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We are using many software applications

Operating systems
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We are using many (vulnerable) software 
applications

Operating systems
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Today’s talk
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QSYM: A Binary-level 
Concolic Execution Engine 

for Hybrid fuzzing

Hybridra: A Hybrid Fuzzer 
for Kernel File Systems

• Binary
• User applications

• Source code
• File systems
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Overview of 40-year-old random testing (fuzzing)

Seeds
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*
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Overview of 40-year-old random testing (fuzzing)
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Recent breakthrough: Code coverage feedback

Fuzzer

Seeds

Crash

ProgramTest cases

*

Code coverage feedback
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Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()
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Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:
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…
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After code coverage feedback,

x = input()
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Seeds

x = ‘E4SY'

115

9



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI'

116

9



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

117

9



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY' x = ‘ETSY'

118

9



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

119

9



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

120

9



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:
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Generate test cases from a test case that 
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY' x = ‘H4SY'
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Generate test cases from a test case that 
introduces new code coverage

x = input()
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Test cases
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Generate test cases from a test case that 
introduces new code coverage

x = input()
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Generate test cases from a test case that 
introduces new code coverage

x = input()
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Generate test cases from a test case that 
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY' 

Test cases

*
x = ‘H4SI'

New code 
coverage!

x = ‘H4SY'

x = ‘HASY '

P(crash) = 2-32 = 2-8 x 2-2 = 2-10P(crash) = 2-32
Per-byte 4 bytes 126
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Coverage-guided fuzzing is effective
• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs

e.g.,) Safari, Firefox, OpenSSL, …
AFL
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Coverage-guided fuzzing is effective
• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs

e.g.,) Safari, Firefox, OpenSSL, …

libFuzzer

AFL
• LLVM community developed
• A library to include random testing as a part 

of projects
e.g.,) LLVM, Chromium, Tensorflow, …

OSS-Fuzz

• Use Google’s cloud resources to fuzz open-
source software

• 4 trillion test cases a week
129

11



Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()
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x = 0

Test cases

*
x = 3
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Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452 x = 942
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Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452

x = 512

x = 942
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Limitations of fuzzing: Randomly hard-to-find

x = int(input())
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x = 0
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x = 942
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Limitations of fuzzing: Randomly hard-to-find

x = int(input())
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if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
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x = 28 …
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Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
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x = 28 …

P(crash) = 2-32
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Limitations of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Code coverage feedback

Can we do 
better?
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Limitations of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Code coverage feedback

Concolic 
execution

Hybrid 
fuzzing
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Concolic execution can help fuzzing by finding 
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()
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Concolic execution can help fuzzing by finding 
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if x * x == 459684 :
crash()
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Concolic execution can help fuzzing by finding 
hard-to-find test cases
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Concolic execution can help fuzzing by finding 
hard-to-find test cases
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Constraint 
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Concolic execution can help fuzzing by finding 
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Concolic execution can help fuzzing by finding 
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

if x * x == 459684 :

x = 0 x = 678

Constraint 
solver

crash()
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
• Organized by DARPA in 2017
• Build a system to find bugs, exploit and patch on binaries

• Over 100 teams à 7 teams were qualified (include our team)
• Almost $4 million for prize money
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
• Organized by DARPA in 2017
• Build a system to find bugs, exploit and patch on binaries

• Over 100 teams à 7 teams were qualified (include our team)
• Almost $4 million for prize money

• Small binaries: a few KB
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
• The winner from CMU used hybrid fuzzing

• Shellphish open-sourced their tool, Driller
• Won 3rd place in CGC competition
• Found 6 new crashes: cannot be found by fuzzing or concolic execution
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But, hybrid fuzzing fails to scale real-world 
applications

Cannot find ANY bug in 
real-world software 

using Driller!
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Current concolic executors suffer several 
problems to be used in hybrid fuzzing

Generating 
constraints is too slow
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Symbolic emulation is well-known to be much 
slower than concrete execution
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int is_double(int* a, int b) {
return *a == 2 * b;

}
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Execution: 

Just Execute!
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Symbolic emulation is well-known to be much 
slower than concrete execution
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int is_double(int* a, int b) {
return *a == 2 * b;

}

Symbolic 
Emulation: 

Taint tracking

Symbolic Emulation: 
Constructing symbols

(e.g., *a == 2 * Symbolb)

Symbolic Emulation: 
Interpretation
(e.g., *a = ???)

Symbolic emulation is 1,000x slower 
than concrete execution!
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State forking can be used to solve this problem
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State forking can be used to solve this problem

169

State

No need to re-execute!
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State forking is limited in hybrid fuzzing

170

23



State forking is limited in hybrid fuzzing

171

• # of states is enormous in a complex real-world program 
=> Large performance overhead

• Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability
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State forking is limited in hybrid fuzzing

172

• # of states is enormous in a complex real-world program 
=> Large performance overhead

• Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability

State forking cannot help slow symbolic emulation 
in hybrid fuzzing!
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Current concolic executors have several 
problems to be used in hybrid fuzzing

Generating 
constraints is too slow

Not effective in 
generating test cases
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Completeness of concolic execution often 
blocks its further exploration
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Completeness of concolic execution often 
blocks its further exploration
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Completeness of concolic execution often 
blocks its further exploration

176

Analyze every routine for completeness!
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Soundness of concolic execution incurs 
unnecessary re-execution
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Soundness of concolic execution incurs 
unnecessary re-execution

179

Unsatisfiable!
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Soundness of concolic execution incurs 
unnecessary re-execution

180

Unsatisfiable!

Don’t make possibly incorrect test cases for soundness!
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Our approach

Generating 
constraints is too slow

Not effective in 
generating test cases

181

27



Our approach

Generating 
constraints is too slow

Not effective in 
generating test cases

Systematic approach 
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Our approach: QSYM

184

Instruction-level 
concolic execution 

(For binary)

Optimistic solving and
basic block pruning

Systematic approach 
for fast symbolic 

emulation

New heuristics for 
hybrid fuzzing

QSYM
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Our approach: Hybridra

185

Compilation-based 
concolic execution
(For source code)

Staged reduction
+ Heuristics from QSYM

Systematic approach 
for fast symbolic 

emulation

New heuristics for 
hybrid fuzzing

Hybridra
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Related work: Whitebox fuzzing

• Goal
• Hybrid fuzzing: Make a test case for fuzzing
• Whitebox fuzzing: Explore a program state solely

• Exploration
• Hybrid fuzzing: Random
• Whitebox fuzzing: Systematic

• Strategy: Hybrid fuzzing’s can be more aggressive thanks to coverage-
guided fuzzing (e.g., optimistic solving)

186
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Today’s talk

187

QSYM: A Binary-level 
Concolic Execution Engine 

for Hybrid fuzzing

Hybridra: A Hybrid Fuzzer 
for Kernel File Systems

• Binary
• User applications

• Source code
• File systems
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Our system, QSYM, addresses these issues by 
introducing several key ideas

Generating 
constraints is too slow

Not effective in 
generating test cases

188

Instruction-level 
concolic execution 

(For binary)

Optimistic solving and
basic block pruning
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Our system, QSYM, addresses these issues by 
introducing several key ideas

Generating 
constraints is too slow

Not effective in 
generating test cases

189

Instruction-level 
concolic execution 

(For binary)

Optimistic solving and
basic block pruning

33



QSYM has made several design decisions for 
improving performance
• Discarding intermediate layer

• Instruction-level symbolic execution

190
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QSYM has made several design decisions for 
improving performance
• Discarding intermediate layer

• Instruction-level symbolic execution

Simple, but 
BIG

design decision
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Hybrid fuzzing in a closer look

push ebp
…

Assembly 
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Hybrid fuzzing in a closer look

push ebp
…
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t0 = GET:I32(ebp)
t1 = GET:I32(esp)
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…

Intermediate 
Representation (IR)
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Λ z == 0xc0de

Constraints
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e.g., 981 in x86 vs 115 in VEX
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Hybrid fuzzing in a closer look

push ebp
…

Assembly 

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate 
Representation (IR)

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

Bad: Performance bottleneck 
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Problems of IR: The number of instructions increase

push ebp
…

Assembly 

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate 
Representation (IR)

197

4.96x increase 
on average!
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Problems of IR: Slow transformation speed

push ebp
…

Assembly 

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate 
Representation (IR)

198

Slow…

37



Problems of IR: Slow transformation speed

push ebp
…

Assembly 

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate 
Representation (IR)

199

Slow… Cache it!
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Side effects of caching: Basic-block granularity

200

38



Side effects of caching: Basic-block granularity

• Cache lookup is also slow

• Use basic-block granularity for caching
• i.e., transform a basic block into IR and cache

• Unfortunately, 30% of instructions in a basic block are symbolic 
à 70% of instructions are executed without need
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Side effects of caching: Basic-block granularity

• Cache lookup is also slow

• Use basic-block granularity for caching
• i.e., transform a basic block into IR and cache

• Unfortunately, 30% of instructions in a basic block are symbolic 
à 70% of instructions are executed without need
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How to solve this challenge?

push ebp
…

Assembly 

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate 
Representation (IR)

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

Bad: Performance bottleneck 

203

39



How to solve this challenge?

push ebp
…

Assembly 

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate 
Representation (IR)

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

Bad: Performance bottleneck 

Performance is 
the most important!
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This is a non-trivial job (LoC)

4.7K
Driller

205

13K
QSYM

https://github.com/angr/angr/tree/master/angr/engines

40
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QSYM reduces the number of symbolically 
executed instructions
• 126 CGC binaries

25%

2.5x end-to-end
performance 
Improvement
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Our system, QSYM, addresses these issues by 
introducing several key ideas

Generating 
constraints is too slow

Not effective in 
generating test cases

207

Instruction-level 
concolic execution 

(For binary)

Optimistic solving and
basic block pruning

42



Constraint solving can generate a test case 
that meets given constraints

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraints
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Constraint solving can generate a test case 
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Constraint 
solver

Constraints
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Constraint solving can generate a test case 
that meets given constraints

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint 
solver

Test cases

*

Constraints

210

43



Constraint solving CANNOT generate a test 
case that meets given constraints

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint 
solver

Constraints
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Constraint solving CANNOT generate a test 
case that meets given constraints

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint 
solver

Constraints

NP hard
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Constraint solving CANNOT generate a test 
case that meets given constraints

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint 
solver

Constraints

NP hard

Bad: Cannot get anything from 
concolic execution
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QSYM solves partial constraints to find 
some test cases

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de
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QSYM solves partial constraints to find 
some test cases

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint 
solver

Good: Can get test cases from 
concolic execution

Test cases

*
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QSYM solves partial constraints to find 
some test cases

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint 
solver

Good: Can get test cases from 
concolic execution

Test cases

*

If the test cases 
are incorrect…?
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In hybrid fuzzing, generating incorrect inputs is 
fine because of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Concolic 
execution

217
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In hybrid fuzzing, generating incorrect inputs is 
fine because of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Coverage feedback

Concolic 
execution

Coverage feedback 
will filter out 

incorrect test cases!
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Optimistic solving helps to find more bugs

• LAVA-M dataset
• Inject hard-to-reach bugs in real-world applications
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Remind: Completeness of concolic execution 
often blocks its further exploration
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Limit symbolic execution for 
repeatedly  executed blocks
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Limit symbolic execution for 
repeatedly  executed blocks

Can further explore even with 
such a complicated routine
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Remind: Completeness of concolic execution 
often blocks its further exploration
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Limit symbolic execution for 
repeatedly  executed blocks

Can further explore even with 
such a complicated routine Incomplete constraints
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Incomplete constraints are not significant in 
practice for hybrid fuzzing

225

x = input()
y = input()

// x != 0 is missed because 
of basic block pruning
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practice for hybrid fuzzing

227

x = input()
y = input()

// x != 0 is missed because 
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x  != 0 in the input
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Incomplete constraints are not significant in 
practice for hybrid fuzzing
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x = input()
y = input()

// x != 0 is missed because 
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x  != 0 in the input

if x == 0xdeadbeef :

Subsumed constraints

if x != 0xdeadbeef :
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Incomplete constraints are not significant in 
practice for hybrid fuzzing
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x = input()
y = input()

// x != 0 is missed because 
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x  != 0 in the input

if x == 0xdeadbeef :

Subsumed constraints

if x != 0xdeadbeef :

Failing…

49



Evaluating QSYM

• Scaling to real-world software?

• How good is QSYM compared to
• The state-of-art hybrid fuzzing (Driller)
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QSYM scales to real-world software

• 13 bugs in real-world software (already tested by fuzzing)
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QSYM scales to real-world software

• 13 bugs in real-world software (already tested by fuzzing)
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Real-
world 

software

51



QSYM scales to real-world software

• 13 bugs in real-world software (already tested by fuzzing)

235

Already 
heavily 
fuzzed
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QSYM can generate test cases that fuzzing is 
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if( !((ox^(ox+dxw)) 
| (ox^(ox+dxh)) 
| (ox^(ox+dxw+ dxh)) 
| (oy^(oy+dyw)) 
| (oy^(oy+dyh)) 
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15 
&& !(need_emu&&(h>MAX_H || stride > MAX_STRIDE))) 

{ // the bug is here ; } 
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QSYM can generate test cases that fuzzing is 
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if( !((ox^(ox+dxw)) 
| (ox^(ox+dxh)) 
| (ox^(ox+dxw+ dxh)) 
| (oy^(oy+dyw)) 
| (oy^(oy+dyh)) 
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15 
&& !(need_emu&&(h>MAX_H || stride > MAX_STRIDE))) 

{ // the bug is here ; } 

Cannot be found by cloud fuzzing
(Note: 4 trillion test cases per week)
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QSYM can generate test cases that fuzzing is 
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if( !((ox^(ox+dxw)) 
| (ox^(ox+dxh)) 
| (ox^(ox+dxw+ dxh)) 
| (oy^(oy+dyw)) 
| (oy^(oy+dyh)) 
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15 
&& !(need_emu&&(h>MAX_H || stride > MAX_STRIDE))) 

{ // the bug is here ; } 

Cannot be found by cloud fuzzing
(Note: 4 trillion test cases per week)

Found by a single workstation 
using QSYM
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QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer
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QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer
• Dataset: 126 CGC binaries
• Compare code coverage achieved by a single run of concolic execution

• QSYM achieved more code coverage in 104 (82%) binaries

Better performance
à Find deeper code

240
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QSYM is also practically impactful

• e.g., Rode0day: A monthly competition for automatic bug finding tool

241

Fasano, Andrew, et al. "The Rode0day to Less-Buggy 
Programs." IEEE Security & Privacy (2019)
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QSYM is also practically impactful

• e.g., Rode0day: A monthly competition for automatic bug finding tool
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Fasano, Andrew, et al. "The Rode0day to Less-Buggy 
Programs." IEEE Security & Privacy (2019)
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Today’s talk

243

QSYM: A Binary-level 
Concolic Execution Engine 

for Hybrid fuzzing

Hybridra: A Hybrid Fuzzer 
for Kernel File Systems

• Binary
• User applications

• Source code
• File systems
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Hybridra improves Hydra by supporting 
concolic image mutation

244

Seeds

Hydra
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Hybridra improves Hydra by supporting 
concolic image mutation
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Random Mutator 
(Syscall + Image)

Seeds
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LibOS-based
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Test cases

*

Code coverage feedback
Hydra
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Hybridra improves Hydra by supporting 
concolic image mutation

249

Random Mutator 
(Syscall + Image)

Seeds

Crash

LibOS-based
Executor

Test cases

*

Code coverage feedback

Concolic Mutator
(Image)

Hybridra
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Hybridra: Key ideas

Generating 
constraints is too slow

Not effective in 
generating test cases

250

Compilation-based 
concolic execution
(For source code)

Staged reduction
+ Heuristics from QSYM
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Design: Concolic Image Mutator
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Seeds LibOS executor for
concolic execution
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Design: Concolic Image Mutator
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concolic execution Reduced
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Constraint
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Test cases

*

59



Hybridra utilizes compilation-based concolic 
execution
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Hybridra utilizes compilation-based concolic 
execution

259

+ Symbol* symA = getSymbol(a);
+ Symbol* symB = getSymbol(b);
+ Symbol* symC = addSymbol(symA, symB);

int c = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual(symC, symD); 

if (c == d) {
...
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Hybridra utilizes compilation-based concolic 
execution
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+ Symbol* symA = getSymbol(a);
+ Symbol* symB = getSymbol(b);
+ Symbol* symC = addSymbol(symA, symB);

int c = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual(symC, symD); 

if (c == d) {
...
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Hybridra utilizes compilation-based concolic 
execution

261

+ Symbol* symA = getSymbol(a);
+ Symbol* symB = getSymbol(b);
+ Symbol* symC = addSymbol(symA, symB);

int c = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual(symC, symD); 

if (c == d) {
...
200x performance improvement 

compared to QSYM 
(NOTE: code is required) 
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Hybridra’s compilation-based concolic execution, 
Kirenenko, is useful by supporting multi-threading
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Comparison: Memory modeling
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Comparison: Memory modeling
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Thread1

SymCC

Thread2

Memory

Shadow memory

Thread1 Thread2

Kirenenko
Kirenenko successfully performs concolic 

execution on file systems in library OS!
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Design: Concolic Image Mutator
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Seeds LibOS executor for
concolic execution Reduced

constraints

Constraint
Solver

Test cases

*
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Remind: Constraints solving is hard!

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraint
solver

Constraints

NP hard
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Two types of constraints reduction exist
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…
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Constraints

a == 0x1337
Λ 13 * c == 0xc001 
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)
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280

a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001 
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic 
improvement

Never used after 
a solver can handle 

non-linear operations
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Staged reduction: combine both reduction mechanisms
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Staged reduction: combine both reduction mechanisms
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a == 0x1337
Λ b * c == 0xc001 
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001 
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Expressive

①

②

Limited expressiveness

No algorithmic 
improvement

③
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Staged reduction outperforms each reduction mechanism
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• Setting: Concolic image only, fixed timeout (9 min, 24 hours)
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Staged reduction outperforms each reduction mechanism
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Basic block is slow 
(i.e., expressiveness 

!= efficiency)

Linear converges too 
early due to limited 

expressiveness

Combining both techniques is useful
to achieve higher code coverage!
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Evaluation

• Effective to discover new bugs in file systems? 

• Outperforms the fuzzing-only solution, Hydra?
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Hybridra is effective in finding bugs in file systems

• We fuzz for 2 weeks
• Each fuzzing takes 24 hours

• Target: Linux v5.3 (LKL), but the latest Linux is v5.8
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Hybridra is effective in finding bugs in file systems

• We fuzz for 2 weeks
• Each fuzzing takes 24 hours

• Target: Linux v5.3 (LKL), but the latest Linux is v5.8
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Four new bugs
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Hybridra is effective in finding bugs in file systems

• We fuzz for 2 weeks
• Each fuzzing takes 24 hours

• Target: Linux v5.3 (LKL), but the latest Linux is v5.8

292

Many bugs directly from 
concolic execution  
e.g., BUG(x != 0);

70



Hybridra outperforms the fuzzing-only 
approach, Hydra
• Setting: Image only (+ Random), fixed timeout (24 hours)
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Hybridra outperforms the fuzzing-only 
approach, Hydra
• Setting: Image only (+ Random), fixed timeout (24 hours)
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Concolic execution can help fuzzing in file systems 
by discovering interesting test cases!
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Discussion & Limitation
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Discussion & Limitation

• Apply to other applications
• Our library OS (LKL) also supports network simulation.
• Thus, it is possible to extend it to network stacks
• We can apply other user-mode kernel (e.g., Kunit) to test other features

• Limitations
• Currently, Hybridra does not support floating point and vector operation
• The limited number of symbols (230) because of shadow memory

• In our evaluation, this is fine for testing file systems
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Conclusion

• Designing a concolic executor tailored for hybrid fuzzing is important 
for scaling hybrid fuzzing to real-world software
• Systematic approaches for fast symbolic simulation
• New heuristics for test case generation

• This dissertation demonstrates this idea with
• QSYM: Hybrid fuzzing for binary-only applications
• Hybridra: Hybrid fuzzing for file systems
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Thank you!

299

75


