and snapshot.

The instruction-level symbolic execution implemented in QSYM played a major role

in speeding up the symbolic emulation. One way to demonstrate the effectiveness of this

technique is to measure the number of instructions symbolically executed by both systems.

However, QSYM and Driller took a different notion of symbolic instructions, making it hard



Figure 3.9: Average time breakdown of QSYM and Driller for 126 CGC binaries with initial PoVs
as initial seed files, and the number of instructions that are executed symbolically. ‘Norm’ is the
product of the number of instructions of QSYM and the average rate of increase of VEX IR, 4.69.

to compare both directly: QSYM uses the native x86 instructions, whereas Driller uses VEX

IR for symbolic execution. Instead of counting and comparing the symbolically executed

instructions, we took the amplification factor (i.e., 4.69) into consideration, the conversion

rate from x86 to VEX IR when lifting all CGC binaries to use VEX IR. Even with this

amplification factor (assuming an instruction in amd64 is equivalent to 4.69 instructions),

QSYM executed only 1/5 of instructions symbolically when compared with Driller. More-

over, QSYM’s fast emulator helps us eliminate the ineffective snapshot mechanism. All

these improvements applied together make constraints solving another important factor for

the overall performance of the concolic execution.

Further case analysis. We could find several tendencies from further investigation of the

results:

1) QSYM explores more paths than Driller in large programs and with long PoVs (i.e.,

in exploring deeper path). For example, QSYM covers more code coverage than Driller

in NRFIN_00039, whose binary size is the largest among the challenges, about 12 MB.

Moreover, QSYM can find test cases that cover code deep in the binaries. For example,

CROMU_00001 is a service that can send messages between users. To read a message, an

attacker should go through the following process: (1) create a new user (user1), (2) create

another user (user2), (3) log in as user1, (4) send a message to user2, (5) logout, (6) log in as



Table 3.5: The number of instructions in the CGC challenges that are not emulated due to the
limitation of QSYM: no floating point operation supports.

Challenge Not emulated Total

NRFIN_00026 4 (0.02 %) 24 315
NRFIN_00032 4 (0.00 %) 4 784 433
CROMU_00016 18 (0.06 %) 31 988
KPRCA_00045 25 (0.00 %) 81 920 092
KPRCA_00009 27 (0.23 %) 11 512
NRFIN_00027 178 (0.73 %) 24 449
CROMU_00028 1154 (0.01 %) 18 626 977
CROMU_00010 1467 (0.18 %) 811 819
CROMU_00020 3492 (11.15 %) 31 306
KPRCA_00013 4589 (0.02 %) 18 746 620
CROMU_00002 14 977 (3.92 %) 381 793
NRFIN_00021 18 821 (33.26 %) 56 583
KPRCA_00029 31 800 (0.16 %) 19 604 258

user2, and (7) read a message by sending a message id to read. QSYM reaches the 7th step

that reads a message and generates test cases in the function, but Driller fails to reach the

function. This shows that QSYM’s efficient symbolic emulation is effective in discovering

sophisticated bugs hidden deeper in the program’s path.

2) With a limited time budget (5 to 30 minutes), Driller gets more coverage in applications

with multiple nested branches within quickly reachable paths (i.e., shallow paths) because

its snapshot mechanism is optimized for this case. Due to its slow emulation, Driller can

search only the branches close to the start of a program in a limited time (5 to 30 minutes).

When Driller reaches a nested branch (i.e., a chunked multiple cmp instructions), Driller can

fully leverage its snapshot to quickly explore these branches without involving re-execution.

In contrast, QSYM should re-execute the emulation with a newly generated input to reach

to the next branch. However, QSYM can gradually find the path via re-execution, and this

exploration will be efficient since the branches are also easily reachable by QSYM.

Incomplete emulation. Currently, QSYM does not completely emulate all instructions

(e.g., it cannot emulate floating point operations with symbolic operands), so that one can

think that its performance improvement is due to non-emulated instructions. To refute



Figure 3.10: The cumulative number of bugs found in the LAVA dataset with or without optimistic
solving by time.

Table 3.6: The number of bugs found by existing techniques and QSYM in the LAVA-M dataset.
VUzzer (R) represents the number of bugs that are found by VUzzer in our machine settings, and
VUzzer (P) represents the number of bugs in the VUzzer paper.

uniq base64 md5sum who

FUZZER 7 (25 %) 7 (16 %) 2 (4 %) 0 (0 %)
SES 0 (0 %) 9 (21 %) 0 (0 %) 18 (1 %)
VUzzer (R) 27 (96 %) 1 (2 %) 0 (0 %) 23 (1 %)
VUzzer (P) 27 (96 %) 17 (39 %) 0 (0 %) 50 (2 %)
QSYM 28 (100 %) 44 (100 %) 57 (100 %) 1238 (58 %)

Total 28 44 57 2136

this hypothesis, we measured the number of instructions that were not emulated by QSYM

(Table 3.5). Note that only 13 binaries out of 126 binaries have at least one instruction

that is not handled by QSYM. Moreover, only three of them have not-emulated instructions

that are more than 1% of their total instructions. Thus, we conclude that the performance

improvement was not due to the incompleteness of QSYM’s instruction modeling but to our

instruction-level symbolic execution.



Figure 3.11: Time elapsed for optimistic solving and the number of unique bugs found in the LAVA
dataset in a single execution of QSYM with an initial test case according to the number of constraints
in optimistic solving. The minus symbol (–) represents the absence of optimistic solving; therefore,
its elapsed time is zero in every case. Opt is our optimistic solving that only uses the last constraint
in an execution path, and the number after the plus symbol (+) represents the number of additional
constraints used for optimistic solving. For example, +1 represents that QSYM uses one additional
constraint; therefore, it uses two constraints for optimistic solving, the last one and the additional
one. The graph shows that our decision uses the last constraint helps QSYM find the most bugs while
spending less time.

3.5.4 Optimistic Solving

To evaluate the effect of optimistic solving, we compared QSYM with others using the LAVA

dataset [69]. LAVA is a test suite that injects hard-to-find bugs in Linux utilities to evaluate

bug-finding techniques, so the test is adequate for demonstrating the fitness of the technique.

LAVA consists of two datasets, LAVA-1 and LAVA-M, and we decided to use LAVA-M

consisting of four buggy programs, file, base64, md5sum and who, which have been used

for testing other systems such as VUzzer. We ran QSYM with and without the optimistic

solving on the LAVA-M dataset for five hours, which is the test duration set by the original

LAVA work [69]. To identify unique bugs, we used built-in bug identifiers provided by the

LAVA project.



The optimistic solving helps QSYM find more bugs by relaxing over-constrained vari-

ables. Figure 3.10 shows the cumulative number of unique bugs found by QSYM with or

without optimistic solving. In all test cases, running QSYM with optimistic solving super-

sedes the run without it by finding more bugs even at an early stage (within three minutes).

This result supports our design hypothesis that relaxing overly constrained variables would

benefit path exploration, and fuzzing will assist this well to pruning out false-positive cases

due to missing constraints. Take an example in base64; the program decodes an input string

using a table lookup (i.e., table[input[0]]) and further comparisons will be restricted

by that concrete value. In such a case, concolic execution concretizes the entire symbolic

constraints to the current input because the table lookup over-constrains input symbols to

have only one solution that is identical to an initial test case. Therefore, without optimistic

solving, although QSYM arrived at branches that must pass to trigger crashes, constraint

solver will return unsatisfiability. However, with the optimistic solving, even if the constraint

is unsatisfiable, the solver will solve only the last constraint and generate a potential crash

input, which helps fuzzer move forward if this optimistic speculation is correct.

We also compared QSYM with other state-of-the-art systems; QSYM outperformed them

(Table 3.6). At first, we tested VUzzer [39] in our environment. However, our results were

either equal (in md5sum and uniq) or worse (in base64 and who) than the original paper’s

results because our workstation has slow cores (2.0GHz). Instead, we decided to borrow

the original results. We also borrowed the other results from the evaluation of LAVA [39]

due to its anonymized testing systems. In Table 3.6, FUZZER represents the results of a

coverage-oriented fuzzer and SES represents the results of the symbolic execution. QSYM

found 14× more bugs than VUzzer and any other prior techniques in the LAVA-M dataset.

To evaluate our decision for optimistic solving that uses only the last constraint among

constraints in an execution path, we measured the elapsed time and the number of bugs

found in the LAVA-M dataset while changing the number of additional constraints. When

we include additional constraints, we chose constraints in the order in which they were



Figure 3.12: Total newly found coverage and elapsed time for libjpeg, libpng, libtiff, and file with
five seed files, except for libjpeg, which has only four files, that have the largest code coverage in
each project.

recently added. We used a single execution with the initial test case given by the dataset

author instead of end-to-end evaluation to limit the impact by fuzzing. The results are shown

in Figure 3.11. QSYM with optimistic solving always found more bugs than QSYM without

optimistic solving. However, considering additional constraints did not help find more bugs

and just increased solving time in most cases. In certain cases, adding more constraints can

reduce the time required for optimistic solving. This is not surprising since adding more

constraints might help to decide unsatisfiability.

3.5.5 Pruning Basic Blocks

To show the effect of the basic block pruning, we evaluated this technique with four widely-

used open-source programs, namely, libjpeg, libpng, libtiff, and file. We chose five seed test

cases that exhibit the largest code coverage (libjpeg has only four test cases so used just

four) from each project. We ran QSYM with 5-min timeout for running concolic execution

per each test case (19 cases in total, 5-min timeout for each test case, and up to 95 minutes)

and then measured execution time and newly found code coverage.

Figure 3.12 shows that basic block pruning not only reduced execution time (63.6 min

versus 94.2 min) but also helped to find more code coverage (13.2% versus 11.8%) in the real-

world software. Take an example of libtiff; the function TIFFReadDirectoryFindFieldInfo()

keeps introducing new constraints because it contains a loop with a symbolic branch. Basic



block pruning made QSYM concretely execute the function and focus on other interesting

code, whereas running without it made the emulation stuck there for generating constraints.

The other design decisions, context-sensitivity and grouping, are essential to increase

code coverage. Figure 3.12 also shows code coverage and time when we disabled each

grouping and context-sensitivity. If we disable grouping and use the AFL’s algorithm

as is, the pruning is too fine-grained, so it harms code coverage. A similar result was

observed when we disabled context-sensitivity. In this case, QSYM prunes basic blocks

too aggressively, prohibiting the generation of solvable constraints. Thus, these two design

decisions are necessary to minimize the loss of code coverage.

3.6 Analysis of New Bugs Found

Out of 13 new bugs QSYM found, we took two interesting cases from ffmpeg and file in

which we can clearly convey our idea. For each case, we attempt to answer how QSYM was

able to find them, which features of QSYM helped find them, and most importantly, why

OSS-Fuzz missed them.

3.6.1 ffmpeg

Figure 3.13 shows the simplified code of the ffmpeg bug that QSYM found, and the test

case generated by QSYM to trigger it. To trigger the bug, a test case should meet very

complicated constraints (Lines 3–10), which is nearly impossible for fuzzing. In contrast,

QSYM successfully generated a new test case that can pass the complicated branch by

modifying the seven bytes of a given input. AFL was able to pass the branch with the new

test case and eventually reached the bug.

3.6.2 file

Figure 3.14 shows the simplified code of the file bug that QSYM found. The bug is that the

check of descsz becomes a tautology because of the incorrect use of the logical OR operator



1 // @libavcodec/x86/mpegvideodsp.c:58 (ffmpeg 3.4)
2 if ( ((ox ^ (ox + dxw))
3 | (ox ^ (ox + dxh))
4 | (ox ^ (ox + dxw + dxh))
5 | (oy ^ (oy + dyw))
6 | (oy ^ (oy + dyh))
7 | (oy ^ (oy + dyw + dyh))) >> (16 + shift)
8 || (dxx | dxy | dyx | dyy) & 15
9 || (need_emu && (h > MAX_H || stride > MAX_STRIDE)))

10 { ... return; }
11 // the bug is here

// input

< 00000010: 0120 0040 7800 000e 0001 0000 0820 8403

< 00000020: 0747 013f 303f 3f3f 7f7f 7fff 0080 8080

---

// output

> 00000010: 0120 0040 7800 000e 0008 0020 0020 47c3

> 00000020: 4040 013f 303f 3f3f 7f7f 7fff 0080 8080

Figure 3.13: The ffmpeg code about the bug found by QSYM and the test case generated by QSYM

to reach it. AFL alone was unable to reach the bug because it is almost infeasible to randomly
generate input to pass the complicated condition in Lines 3–10.

1 // @src/readelf.c:513 (file 5.31)
2 if (namesz == 4
3 && strcmp((char *)&nbuf[noff], "GNU") == 0
4 && type == NT_GNU_BUILD_ID
5 && (descsz >= 4 || descsz <= 20)) {...}

Figure 3.14: The file bug that QSYM found. The check for descsz is always true due to the incorrect
use of logical OR operator.

while parsing the ELF’s note section. Interestingly, even though the bug is triggered when

parsing an ELF file, initial seed files that we extracted from the tests directory in the file

project do not contain any ELF files. In other words, QSYM successfully crafted a valid ELF

file with a note section and triggered the vulnerability. This bug is difficult to be detected by

a fuzzer because randomly crafting a valid ELF file with a note section starting with “GNU”

is almost infeasible. Note that a concurrent bug report [84] detected this bug using a static

analysis tool cppcheck [89].



3.7 Discussion

We discuss the potentials of QSYM’s technique beyond hybrid fuzzing, using QSYM with

other fuzzers, and the limitations of QSYM.

Adoption beyond fuzzing. Basic block pruning (§3.3.3) can directly be applied to the

other concolic executors as a heuristic path exploration strategy. Take an example of testing

file parsers; this technique allows QSYM to focus on control data (i.e., headers), which leads

to new code coverage [90], rather than payloads, which will consume a lot more time to

analyze but do not discover any new code coverage. We envision that the same strategy may

help other concolic executors on testing programs with complex data processing logic such

as data compression, Fourier transform, and cryptographic logic. By adopting this, concolic

executors can automatically truncate such complex yet irrelevant logic and stay focused on

the input fields that determine a program’s control flow.

Optimistic solving (in §3.3.2) could also be applied to other domains to speed up

symbolic execution, with a condition if the domain runs an efficient validator like a fuzzer.

This cannot be directly applied to general concolic executors because optimistic solving

relaxes an overly-constrained path to generate some potentially correct inputs. It will

generate a haystack of false positives that deviate the program state from the expected state.

However, in hybrid fuzzing like QSYM, because the fuzzer can efficiently validate whether

the input drives the program to an expected state (i.e., finding a new code coverage) or not,

we can quickly extract some useful results from the haystack. Likewise, other domains,

for instance, automatic exploit generation, can adapt this technique to speed up for quickly

reaching to the vulnerable state and crafting an exploit. After that, it could also efficiently

validate a crafted exploit by just executing it and observe the core dump to check if it is a

false positive.

Complementing each other with other fuzzers. Hybriding QSYM with other fuzzers

better than AFL will show better results. While other fuzzers exist that enhance AFL, such



as VUzzer [39] and AFLFast [34], in this work, we applied QSYM to AFL in order to fairly

present the enhancement only by the concolic execution. QSYM can complement the others

by quickly reaching the branch with narrow-ranged, complex constraints and solving them

to generate test cases for that point. Moreover, QSYM can also be complemented by other

fuzzers. Frequency-based analysis step and Markov chain modeling in AFLFast, as well

as error-handler detection in VUzzer, could generate more meaningful input, which would

result in using QSYM’s concolic executor more efficiently.

Limitations. Although fast, QSYM is a concolic executor, so its performance is still

bound to theoretical limits like constraint solving. Currently, QSYM is specialized to test

programs that run on the x86_64 architecture. Unlike other executors that adopted IR,

QSYM cannot test programs that run on other architectures. We plan to overcome this

limitation by improving QSYM to work with architecture specifications [71, 91] rather than a

specific architecture implementation. Additionally, QSYM currently supports only memory,

arithmetic, bitwise, and vector instructions, all of which are essential for vulnerability

discovery. We plan to support other instructions including floating-point operations to

extend QSYM’s testing capability.



CHAPTER 4

HYBRIDRA: HYBRID FUZZING FOR KERNEL FILE SYSTEMS

4.1 Introduction

In this work, we propose HYBRIDRA, a hybrid fuzzer for Linux file systems. HYBRIDRA

improves the state-of-the art file fuzzer, Hydra, by introducing concolic execution. To

tackle the challenges in concolic execution for file systems, we have reformulated Hydra’s

approach for concolic execution; HYBRIDRA focuses on the metadata of file system images

like Hydra and fixes the checksum using its file-system-specific modules. Moreover, to

reduce emulation overhead from large software like Linux Kernel, HYBRIDRA adopts a

technique called compilation-based concolic execution [10, 11, 12], instruments a binary

for concolic execution to eliminate the overhead from symbolic emulation in concolic

execution. Unlike SymCC [10], which recently proposed the same technique, HYBRIDRA

chooses another design from Kirenenko [14], which uses different memory modeling using

shadow memory. This design is more preferable for HYBRIDRA because of its support of

multi-threading as well as better performance (i.e., 1.57× in our evaluation).

Additionally, HYBRIDRA suggests new heuristics called staged reduction to efficiently

generate test cases for hybrid fuzzing. Instead of relying on a single strategy in test case

generation, staged reduction combines multiple strategies in the process of hybrid fuzzing.

For example, the current HYBRIDRA uses three reduction mechanisms: linear reduction [4],

basic block reduction, and no reduction. By gradually applying cheaper strategies to more

expensive ones, HYBRIDRA can generate diverse test cases and thereby explore input space

more efficiently, while preserving the completeness of concolic execution.

Our evaluation shows that HYBRIDRA outperforms the state-of-the-art file system fuzzer

Hydra by achieving higher code coverage in all file systems — btrfs, ext4, ftfs, and xfs—



that we tested. More importantly, HYBRIDRA discovered 10 bugs, and four of which are

new ones in btrfs, which have been highly tested by other fuzzers, Hydra and Syzkaller.

Notably, four out of the 10 bugs were directly discovered by our newly introduced concolic

execution module, which shows its effectiveness in bug finding for file systems.

This work makes the following contributions:

• System design of hybrid fuzzing for file systems We design and implement a full-

fledged hybrid fuzzer for file systems, HYBRIDRA, by applying concolic execution

to the state-of-the-art file system fuzzer, Hydra. For efficient concolic execution, it

instruments Hydra’s executor based on library OS(LibOS) using Kirenenko, which

is a compilation-based concolic executor supporting multi-threaded applications.

Moreover, we reformulate Hydra’s module to overcome the challenges in concolic

execution; this makes HYBRIDRA focus on metadata of a file system image to com-

plement the limited scalability of concolic execution, and it uses pre-defined rules

to correct the checksum, which is difficult for concolic execution due to its complex

constraints [45].

• New heuristics for hybrid fuzzing We propose new heuristics to combine existing

heuristics for test case generation in concolic execution, called staged reduction.

Staged reduction gradually applies multiple heuristics for test case generation from

cheaper to more expensive ones. Consequently, it quickly explores the input space of

file systems and also eventually reaches deep states that are only accessible using the

expensive analysis.

• Practical impacts HYBRIDRA found 10 bugs including four new ones in btrfs,

which has been thoroughly tested by fuzzing. Our evaluation shows that concolic

execution directly discovers many of these bugs, which shows its usefulness in bug

finding.

The rest of this work is organized as follows. §4.2 shows motivation and challenges to

design a hybrid fuzzer for file systems. §4.3 and §4.4 depict the design and implementation



Table 4.1: The size of a raw file image and its metadata in each file system. Even though Hydra’s
approach significantly reduces the size of data to fuzz (from a raw image to metadata), it is still huge
for effective fuzzing.

File system btrfs ext4 f2fs xfs

Image size (MB) 100 2 38 16
Metadata size (KB) 40 197 48 50

of HYBRIDRA, respectively. §4.5 evaluates HYBRIDRA’s design decisions and compare it

with the-state-of-the-art file system fuzzer, Hydra. §4.6 explains HYBRIDRA’s limitations

and potential applications.

4.2 Motivation and Challenges

A file system is one of the most essential features of operating systems. It provides ab-

straction of hardware resources for files (e.g., disks) for efficiency and security. Users can

utilize it by mounting a disk image and can interact using system calls for file systems (e.g.,

open(), read(), and write()). Most commodity OSes implement the file system as part of

the kernel; therefore, a single vulnerability in the file system can subvert the entire system

because of its high privilege [92, 93, 94].

Many file system fuzzers have been proposed to discover vulnerabilities in file systems.

They randomly generate either file images or system calls until a system crashes. Recently,

Janus [68] combined them to explore this two-dimensional space of a file system: images

and system calls. Hydra [15] improves on Janus’s method to discover other types of bugs

beyond memory corruptions; it provides an extensible framework for supporting multiple

types of checkers for various bug types.

Fuzzing for file systems is fundamentally weaker than one for other applications due

to its large input size. Even though Hydra focuses only on the metadata of file system

images, the metadata are still too large (i.e., a few KB); therefore, Hydra has disabled

deterministic fuzzing, which is effective in discovering immediate test cases from the current

one. Concolic execution can help fuzzing by systematically exploring paths from the current



test case and generating immediate test cases; however, it is challenging to apply concolic

execution in file systems due to its large image size, use of checksums, and gigantic code

size.

4.2.1 P1. Large and checksum-protected file system images

Concolic execution is challenging to test file systems due to its special form of input, a

file system image. Unlike the inputs of other common software, a file system image has

several restrictions for its minimum size and a sector size alignment, which inflates its size.

Consequently, a raw file image size often exceeds the size of the fuzzing input suggested by

AFL (1MB), as shown in Table 4.1. Moreover, a file system introduces checksums to protect

its data from unexpected corruptions. This is troublesome for concolic execution due to its

complex constraints. More seriously, an existing automated method to fix the checksum [45]

cannot be applied to a file system because it assumes the unique checksum, but a checksum

routine in a file system is often hierarchical to support extremely large disk data.

Our approach. Reformulate Hydra’s approach to tame a file system image for fuzzing

to concolic execution. In particular, HYBRIDRA selectively symbolizes the metadata

of a file system image, which is only a few KBs (see Table 4.1). Moreover, we have

adopted Hydra’s checksum correction module, which is implemented by a pre-defined

rule for each file system.

4.2.2 P2. Gigantic code size

Concolic execution on a file system is also non-trivial because of its large code size. The

file system is implemented as part of the most gigantic and complex software in the world:

operating systems. For example, Linux consists of more than 27 million lines of code [95],

and each file system is much larger than usual applications, as shown in Table 4.2. We have

compared file systems with four popular applications — libjpeg, libpng, libtiff, and file —

and conclude that file systems have 4.5 × more code on average. It is worth noting that this



Table 4.2: The lines of code for four popular user-space applications — libjpeg, libpng, libtiff, and
file — and file systems in Linux Kernel. It shows that a file system is much larger than a typical
application (on average 4.5 ×) even without considering other features in Kernel.

Type Name Version Lines

Userspace

libjpeg v9d 28,420
libpng v1.6.37 25,876
libtiff v4.1.0 34,303
file v5.39 16,288

File systems

ext4

v5.30

90,619
btrfs 150,181
xfs 146,212
f2fs 79,922

result excludes core functionalities in Linux Kernel, which needs to be analyzed for correct

concolic execution. In particular, if we fail to analyze a library function from Linux Kernel

that is used in a file system, it engenders incomplete constraints, making it lose interesting

test cases for the file system.

To analyze file systems, full system emulation has been used, which is fundamentally

inefficient. S2E and its successors [5, 62, 54] aim at generic concolic execution tools for

kernel and fully emulate it using QEMU [53]. This is beneficial to test various features in an

operating system; however, it is overkill for testing file systems, which can be emulated by

library OSes(LibOS) such as LKL [96]. Since LKL is an application in userland, existing

binary concolic executors [97, 63, 98, 64] can be applied. Unfortunately, these solutions

fail to take advantages of having source code like Linux Kernel, which can make concolic

execution more efficient.
Our approach. Instrument a LibOS-based executor for concolic execution, which is

known as compilation-based concolic execution [10, 12, 11], using Kirenenko [14].

This allows us to perform concolic execution on a file system more efficiently by

utilizing the underlying host kernel and existence of source code. We choose Kirenenko

thanks to its several advantages for file systems: better performance and multi-threading

support.



4.2.3 P3. Complex constraints

Theoretically, concolic execution is a desirable solution for test case generation; however,

it is limited due to complex constraints from real-world software. Concolic execution first

extracts symbolic constraints from its execution and make test cases using a technique

called constraint solving. Constraint solving is inherently inefficient; it is NP-complete,

according to computational complexity theory. Thus, constraint solving often fails to

generate interesting test cases even with complete constraints.

To address this problem, many constraint reduction mechanisms have been proposed.

For example, SAGE [4] reduces constraints into linear expressions, which have an efficient

algorithm to solve [99]. Moreover, QSYM discards constraints from repeatedly executed

code based on the practical observation that such constraints are less interesting in bug

finding and often stall further exploration of concolic execution. Unfortunately, there is no

single winner among these mechanisms; they have their own pros and cons. For example,

SAGE’s linear reduction can generate test cases quickly; however it limits the power of

concolic execution to support only certain types of expressions and thereby loses other

interesting cases. On the contrary, QSYM’s basic block reduction is more expressive, but it

is more expensive than SAGE’s without any algorithmic improvement.

Our approach. We suggest a new mechanism called staged reduction, inspired by

ensemble systems [100, 101]. Staged reduction takes multiple reduction mechanisms

ordered by their speed and gradually applies them. Consequently, it can efficiently

explore the input space for file systems while preserving the power of concolic execution.

4.3 Design

To address the limitations of classical fuzzing, we have applied concolic execution to Hydra,

designing a new hybrid fuzzer, HYBRIDRA. Figure 4.1 shows an overview of HYBRIDRA.



H
yb

ri
d

ra

In
pu

t m
u

ta
to

rs

C
on

co
li

c
im

ag
e

m
ut

at
io

n

L
ib

O
S

-b
as

ed
 e

xe
cu

to
r

in
st

ru
m

te
n

te
d

fo
r 

co
de

 c
ov

er
ag

e

C
od

e 
co

ve
ra

ge

im
ag

e 
n'

sy
sc

al
l n

'

N
ew

 in
p

u
t

C
ra

sh
es

P
er

-f
il

e 
sy

st
em

 m
od

u
le

 (
§3

.4
)

M
et

ad
at

a 
 e

xt
ra

ct
in

g

C
he

ck
su

m
 f

ix
in

g

S
ym

b
ol

iz
ed

 in
p

u
t

sy
sc

al
l n

sy
sc

al
l n

im
ag

e 
n

In
pu

t c
or

pu
s

im
ag

e 
n

sy
sc

al
l n

im
ag

e 
n

sy
sc

al
l n

im
ag

e 
n

sy
sc

al
l n

O
ld

 in
p

u
t

im
ag

e 
n

sy
sc

al
l n

O
ld

 in
p

u
t

im
ag

e 
n'

sy
sc

al
l n

'

N
ew

 in
p

u
t

L
ib

O
S

-b
as

ed
 e

xe
cu

to
r

in
st

ru
m

en
te

d
fo

r 
co

n
co

li
c 

ex
ec

u
ti

on
(§

4.
3)

C
on

st
ra

in
t s

ol
ve

r
(e

.g
., 

z3
)

R
ed

u
ce

d
 

co
n

st
ra

in
ts

 (
§3

.4
)

im
ag

e 
n

sy
sc

al
l n

C
h

ec
k

su
m

-b
ro

k
en

 in
p

u
tC

on
co

li
c 

im
ag

e 
m

u
ta

ti
on

R
an

do
m

sy
sc

al
l

m
ut

at
io

n

R
an

do
m

im
ag

e
m

ut
at

io
n

Fi
gu

re
4.

1:
O

ve
rv

ie
w

of
H

Y
B

R
ID

R
A

an
d

de
ta

ils
fo

ri
ts

co
nc

ol
ic

ex
ec

ut
io

n
m

od
ul

e.
H

Y
B

R
ID

R
A

ge
ne

ra
lly

ad
op

ts
H

yd
ra

’s
de

si
gn

fo
re

xp
lo

ri
ng

tw
o

di
m

en
si

on
al

sp
ac

e
of

fil
e

sy
st

em
s:

an
im

ag
e

an
d

sy
st

em
ca

lls
.

H
Y

B
R

ID
R

A
im

pr
ov

es
H

yd
ra

w
ith

its
co

nc
ol

ic
ex

ec
ut

io
n.

It
s

co
nc

ol
ic

ex
ec

ut
io

n
se

le
ct

iv
el

y
sy

m
bo

liz
es

m
et

ad
at

a
of

a
gi

ve
n

fil
e

im
ag

e
an

d
cr

af
ts

ym
bo

lic
ex

pr
es

si
on

s
us

in
g

its
L

ib
O

S-
ba

se
d

ex
ec

ut
or

in
st

ru
m

en
te

d
fo

r
co

nc
ol

ic
ex

ec
ut

io
n.

T
he

n,
H

Y
B

R
ID

R
A

in
vo

ke
s

co
ns

tr
ai

nt
so

lv
in

g
af

te
rr

ed
uc

in
g

its
co

m
pl

ex
ity

fo
re

ffi
ci

en
ts

ol
vi

ng
.H

Y
B

R
ID

R
A

fin
al

ly
re

tu
rn

s
a

ne
w

in
pu

tb
y

fix
in

g
br

ok
en

ch
ec

ks
um

us
in

g
its

pe
r-

fil
e

sy
st

em
m

od
ul

e.



HYBRIDRA mostly adopts Hydra’s design, which is the state-of-the-art file system fuzzer.

Unlike other file system fuzzers [32, 65, 102, 29] that modify either file system images

or system calls, Hydra mutates both of them to explore the two-dimensional input space

of file systems. From its input corpus, Hydra picks an input and modifies its images or

system calls to generate new test cases. Similar to other gray-box fuzzing, Hydra runs

an instrumented binary to efficiently measure the code coverage of its execution. After

execution, Hydra reports crashing inputs or inserts interesting test cases to its input corpus

for further exploration. Hydra’s binary is based on LibOS, particularly LKL, for its efficiency

and reproducibility.

HYBRIDRA improves Hydra by introducing a new concolic mutation module. HYBRIDRA’s

concolic module consists of three components: per-file system module (§4.3.1), a LibOS-

based executor that is compiled for concolic execution (§4.3.2), and constraint reduction

(§4.3.3). HYBRIDRA works as follows: First, HYBRIDRA’s per-file system module sym-

bolizes the metadata of its input image to reduce its scope of analysis. Second, it runs a

LibOS-based executor instrumented for concolic execution to craft symbolic constraints.

From its symbolic constraints, HYBRIDRA reduces their complexity according to the current

strategy, which is described in §4.3.3. Then, a constraint solver will generate a new input by

solving the given constraints and fixes its checksum to make it legitimate.

4.3.1 Per-file system module

HYBRIDRA’s per-file system module is in charge of (1) selectively symbolizing a given

image and (2) fixing the checksum of a new input from a constraint solver. HYBRIDRA

only symbolizes the metadata of its image because most of the interesting behaviors are

determined by its metadata even though a raw file system image is extremely large (e.g.,

100MB in btrfs). Moreover, it fixes the checksum of inputs from a constraints solver. Similar

to other concolic executors [9, 5], HYBRIDRA relies on an external constraint solver to make

test cases from constraints. However, its constraint is incomplete for efficiency (see, §4.3.3);



therefore, the checksum of its test case is often incorrect. To prevent rejection due to this

incorrect checksum, HYBRIDRA’s per-file system module repairs it using domain specific

rules.

Interface. To support a specific file system, we need to write the following two functions.

• compress: Returns metadata and their offsets from a given image.

• fix_checksum: Corrects the checksum of a given image.

HYBRIDRA universally defines the decompress function; it recovers an image from given

metadata. It can be constructed using an original image and the above two functions:

compress and fix_checksum. In particular, decompress overwrites metadata to the original

image at the offsets from compress and repairs the checksum using fix_checksum.

Complexity. Even though such a module needs to be implemented for each file system,

it is still tractable. To specify metadata and checksum information in a file system, we

need to follow the specification for a file system; however, this requires only a shallow

understanding of the file system format, and many file system utilities (e.g., f2fsprogs or

xfsprogs) already have code base regarding this information. Therefore, we have reused

these utilities and successfully implemented this module with only a few hundred lines of

code, as shown in Table 4.5. We also have observed that these issues (i.e., huge image size

and checksum) are also problematic for fuzzing; Hydra already has implemented similar

functionalities for fuzzing. Therefore, we mostly reformulate its component for concolic

execution. The current HYBRIDRA supports four file systems — btrfs, ext4, ftfs, and

xfs— which Hydra includes in its open-source code.

4.3.2 Compilation-based Concolic Execution

To improve the execution performance of concolic execution, HYBRIDRA adopts compilation-

based concolic execution [10, 11, 12]. Unlike emulation-based concolic execution, which

relies on Dynamic Binary Translation (DBT) to produce symbolic expressions, compilation-

based concolic execution instruments and compiles a program for concolic execution. This



Table 4.3: The memory layout of HYBRIDRA for shadow memory.

Start End Description

0x000000000000 0x000000010000 Reserved by Kernel
0x000000010000 0x400000000000 Shadow memory
0x400000000000 0x400c00000000 Symbol table
0x4000c0000000 0x400d00000000 Hash table
0x400d00000000 0x700000008000 Unused
0x700000008000 0x800000000000 Application memory

can improve performance significantly because it can (1) completely eliminate complex anal-

yses in DBT such as IR transformation and (2) execute non-symbolic instructions natively

without interpretation. Compilation-based concolic execution has been widely adopted in

early concolic execution works [11, 12], and recently, SymCC [10] has revisited this concept

with modern compiler techniques. As a result, it speeds up the existing concolic execution

by up to three orders of magnitude compared to QSYM.

Workflow. Instead of using SymCC, HYBRIDRA employs Kirenenko [14], which is

another compilation-based concolic executor. As shown in Figure 4.2, Kirenenko first

converts code written in C/C++ to LLVM IRs. Then, following concrete execution, it inserts

functions for symbolic execution, which starts with _kirenenko in the example. These

functions build symbolic expressions based on the symbolic and concrete values of current

execution. If a binary hits symbolic and is worth solving, it generate test cases by invoking

a constraint solver. HYBRIDRA evaluates this worthiness based on code coverage similar to

other works [4, 8].

Comparison with SymCC. Conceptually, SymCC and Kirenenko are equivalent; however,

they are different in implementations, particularly for memory modeling and symbol genera-

tion as shown in Figure 4.3. Concolic execution needs to maintain mappings between an

address and a symbolic expression to obtain corresponding symbolic expressions in memory.

SymCC models memory by emulating a page table, while Kirenenko uses linear shadow

memory similar to AddressSanitizer [61]. Since shadow memory only requires constant

time complexity, shadow memory is more efficient than a page table for memory modeling,
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1 int _last_symbol;
2 int *_shadow_memory;
3 SymExpr _symbols[MAX_SYMBOLS];
4

5 int _kirenenko_read_memory(void* memory) {
6 return _shadow_memory[memory];
7 }
8

9 int _kirenenko_build_symbol(Kind kind, int symbol1, symbol2) {
10 int new_symbol = _last_symbol++;
11 _symbols[new_symbol] = {kind, symbol1, symbol2};
12 return new_symbol;
13 }

(a) Pseudocode for instrumentation in Kirenenko.

1 std::map<void*, SymExpr*> _shadow_memory;
2

3 SymExpr* _symcc_read_memory(void* memory) {
4 return _shadow_memory[memory];
5 }
6

7 SymExpr* _symcc_build_symbol(Kind kind, SymExpr* symbol1, SymExpr* symbol2) {
8 return new SymExpr(kind, symbol1, symbol2);
9 }

(b) Pseudocode for instrumentation in SymCC.

Figure 4.3: Differences between Kirenenko and SymCC in their instrumentation. Both code snippets
are semantically same; however, Kirenenko improves performance by avoiding logarithmic std::map
lookup and memory allocation.

which requires logarithmic time [61]. Moreover, HYBRIDRA uses pre-allocated memory for

making symbols. This can eliminate expensive memory allocations for symbol generation;

however, it limits the number of symbols in concolic execution. Currently, HYBRIDRA

allows 230 symbols, which is enough for evaluating file systems in Linux. Therefore, we

did not adopt any advanced technique to resolve the shortage of limited symbols [103].

SymCC claims that its performance difference is insignificant because page table lookup is

logarithmic in the number of pages; however, it is fairly slow (i.e. 1.57 × according to our

evaluation) for large software such as Linux Kernel.

Memory Layout. To utilize shadow memory and pre-allocated symbols, we used a

specially designed memory layout, as shown in Table 4.3. Theoretically, an application can



Table 4.4: Failures from SymCC to run HYBRIDRA’s LibOS-based executor. In most of cases, it
fails to support multi-threading and suffers from deadlock.

File system Failure

btrfs z3 exception
ext4 Deadlock
f2fs Deadlock
xfs Deadlock

use 256 memory, which will have one-to-one mapping with its shadow memory. Since each

symbol is 4-bytes, the shadow memory is 4× larger than the application’s memory. The pre-

allocated symbol table occupies 48GB of memory, and each symbol is 48-bytes;therefore,

the symbol table can hold 230 symbols. The hash table in the memory layout serves as

a cache for generating a symbol. To reduce the number of symbols, HYBRIDRA checks

the hash table before making a new symbol whether the equivalent one has been already

constructed. In this case, HYBRIDRA reuses the existing symbol instead of making a new

one. This design is equivalent to SynFuzz [103] as well as LLVM’s DataflowSanitizer [104].

Multi-threading. Kirenenko’s design is more suitable for HYBRIDRA because of its multi-

threading support. Notably, the Linux Kernel Library (LKL) uses multi-threading to emulate

kernel. Therefore, our concolic execution needs to support multi-threading to run our LKL-

based executor. Unfortunately, SymCC does not support multi-threading. More seriously,

its design is fundamentally limited because its centralized memory requires exclusiveness

for every memory operation. In particular, its memory is managed by std::map, which

is essentially a red-black tree. This type of data structures requires locking whenever

its content is being modified, which is equivalent to an application’s memory write in

concolic execution. Therefore, SymCC currently fails to support HYBRIDRA’s LibOS-based

executor for file systems for various reasons (see Table 4.4). Unlike SymCC, HYBRIDRA’s

flat memory model is safe if a program itself is thread-safe (i.e., no race condition). In

HYBRIDRA, each address has its own slot in the shadow memory; there is no concurrent

memory modification without race condition.



However, the current implementation of HYBRIDRA is still incomplete for full thread-

safety; it assumes a single user for its internal data structures, e.g., a symbol hash table. We

leave full thread-safety as future work because current design is acceptable for HYBRIDRA;

only a main thread in LKL performs file system operations and thus uses our internal data

structures to introduce new symbols even though memory can be modified by multiple

threads. We believe that this issue can be resolved by replacing existing data structures into

thread-safe ones [105].

Improvements from Kirenenko. For HYBRIDRA, we improved Kirenenko largely in

three aspects. First, we introduce several heuristics for test case generation, including staged

reduction (§4.3.3) and unrelated constraint elimination [4, 12]. In particular, unrelated

constraint elimination significantly improves performance of hybrid fuzzing; it reduces the

number of constraints to solve by leveraging concrete inputs [4]. Second, we introduce

partial symbolization to Kirenenko. Similar to other concolic executors [10], Kirenenko

can only symbolize an entire file. To symbolic only metadata of a file system image,

we introduce new APIs (i.e., _kirenenko_set_concolic) for specifying a symbolic range.

Lastly, we improve Kirenenko’s sequence symbol simplification [4]; if t is a 16-bit symbol,

and t1 = extract(t, 0, 8) and t2 = extract(t, 8, 16), Kirenenko converts concat(t1, t2) into

t for optimization. Such sub-symbols are frequent in concolic execution because memory is

byte granularity but registers are multi-byte one. Therefore, if concolic execution attempts

to store a symbolic value from a register to memory, it first needs to split the symbol into

byte-size sub-symbols. Because of its popularity, all concolic executors, including QSYM

and KLEE, have implemented this feature, particularly, in their symbol generation. However,

this can introduce a temporary symbol (e.g., 24-bit symbol in computing 32-bit one), which

is restricted in Kirenenko because of its limited number of symbols. Thus, Kirenenko adopts

SynFuzz’s [103] method; it optimizes load/store directly from symbolic inputs. Particularly,

Kirenenko introduces one special symbol, called Load, when it is just sequence of symbolic

inputs instead of making multiple byte-per-byte concatenations. We further optimize this by



checking the most frequent cases in symbol generation; a final symbol can be represented

with the parent of sub-symbols (e.g., the previous t1 and t2 case). This can further reduce the

number of symbols even sub-symbols are not directly from symbolic inputs. As an immature

project, we also helped to fix several bugs and other minor improvements in Kirenenko [106,

107, 108].

4.3.3 Staged Reduction

Constraint solving, which is the final step for making test cases in concolic execution,

is arguably expensive. Theoretically, constraint solving is NP complete; no polynomial

solution has been discovered. Therefore, constraint solving often becomes a bottleneck in

concolic execution, and many techniques have been suggested for making constraint solving

efficient in concolic execution [109, 110].

One of the common ways to speed up constraint solving is reduction, so-called con-

cretization or pruning, which simplifies the constraints to solve. Historically, there are two

types of reduction: (1) reduction for complexity of constraints and (2) reduction for the

number of constraints. Definitely, such reduction has trade-offs; it breaks the soundness

and completeness of concolic execution. As pointed out in QSYM, broken soundness is

acceptable in hybrid fuzzing because coverage-guided fuzzing will efficiently filter out

incorrect test cases from unsound concolic execution. However, incompleteness could be

troublesome; it makes concolic execution miss interesting test cases for fuzzing. Existing

concolic executors sacrifice this loss of information because of the benefits of reduction.

In this section, we discuss several reduction mechanisms as well as our newly proposed

one, staged reduction, which benefits from multiple reduction mechanisms inspired from

ensemble systems [101].

Linear reduction. Linear reduction converts non-linear expressions into linear ones by

substituting concrete values from a given test case. A linear expression is attractive for

software testing because it turns constraints solving into linear system solving, which has



1 def evaluate_concolic_linear(self, tc, expr):
2 if self.is_non_linear(expr.kind) \
3 and self.is_symbolic(expr.left) \
4 and self.is_symbolic(expr.right):
5 return self.evaluate_concrete(tc, expr)
6 else:
7 return self.evaluate_symbolic(tc, expr)

(a) Pseudocode for linear reduction. For brevity, we assume that there are only two types of expressions:
addition and multiplications; however, this can be easily generalized to other operations.

1 def evaluate_concolic_bb(self, tc, expr):
2 if self.is_too_frequent(expr):
3 return self.evaluate_concrete(tc, expr)
4 else:
5 return self.evaluate_symbolic(tc, expr)

(b) Pseudocode for basic block reduction. Currently, is_too_frequent is defined in the same way of QSYM
using bucketization based on call stacks and a current program counter.

1 def evaluate_concolic_stage(tc, expr):
2 if tc.stage == 1:
3 return self.evaluate_concolic_linear(tc, expr)
4 elif tc.stage == 2:
5 return self.evaluate_concolic_bb(tc, expr)
6 else:
7 assert(tc.stage == 3)
8 return self.evaluate_symbolic(tc, expr)

(c) Pseudocode for staged pruning.

Figure 4.4: Pseudocode for multiple reduction mechanisms.

an efficient algorithm (e.g., Simplex method [99]). Moreover, many branch constraints in

real-world software can be covered by linear expressions, as shown in various research [111,

112, 46]. One of the most famous projects using this linear reduction is SAGE [4], and

recently, Eclipser [46] has suggested a novel way to solve this problem without using

constraint solving, which is inherently expensive.

Figure 4.4a shows the pseudocode for linear reduction. HYBRIDRA considers several

linear expressions, including arithmetic addition, logical addition, symbol extraction, and

symbol concatenation. The algorithm works as follows: if our symbolic expression is

non-linear with symbolic operands, it returns a concrete value based on a current input.

Consequently, the final constraints should contain only linear expressions, which can be



efficiently solvable.

Basic block reduction. On the contrary, QSYM suggests another way, so-called basic

block reduction, which limits the number of constraints from the frequently executed basic

blocks. It is based on a practical observation for bug finding; repeatedly executing code is

generally not interesting and makes analysis complex. A few such examples are encryption,

hashing, and decompression, which can stall further exploration of concolic execution.

Unlike linear reduction, it can express arbitrary types of expressions but has no theoretical

promise for efficient solving.

Figure 4.4b shows the pseudocode for basic block reduction. Similar to linear reduction,

it concretizes a symbolic expression if its code is too frequently executed. The definition

of is_too_frequent depends on the internal policy of concolic execution; HYBRIDRA

borrows one from QSYM. In more details, HYBRIDRA relies on bitmap-style tracking for

coverage with context sensitivity; it symbolizes only a logarithmic number of expressions

from one basic block.

Staged reduction. To achieve both effectiveness of reduction and completeness of analysis,

HYBRIDRA leverages a new technique called staged reduction. The key idea of staged

reduction is to chain multiple reduction mechanisms ordered by their difficulty, similar to

ensemble [101, 100]. As shown in Figure 4.4c, HYBRIDRA gradually moves towards a

more expensive strategy only when its exploration is blocked (i.e., no progress from one

stage). Currently, HYBRIDRA uses three reduction mechanisms: linear reduction, basic

block reduction, and no reduction. Consequently, it can boost the exploration of concolic

execution using more efficient algorithms and can escape blockage using more powerful

ones.

Figure 4.5 shows how HYBRIDRA schedules multiple mutation strategies. Largely,

HYBRIDRA has three mutation strategies: random image mutation, concolic image mutation,

and system call mutation. Following Hydra, HYBRIDRA performs image mutation before

system call one; it makes HYBRIDRA fully explore corrupted images before executing



1 # class Hybridra
2 def fuzz_one(self):
3 tc = self.corpus.pick()
4 found_new = self.random_img_mutator.fuzz(tc)
5 if found_new: return
6

7 # Newly introduced in Hybridra compared to Hydra
8 + found_new = self.concolic_img_mutator.fuzz(tc)
9 + if found_new: return

10

11 found_new = self.syscall_mutator.fuzz(tc)
12 if found_new: return
13

14 # class ConcolicImageMutator
15 def fuzz(self, tc):
16 if not will_concolic(tc): return
17

18 timedout = self.fuzz_internal(tc)
19

20 # Move to the next stage if concolic execution successfully finishes,
21 # or it fails to complete even after pre-defined trials.
22 if not timedout or tc.trial >= MAX_TRIAL:
23 tc.trial = 0
24 tc.stage += 1
25 self.update_stage()
26 else:
27 tc.trial += 1
28

29 def will_concolic(self, tc):
30 # ’favored’ test case is the most efficient one for specific code coverage
31 return tc.favored and tc.stage <= self.cur_stage
32

33 def update_stage(self):
34 # Prioritize lower stages for efficient test case generation
35 self.cur_stage = MAX_STAGE
36 for tc in self.corpus:
37 self.cur_stage = min(self.cur_stage, tc.stage)

Figure 4.5: Pseudocode for scheduling in HYBRIDRA. HYBRIDRA first applies random mutation
(i.e., fuzzing) for finding new test cases. If it fails, it starts concolic execution, which has internal
stages. HYBRIDRA only runs concolic execution to favored test cases, which are the most efficient
ones for covering specific code. It prefers concolic execution in earlier stages, which is cheaper than
later ones.

system calls to make erroneous cases. In concolic execution, HYBRIDRA prefers concolic

execution with a lower stage, to quickly discover useful test cases for fuzzing. Accordingly,

HYBRIDRA maintains the globally minimum stage (i.e., self.cur_stage) and runs concolic

execution only if the stage for the test case is equal to the minimum one. Moreover,



Table 4.5: HYBRIDRA’s components and their lines of code.

Component LoC Language

Concolic Execution
Instrumentation 1,767 C++
Runtime library 4,254 C++
Compiler wrapper 135 C

Hydra Modification
Concolic support 144 C++

285 Python
AFL Integration 162 C++

Per file system module
btrfs 346 C++
ext4 176 C++
f2fs 273 C++
xfs 130 C++

Total 7,672

HYBRIDRA limits its concolic execution for favored test cases, which are the most efficient

ones for specific coverage [1]. HYBRIDRA also limits the number of trials for each stage to

prevent HYBRIDRA from staying in a single stage due to an exceptionally slow test case.

4.4 Implementation

HYBRIDRA is implemented by 7.7K lines of code (LoC), as shown in Table 4.5: 6.2K lines

of code for concolic execution, which is based on Kirenenko [14], 0.6K lines of code for

supporting concolic execution in the state-of-the-art file system fuzzer, Hydra, and 0.9 lines

of code for per file system modules.

In the remainder of this section, we discuss the unique implementation details of

HYBRIDRA.

Assembly-defined symbols. Linux Kernel heavily uses assembly-specific features, which

have no equivalent concepts in C, including symbol definitions. For instance, by co-utilizing

.weak and .set directives in assembly, Linux Kernel can define a weak function that has

a default behavior without duplicating code. Using this technique, Linux Kernel specifies



system calls to invoke sys_ni_syscall by default if they have no architecture-dependent

implementations.

To successfully compile Linux Kernel for concolic execution, HYBRIDRA needs to

specially handle assembly-defined functions. In particular, HYBRIDRA modifies the ABI of

each function in the module for instrumentation [104]; however, HYBRIDRA cannot detect

an assembly-defined function because it relies on an IR-level analysis, resulting in a linking

error. To respond to this issue, we have manually modified Linux Kernel to change the ABI

of exceptional functions if a certain macro (i.e., CONFIG_CONCOLIC) is defined. Then, when

compiling Linux Kernel for concolic execution, we specify the macro to avoid the linking

error.

Kernel de-optimization. Compiler optimizations, which focus on speeding up native

execution, are often harmful to concolic execution. For example, compilers introduce several

intrinsics to optimize code. If LLVM identifies code for determining whether a number is a

power of two, LLVM introduces llvm.ctpop for optimization, which is an intrinsic to count

the number of bits set [113]. Without correctly defining the semantics of such intrinsics,

concolic execution will fail to interpret the intrinsics properly and cannot generate interesting

test cases regarding them. Moreover, compilers try to transform arithmetic operations into

equivalent bit-wise ones, which are more efficient in modern computers; however, algebraic

structures of arithmetic operations can help solvers find solutions. Therefore, KLEE [9]

selectively applies certain optimizations instead of compiler-defined ones to compile a

program for symbolic execution.

HYBRIDRA also compiles Kernel without optimization for efficient concolic execution;

however, it requires not only modifying a compiler flag but also patching code. Since

Linux Kernel is full of undefined behaviors according to the C language standard (e.g.,

hardware features), Linux has to assume certain behaviors of compilers to handle these

undefined behaviors. Thus, Linux builds on top of the pre-defined optimization level, O2 in

gcc, and utilizes several features, which are unavailable if we disable optimizations, namely



O0. One such feature is function inlining. Linux assumes that a certain function should be

inlined. However, in fact, a compiler can choose how to inline a function depending on

the optimization level. Thus, we have manually fixed Linux to be compiled even without

optimizations.

4.5 Evaluation

To evaluate HYBRIDRA, this section attempts to answer the following questions:

• How effective is HYBRIDRA’s approach in discovering new bugs in file systems?

(§4.5.1)

• How effective is HYBRIDRA’s compilation-based concolic execution in overall per-

formance of hybrid fuzzing? (§4.5.2)

• How effective is HYBRIDRA’s staged reduction in terms of code coverage? (§4.5.3)

Experimental Setup. We evaluate HYBRIDRA on a machine with the Intel Xeon CPU

E7-4820 processor and 256GB RAM running Ubuntu 18.04. For the experiment in §4.5.2,

we have used a dedicated machine with the Intel Xeon CPU E5620 processor 48GB RAM

running Ubuntu 16.04 because QSYM cannot run on the latest kernel due to its kernel

dependency.

4.5.1 Newly Discovered Bugs

We ran HYBRIDRA to fuzz four file systems for two weeks — btrfs, ext4, ftfs, and xfs—

in Linux v5.3, which is the latest kernel version that LKL supports. In particular, we ran

HYBRIDRA for 24 hours in every fuzzing campaign with 48 instances targeting a single type

of file systems. Table 4.6 shows the bugs that are discovered by HYBRIDRA. In summary,

HYBRIDRA has discovered 10 bugs, and four of which are new. Note that even though

the latest kernel at the time of this writing is v5.8, HYBRIDRA uses v5.3 since LKL does

not support the latest one. Therefore, some bugs were stale; their root causes have been

patched in the latest kernel. These stale bugs show that many file system bugs are quickly
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captured by developers thanks to continuous fuzzing efforts [29] and on-going research

projects for file system fuzzing including Janus [68] and Hydra [15]. It makes discovering

bugs in file systems extremely difficult; however, HYBRIDRA successfully discovered four

bugs in btrfs, and we reported them to developers.

Concolic execution is helpful in discovering bugs in file systems. The Concolic column

in Table 4.6 represents that HYBRIDRA found the bugs directly from concolic execution;

the final mutation strategy for finding the bug is concolic execution. As a random process,

fuzzing makes it difficult to understand the impacts of newly introduced strategies [114]. We

believe that concolic execution is likely to help find other bugs by providing interesting test

cases for fuzzing. However, this direct relationship can more clearly show the impacts of

concolic execution. Linux Kernel’s coding convention actually helps HYBRIDRA discover

bugs in file systems. To mitigate the impacts from incorrect assumptions, Linux Kernel heav-

ily uses the BUG() macro, which is equivalent to assert() in many programming languages.

Unlike fuzzing, concolic execution can understand meanings of BUG() as constraints and

produces test cases that violate the assertions. This helps HYBRIDRA discover many bugs

regarding BUG(), as shown in the table.

4.5.2 Compilation-based Concolic Execution

To show the effectiveness of compilation-based concolic execution in HYBRIDRA, we have

compared HYBRIDRA with QSYM and SymCC [10]. QSYM is an emulation-based concolic

executor, and SymCC is a compilation-based one, but it uses page-table modeling instead of

shadow memory, unlike HYBRIDRA. We have compiled HYBRIDRA’s executor with a native

compiler for QSYM and with SymCC’s compiler for four file systems: btrfs, ext4, ftfs,

and xfs. To measure the overhead for symbolic execution excluding solving, we disable

symbolic inputs; we ran QSYM with an interactive mode without any standard input, and

we ran SymCC by setting the environment variable, SYMCC_NO_SYMBOLIC_INPUT, following

the author’s guidelines. Similarly, we intentionally modified the metadata information for
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a file system to make HYBRIDRA symbolize nothing. For seed inputs, we used default

seed images (e.g., btrfs-10.img) and system call sequences (e.g., open_link_fsync0)

from Hydra. We repeated this experiment three times and report its average and standard

deviation.

As shown in Table 4.7, HYBRIDRA outperforms both QSYM and SymCC; HYBRIDRA

is 230× faster than QSYM and 1.57× faster than SymCC on average. This is because QSYM

requires expensive dynamic binary translation for its binary-only concolic execution. On

the contrary, HYBRIDRA can eliminate this translation overhead by implanting functions

for symbolic execution before compilation. Moreover, HYBRIDRA can outperform SymCC

by reducing memory lookup cost using shadow memory, avoiding expensive page-table

modeling. According to our profiling, the majority of overhead (i.e. 30%) comes from

memory modeling in SymCC. It is worth noting that we failed to run concolic execution with

SymCC for file systems due to its failures in supporting multi-threading (see, Table 4.4).

4.5.3 Staged Reduction

In this subsection, we evaluate the impacts of staged reduction, which is described in §4.3.3.

In this evaluation, HYBRIDRA disables its system call mutation to compare our hybrid image

mutation with random image mutation.

Concolic only. To understand the benefits of various reduction mechanisms, we first

evaluate HYBRIDRA with concolic-only mode without fuzzing. In particular, we have

used four variants of HYBRIDRA: HYBRIDRA with (1) staged reduction, (2) basic block

reduction, (3) linear reduction, and (4) no reduction. To fairly compare, HYBRIDRA allows

9 minutes for one test case; for example, HYBRIDRA with staged reduction uses 3 minutes

per stage, and one with other reduction uses 9 minutes for its single concolic execution. We

have run three experiments for 24 hours and report their average values. It is worth noting

that HYBRIDRA with concolic-only mode can be terminated earlier than a given timeout

(i.e., 24 hours) if it fails to generate new test cases after consuming every case.



Figure 4.6: Code coverage of HYBRIDRA in concolic-only mode with various reduction mechanisms.
By taking advantage of several reduction mechanisms, HYBRIDRA with staged reduction outperforms
others even using the same timeout.

As shown in Figure 4.6, staged reduction has achieved more code coverage than other

reductions, which shows its effectiveness. Interestingly, linear reduction works fairly well

thanks to its efficient solving; however, its limited expressiveness makes it converge too

early (see, flat lines in ext4, ftfs, and xfs). Compared to that, our staged reduction initially

works similar to the linear reduction but still can make more complex test cases from other

reductions (i.e., basic block reduction and no reduction); it eventually has achieved the

highest code coverage.

Hybrid fuzzing. We also evaluate the end-to-end effectiveness of various reduction

mechanisms with fuzzing. Compared to the previous one, this evaluation has two major

differences: (1) HYBRIDRA re-enables random image mutation, and (2) it has no time limit



Figure 4.7: Code coverage of Hydra and HYBRIDRA in hybrid fuzzing with various reduction
mechanisms.

Figure 4.8: Eventual code coverage achieved by HYBRIDRA with its standard deviation. In summary,
HYBRIDRA outperforms the fuzzing-only approach, Hydra.



for one concolic execution instance. In particular, we used the same scheduling algorithm for

every reduction mechanism, as shown in Figure 4.5; HYBRIDRA retries concolic execution

until it successfully terminates.

As shown in Figure 4.7 and Figure 4.8, hybrid fuzzing is helpful in exploring more code

in file systems. In particular, HYBRIDRA with staged reduction has achieved the best code

coverage on average among various reduction mechanisms. More importantly, HYBRIDRA

outperforms fuzzing-only solution, Hydra, in all four file systems that we tested. This is

because concolic execution has provided interesting test cases, which are difficult for fuzzing

to discover.

4.6 Discussion and Limitation

Adoption beyond file systems. HYBRIDRA is based on the Linux Kernel Library (LKL)

for efficient hybrid fuzzing. We only have focused on file systems; however, LKL also

supports emulating network interfaces. Therefore, we believe HYBRIDRA can be extended

to test the Linux’s networking stack without substantial effort. Moreover, HYBRIDRA can

work with other user mode Linux, including KUnit [115], a unit testing framework for Linux

Kernel. Integration KUnit with HYBRIDRA would be interesting because it can diversify

HYBRIDRA’s scope to various features in Linux Kernel.

Limitations. Currently, HYBRIDRA limitedly supports thread safety under the assumption

that only one thread modifies symbolic variables. We plan to overcome this limitation by

re-designing thread-unsafe data structures in HYBRIDRA, including the symbol hash table.

Moreover, it only supports symbolic integer values whose lengths are less than or equal

to 64 bits. This is sufficient for testing major features in file systems; however, we plan to

support floating-point and integers beyond 64 bits.



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation, we discuss concolic execution tailored for hybrid fuzzing to overcome

limited scalability of exiting hybrid fuzzers. Particularly, we propose two key approaches to

make hybrid fuzzing scalable to real-world software and even kernel file systems: (1) sys-

tematic design for fast symbolic emulation and (2) efficient test case generation mechanisms

by temporarily sacrificing soundness and completeness of concolic execution.

We first introduce QSYM, which is a binary-only concolic execution engine for hybrid

fuzzing. QSYM redesigns existing binary-only concolic executors for performance to

eliminate redundant symbolic emulations. QSYM also proposes two new techniques for

efficient test case generation — optimistic solving and basic block pruning — based on

the observation that coverage-guided fuzzing can act as an efficient validator to filter out

incorrect test cases from concolic execution. Our evaluation results showed that QSYM

outperformed Driller in the DARPA CGC binaries and VUzzer in the LAVA-M test set. More

importantly, QSYM found 13 previously unknown bugs in the eight non-trivial programs,

such as ffmpeg and OpenJPEG, which have heavily been tested by the state-of-the-art fuzzer,

OSS-Fuzz, on Google’s distributed fuzzing infrastructure.

We also propose HYBRIDRA to apply hybrid fuzzing to a more gigantic and convo-

luted target, a kernel file system. Since many issues for testing a file system are common

for fuzzing and concolic execution, HYBRIDRA reformulates Hydra’s approaches for con-

colic execution, which is the state-of-the-art file system fuzzer. Moreover, to fully utilize

availability of source code, HYBRIDRA adopts compilation-based concolic execution with

multi-threading support. HYBRIDRA also suggests staged reduction, which can combine



multiple reduction mechanisms for efficient test case generation. As a result, HYBRIDRA

outperforms Hydra by achieving higher code coverage in every file system that we tested

(btrfs, ext4, ftfs, and xfs) and found four new bugs in btrfs.

5.2 Future work

This dissertation presents concepts and techniques for designing concolic execution for

hybrid fuzzing. In this section, we discuss three research topics that are worth exploring.

Stateful Hybrid Fuzzing. Currently, concolic execution and its application, hybrid fuzzing,

only focus on stateless software, mostly file parsers, but not stateful ones. Behaviors of a

stateless program can be easily representable through symbolic constraints by emulating

low-level execution such as machine instructions or IRs. However, a state of a certain

program requires higher-level analysis, including data flows. In particular, two symbolic

branches could be equivalent in control flow analysis, which have the same call stacks

and addresses; however, they could have different data flows from different states. A data

flow is difficult to handle because it is more sensitive and disorganized than a control flow.

Since every execution has its own data flow, we need bucketization or summarization for

grouping multiple data flows; however, there is no appropriate one for arbitrary programs.

Therefore, existing concolic execution relies on domain-specific abstractions to convert state

information into symbolic constraints [116]. Unfortunately, defining such an abstraction

requires a lot of manual effort, which is not feasible in complex software such as Linux

Kernel. HYBRIDRA also suffers from this limitation, and it only focuses on concolic

execution for file system images, not system calls, which are stateful.

Verified Binary Concolic Execution. For instruction-level symbolic execution, QSYM

manually embeds a symbolic representation for each instruction. Obviously, this is error-

prone and fails to support many x86 instructions including floating point instructions.

Moreover, it is also challenging to adopt QSYM’s idea to other architectures such as ARM

or MIPS due to a large amount of manual efforts.



One opportunity to resolve this issue is to use formal semantics of instruction set

architectures (ISA) [117, 118]. A symbolic expression for a instruction is a different

way of representing its semantics; we can auto-generate a symbolic expression from the

formal semantics. We can still rely on high-performance DBT for concrete execution.

Accordingly, concolic execution can support more instructions in a verified manner for

multiple architectures without sacrificing performance.

Formalization. Concolic execution has been widely used for various goals, including sound

analysis, whitebox fuzzing, and hybrid fuzzing. Even though this dissertation discusses

the differences between classical concolic execution and one for hybrid fuzzing from

observations in practice, it has no formal definition. Formally defining concolic execution

for hybrid fuzzing can help further exploration of this space by clarifying underlying

problems. It would also be helpful to organize existing work; a number of hybrid fuzzing

works have been published after QSYM. Due to the absence of formalization, it is still

ambiguous whether a specific work is for hybrid fuzzing or for generic concolic execution.
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