Concolic Execution Tailored
for Hybrid Fuzzing

Insu Yun

Georgia Institute of Technology

We are using many software applications

Browsers

4 \\| I ll,
$SD,
N 2
N -
e '
Z &
,/,/lll | |\\\\\\

Operating systems

A

90

We are using many (vulnerable) software
applications

Browsers

A QMY
$SD,
N -
< N =
W '
Z &
,/,/’II | |\\\\\\

Operating systems
s

s 23 s

Attack flow (hacking)

Vulnerability

Attack flow (hacking)

Vulnerability

Exploitation

Attack flow (hacking)

Vulnerability

Exploitation

v
Compromise

Attack flow (hacking)

Vulnerability

Exploitation

v
Compromise

-—)

4 : er. Lr s
Automatic vulnerability finding
APISan (Security '16), CAB-Fuzz (ATC “16),

QSYM (Security’ 18), DIE(Oakland “20)

_ Hybridra(Ongoing)

95

Attack flow (hacking)

-—)

Vulnerability

Exploitation |
\

Compromise

4 : er. Lr s
Automatic vulnerability finding
APISan (Security '16), CAB-Fuzz (ATC “16),

QSYM (Security’ 18), DIE(Oakland “20)

_ Hybridra(Ongoing)

-

Automatic exploitation
ArcHeap (Security 20)

.

AN

96

Attack flow (hacking)

Vulnerability ‘
Exploitation |
\

Compromise

-—)

" Automatic vulnerability finding h
APISan (Security '16), CAB-Fuzz (ATC “16),
QSYM (Security’ 18), DIE(Oakland “20)
_ Hybridra(Ongoing))
4 N
Automatic exploitation
ArcHeap (Security 20)
- /
4 N
Fixing / Mitigation

o

HDFI (Oakland "16), REPT (OSDI “18)
FFMalloc (Security’ 20)

97

Attack flow (hacking)

Vulnerability ‘
Exploitation |
\

Compromise

-—)

" Automatic vulnerability finding h
APISan (Security '16), CAB-Fuzz (ATC “16),
QSYM (Security’ 18) DIE(Oakland “20)
\ | Hybridra(Ongoing))
4 N
Automatic exploitation
ArcHeap (Security 20)
- /
4 N
Fixing / Mitigation

o

HDFI (Oakland "16), REPT (OSDI “18)
FFMalloc (Security’ 20)

98

Today’s talk

-~

QSYM: A Binary-level
Concolic Execution Engine
for Hybrid fuzzing

~

-

.

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

~

/

* Binary
e User applications

e Source code
* File systems

Overview of 40-year-old random testing (fuzzing)

Overview of 40-year-old random testing (fuzzing)

B—{

Seeds

Overview of 40-year-old random testing (fuzzing)

B~)&

Seeds Test cases

Overview of 40-year-old random testing (fuzzing)

‘_E\—>[Fuzzer j—> _: - | </>
— — |

Seeds Test cases Program

Overview of 40-year-old random testing (fuzzing)

B—{ - |-

Seeds Test cases

Program

Recent breakthrough: Code coverage feedback

ENE

Seeds I Test cases

Program
|

Code coverage feedback

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

106

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

X = ‘E4SY'

107

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'

x = ‘E4SI'

108

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'

x = ‘E4SI'

X = ‘S4SY'

109

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'

x = ‘E4SI'

X = ‘S4SY'

X = ‘PTSY'

110

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'

x = ‘E4SI'

X = ‘S4SY'

X = ‘PTSY'

X = ‘H4SY'

111

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
IRI:
ID):

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'
x = ‘E4SI' X = ‘S4SY' X = ‘PTSY'
X = ‘H4SY' x = ‘04SY'

112

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
IRI:
ID):

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'
x = ‘E4SI' X = ‘S4SY' X = ‘PTSY'
X = ‘H4SY' x = ‘04SY'

113

Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

Test cases

X = ‘E4SY'
x = ‘E4SI' X = ‘S4SY' X = ‘PTSY'
X = ‘H4SY' X = ‘04SY'

P(crash) = 232

114

After code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

X = ‘E4SY'

115

After code coverage feedback,

X = jnput()

if x[1] =="A":
IRI:
ID):

if x[2]
if x[3]

crash()

— X = ‘E4SY'

p— x = ‘E4SI'

Test cases

116

After code coverage feedback,

X = jnput()

if x[1] =="A":
IRI:
ID):

if x[2]
if x[3]

crash()

— X = ‘E4SY'

p— x = ‘E4SI'

X = ‘S4SY'

Test cases

117

After code coverage feedback,

X =

it x
i

input()
L

fx[1] =="A"
IRI:
ID):

if x[2]
if x[3]

crash()

— X = ‘E4SY'

p— x = ‘E4SI'

X = ‘S4SY'

x = ‘ETSY’

Test cases

118

After code coverage feedback,

X =

it x

input()

b

if x[1] =="A":

if x[2] =="R":
ID):

if x[3]
crash()

Test cases

X = ‘E4SY'

x = ‘E4SI'

X = ‘S4SY'

x = ‘ETSY’

X = ‘H4SY'

119

After code coverage feedback,

X =

if x

input()
.
[‘A

if x

if x[2] =="R":
ID):

if x[3]
crash()

Test cases

X = ‘E4SY'

x = ‘E4SI'

X = ‘S4SY'

x = ‘ETSY’

X = ‘H4SY'

120

After code coverage feedback,

X =

if x
i

f x
if x[2]
if x[3]

input()
.
[‘A

IRI:
ID):

crash()

Test cases

New code
coverage!

X = ‘E4SY'
x = ‘E4SI' X = ‘S4SY' X = ‘ETSY"
X = ‘H4SY'

121

10

Generate test cases from a test case that
introduces new code coverage

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

X = ‘H4SY'

122

10

Generate test cases from a test case that
introduces new code coverage

Test cases

X = ‘H4SY'

X = ‘H4SI'

123

Generate test cases from a test case that
introduces new code coverage

— X = ‘H4SY'

p— X = ‘H4S!' X = ‘HASY '

Test cases

New code
coverage!

124

Generate test cases from a test case that
introduces new code coverage

— X = ‘H4SY'

p— X = ‘H4S!' X = ‘HASY '

Test cases

New code
coverage!

125

P(crash) = 232

Generate test cases from a test case that
introduces new code coverage

— X = ‘H4SY'

— x = ‘H4SI' X = ‘HASY '

Test cases

New code
coverage!

P(CraSh) = -2'3'2' — 2‘8 X 2—2 — 2-1()

Per—byte 4 bytes 126

Coverage-guided fuzzing is effective

american fuzzy lop 0.47b (readpng)

process timing
0 days, O hrs, 4 min,
0 days, 0 hrs, 0 min,
none” seen yet
0 days, O hrs, 1 min,
cycle progress
38 (19.49%)
0 (0.00%)
stage progress
interest 32/8

%
0/9990 (0.00%)
654k

2306/sec
fuzzing strategy yie
8

43
26

51
map

overall results

sec o
sec 195

[

sec 1
coverage
1217 (7.43%)
2.55 bits/tuple

findings in depth

1ds
8/14.4k, 6/14.4k, 6/14.4k

0/1804, 0/1786, 1/1750

31/126k, 3/45.6k, 1/17.8k
1/15.8k, 4/65.8k, 6/78.2k
0/0

34/254k,
2876 B/931 (61.45% gain)

AFL

128 (65.64%)

path geometry
3

178
114
[

0
o

Fuzzer developed by Google
Re-discover coverage-guided fuzzing

Found hundreds of bugs in many programs
e.g.,) Safari, Firefox, OpenSSL, ...

11

Coverage-guided fuzzing is effective

* Fuzzer developed by Google
* Re-discover coverage-guided fuzzing

* Found hundreds of bugs in many programs
e.g.,) Safari, Firefox, OpenSSL, ...

:;LLVM ¢ LLVM community developed

|
libFuzzer - a library for coverage-guided fuzz testing.

libFuzzer

* Alibrary to include random testing as a part
of projects
e.g.,) LLVM, Chromium, Tensorflow, ...

11

Coverage-guided fuzzing is effective

2ALLVM
fICNFORI:\V'STPRlIJCLTSRE
|
libFuzzer - a library for coverage-guided fuzz testing.

libFuzzer

=

OSS-Fuzz

Fuzzer developed by Google
Re-discover coverage-guided fuzzing

Found hundreds of bugs in many programs
e.g.,) Safari, Firefox, OpenSSL, ...

LLVM community developed

A library to include random testing as a part
of projects
e.g.,) LLVM, Chromium, Tensorflow, ...

Use Google’s cloud resources to fuzz open-
source software

4 trillion test cases a week

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

130

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

131

Limitations of fuzzing: Randomly hard-to-find

=] [xo

x = int(input()) Seeds

/] A59684 == 6782

if xf x == 459684 : — X =3
crash() — :

Test cases

132

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 49684 == 6782
if X" x == 459684 :
crash()

Test cases

X =452

133

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 49684 == 6782
if X" x == 459684 :
crash()

Test cases

X =452

X =942

134

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 49684 == 6782
if X" x == 459684 :
crash()

X =452

X =942

Test cases

135

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 49684 == 6782
if X" x == 459684 :
crash()

— x=0

Seeds

— X =3 X =452 X =942
.
est cases « =517 « =98

136

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

/] 49684 == 6782
if X" x == 459684 :
crash()

— x=0

Seeds

— X =3 X =452 X =942
.
est cases « =517 « =98

137

Limitations of fuzzing: Randomly hard-to-find

=| [xo
= int(i t
x = int(input()) Seeds
/] 459684 == 6782
' cra:h() o é X=3 X o
Test
est cases <= 1) x =208

P(crash) = 232

138

13

Limitations of coverage-guided fuzzing

‘ _E\—>(Fuzzer —>

Can we dO Test cases

Program
|

bEtter?//coverage feedback

14

Limitations of coverage-guided fuzzing

B | —

Seeds I Test cases

Program
|

Code coverage feedback

140

Limitations of coverage-guided fuzzing

‘_E\—>[Fuzzer j—> — - (< /> —>
— — |

Seeds I Test cases Program
|

Code coverage feedback

e o Concolic
v execution

141

Limitations of coverage-guided fuzzing

‘_E\—>[Fuzzer j—> _: — | </> —>
— — |

Seeds I Test cases Program
|

Code coverage feedback ‘ Hybrid
+ fuzzing

t (
Concolic
v execution

142

15

Concolic execution can help fuzzing by finding

hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

143

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

X = input()

144

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

X = input()

if x * x ==459684 :

145

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

X = input()

if x * x ==459684 :

o

146

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

X = input()

if x * x ==459684 :

o

_,{

Constraint
solver

|

147

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

X = input()

if x * x == 459684 - ——)‘ Constraint
solver

|

x/\67g_l

148

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

/] 459684 == 6782
if x * x ==459684 :
crash()

X = input()

if x * x ==459684 :

__{

Constraint
solver

|

x/\67g_l

crash()

149

16

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

150

16

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

* Organized by DARPA in 2017
* Build a system to find bugs, exploit and patch on binaries

e Over 100 teams =2 7 teams were qualified (include our team)

* Almost $4 million for prize money

151

16

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

* Organized by DARPA in 2017
* Build a system to find bugs, exploit and patch on binaries

e Over 100 teams =2 7 teams were qualified (include our team)

* Almost $4 million for prize money

 Small binaries: a few KB

152

17

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

* The winner from CMU used hybrid fuzzing
€ e

Yep. AFL +custom mods +symexec. Couldn't

have won #DARPACGC w/o it. Mad props to
@lcamtuf
hanno @hanno
Replying to @8764hhf @lcamtuf
ording to my h @th y m m
fl+symbo p

* Shellphish open-sourced their tool, Driller

* Won 3™ place in CGC competition
* Found 6 new crashes: cannot be found by fuzzing or concolic execution

18

But, hybrid fuzzing fails to scale real-world
applications

Cannot find ANY bug in
real-world software
using Driller!

19

Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating

constraints is too slow

155

19

Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating
constraints is too slow

Not effective in
generating test cases

156

20

Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating

constraints is too slow

157

Symbolic emulation is well-known to be much
slower than concrete execution

intis_double(int™ a, int b) {
return *a==2 * b;

)

21

Symbolic emulation is well-known to be much
slower than concrete execution

Concrete

Execution:
Just Execute!

intis_double(int™ a, int b) {
return *a==2 * b;

)

Symbolic emulation is well-known to be much
slower than concrete execution

Symbolic

Emulation:
> Taint tracking
intis_double(int™ a, int b) {

return *a==2 * b;

)

21

Symbolic emulation is well-known to be much
slower than concrete execution

Symbolic

Emulation:
> Taint tracking
intis_double(int™ a, int b) {

return *a==2 * b;

)

Symbolic Emulation:
Constructing symbols
(e.g., *a ==2* Symbol,)

21

Symbolic emulation is well-known to be much
slower than concrete execution

Symbolic
Emulation:
> Taint tracking
intis_double(int™ a, int b) {
return *a==2 * b;

X
Symbolic Emulation: Symbolic Emulation:
Constructing symbols Interpretation

(e.g., ¥a==2 * Symbol,)) (e.g., *a =2?7)

21

Symbolic emulation is well-known to be much
slower than concrete execution

Symbolic

Emulation:
Taint tracking

_— T~

Symbolic emulation is 1,000x slower
than concrete execution!

Symbolic Emulation:\

Interpretation

(e.g., *a =y

Symbolic Emulation:
Constructing symbols
(e.g., *a ==2* Symbol,)

State forking can be used to solve this problem

22

State forking can be used to solve this problem

—
N

N

22

State forking can be used to solve this problem

22

State forking can be used to solve this problem

22

State forking can be used to solve this problem

22

State forking can be used to solve this problem

No need to re-execute!

State forking is limited in hybrid fuzzing

23

State forking is limited in hybrid fuzzing

 # of states is enormous in a complex real-world program
=> Large performance overhead

* Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability

23

State forking is limited in hybrid fuzzing

 # of states is enormous in a complex real-world program
=> Large performance overhead

* Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability

State forking cannot help slow symbolic emulation

in hybrid fuzzing!

172

24

Current concolic executors have several
problems to be used in hybrid fuzzing

Not effective in

generating test cases

173

25

Completeness of concolic execution often
blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
2 int completeness(char* buf, int x) {
3 very_complicated_logic(buf);

if (x * x == 1234 * 1234)
crash();

~N O W B

174

25

Completeness of concolic execution often
blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
2 int completen?(char* buf, int x) {
3 very_compli ied_logic(buf);

1234 * 1234)

if (x * x ==
crash();

~N O W B

175

25

Completeness of concolic execution often
blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
2 int completen:;;(char* buf, int x) {
3 very_compli ied_logic(buf);

1234 * 1234)

4
s 1f (x * x ==
6 crash();

7

Analyze every routine for completeness!

176

Soundness of concolic execution incurs
unnecessary re-execution

1 // 'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {

3 1f (x == 0)

do_something();

if (x * x == 1234 * 1234)
crash();

co N o W A

}

177

26

Soundness of concolic execution incurs
unnecessary re-execution

1 // ’'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {
if (x ==

W

if (x *
crash(®);

== 1234 * 1234)

co N o W A

178

26

Soundness of concolic execution incurs
unnecessary re-execution

1 // 'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {

W

Unsatisfiable!

co N o W A

179

26

Soundness of concolic execution incurs
unnecessary re-execution

1 // ’'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {

W

Unsatisfiable!

co N o W A

Don’t make possibly incorrect test cases for soundness!

180

27

Our approach

Generating
constraints is too slow

Not effective in
generating test cases

181

27

Our approach

Generating
constraints is too slow

Not effective in
generating test cases

Systematic approach

for fast symbolic
emulation

182

27

Our approach

Generating
constraints is too slow

Not effective in
generating test cases

Systematic approach

for fast symbolic
emulation

New heuristics for
hybrid fuzzing

183

28

Our approach: QSYM

Systematic approach
for fast symbolic
emulation

New heuristics for
hybrid fuzzing

QSYM

-

Instruction-level
concolic execution

(For binary)

\

-
-

-

Optimistic so
basic block

ving and

oruning

/
\

/

184

29

Our approach: Hybridra

Systematic approach
for fast symbolic
emulation

New heuristics for
hybrid fuzzing

Hybridra

-

-

Compilation-based
concolic execution

(For source code)

\

/

-

+ Heuristics from QSYM

-

Staged reduction

\

/

185

30

Related work: Whitebox fuzzing

* Goal
* Hybrid fuzzing: Make a test case for fuzzing
* Whitebox fuzzing: Explore a program state solely

* Exploration
* Hybrid fuzzing: Random
* Whitebox fuzzing: Systematic

e Strategy: Hybrid fuzzing’s can be more aggressive thanks to coverage-
guided fuzzing (e.g., optimistic solving)

31

Today’s talk

-~

o

QSYM: A Binary-level
Concolic Execution Engine
for Hybrid fuzzing

~

/

-

~

* Binary
e User applications

32

Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

Instruction-level
concolic execution
(For binary)

~

o
/

o

Optimistic so
basic block

ving and

oruning

/
\

/

188

33

Our system, QSYM, addresses these issues by
introducing several key ideas

. I
. Instruction-level
Generating . .
. . concolic execution
constraints is too slow .
(For binary) y
\

Not effective in
generating test cases

189

34

QSYM has made several design decisions for
improving performance

* Discarding intermediate layer

* Instruction-level symbolic execution

34

QSYM has made several design decisions for
improving performance

Simple, but
BIG
design decision

* Discarding intermediate layer

* Instruction-level symbolic execution

35

Hybrid fuzzing in a closer look

push ebp

Assembly

35

Hybrid fuzzi

push ebp

Assembly

ng in a closer look

t0 = GET:132(ebp)

tl = GET:I32(esp)

t2 = Sub32(t1,0x00000004)
PUT(esp) = t2

STle(t2) =t0

Intermediate
Representation (IR)

35

Hybrid fuzzi

push ebp

Assembly

ng in a closer look

t0 = GET:132(ebp)

tl = GET:I32(esp)

t2 = Sub32(t1,0x00000004)
PUT(esp) = t2

STle(t2) =t0

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

Intermediate
Representation (IR)

Constraints

35

Hybrid fuzzing in a closer look

t0 = GET:132(ebp)
tl = GET:I32(esp) 3 == 0x1337
oush ebp t2 = Sub32(t1,0x00000004) A Db * c == 0xcO01
PUT(esp) = t2

STle(t2) =t0 N\ z == OxcOde

Assembly Constraints

Intermediate
Representation (IR)

Good: Simplifying implementations

e.g., 981 in x86 vs 115 in VEX

195

35

Hybrid fuzzing in a closer look

t0 = GET:132(ebp)
tl = GET:I32(esp) 3 == 0x1337
oush ebp t2 = Sub32(t1,0x00000004) Ab * c==0xc001
PUT(esp) = t2

STle(t2) =t0 N\ z == OxcOde

Assembly Constraints

Intermediate
Representation (IR)

Good: Simplifying implementations
e.g., 981 in x86vs 115 in VEX

Bad: Performance bottleneck

36

Problems of IR: The number of instructions increase

Cr

push ebp

t0 = GET:132(ebp)
tl = GET:I32(esp)
t2 = Sub32(t1,0x00000004)

— PUT(esp) = t2
STle(t2) =t0

Assembly

Intermediate
Representation (IR)

4.96x increase
on average!

37

Problems of IR: Slow transformation speed

push ebp

t0 = GET:132(ebp)

tl = GET:I32(esp)

t2 = Sub32(t1,0x00000004)
PUT(esp) = t2

STle(t2) =t0

Intermediate
Representation (IR)

37

Problems of IR: Slow transformation speed

t0 = GET:132(ebp)
t1 = GET:132(esp)
push ebp t2 = Sub32(t1,0x00000004)

— PUT(esp) = t2
STle(t2) =t0

Intermediate
Representation (IR)

Cache it!

38

Side effects of caching: Basic-block granularity

38

Side effects of caching: Basic-block granularity

* Cache lookup is also slow

e Use basic-block granularity for caching
e i.e., transform a basic block into IR and cache

e Unfortunately, 30% of instructions in a basic block are symbolic
- 70% of instructions are executed without need

38

Side effects of caching: Basic-block granularity

* Cache lookup is also slow

e Use basic-block granularity for caching
e i.e., transform a basic block into IR and cache

e Unfortunately, 30% of instructions in a basic block are symbolic
- 70% of instructions are executed without need

39

How to solve this challenge?

t0 = GET:132(ebp)
tl = GET:I32(esp) 3 == 0x1337
oush ebp t2 = Sub32(t1,0x00000004) Ab * c==0xc001
PUT(esp) = t2

STle(t2) =t0 N\ z == OxcOde

Assembly Constraints

Intermediate
Representation (IR)

Good: Simplifying implementations
e.g., 981 in x86vs 115 in VEX

Bad: Performance bottleneck

39

How to solve this

push ebp

Assembly

Good: Simplifying implementations

t0 = GET:I3

Performance is
the most important!

t2 = Sub3
PUT(esp

Intermediate
Representation (IR)

e.g., 981 in x86 vs 115 in VEX

A b *c==0xc001

N\ z == OxcOde

Constraints

Bad: Performance bottleneck

40

This is a non-trivial job (LoC)

4./K

Driller

https://github.com/angr/angr/tree/master/angr/engines

13K

QSYM

https://github.com/angr/angr/tree/master/angr/engines

41

QSYM reduces the number of symbolically
executed instructions

e 126 CGC binaries

800 k -
2 600k - 2.5x end-to-end
S 400k 25% j> performance
Z 200k - Improvement

O -
QSYM Driller

206

42

Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

-

o
/

o

Optimistic so
basic block

ving and

oruning

/
\

/

207

43

Constraint solving can generate a test case
that meets given constraints

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

Constraints

Constraint solving can generate a test case
that meets given constraints

a ==0x1337/

ADb*c==0xc001 Constraint
solver

N\ z == OxcOde

Constraints

43

Constraint solving can generate a test case

that meets given constraints

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

_)L

Constraint
solver

| =

Constraints

Test cases

Constraint solving CANNOT generate a test
case that meets given constraints

a ==0x1337/

ADb*c==0xc001 Constraint x
solver

N\ z == OxcOde

Constraints

Constraint solving CANNOT generate a test
case that meets given constraints

NP hard

a ==0x1337 @
ADb*c==0xc001 Constraint x
solver

N\ z == OxcOde

Constraints

Constraint solving CANNOT generate a test
case that meets given constraints

NP hard

a ==0x1337 @
ADb*c==0xc001 Constraint x
solver

N\ z == OxcOde

Constraints

Bad: Cannot get anything from

concolic execution

213

45

QSYM solves partial constraints to find
some test cases

45

QSYM solves partial constraints to find

some test cases

[
X

Constraint
solver

)
)

Test cases

Good: Can get test cases from

concolic execution

215

45

QSYM solves partial constraints to find

some test cases

[
X

Constraint
solver

) —
)

If the test cases
are jncorrect...”?

Test cases

get test cases from

yxecution

216

46

In hybrid fuzzing, generating incorrect inputs is
fine because of coverage-guided fuzzing

B~ | -@ i

Seeds Test cases Program

-

Concolic
execution

217

46

In hybrid fuzzing, generating incorrect inputs is
fine because of coverage-guided fuzzing

‘ \—>[Fuzzer —>®—‘ </> —>
|

Seeds Test cases Program
|

Coverage feedback

-

Concolic
execution

Coverage feedback
will filter out
incorrect test cases!

47

Optimistic solving helps to find more bugs

e LAVA-M dataset

* |nject hard-to-reach bugs in real-world applications

uniq base64 mdSsum who
30 A
HEHEHEHEHEHEHEHEHEK HHEHEHEHEEEE—EXK
40 A i

% 20 4 >0 1000 -
=
E . M

. 25 4 i
2 10 - 500

O "i T T T T T O ‘4 T T T T T 0 "* T T T T T O T
0

1 2 3 -+ 5 0 1 2 3 -+ 5
Time (h) =& w/ optimistic —S— w/o optimistic

219

48

Remind: Completeness of concolic execution
often blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
» int completeness(char* buf, int x) {
very_complicated_logic(buf);

3

~N O A

if (x * x == 1234 *

crash();

1234)

220

48

Remind: Completeness of concolic execution
often blocks its further exploration
1 // 'buf’ and 'x’ are symbolic

» int completeness(char* buf, int x) {
very_complicated_logic(buf);{ >

3

~N O A

if (x * x == 1234 *

crash();

1234)

221

Remind: Completeness of concolic execution
often blocks its further exploration
1 // 'buf’ and ’'x’ are symbolic

> int completeness(char* buf, int x) {
3 very_complicated_logic(buf);< >

Limit symbolic execution for
repeatedly executed blocks

if (x * x == 1234 * 1234)
crash();

~N O A

222

48

Remind: Completeness of concolic execution
often blocks its further exploration

1 // 'buf’ and ’x’ are symbolic
» int completeness(char* buf, int x) {

3 very_complicated_logic(buf);{ >

4
s 1f (x * x == 1234 * 1234)
6 crash();

7

Can further explore even with

such a complicated routine

Limit symbolic execution for
repeatedly executed blocks

223

48

Remind: Completeness of concolic execution
often blocks its further exploration
1 // 'buf’ and ’x’ are symbolic

» int completeness(char* buf, int x) {
3 very_complicated_logic(buf);< >

Limit symbolic execution for

repeatedly executed blocks

4
s 1f (x * x == 1234 * 1234)
6 crash();

7

Can further explore even with .
Incomplete constraints

such a complicated routine

224

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x |=0is missed because
of basic block pruning

225

49

Incomplete constraints are not significant in

practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

ify

Oxdeadbeef :

226

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

227

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef :

228

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef : ¢ 0
w’/

Subsumed constraints

229

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0 is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef : ¢ 0
w’/

Subsumed constraints

if x |= Oxdeadbeef :

230

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0 is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef : ¢ 0
w’/

Subsumed constraints

if x |= Oxdeadbeef : Py

Failing...

231

50

Evaluating QSYM

* Scaling to real-world software?

* How good is QSYM compared to
e The state-of-art hybrid fuzzing (Driller)

51

QSYM scales to real-world software

* 13 bugs in real-world software (already tested by fuzzing)

Program CVE Bug Type Fuzzer
lepton CVE-2017-8891 Out-of-bounds read AFL
openjpeg CVE-2017-12878 Heap overflow OSS-Fuzz
Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249* Stack overflow OSS-Fuzz
libarchive = Wait for patch NULL dereference =~ OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Wait for patch Heap overflow x 3
Wait for patch Memory leak
ffmpeg CVE-2017-17081 Out-of-bounds read OSS-Fuzz
CVE-2017-17080 Out-of-boundsread = AFL

objdump

233

51

QSYM scales to real-world software

* 13 bugs in real-world software (already tested by fuzzing)

Program |JCVE Bug Type Fuzzer

lepton CVE-2017-8891 Out-of-bounds read AFL
openjpeg JCVE-2017-12878 Heap overflow OSS-Fuzz

Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249* Stack overflow OSS-Fuzz
libarchive Wait for patch NULL dereference =~ OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Real- Wait for patch Heap overflow x 3
world Wait for patch Memory leak
software ffmpeg CVE-2017-17081 Out-of-bounds read OSS-Fuzz

objdump CVE-2017-17080 Out-of-bounds read AFL

234

51

QSYM scales to real-world software

* 13 bugs in real-world software (already tested by fuzzing)

Program CVE Bug Type Fuzzer
lepton CVE-2017-8891 Out-of-bounds read] AFL

openjpeg CVE-2017-12878 Heap overflow OSS-Fuzz
Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249* Stack overflow OSS-Fuzz
libarchive = Wait for patch NULL dereference | OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Wait for patch Heap overflow x 3
Wait for patch Memory leak
ffmpeg CVE-2017-17081 Out-of-bounds read | OSS-Fuzz

objdump CVE-2017-17080 Out-of-bounds read] AFL

Already
heavily
fuzzed

235

52

QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if('((ox"(ox+dxw))
(ox”(ox+dxh))
(ox"(ox+dxw+ dxh))
(oy”(oy+dywy))
(oy”(oy+dyh))
(oy”(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15
&& l(need_emu&&(h>MAX_H || stride > MAX_STRIDE)))
{// the bug is here ; }

236

52

QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if(!
T Hle Cannot be found by cloud fuzzing

(Note: 4 trillion test cases per week)

| (oy”(oy+dyh))

| (oy”(oy+dyw+ dyh))) >> (16 + shift)

&& !(dxx | dxy | dyx | dyy) & 15

&& !(need _emu&&(h>MAX_H || stride > MAX_STRIDE)))
{// the bug is here ; }

237

QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if(!
Hle Cannot be found by cloud fuzzing

(Note: 4 trillion test cases per week)

oy oyseyh)
Found by a single workstation
using QSYM

238

QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer

53

QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer

e Dataset: 126 CGC binaries
 Compare code coverage achieved by a single run of concolic execution

* QSYM achieved more code coverage in 104 (82%) binaries

Better performance
- Find deeper code

QSYM is also practically impactful

* e.g., RodeOday: A monthly competition for automatic bug finding tool

Table 2. The overall rankings

for top RodeOday competitors

after 10 competitions.
mm
1,087 afl-lazy
1,069 itszn
1,027 H3ku

1017 REDQUEEN Fasano, Andrew, et al. "The RodeOday to Less-Buggy
1,062 Programs." IEEE Security & Privacy (2019)

(V2 S w N -

241

54

QSYM is also practically impactful

* e.g., RodeOday: A monthly competition for automatic bug finding tool

Table 2. The overall rankings

Relative Hours Until Solved

for top RodeOday competitors Bugs Found in file2_S2 0 I — 623

after 10 competitions.

1

2

3

1,087
1,069
1,027
1,017

1,062

Bug Type
Team Name Simple Bug | Complex Bug

H3ku * A K * KX KA AKX
Team name NU-AFL-QSYM R85 a5 a0 -t - (- ¢ Y el ¥ mll eSS E—r——

NU_AFL

REDQUEEN
afl-lazy afl-lazy |] |
slazar0_A

itszn

Figure 2. A visualization of when teams found bugs in file2_S2 during the November 2018 Rode0Oday. Green indicates the bugs found within 24 h of a
H3ku team’s first score. The stars denote the first team to find a bug.

REDQUEEN Fasano, Andrew, et al. "The RodeOday to Less-Buggy

Programs." IEEE Security & Privacy (2019)

242

95

Today’s talk

-~

o

/

-

.

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

~

/

e Source code
* File systems

Hybridra improves Hydra by supporting
concolic Image mutation

Seeds

Hydra

56

Hybric

conco

Seeds

ra improves Hydra by supporting

IC Image mutation

Random Mutator
(Syscall + Image)

Hydra

56

Hybridra improves Hydra by supporting
concolic Image mutation

Ent

Random I\/Iutator} — L
— —

(Syscall + Image)

Seeds

Test cases

Hydra

56

Hybridra improves Hydra by supporting
concolic Image mutation

Random Mutator — L =
(Syscall + Image) | — ~ ||= — </>|

Seeds Test cases LibOS-based
Executor

Hydra

56

Hybridra improves Hydra by supporting

conco

Seeds

IC Image mutation

Random Mutator — L =
SyscaII+ image) |~ ||= — </>|

Test cases LibOS-based
Executor

Code coverage feedback

o7

Hybridra improves Hydra by supporting
concolic Image mutation

- [Random Mutator —
— (Syscall + Image) — —

Concolic Mutator

(Image)

Test cases LibOS-based

Executor

Code coverage feedback

-] —

Hybridra

249

58

Hybridra: Key ideas

Generating
constraints is too slow

Not effective in
generating test cases

-

o

Compilation-based
concolic execution

(For source code)

\

/

/

o

Staged reduction

~

+ Heuristics from QSYM

/

250

59

Design: Concolic Image Mutator

Design: Concolic Image Mutator

— > </>

Seeds LibOS executor for
concolic execution

Design: Concolic Image Mutator

— > </> —

Seeds LibOS executor for
concolic execution Reduced

constraints

Design: Concolic Image Mutator

— > </> —

Seeds LibOS executor for
concolic execution Reduced

constraints

Design: Concolic Image Mutator

— s |</>| —s [Constraintj
— | _

— Solver

Seeds LibOS executor for
concolic execution Reduced

constraints

59

Design: Concolic Image Mutator

Seeds

>

</>

LibOS executor for
concolic execution

Reduced
constraints

Constrain
—>
Solver

j_} =

Test cases

59

Design: Concolic Image Mutator

LibOS executor for
concolic execution

Reduced
constraints

Constrain
—>
Solver

j_} =

Test cases

257

60

Hybridra utilizes compilation-based concolic
execution

Hybridra utilizes compilation-based concolic
execution

+ Symbol* symA
+ Symbol* symB
+ Symbol* symC

getSymbol (a);
getSymbol (b);
addSymbol (symA, symB);

int ¢ = a + b;
+ Symbol* symD = getSymbol(d);
+

+ checkEqual(symC, symD);

if (¢ == d) {

Hybridra utilizes compilation-based concolic
execution

+ Symbol* symA
+ Symbol* symB
+ Symbol* symC

getSymbol (a);
getSymbol (b);
addSymbol (symA, symB);

int ¢ = a + b;
+ Symbol* symD = getSymbol(d);
+

+ checkEqual(symC, symD);

if (¢ == d) {

60

Hybridra utilizes compilation-based concolic
executior

+ Symbol* symA
+ Symbol* symB
+ Symbol* symC

getSymbol (a);
getSymbol (b);
addSymbol (symA, symB);

int ¢ = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual (symC, symD);

200x performance improvement

compared to QSYM
(NOTE: code is required)

261

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

SymCC Kirenenko

LLVMIR LLVMIR
Page table Shadow memory

v

Language
Memory modeling | Page table
Multi-threading

262

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

CUTE

Language C
Memory modeling Page table
Multi-threading

Kirenenko

LLVMIR | LLVM IR
Page table] Shadow memory

263

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

CUTE

Language C
Memory modeling Page table
Multi-threading

Kirenenko

LLVMIR | LLVM IR
Page table] Shadow memory

File system Failure

btrfs z3 exception
ext4 Deadlock
f2fs Deadlock

xfs Deadlock

264

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

CUTE SymCC | Kirenenko

Language C LLVM IR | LLVM IR
Memory modeling Page table Page table | Shadow memory
Multi-threading

265

62

Comparison: Memory modeling

SymCC

Memory

Shadow memory

Kirenenko

62

Comparison: Memory modeling

()
P
Threadl

N

SymCC

Memory

Shadow memory

Kirenenko

267

62

Comparison: Memory modeling

()
P
Threadl

N

Thread?2

SymCC

Memory

Shadow memory

Kirenenko

268

62

Comparison: Memory modeling

()
P
Threadl

N

Thread?2

SymCC

[Threadlj

[Threade

(

Memory

J

[

Shadow memory

J

Kirenenko

269

62

Comparison: Memory modeling

(Threadl] [Threade

()
P
Threadl Thread?2

(Memory

J

-

(Kirenenko successfully performs concolic

J

270

63

Design: Concolic Image Mutator

Seeds

LibOS executor for
concolic execution

Reduced
constraints

Constrain
Solver

j_} =

Test cases

271

64

Remind: Constraints solving is hard!

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

NP hard

@

_)L

Constraint
solver

—X

Constraints

65

Two types of constraints reduction exist

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints

Two types of constraints reduction exist

a==0x1337/
A 13 * c==0xc001

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints

65

Two types of constraints reduction exist

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

a==0x1337/
A 13 * c==0xc001

N\ z == OxcOde

Constraints

Reduction: Complexity
(e.g., Linear reduction)

Fast algorithm

275

65

Two types of constraints reduction exist

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

a==0x1337/
A 13 * c==0xc001

N\ z == OxcOde

Constraints

Reduction: Complexity
(e.g., Linear reduction)

Fast algorithm

Limited expressiveness

276

65

Two types of constraints reduction exist

a==0x1337/
A 13 * c==0xc001

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

S 01337
A b *c==0xc001

N\ z == OxcOde
Reduction: # of constraints

(e.g., Basic block pruning)

Limited expressiveness

Fast algorithm

277

65

Two types of constraints reduction exist

a ==0x1337
A 13 * c==0xc001

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

& 01337
A b *c==0xc001

N\ z == OxcOde
Reduction: # of constraints

(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

278

65

Two types of constraints reduction exist

a==0x1337/
A 13 * c==0xc001

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

S 01337
A b *c==0xc001

N\ z == OxcOde
Reduction: # of constraints

(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement

279

65

Two types of constraints reduction exist

a == 0x1337/ :
A 13 * ¢ == Oxc001 Fast algorlthm

Never used after
a solver can handle
non-linear operations

A\ z == OxcOde Limited expressiveness
Reduction: Complexity

(e.g., Linear reduction)

N\ z == OxcOde

Constraints

- 01337
Ab * ¢ == Oxc001 Expressive

A 7 == OxcOde No algorithmic

Reduction: # of constraints {g{gafelge)Z=lgal=lal
(e.g., Basic block pruning) 250

66

Staged reduction: combine both reduction mechanisms

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

@

a ==0x1337
A 13 * ¢ == Oxc001

A\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

S 01337
A b *c==0xc001

A\ z == OxcOde

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement

281

66

Staged reduction: combine both reduction mechanisms

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

@

a ==0x1337
A 13 * ¢ == Oxc001

A\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

D —sss

A b *c==0xc001

A\ z == OxcOde

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement

282

66

Staged reduction: combine both reduction mechanisms

3

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

@

a ==0x1337
A 13 * ¢ == Oxc001

A\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

D —sss

A b *c==0xc001

A\ z == OxcOde

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement

283

67

Staged reduction outperforms each reduction mechanism

 Setting: Concolic image only, fixed timeout (9 min, 24 hours)

Coverage (%)

[B = B ~ B =
= N W A~ WU
1 1 1 1

[
o
1

btrfs extd f2fs
i —
L 5.0
7 -
< L 4.8 4
[J] y (]
g 6 - / g 4.6
> / 0 44
S S
o 4.2
4.0
1 1 1 1 I I I I 1
0 20000 40000 0 10000 20000 0 5000 10000 15000
Time (s) Time (s) Time (s)
- Staged Linear == Basic block

Coverage (%)

I I I 1 1
0 5000 10000 15000 20000
Time (s)

284

68

Staged reduction outperforms each reduction mechanism

85 4
8.0 4

75 1

overage (%)
~J
o

6.0

5.5 1

xfs

/

I I I 1
5000 10000 15000 20000

Time (s)
= Staged — Linear = Basic block

285

68

Staged reduction outperforms each reduction mechanism

xfs

85
8.0 - /
75 4 !

2 70 1

v

o

e

o

3

o 65

Basic block is slow
6o (i.e., expressiveness
|= efficienc

55 1

I I I I 1
0 5000 10000 15000 20000

286

68

Staged reduction outperforms each reduction mechanism

8.5 1

— <
Inear converges too

early due to limited
expressiveness

75 1

7.0 1

overage

Basic block is slow
(i.e., expressiveness
|= efficienc

6.0

55 1

I I I I 1
0 5000 10000 15000 20000

Time (s)
- Staged ~— Linear = Basic block

287

68

Staged reduction outperforms each reduction mechanism

xfs

85 1

8.0 - /——,—/_
= <
Inear converges too

early due to limited
expressiveness

76 Basic block is slow
0 - (i.e., expressiveness
|= efficienc

1 1 1 I I
0 5000 10000 15000 20000

Time (s)
= Staged — Linear = Basic block

Combining both techniques is useful
to achieve higher code coverage! -

69

Evaluation

e Effective to discover new bugs in file systems?

e Qutperforms the fuzzing-only solution, Hydra?

Hybridra is effective in finding bugs in file systems

* We fuzz for 2 weeks
e Each fuzzing takes 24 hours

e Target: Linux v5.3 (LKL), but the latest Linux is v5.8

File system File Function Type Concolic New
fs/btrfs/extent_io.c extent_io_tree_panic Null pointer dereference v’ v
fs/btrfs/free-space-cache.c tree_insert_offset BUG() v
fs/btrfs/extent-tree.c btrfs_drop_snapshot BUG()

btefs fs/btrfs/extent-tree.c walk_down_proc BUG() v
fs/btrfs/relocation.c merge_reloc_root BUG()
fs/btrfs/root-tree.c btrfs_find_root BUG() v v
fs/btrfs/ctree.c setup_items_for_insert BUG() v
fs/btrfs/volumes.c calc_stripe_length Divide by zero v

ext4 fs/ext4/super.c ext4_clear_journal_err BUG()

f2fs fs/f2fs/segment.c f2fs_build_segment_manager Out-of-bounds read

290

70

Hybridra is effective in finding bugs in file systems

* We fuzz for 2 weeks
e Each fuzzing takes 24 hours

e Target: Linux v5.3 (LKL), but the latest Linux is v5.8

Four new bugs

File system File

Function

Type

Concolic New

fs/btrfs/extent_io.c extent_io_tree_panic Null pointer dereference v’ v
fs/btrfs/free-space-cache.c tree_insert_offset BUG() v
fs/btrfs/extent-tree.c btrfs_drop_snapshot BUG()

btefs fs/btrfs/extent-tree.c walk_down_proc BUG() v
fs/btrfs/relocation.c merge_reloc_root BUG()
fs/btrfs/root-tree.c btrfs_find_root BUG() v v
fs/btrfs/ctree.c setup_items_for_insert BUG() v
fs/btrfs/volumes.c calc_stripe_length Divide by zero v

ext4 fs/ext4/super.c ext4_clear_journal_err BUG()

f2fs fs/f2fs/segment.c f2fs_build_segment_manager Out-of-bounds read

2901

70

Hybridra is effective in finding bugs in file systems

* We fuzz for 2 weeks
e Each fuzzing takes 24 hours

e Target: Linux v5.3 (LKL), but the latest Linux is v5.8

File system File Function Type Concolic New

fs/btrfs/extent_io.c extent_io_tree_panic Null pointer dereferencs v
fs/btrfs/free-space-cache.c tree_insert_offset BUG()
fs/btrfs/extent-tree.c btrfs_drop_snapshot BUG()

btefs fs/btrfs/extent-tree.c walk_down_proc BUG()
fs/btrfs/relocation.c merge_reloc_root BUG()
fs/btrfs/root-tree.c btrfs_find_root v
fs/btrfs/ctree.c setup_items_for_insert v
fs/btrfs/volumes.c calc_stripe 1-) v

Many bugs directly from
ext4 fs/ext4/super.c exy’/ _ _
f2fs fs/f2fs/segment.c f2\ concolic execution /

e.g., BUG(x |=0);

292

71

Hybridra outperforms the fuzzing-only
approach, Hydra

e Setting: Image only (+ Random), fixed timeout (24 hours)

Coverage (%)

(=]
(o)}

=
S

[
N
1

=
o
1

btrfs

{

/

|

T
0

1 1 1
25000 50000 75000
Time (s)

Coverage (%)

10 -

r

extd

—

I I I I
0 25000 50000 75000
Time (s)
= Hybridra

Coverage (%)

T
0

Hydra

1 1 I
25000 50000 75000
Time (s)

Coverage (%)

10

xfs

w [@)] ~ o O
| 1 |

—

1 1 1 I
0 25000 50000 75000
Time (s)

293

71

Hybridra outperforms the fuzzing-only
approach, Hydra

e Setting: Image only (+ Random), fixed timeout (24 hours)

Coverage (%)

btrfs ext4 f2fs xfs
10 -
10
§ § 5.0 1 ;\3 9 - /_//‘
(O] 8 7 (] (O]
[e)) [e)] o 8 -
o o o
9 . 9 45 g -
[e] (o] [e]
(@] @] o
6 -
4.0
1 1 1 1 4 1 1 1 1 1 1 1 1 5 1 1 1 1
0 25000 50000 75000 0 25000 50000 75000 0 25000 50000 75000 0 25000 50000 75000
Time (s) Time (s) Time (s) Time (s)
= Hybridra == Hydra

Concolic execution can help fuzzing in file systems

by discovering interesting test cases!

294

72

Discussion & Limitation

72

Discussion & Limitation

* Apply to other applications
e Our library OS (LKL) also supports network simulation.
* Thus, it is possible to extend it to network stacks
* We can apply other user-mode kernel (e.g., Kunit) to test other features

* Limitations
e Currently, Hybridra does not support floating point and vector operation

* The limited number of symbols (23°) because of shadow memory
* In our evaluation, this is fine for testing file systems

73

Conclusion

e Designing a concolic executor tailored for hybrid fuzzing is important
for scaling hybrid fuzzing to real-world software

e Systematic approaches for fast symbolic simulation
* New heuristics for test case generation

* This dissertation demonstrates this idea with
* QSYM: Hybrid fuzzing for binary-only applications
* Hybridra: Hybrid fuzzing for file systems

Acknowledgements

Georgia Tech
* Taesoo Kim
* Meng Xu
* Jinho Jung
* Wen Xu
* Soyeon Park
* Daehee Jang

Oregon State University
* Yeongjin Jang
Virginia Tech
* Changwoo Min
Seoul National University

* Byoungyoung lee
* Yunheung Paek

Microsoft Research
* Sangho Lee
* Weidong Cui
* Xinyang Ge
* Ben Niu
University of Michigan
* Baris Kasikci

* Upamanyu Sharma

Arizona State University
* Ryuou Wang

Google
e Chanil Cheon

Facebook
* Dhaval Kapil

University of Pennsylvania
e Xujie Si
e Mayur Naik

UNIST
* Hyungon Moon

NSRI
* SuyongKim

KAIST
* Yongdae Kim
* Kyoungsoo Park
* YungYi

Thank you!

