
Concolic Execution Tailored
for Hybrid Fuzzing

Insu Yun
Georgia Institute of Technology

89

1

We are using many software applications

Operating systems

Browsers

90

2

We are using many (vulnerable) software
applications

Operating systems

Browsers

91

3

Attack flow (hacking)

Vulnerability

92

4

Attack flow (hacking)

Vulnerability

Exploitation

93

4

Attack flow (hacking)

Vulnerability

Compromise

Exploitation

94

4

Automatic vulnerability finding
APISan (Security ’16), CAB-Fuzz (ATC ‘16),
QSYM (Security’ 18), DIE(Oakland ‘20)
Hybridra(Ongoing)

Attack flow (hacking)

Vulnerability

Compromise

Exploitation

95

4

Automatic vulnerability finding
APISan (Security ’16), CAB-Fuzz (ATC ‘16),
QSYM (Security’ 18), DIE(Oakland ‘20)
Hybridra(Ongoing)

Automatic exploitation
ArcHeap (Security ‘20)

Attack flow (hacking)

Vulnerability

Compromise

Exploitation

96

4

Automatic vulnerability finding
APISan (Security ’16), CAB-Fuzz (ATC ‘16),
QSYM (Security’ 18), DIE(Oakland ‘20)
Hybridra(Ongoing)

Automatic exploitation
ArcHeap (Security ‘20)

Fixing / Mitigation
HDFI (Oakland ’16), REPT (OSDI ‘18)
FFMalloc (Security’ 20)

Attack flow (hacking)

Vulnerability

Compromise

Exploitation

97

4

Automatic vulnerability finding
APISan (Security ’16), CAB-Fuzz (ATC ‘16),
QSYM (Security’ 18), DIE(Oakland ‘20)
Hybridra(Ongoing)

Automatic exploitation
ArcHeap (Security ‘20)

Fixing / Mitigation
HDFI (Oakland ’16), REPT (OSDI ‘18)
FFMalloc (Security’ 20)

Attack flow (hacking)

Vulnerability

Compromise

Exploitation

98

4

Today’s talk

99

QSYM: A Binary-level
Concolic Execution Engine

for Hybrid fuzzing

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

• Binary
• User applications

• Source code
• File systems

5

Overview of 40-year-old random testing (fuzzing)

Seeds

100

6

Overview of 40-year-old random testing (fuzzing)

Fuzzer

Seeds

101

6

Overview of 40-year-old random testing (fuzzing)

Fuzzer

Seeds Test cases

*

102

6

Overview of 40-year-old random testing (fuzzing)

Fuzzer

Seeds ProgramTest cases

*

103

6

Overview of 40-year-old random testing (fuzzing)

Fuzzer

Seeds

Crash

ProgramTest cases

*

104

6

Recent breakthrough: Code coverage feedback

Fuzzer

Seeds

Crash

ProgramTest cases

*

Code coverage feedback

105

7

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

106

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

107

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI'

108

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

109

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY' x = ‘PTSY'

110

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘PTSY'

111

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘PTSY'

x = ‘O4SY'

112

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘PTSY'

x = ‘O4SY' …

113

8

Before code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘PTSY'

x = ‘O4SY'

P(crash) = 2-32

…

114

8

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

115

9

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI'

116

9

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

117

9

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY' x = ‘ETSY'

118

9

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

119

9

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

120

9

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

New code
coverage!

121

9

Generate test cases from a test case that
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY' x = ‘H4SY'

122

10

Generate test cases from a test case that
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY'

Test cases

*
x = ‘H4SI'

x = ‘H4SY'

123

10

Generate test cases from a test case that
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY'

Test cases

*
x = ‘H4SI'

New code
coverage!

x = ‘H4SY'

x = ‘HASY '

124

10

Generate test cases from a test case that
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY'

Test cases

*
x = ‘H4SI'

New code
coverage!

x = ‘H4SY'

x = ‘HASY '

P(crash) = 2-32
125

10

Generate test cases from a test case that
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY'

Test cases

*
x = ‘H4SI'

New code
coverage!

x = ‘H4SY'

x = ‘HASY '

P(crash) = 2-32 = 2-8 x 2-2 = 2-10P(crash) = 2-32
Per-byte 4 bytes 126

10

Coverage-guided fuzzing is effective
• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs

e.g.,) Safari, Firefox, OpenSSL, …
AFL

127

11

Coverage-guided fuzzing is effective
• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs

e.g.,) Safari, Firefox, OpenSSL, …

libFuzzer

AFL
• LLVM community developed
• A library to include random testing as a part

of projects
e.g.,) LLVM, Chromium, Tensorflow, …

128

11

Coverage-guided fuzzing is effective
• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs

e.g.,) Safari, Firefox, OpenSSL, …

libFuzzer

AFL
• LLVM community developed
• A library to include random testing as a part

of projects
e.g.,) LLVM, Chromium, Tensorflow, …

OSS-Fuzz

• Use Google’s cloud resources to fuzz open-
source software

• 4 trillion test cases a week
129

11

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

130

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

131

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3

132

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452

133

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452 x = 942

134

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452

x = 512

x = 942

135

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452

x = 512

x = 942

x = 28

136

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452

x = 512

x = 942

x = 28 …

137

12

Limitations of fuzzing: Randomly hard-to-find

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

Seeds

x = 0

Test cases

*
x = 3 x = 452

x = 512

x = 942

x = 28 …

P(crash) = 2-32

138

12

Limitations of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Code coverage feedback

Can we do
better?

139

13

Limitations of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Code coverage feedback

140

14

Limitations of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Code coverage feedback

Concolic
execution

141

14

Limitations of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Code coverage feedback

Concolic
execution

Hybrid
fuzzing

142

14

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

143

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

144

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

if x * x == 459684 :

145

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

if x * x == 459684 :

x = 0

146

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

if x * x == 459684 :

x = 0

Constraint
solver

147

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

if x * x == 459684 :

x = 0 x = 678

Constraint
solver

148

15

Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())

// 459684 == 6782

if x * x == 459684 :
crash()

x = input()

if x * x == 459684 :

x = 0 x = 678

Constraint
solver

crash()

149

15

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

150

16

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
• Organized by DARPA in 2017
• Build a system to find bugs, exploit and patch on binaries

• Over 100 teams à 7 teams were qualified (include our team)
• Almost $4 million for prize money

151

16

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
• Organized by DARPA in 2017
• Build a system to find bugs, exploit and patch on binaries

• Over 100 teams à 7 teams were qualified (include our team)
• Almost $4 million for prize money

• Small binaries: a few KB

152

16

Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)
• The winner from CMU used hybrid fuzzing

• Shellphish open-sourced their tool, Driller
• Won 3rd place in CGC competition
• Found 6 new crashes: cannot be found by fuzzing or concolic execution

153

17

But, hybrid fuzzing fails to scale real-world
applications

Cannot find ANY bug in
real-world software

using Driller!

154

18

Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating
constraints is too slow

155

19

Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating
constraints is too slow

Not effective in
generating test cases

156

19

Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating
constraints is too slow

Not effective in
generating test cases

157

20

Symbolic emulation is well-known to be much
slower than concrete execution

158

int is_double(int* a, int b) {
return *a == 2 * b;

}

21

Symbolic emulation is well-known to be much
slower than concrete execution

159

int is_double(int* a, int b) {
return *a == 2 * b;

}

Concrete
Execution:

Just Execute!

21

Symbolic emulation is well-known to be much
slower than concrete execution

160

int is_double(int* a, int b) {
return *a == 2 * b;

}

Symbolic
Emulation:

Taint tracking

21

Symbolic emulation is well-known to be much
slower than concrete execution

161

int is_double(int* a, int b) {
return *a == 2 * b;

}

Symbolic
Emulation:

Taint tracking

Symbolic Emulation:
Constructing symbols

(e.g., *a == 2 * Symbolb)

21

Symbolic emulation is well-known to be much
slower than concrete execution

162

int is_double(int* a, int b) {
return *a == 2 * b;

}

Symbolic
Emulation:

Taint tracking

Symbolic Emulation:
Constructing symbols

(e.g., *a == 2 * Symbolb)

Symbolic Emulation:
Interpretation
(e.g., *a = ???)

21

Symbolic emulation is well-known to be much
slower than concrete execution

163

int is_double(int* a, int b) {
return *a == 2 * b;

}

Symbolic
Emulation:

Taint tracking

Symbolic Emulation:
Constructing symbols

(e.g., *a == 2 * Symbolb)

Symbolic Emulation:
Interpretation
(e.g., *a = ???)

Symbolic emulation is 1,000x slower
than concrete execution!

21

State forking can be used to solve this problem

164

22

State forking can be used to solve this problem

165

22

State forking can be used to solve this problem

166

22

State forking can be used to solve this problem

167

State

22

State forking can be used to solve this problem

168

State

22

State forking can be used to solve this problem

169

State

No need to re-execute!

22

State forking is limited in hybrid fuzzing

170

23

State forking is limited in hybrid fuzzing

171

• # of states is enormous in a complex real-world program
=> Large performance overhead

• Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability

23

State forking is limited in hybrid fuzzing

172

• # of states is enormous in a complex real-world program
=> Large performance overhead

• Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability

State forking cannot help slow symbolic emulation
in hybrid fuzzing!

23

Current concolic executors have several
problems to be used in hybrid fuzzing

Generating
constraints is too slow

Not effective in
generating test cases

173

24

Completeness of concolic execution often
blocks its further exploration

174

25

Completeness of concolic execution often
blocks its further exploration

175

25

Completeness of concolic execution often
blocks its further exploration

176

Analyze every routine for completeness!

25

Soundness of concolic execution incurs
unnecessary re-execution

177

26

Soundness of concolic execution incurs
unnecessary re-execution

178

26

Soundness of concolic execution incurs
unnecessary re-execution

179

Unsatisfiable!

26

Soundness of concolic execution incurs
unnecessary re-execution

180

Unsatisfiable!

Don’t make possibly incorrect test cases for soundness!

26

Our approach

Generating
constraints is too slow

Not effective in
generating test cases

181

27

Our approach

Generating
constraints is too slow

Not effective in
generating test cases

Systematic approach
for fast symbolic

emulation

182

27

Our approach

Generating
constraints is too slow

Not effective in
generating test cases

Systematic approach
for fast symbolic

emulation

New heuristics for
hybrid fuzzing

183

27

Our approach: QSYM

184

Instruction-level
concolic execution

(For binary)

Optimistic solving and
basic block pruning

Systematic approach
for fast symbolic

emulation

New heuristics for
hybrid fuzzing

QSYM

28

Our approach: Hybridra

185

Compilation-based
concolic execution
(For source code)

Staged reduction
+ Heuristics from QSYM

Systematic approach
for fast symbolic

emulation

New heuristics for
hybrid fuzzing

Hybridra

29

Related work: Whitebox fuzzing

• Goal
• Hybrid fuzzing: Make a test case for fuzzing
• Whitebox fuzzing: Explore a program state solely

• Exploration
• Hybrid fuzzing: Random
• Whitebox fuzzing: Systematic

• Strategy: Hybrid fuzzing’s can be more aggressive thanks to coverage-
guided fuzzing (e.g., optimistic solving)

186

30

Today’s talk

187

QSYM: A Binary-level
Concolic Execution Engine

for Hybrid fuzzing

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

• Binary
• User applications

• Source code
• File systems

31

Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

188

Instruction-level
concolic execution

(For binary)

Optimistic solving and
basic block pruning

32

Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

189

Instruction-level
concolic execution

(For binary)

Optimistic solving and
basic block pruning

33

QSYM has made several design decisions for
improving performance
• Discarding intermediate layer

• Instruction-level symbolic execution

190

34

QSYM has made several design decisions for
improving performance
• Discarding intermediate layer

• Instruction-level symbolic execution

Simple, but
BIG

design decision

191

34

Hybrid fuzzing in a closer look

push ebp
…

Assembly

192

35

Hybrid fuzzing in a closer look

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

193

35

Hybrid fuzzing in a closer look

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

194

35

Hybrid fuzzing in a closer look

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

195

35

Hybrid fuzzing in a closer look

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

Bad: Performance bottleneck

196

35

Problems of IR: The number of instructions increase

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

197

4.96x increase
on average!

36

Problems of IR: Slow transformation speed

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

198

Slow…

37

Problems of IR: Slow transformation speed

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

199

Slow… Cache it!

37

Side effects of caching: Basic-block granularity

200

38

Side effects of caching: Basic-block granularity

• Cache lookup is also slow

• Use basic-block granularity for caching
• i.e., transform a basic block into IR and cache

• Unfortunately, 30% of instructions in a basic block are symbolic
à 70% of instructions are executed without need

201

38

Side effects of caching: Basic-block granularity

• Cache lookup is also slow

• Use basic-block granularity for caching
• i.e., transform a basic block into IR and cache

• Unfortunately, 30% of instructions in a basic block are symbolic
à 70% of instructions are executed without need

202

38

How to solve this challenge?

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

Bad: Performance bottleneck

203

39

How to solve this challenge?

push ebp
…

Assembly

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
PUT(esp) = t2
STle(t2) = t0
…

Intermediate
Representation (IR)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

Good: Simplifying implementations
e.g., 981 in x86 vs 115 in VEX

Bad: Performance bottleneck

Performance is
the most important!

204

39

This is a non-trivial job (LoC)

4.7K
Driller

205

13K
QSYM

https://github.com/angr/angr/tree/master/angr/engines

40

https://github.com/angr/angr/tree/master/angr/engines

QSYM reduces the number of symbolically
executed instructions
• 126 CGC binaries

25%

2.5x end-to-end
performance
Improvement

206

41

Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

207

Instruction-level
concolic execution

(For binary)

Optimistic solving and
basic block pruning

42

Constraint solving can generate a test case
that meets given constraints

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

208

43

Constraint solving can generate a test case
that meets given constraints

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Constraints

209

43

Constraint solving can generate a test case
that meets given constraints

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Test cases

*

Constraints

210

43

Constraint solving CANNOT generate a test
case that meets given constraints

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Constraints

211

44

Constraint solving CANNOT generate a test
case that meets given constraints

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Constraints

NP hard

212

44

Constraint solving CANNOT generate a test
case that meets given constraints

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Constraints

NP hard

Bad: Cannot get anything from
concolic execution

213

44

QSYM solves partial constraints to find
some test cases

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

214

45

QSYM solves partial constraints to find
some test cases

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Good: Can get test cases from
concolic execution

Test cases

*

215

45

QSYM solves partial constraints to find
some test cases

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Good: Can get test cases from
concolic execution

Test cases

*

If the test cases
are incorrect…?

216

45

In hybrid fuzzing, generating incorrect inputs is
fine because of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Concolic
execution

217

46

In hybrid fuzzing, generating incorrect inputs is
fine because of coverage-guided fuzzing

Fuzzer

Seeds Test cases

Crash

Program

*

Coverage feedback

Concolic
execution

Coverage feedback
will filter out

incorrect test cases!
218

46

Optimistic solving helps to find more bugs

• LAVA-M dataset
• Inject hard-to-reach bugs in real-world applications

219

47

Remind: Completeness of concolic execution
often blocks its further exploration

220

48

Remind: Completeness of concolic execution
often blocks its further exploration

221

48

Remind: Completeness of concolic execution
often blocks its further exploration

222

Limit symbolic execution for
repeatedly executed blocks

48

Remind: Completeness of concolic execution
often blocks its further exploration

223

Limit symbolic execution for
repeatedly executed blocks

Can further explore even with
such a complicated routine

48

Remind: Completeness of concolic execution
often blocks its further exploration

224

Limit symbolic execution for
repeatedly executed blocks

Can further explore even with
such a complicated routine Incomplete constraints

48

Incomplete constraints are not significant in
practice for hybrid fuzzing

225

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

226

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

if y == 0xdeadbeef :

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

227

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x != 0 in the input

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

228

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x != 0 in the input

if x == 0xdeadbeef :

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

229

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x != 0 in the input

if x == 0xdeadbeef :

Subsumed constraints

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

230

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x != 0 in the input

if x == 0xdeadbeef :

Subsumed constraints

if x != 0xdeadbeef :

49

Incomplete constraints are not significant in
practice for hybrid fuzzing

231

x = input()
y = input()

// x != 0 is missed because
of basic block pruning

if y == 0xdeadbeef :

Independent constraints: Use x != 0 in the input

if x == 0xdeadbeef :

Subsumed constraints

if x != 0xdeadbeef :

Failing…

49

Evaluating QSYM

• Scaling to real-world software?

• How good is QSYM compared to
• The state-of-art hybrid fuzzing (Driller)

232

50

QSYM scales to real-world software

• 13 bugs in real-world software (already tested by fuzzing)

233

51

QSYM scales to real-world software

• 13 bugs in real-world software (already tested by fuzzing)

234

Real-
world

software

51

QSYM scales to real-world software

• 13 bugs in real-world software (already tested by fuzzing)

235

Already
heavily
fuzzed

51

QSYM can generate test cases that fuzzing is
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if(!((ox^(ox+dxw))
| (ox^(ox+dxh))
| (ox^(ox+dxw+ dxh))
| (oy^(oy+dyw))
| (oy^(oy+dyh))
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15
&& !(need_emu&&(h>MAX_H || stride > MAX_STRIDE)))

{ // the bug is here ; }

236

52

QSYM can generate test cases that fuzzing is
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if(!((ox^(ox+dxw))
| (ox^(ox+dxh))
| (ox^(ox+dxw+ dxh))
| (oy^(oy+dyw))
| (oy^(oy+dyh))
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15
&& !(need_emu&&(h>MAX_H || stride > MAX_STRIDE)))

{ // the bug is here ; }

Cannot be found by cloud fuzzing
(Note: 4 trillion test cases per week)

237

52

QSYM can generate test cases that fuzzing is
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if(!((ox^(ox+dxw))
| (ox^(ox+dxh))
| (ox^(ox+dxw+ dxh))
| (oy^(oy+dyw))
| (oy^(oy+dyh))
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15
&& !(need_emu&&(h>MAX_H || stride > MAX_STRIDE)))

{ // the bug is here ; }

Cannot be found by cloud fuzzing
(Note: 4 trillion test cases per week)

Found by a single workstation
using QSYM

238

52

QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer

239

53

QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer
• Dataset: 126 CGC binaries
• Compare code coverage achieved by a single run of concolic execution

• QSYM achieved more code coverage in 104 (82%) binaries

Better performance
à Find deeper code

240

53

QSYM is also practically impactful

• e.g., Rode0day: A monthly competition for automatic bug finding tool

241

Fasano, Andrew, et al. "The Rode0day to Less-Buggy
Programs." IEEE Security & Privacy (2019)

54

QSYM is also practically impactful

• e.g., Rode0day: A monthly competition for automatic bug finding tool

242

Fasano, Andrew, et al. "The Rode0day to Less-Buggy
Programs." IEEE Security & Privacy (2019)

54

Today’s talk

243

QSYM: A Binary-level
Concolic Execution Engine

for Hybrid fuzzing

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

• Binary
• User applications

• Source code
• File systems

55

Hybridra improves Hydra by supporting
concolic image mutation

244

Seeds

Hydra

56

Hybridra improves Hydra by supporting
concolic image mutation

245

Random Mutator
(Syscall + Image)

Seeds

Hydra

56

Hybridra improves Hydra by supporting
concolic image mutation

246

Random Mutator
(Syscall + Image)

Seeds Test cases

*

Hydra

56

Hybridra improves Hydra by supporting
concolic image mutation

247

Random Mutator
(Syscall + Image)

Seeds LibOS-based
Executor

Test cases

*

Hydra

56

Hybridra improves Hydra by supporting
concolic image mutation

248

Random Mutator
(Syscall + Image)

Seeds

Crash

LibOS-based
Executor

Test cases

*

Code coverage feedback
Hydra

56

Hybridra improves Hydra by supporting
concolic image mutation

249

Random Mutator
(Syscall + Image)

Seeds

Crash

LibOS-based
Executor

Test cases

*

Code coverage feedback

Concolic Mutator
(Image)

Hybridra

57

Hybridra: Key ideas

Generating
constraints is too slow

Not effective in
generating test cases

250

Compilation-based
concolic execution
(For source code)

Staged reduction
+ Heuristics from QSYM

58

Design: Concolic Image Mutator

251

Seeds

59

Design: Concolic Image Mutator

252

Seeds LibOS executor for
concolic execution

59

Design: Concolic Image Mutator

253

Seeds LibOS executor for
concolic execution Reduced

constraints

59

Design: Concolic Image Mutator

254

Seeds LibOS executor for
concolic execution Reduced

constraints

59

Design: Concolic Image Mutator

255

Seeds LibOS executor for
concolic execution Reduced

constraints

Constraint
Solver

59

Design: Concolic Image Mutator

256

Seeds LibOS executor for
concolic execution Reduced

constraints

Constraint
Solver

Test cases

*

59

Design: Concolic Image Mutator

257

Seeds LibOS executor for
concolic execution Reduced

constraints

Constraint
Solver

Test cases

*

59

Hybridra utilizes compilation-based concolic
execution

258

60

Hybridra utilizes compilation-based concolic
execution

259

+ Symbol* symA = getSymbol(a);
+ Symbol* symB = getSymbol(b);
+ Symbol* symC = addSymbol(symA, symB);

int c = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual(symC, symD);

if (c == d) {
...

60

Hybridra utilizes compilation-based concolic
execution

260

+ Symbol* symA = getSymbol(a);
+ Symbol* symB = getSymbol(b);
+ Symbol* symC = addSymbol(symA, symB);

int c = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual(symC, symD);

if (c == d) {
...

60

Hybridra utilizes compilation-based concolic
execution

261

+ Symbol* symA = getSymbol(a);
+ Symbol* symB = getSymbol(b);
+ Symbol* symC = addSymbol(symA, symB);

int c = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual(symC, symD);

if (c == d) {
...
200x performance improvement

compared to QSYM
(NOTE: code is required)

60

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

262

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

263

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

264

61

Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

265

61

Comparison: Memory modeling

266

SymCC

Memory

Shadow memory

Kirenenko

62

Comparison: Memory modeling

267

Thread1

SymCC

Memory

Shadow memory

Kirenenko

62

Comparison: Memory modeling

268

Thread1

SymCC

Thread2

Memory

Shadow memory

Kirenenko

62

Comparison: Memory modeling

269

Thread1

SymCC

Thread2

Memory

Shadow memory

Thread1 Thread2

Kirenenko

62

Comparison: Memory modeling

270

Thread1

SymCC

Thread2

Memory

Shadow memory

Thread1 Thread2

Kirenenko
Kirenenko successfully performs concolic

execution on file systems in library OS!

62

Design: Concolic Image Mutator

271

Seeds LibOS executor for
concolic execution Reduced

constraints

Constraint
Solver

Test cases

*

63

Remind: Constraints solving is hard!

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraint
solver

Constraints

NP hard

272

64

Two types of constraints reduction exist

273

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

65

Two types of constraints reduction exist

274

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

65

Two types of constraints reduction exist

275

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

Fast algorithm

65

Two types of constraints reduction exist

276

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

Fast algorithm

Limited expressiveness

65

Two types of constraints reduction exist

277

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

65

Two types of constraints reduction exist

278

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

65

Two types of constraints reduction exist

279

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
improvement

65

Two types of constraints reduction exist

280

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
improvement

Never used after
a solver can handle

non-linear operations

65

Staged reduction: combine both reduction mechanisms

281

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Expressive

①

Limited expressiveness

No algorithmic
improvement

66

Staged reduction: combine both reduction mechanisms

282

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Expressive

①

②

Limited expressiveness

No algorithmic
improvement

66

Staged reduction: combine both reduction mechanisms

283

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Constraints

a == 0x1337
Λ 13 * c == 0xc001
…
Λ z == 0xc0de
Reduction: Complexity
(e.g., Linear reduction)

a == 0x1337
Λ b * c == 0xc001
…
Λ z == 0xc0de

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Expressive

①

②

Limited expressiveness

No algorithmic
improvement

③

66

Staged reduction outperforms each reduction mechanism

284

• Setting: Concolic image only, fixed timeout (9 min, 24 hours)

67

Staged reduction outperforms each reduction mechanism

285

68

Staged reduction outperforms each reduction mechanism

286

Basic block is slow
(i.e., expressiveness

!= efficiency)

68

Staged reduction outperforms each reduction mechanism

287

Basic block is slow
(i.e., expressiveness

!= efficiency)

Linear converges too
early due to limited

expressiveness

68

Staged reduction outperforms each reduction mechanism

288

Basic block is slow
(i.e., expressiveness

!= efficiency)

Linear converges too
early due to limited

expressiveness

Combining both techniques is useful
to achieve higher code coverage!

68

Evaluation

• Effective to discover new bugs in file systems?

• Outperforms the fuzzing-only solution, Hydra?

289

69

Hybridra is effective in finding bugs in file systems

• We fuzz for 2 weeks
• Each fuzzing takes 24 hours

• Target: Linux v5.3 (LKL), but the latest Linux is v5.8

290

70

Hybridra is effective in finding bugs in file systems

• We fuzz for 2 weeks
• Each fuzzing takes 24 hours

• Target: Linux v5.3 (LKL), but the latest Linux is v5.8

291

Four new bugs

70

Hybridra is effective in finding bugs in file systems

• We fuzz for 2 weeks
• Each fuzzing takes 24 hours

• Target: Linux v5.3 (LKL), but the latest Linux is v5.8

292

Many bugs directly from
concolic execution
e.g., BUG(x != 0);

70

Hybridra outperforms the fuzzing-only
approach, Hydra
• Setting: Image only (+ Random), fixed timeout (24 hours)

293

71

Hybridra outperforms the fuzzing-only
approach, Hydra
• Setting: Image only (+ Random), fixed timeout (24 hours)

294

Concolic execution can help fuzzing in file systems
by discovering interesting test cases!

71

Discussion & Limitation

295

72

Discussion & Limitation

• Apply to other applications
• Our library OS (LKL) also supports network simulation.
• Thus, it is possible to extend it to network stacks
• We can apply other user-mode kernel (e.g., Kunit) to test other features

• Limitations
• Currently, Hybridra does not support floating point and vector operation
• The limited number of symbols (230) because of shadow memory

• In our evaluation, this is fine for testing file systems

296

72

Conclusion

• Designing a concolic executor tailored for hybrid fuzzing is important
for scaling hybrid fuzzing to real-world software
• Systematic approaches for fast symbolic simulation
• New heuristics for test case generation

• This dissertation demonstrates this idea with
• QSYM: Hybrid fuzzing for binary-only applications
• Hybridra: Hybrid fuzzing for file systems

297

73

Acknowledgements
• Georgia Tech

• Taesoo Kim
• Meng Xu
• Jinho Jung
• Wen Xu
• Soyeon Park
• Daehee Jang

• Oregon State University
• Yeongjin Jang

• Virginia Tech
• Changwoo Min

• Seoul National University
• Byoungyoung lee
• Yunheung Paek

• University of Pennsylvania
• Xujie Si
• Mayur Naik

• UNIST
• Hyungon Moon

• NSRI
• Su yong Kim

• KAIST
• Yongdae Kim
• Kyoungsoo Park
• Yung Yi

298

• Microsoft Research
• Sangho Lee
• Weidong Cui
• Xinyang Ge
• Ben Niu

• University of Michigan
• Baris Kasikci
• Upamanyu Sharma

• Arizona State University
• Ryuou Wang

• Google
• Chanil Cheon

• Facebook
• Dhaval Kapil

74

Thank you!

299

75

