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Today’s talk

-~

QSYM: A Binary-level
Concolic Execution Engine
for Hybrid fuzzing

~

-

.

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

~

/

* Binary
e User applications

e Source code
* File systems



Overview of 40-year-old random testing (fuzzing)




Overview of 40-year-old random testing (fuzzing)

B—{

Seeds




Overview of 40-year-old random testing (fuzzing)

B~ )&

Seeds Test cases




Overview of 40-year-old random testing (fuzzing)

‘_E\—>[ Fuzzer j—> _: - | </>
— — |

Seeds Test cases Program




Overview of 40-year-old random testing (fuzzing)

B—{ - |-

Seeds Test cases

Program



Recent breakthrough: Code coverage feedback

ENE
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if x[3]

crash()
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Before code coverage feedback,

X = input()

if x[0] =="H":

if x[1] =="A":
'R’
D’

if x[2]
if x[3]

crash()

Test cases
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P(crash) = 232
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After code coverage feedback,

X =

if x

input()
.
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After code coverage feedback,

X =

if x
i

f x
if x[2]
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input()
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crash()

Test cases

New code
coverage!
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Generate test cases from a test case that
introduces new code coverage

X = input()

if x[0] =="H":
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if x[3]

crash()
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Generate test cases from a test case that
introduces new code coverage

Test cases
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Generate test cases from a test case that
introduces new code coverage
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Test cases

New code
coverage!
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Generate test cases from a test case that
introduces new code coverage

— X = ‘H4SY'
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Test cases

New code
coverage!

125

P(crash) = 232



Generate test cases from a test case that
introduces new code coverage

— X = ‘H4SY'

— x = ‘H4SI' X = ‘HASY '

Test cases

New code
coverage!

P(CraSh) = -2'3'2' — 2‘8 X 2—2 — 2-1()

Per—byte 4 bytes 126



Coverage-guided fuzzing is effective
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Coverage-guided fuzzing is effective

* Fuzzer developed by Google
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libFuzzer - a library for coverage-guided fuzz testing.
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Coverage-guided fuzzing is effective

2ALLVM
fICNFORI:\V'STPRlIJCLTSRE
|
libFuzzer - a library for coverage-guided fuzz testing.

libFuzzer

=

OSS-Fuzz

Fuzzer developed by Google
Re-discover coverage-guided fuzzing

Found hundreds of bugs in many programs
e.g.,) Safari, Firefox, OpenSSL, ...

LLVM community developed

A library to include random testing as a part
of projects
e.g.,) LLVM, Chromium, Tensorflow, ...

Use Google’s cloud resources to fuzz open-
source software

4 trillion test cases a week
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Limitations of fuzzing: Randomly hard-to-find
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Limitations of fuzzing: Randomly hard-to-find
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Concolic execution can help fuzzing by finding
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Concolic execution can help fuzzing by finding
hard-to-find test cases

x = int(input())
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crash()

X = input()
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

* Organized by DARPA in 2017
* Build a system to find bugs, exploit and patch on binaries
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* Almost $4 million for prize money
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

* Organized by DARPA in 2017
* Build a system to find bugs, exploit and patch on binaries

e Over 100 teams =2 7 teams were qualified (include our team)

* Almost $4 million for prize money

 Small binaries: a few KB

152
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Hybrid fuzzing has achieved great success in small-
scale study (DARPA Cyber Grand Challenge)

* The winner from CMU used hybrid fuzzing
€ e

Yep. AFL +custom mods +symexec. Couldn't

have won #DARPACGC w/o it. Mad props to
@lcamtuf
hanno @hanno
Replying to @8764hhf @lcamtuf
ording to my h @th y m m
fl+symbo p

* Shellphish open-sourced their tool, Driller

* Won 3™ place in CGC competition
* Found 6 new crashes: cannot be found by fuzzing or concolic execution
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But, hybrid fuzzing fails to scale real-world
applications

Cannot find ANY bug in
real-world software
using Driller!
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Current concolic executors suffer several
problems to be used in hybrid fuzzing

Generating
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Symbolic emulation is well-known to be much
slower than concrete execution
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return *a==2 * b;
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Symbolic emulation is well-known to be much
slower than concrete execution

Symbolic
Emulation:
> Taint tracking
intis_double(int™ a, int b) {
return *a==2 * b;

X
Symbolic Emulation: Symbolic Emulation:
Constructing symbols Interpretation

(e.g., ¥a==2 * Symbol,)) (e.g., *a =2?7)
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Symbolic emulation is well-known to be much
slower than concrete execution

Symbolic

Emulation:
Taint tracking

_— T~

Symbolic emulation is 1,000x slower
than concrete execution!

Symbolic Emulation:\

Interpretation

(e.g., *a =y

Symbolic Emulation:
Constructing symbols
(e.g., *a ==2* Symbol,)
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State forking can be used to solve this problem




22

State forking can be used to solve this problem

No need to re-execute!




State forking is limited in hybrid fuzzing
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 # of states is enormous in a complex real-world program
=> Large performance overhead

* Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability
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State forking is limited in hybrid fuzzing

 # of states is enormous in a complex real-world program
=> Large performance overhead

* Hybrid fuzzing explores paths randomly following fuzzing
=> Low reusability

State forking cannot help slow symbolic emulation

in hybrid fuzzing!

172
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Current concolic executors have several
problems to be used in hybrid fuzzing

Not effective in

generating test cases

173
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Completeness of concolic execution often
blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
2 int completeness(char* buf, int x) {
3 very_complicated_logic(buf);

if (x * x == 1234 * 1234)
crash();

~N O W B
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Completeness of concolic execution often
blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
2 int completen:;;(char* buf, int x) {
3  very_compli ied_logic(buf);

1234 * 1234)

4
s  1f (x * x ==
6 crash();

7

Analyze every routine for completeness!

176



Soundness of concolic execution incurs
unnecessary re-execution

1 // 'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {

3 1f (x == 0)

do_something();

if (x * x == 1234 * 1234)
crash();

co N o W A

}

177



26

Soundness of concolic execution incurs
unnecessary re-execution

1 // ’'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {
if (x ==

W

if (x *
crash(®);

== 1234 * 1234)

co N o W A
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Soundness of concolic execution incurs
unnecessary re-execution

1 // 'x’ 1s symbolic and 'x’ == 0 in a given input
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Unsatisfiable!
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Soundness of concolic execution incurs
unnecessary re-execution

1 // ’'x’ 1s symbolic and 'x’ == 0 in a given input
2 int soundess(int x) {

W

Unsatisfiable!

co N o W A

Don’t make possibly incorrect test cases for soundness!

180



27

Our approach

Generating
constraints is too slow

Not effective in
generating test cases
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Our approach: QSYM

Systematic approach
for fast symbolic
emulation

New heuristics for
hybrid fuzzing

QSYM

-

Instruction-level
concolic execution

(For binary)

\

-
-

-

Optimistic so
basic block

ving and

oruning

/
\

/
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Our approach: Hybridra

Systematic approach
for fast symbolic
emulation

New heuristics for
hybrid fuzzing

Hybridra

-

-

Compilation-based
concolic execution

(For source code)

\

/

-

+ Heuristics from QSYM

-

Staged reduction

\

/

185
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Related work: Whitebox fuzzing

* Goal
* Hybrid fuzzing: Make a test case for fuzzing
* Whitebox fuzzing: Explore a program state solely

* Exploration
* Hybrid fuzzing: Random
* Whitebox fuzzing: Systematic

e Strategy: Hybrid fuzzing’s can be more aggressive thanks to coverage-
guided fuzzing (e.g., optimistic solving)
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Today’s talk

-~

o

QSYM: A Binary-level
Concolic Execution Engine
for Hybrid fuzzing

~

/

-

~

* Binary
e User applications



32

Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

Instruction-level
concolic execution
(For binary)

~

o
/

o

Optimistic so
basic block

ving and

oruning

/
\

/
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Our system, QSYM, addresses these issues by
introducing several key ideas

. I
. Instruction-level
Generating . .
. . concolic execution
constraints is too slow .
(For binary) y
\

Not effective in
generating test cases

189
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QSYM has made several design decisions for
improving performance

* Discarding intermediate layer

* Instruction-level symbolic execution
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QSYM has made several design decisions for
improving performance

Simple, but
BIG
design decision

* Discarding intermediate layer

* Instruction-level symbolic execution
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push ebp

Assembly
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PUT(esp) = t2

STle(t2) =t0

Intermediate
Representation (IR)
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Hybrid fuzzing in a closer look

t0 = GET:132(ebp)
tl = GET:I32(esp) 3 == 0x1337
oush ebp t2 = Sub32(t1,0x00000004) A Db * c == 0xcO01
PUT(esp) = t2

STle(t2) =t0 N\ z == OxcOde

Assembly Constraints

Intermediate
Representation (IR)

Good: Simplifying implementations

e.g., 981 in x86 vs 115 in VEX

195
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Hybrid fuzzing in a closer look

t0 = GET:132(ebp)
tl = GET:I32(esp) 3 == 0x1337
oush ebp t2 = Sub32(t1,0x00000004) Ab * c==0xc001
PUT(esp) = t2

STle(t2) =t0 N\ z == OxcOde

Assembly Constraints

Intermediate
Representation (IR)

Good: Simplifying implementations
e.g., 981 in x86vs 115 in VEX

Bad: Performance bottleneck
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Problems of IR: The number of instructions increase

Cr

push ebp

t0 = GET:132(ebp)
tl = GET:I32(esp)
t2 = Sub32(t1,0x00000004)

— PUT(esp) = t2
STle(t2) =t0

Assembly

Intermediate
Representation (IR)

4.96x increase
on average!
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Problems of IR: Slow transformation speed

push ebp

t0 = GET:132(ebp)

tl = GET:I32(esp)

t2 = Sub32(t1,0x00000004)
PUT(esp) = t2

STle(t2) =t0

Intermediate
Representation (IR)




37

Problems of IR: Slow transformation speed

t0 = GET:132(ebp)
t1 = GET:132(esp)
push ebp t2 = Sub32(t1,0x00000004)

— PUT(esp) = t2
STle(t2) =t0

Intermediate
Representation (IR)

Cache it!
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Side effects of caching: Basic-block granularity
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Side effects of caching: Basic-block granularity

* Cache lookup is also slow

e Use basic-block granularity for caching
e i.e., transform a basic block into IR and cache

e Unfortunately, 30% of instructions in a basic block are symbolic
- 70% of instructions are executed without need
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Side effects of caching: Basic-block granularity

* Cache lookup is also slow

e Use basic-block granularity for caching
e i.e., transform a basic block into IR and cache

e Unfortunately, 30% of instructions in a basic block are symbolic
- 70% of instructions are executed without need
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How to solve this challenge?

t0 = GET:132(ebp)
tl = GET:I32(esp) 3 == 0x1337
oush ebp t2 = Sub32(t1,0x00000004) Ab * c==0xc001
PUT(esp) = t2

STle(t2) =t0 N\ z == OxcOde

Assembly Constraints

Intermediate
Representation (IR)

Good: Simplifying implementations
e.g., 981 in x86vs 115 in VEX

Bad: Performance bottleneck
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How to solve this

push ebp

Assembly

Good: Simplifying implementations

t0 = GET:I3

Performance is
the most important!

t2 = Sub3
PUT(esp

Intermediate
Representation (IR)

e.g., 981 in x86 vs 115 in VEX

A b *c==0xc001

N\ z == OxcOde

Constraints

Bad: Performance bottleneck
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This is a non-trivial job (LoC)

4./K

Driller

https://github.com/angr/angr/tree/master/angr/engines

13K

QSYM


https://github.com/angr/angr/tree/master/angr/engines

41

QSYM reduces the number of symbolically
executed instructions

e 126 CGC binaries

800 k -
2 600k - 2.5x end-to-end
S 400k 25% j> performance
Z 200k - Improvement

O -
QSYM Driller
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Our system, QSYM, addresses these issues by
introducing several key ideas

Generating
constraints is too slow

Not effective in
generating test cases

-

o
/

o

Optimistic so
basic block

ving and

oruning

/
\

/

207
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Constraint solving can generate a test case
that meets given constraints

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

Constraints
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that meets given constraints

a ==0x1337/

ADb*c==0xc001 Constraint
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N\ z == OxcOde

Constraints
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Constraint solving can generate a test case

that meets given constraints

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

_)L

Constraint
solver

| =

Constraints

Test cases



Constraint solving CANNOT generate a test
case that meets given constraints

a ==0x1337/

ADb*c==0xc001 Constraint x
solver

N\ z == OxcOde

Constraints



Constraint solving CANNOT generate a test
case that meets given constraints

NP hard

a ==0x1337 @
ADb*c==0xc001 Constraint x
solver

N\ z == OxcOde

Constraints



Constraint solving CANNOT generate a test
case that meets given constraints

NP hard

a ==0x1337 @
ADb*c==0xc001 Constraint x
solver

N\ z == OxcOde

Constraints

Bad: Cannot get anything from

concolic execution

213
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QSYM solves partial constraints to find
some test cases
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QSYM solves partial constraints to find

some test cases

[
X

Constraint
solver

)
)

Test cases

Good: Can get test cases from

concolic execution

215



45

QSYM solves partial constraints to find

some test cases

[
X

Constraint
solver

) —
)

If the test cases
are jncorrect...”?

Test cases

get test cases from

yxecution

216
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In hybrid fuzzing, generating incorrect inputs is
fine because of coverage-guided fuzzing

B~ | -@ i

Seeds Test cases Program

-

Concolic
execution

217
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In hybrid fuzzing, generating incorrect inputs is
fine because of coverage-guided fuzzing

‘ \—>[ Fuzzer —>®—‘ </> —>
|

Seeds Test cases Program
|

Coverage feedback

-

Concolic
execution

Coverage feedback
will filter out
incorrect test cases!
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Optimistic solving helps to find more bugs

e LAVA-M dataset

* |nject hard-to-reach bugs in real-world applications

uniq base64 mdSsum who
30 A
HEHEHEHEHEHEHEHEHEK HHEHEHEHEEEE—EXK
40 A i

% 20 4 >0 1000 -
=
E . M

. 25 4 i
2 10 - 500

O "i T T T T T O ‘4 T T T T T 0 "* T T T T T O T
0

1 2 3 -+ 5 0 1 2 3 -+ 5
Time (h) =& w/ optimistic —S—  w/o optimistic
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Remind: Completeness of concolic execution
often blocks its further exploration

1 // ’buf’ and ’x’ are symbolic
» int completeness(char* buf, int x) {
very_complicated_logic(buf);

3

~N O A

if (x * x == 1234 *

crash();

1234)
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Remind: Completeness of concolic execution
often blocks its further exploration
1 // 'buf’ and 'x’ are symbolic

» int completeness(char* buf, int x) {
very_complicated_logic(buf);{ >

3

~N O A

if (x * x == 1234 *

crash();

1234)
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Remind: Completeness of concolic execution
often blocks its further exploration
1 // 'buf’ and ’'x’ are symbolic

> int completeness(char* buf, int x) {
3 very_complicated_logic(buf);< >

Limit symbolic execution for
repeatedly executed blocks

if (x * x == 1234 * 1234)
crash();

~N O A

222
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Remind: Completeness of concolic execution
often blocks its further exploration

1 // 'buf’ and ’x’ are symbolic
» int completeness(char* buf, int x) {

3 very_complicated_logic(buf);{ >

4
s 1f (x * x == 1234 * 1234)
6 crash();

7

Can further explore even with

such a complicated routine

Limit symbolic execution for
repeatedly executed blocks
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Remind: Completeness of concolic execution
often blocks its further exploration
1 // 'buf’ and ’x’ are symbolic

» int completeness(char* buf, int x) {
3 very_complicated_logic(buf);< >

Limit symbolic execution for

repeatedly executed blocks

4
s 1f (x * x == 1234 * 1234)
6 crash();

7

Can further explore even with .
Incomplete constraints

such a complicated routine

224
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Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x |=0is missed because
of basic block pruning

225
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Incomplete constraints are not significant in

practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

ify

Oxdeadbeef :
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Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input
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Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef :

228



49

Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef : ¢ 0
w’/

Subsumed constraints
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Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0 is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef : ¢ 0
w’/

Subsumed constraints

if x |= Oxdeadbeef :
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Incomplete constraints are not significant in
practice for hybrid fuzzing

X = input()
y = input()

// x 1= 0 is missed because
of basic block pruning

if y == Oxdeadbeef : ";

Independent constraints: Use x =0 in the input

if x == Oxdeadbeef : ¢ 0
w’/

Subsumed constraints

if x |= Oxdeadbeef : Py

Failing...

231
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Evaluating QSYM

* Scaling to real-world software?

* How good is QSYM compared to
e The state-of-art hybrid fuzzing (Driller)
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QSYM scales to real-world software

* 13 bugs in real-world software (already tested by fuzzing)

Program CVE Bug Type Fuzzer
lepton CVE-2017-8891 Out-of-bounds read  AFL
openjpeg  CVE-2017-12878 Heap overflow OSS-Fuzz
Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249*  Stack overflow OSS-Fuzz
libarchive = Wait for patch NULL dereference =~ OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Wait for patch Heap overflow x 3
Wait for patch Memory leak
ffmpeg CVE-2017-17081 Out-of-bounds read  OSS-Fuzz
CVE-2017-17080 Out-of-boundsread = AFL

objdump

233
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QSYM scales to real-world software

* 13 bugs in real-world software (already tested by fuzzing)

Program |JCVE Bug Type Fuzzer

lepton CVE-2017-8891 Out-of-bounds read  AFL
openjpeg  JCVE-2017-12878 Heap overflow OSS-Fuzz

Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249*  Stack overflow OSS-Fuzz
libarchive Wait for patch NULL dereference =~ OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Real- Wait for patch Heap overflow x 3
world Wait for patch Memory leak
software ffmpeg CVE-2017-17081 Out-of-bounds read  OSS-Fuzz

objdump CVE-2017-17080 Out-of-bounds read  AFL
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QSYM scales to real-world software

* 13 bugs in real-world software (already tested by fuzzing)

Program CVE Bug Type Fuzzer
lepton CVE-2017-8891 Out-of-bounds read ] AFL

openjpeg  CVE-2017-12878 Heap overflow OSS-Fuzz
Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249*  Stack overflow OSS-Fuzz
libarchive = Wait for patch NULL dereference | OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Wait for patch Heap overflow x 3
Wait for patch Memory leak
ffmpeg CVE-2017-17081 Out-of-bounds read | OSS-Fuzz

objdump CVE-2017-17080 Out-of-bounds read ] AFL

Already
heavily
fuzzed
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QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if( '((ox"(ox+dxw))
(ox”(ox+dxh))
(ox"(ox+dxw+ dxh))
(oy”(oy+dywy))
(oy”(oy+dyh))
(oy”(oy+dyw+ dyh))) >> (16 + shift)
&& !(dxx | dxy | dyx | dyy) & 15
&& l(need_emu&&(h>MAX_H || stride > MAX_STRIDE)))
{// the bug is here ; }
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QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if( !
T Hle Cannot be found by cloud fuzzing

(Note: 4 trillion test cases per week)

| (oy”(oy+dyh))

| (oy”(oy+dyw+ dyh))) >> (16 + shift)

&& !(dxx | dxy | dyx | dyy) & 15

&& !(need _emu&&(h>MAX_H || stride > MAX_STRIDE)))
{// the bug is here ; }
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QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if( !
Hle Cannot be found by cloud fuzzing

(Note: 4 trillion test cases per week)

oy oyseyh)
Found by a single workstation
using QSYM

238



QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer
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QSYM outperforms Driller, the state-of-the-
art hybrid fuzzer

e Dataset: 126 CGC binaries
 Compare code coverage achieved by a single run of concolic execution

* QSYM achieved more code coverage in 104 (82%) binaries

Better performance
- Find deeper code




QSYM is also practically impactful

* e.g., RodeOday: A monthly competition for automatic bug finding tool

Table 2. The overall rankings

for top RodeOday competitors

after 10 competitions.
mm
1,087 afl-lazy
1,069 itszn
1,027 H3ku

1017 REDQUEEN Fasano, Andrew, et al. "The RodeOday to Less-Buggy
1,062 Programs." IEEE Security & Privacy (2019)

(V2 S w N -

241
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QSYM is also practically impactful

* e.g., RodeOday: A monthly competition for automatic bug finding tool

Table 2. The overall rankings

Relative Hours Until Solved

for top RodeOday competitors Bugs Found in file2_S2 0 I — 623

after 10 competitions.

1

2

3

1,087
1,069
1,027
1,017

1,062

Bug Type
Team Name Simple Bug | Complex Bug

H3ku * A K * KX KA AKX
Team name NU-AFL-QSYM R85 a5 a0 -t - (- ¢ Y el ¥ mll eSS E—r——

NU_AFL

REDQUEEN
afl-lazy afl-lazy | ] |
slazar0_A

itszn

Figure 2. A visualization of when teams found bugs in file2_S2 during the November 2018 Rode0Oday. Green indicates the bugs found within 24 h of a
H3ku team’s first score. The stars denote the first team to find a bug.

REDQUEEN Fasano, Andrew, et al. "The RodeOday to Less-Buggy

Programs." IEEE Security & Privacy (2019)

242



95

Today’s talk

-~

o

/

-

.

Hybridra: A Hybrid Fuzzer
for Kernel File Systems

~

/

e Source code
* File systems



Hybridra improves Hydra by supporting
concolic Image mutation

Seeds

Hydra
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Seeds

ra improves Hydra by supporting

IC Image mutation

Random Mutator
(Syscall + Image)

Hydra
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Test cases
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Hybridra improves Hydra by supporting
concolic Image mutation

Random Mutator — L =
(Syscall + Image) | — ~ ||= — </>|

Seeds Test cases LibOS-based
Executor

Hydra
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Hybridra improves Hydra by supporting

conco

Seeds

IC Image mutation

Random Mutator — L =
SyscaII+ image) |~ ||= — </>|

Test cases LibOS-based
Executor

Code coverage feedback
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Hybridra improves Hydra by supporting
concolic Image mutation

- [ Random Mutator —
— (Syscall + Image) — —

Concolic Mutator

(Image)

Test cases LibOS-based

Executor

Code coverage feedback

-] —

Hybridra

249
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Hybridra: Key ideas

Generating
constraints is too slow

Not effective in
generating test cases

-

o

Compilation-based
concolic execution

(For source code)

\

/

/

o

Staged reduction

~

+ Heuristics from QSYM

/

250
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Design: Concolic Image Mutator




Design: Concolic Image Mutator

— > </>

Seeds  LibOS executor for
concolic execution
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Design: Concolic Image Mutator

— s |</>| —s [Constraintj
— | _

— Solver

Seeds  LibOS executor for
concolic execution Reduced

constraints
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Design: Concolic Image Mutator

Seeds

>

</>

LibOS executor for
concolic execution

Reduced
constraints

Constrain
—>
Solver

j_} =

Test cases
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Design: Concolic Image Mutator

LibOS executor for
concolic execution

Reduced
constraints

Constrain
—>
Solver

j_} =

Test cases

257
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Hybridra utilizes compilation-based concolic
execution



Hybridra utilizes compilation-based concolic
execution

+ Symbol* symA
+ Symbol* symB
+ Symbol* symC

getSymbol (a);
getSymbol (b);
addSymbol (symA, symB);

int ¢ = a + b;
+ Symbol* symD = getSymbol(d);
+

+ checkEqual(symC, symD);

if (¢ == d) {




Hybridra utilizes compilation-based concolic
execution

+ Symbol* symA
+ Symbol* symB
+ Symbol* symC

getSymbol (a);
getSymbol (b);
addSymbol (symA, symB);

int ¢ = a + b;
+ Symbol* symD = getSymbol(d);
+

+ checkEqual(symC, symD);

if (¢ == d) {
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Hybridra utilizes compilation-based concolic
executior

+ Symbol* symA
+ Symbol* symB
+ Symbol* symC

getSymbol (a);
getSymbol (b);
addSymbol (symA, symB);

int ¢ = a + b;

+ Symbol* symD = getSymbol(d);
+ // Make test cases
+ checkEqual (symC, symD);

200x performance improvement

compared to QSYM
(NOTE: code is required)

261
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Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

SymCC  Kirenenko

LLVMIR LLVMIR
Page table Shadow memory

v

Language
Memory modeling | Page table
Multi-threading

262
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Kirenenko, is useful by supporting multi-threading

CUTE

Language C
Memory modeling Page table
Multi-threading
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LLVMIR | LLVM IR
Page table] Shadow memory
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Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

CUTE

Language C
Memory modeling Page table
Multi-threading

Kirenenko

LLVMIR | LLVM IR
Page table] Shadow memory

File system Failure

btrfs z3 exception
ext4 Deadlock
f2fs Deadlock

xfs Deadlock
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Hybridra’s compilation-based concolic execution,
Kirenenko, is useful by supporting multi-threading

CUTE SymCC | Kirenenko

Language C LLVM IR | LLVM IR
Memory modeling Page table Page table | Shadow memory
Multi-threading
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Comparison: Memory modeling

SymCC

Memory

Shadow memory

Kirenenko
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Comparison: Memory modeling

()
P
Threadl

N

SymCC

Memory

Shadow memory

Kirenenko
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Comparison: Memory modeling
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Comparison: Memory modeling

()
P
Threadl

N

Thread?2

SymCC

[Threadlj

[Threade

(

Memory

J

[

Shadow memory

J

Kirenenko
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Comparison: Memory modeling

(Threadl] [Threade

()
P
Threadl Thread?2

( Memory

J

-

( Kirenenko successfully performs concolic

J
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Design: Concolic Image Mutator

Seeds

LibOS executor for
concolic execution

Reduced
constraints

Constrain
Solver

j_} =

Test cases

271
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Remind: Constraints solving is hard!

a ==0x1337
ADb*c==0xc001

N\ z == OxcOde

NP hard

@

_)L

Constraint
solver

—X

Constraints
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Two types of constraints reduction exist

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints
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a==0x1337/
A b *c==0xc001

N\ z == OxcOde
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Constraints

Reduction: Complexity
(e.g., Linear reduction)

Fast algorithm
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Fast algorithm

Limited expressiveness

276



65

Two types of constraints reduction exist

a==0x1337/
A 13 * c==0xc001

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

S 01337
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N\ z == OxcOde
Reduction: # of constraints
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Limited expressiveness
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Two types of constraints reduction exist

a ==0x1337
A 13 * c==0xc001

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

& 01337
A b *c==0xc001

N\ z == OxcOde
Reduction: # of constraints
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Fast algorithm
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Two types of constraints reduction exist

a==0x1337/
A 13 * c==0xc001

a==0x1337/
A b *c==0xc001

N\ z == OxcOde

Constraints

N\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

S 01337
A b *c==0xc001

N\ z == OxcOde
Reduction: # of constraints

(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement
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Two types of constraints reduction exist

a == 0x1337/ :
A 13 * ¢ == Oxc001 Fast algorlthm

Never used after
a solver can handle
non-linear operations

A\ z == OxcOde Limited expressiveness
Reduction: Complexity

(e.g., Linear reduction)

N\ z == OxcOde

Constraints

- 01337
Ab * ¢ == Oxc001 Expressive

A 7 == OxcOde No algorithmic

Reduction: # of constraints {g{gafelge)Z=lgal=lal
(e.g., Basic block pruning) 250
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Staged reduction: combine both reduction mechanisms

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

@

a ==0x1337
A 13 * ¢ == Oxc001

A\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

S 01337
A b *c==0xc001

A\ z == OxcOde

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement
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Staged reduction: combine both reduction mechanisms

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

@

a ==0x1337
A 13 * ¢ == Oxc001

A\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

D —sss

A b *c==0xc001

A\ z == OxcOde

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement
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Staged reduction: combine both reduction mechanisms

3

a ==0x1337
A b *c==0xc001

N\ z == OxcOde

Constraints

@

a ==0x1337
A 13 * ¢ == Oxc001

A\ z == OxcOde

Reduction: Complexity
(e.g., Linear reduction)

D —sss

A b *c==0xc001

A\ z == OxcOde

Reduction: # of constraints
(e.g., Basic block pruning)

Fast algorithm

Limited expressiveness

Expressive

No algorithmic
Improvement
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Staged reduction outperforms each reduction mechanism

 Setting: Concolic image only, fixed timeout (9 min, 24 hours)

Coverage (%)

[ B = B ~ B =
= N W A~ WU
1 1 1 1

[
o
1

btrfs extd f2fs
i —
L 5.0
7 -
< L 4.8 4
[J] y (]
g 6 - / g 4.6
> / 0 44
S S
o 4.2
4.0
1 1 1 1 I I I I 1
0 20000 40000 0 10000 20000 0 5000 10000 15000
Time (s) Time (s) Time (s)
- Staged Linear == Basic block

Coverage (%)

I I I 1 1
0 5000 10000 15000 20000
Time (s)
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Staged reduction outperforms each reduction mechanism

85 4
8.0 4

75 1

overage (%)
~J
o

6.0

5.5 1

xfs

/

I I I 1
5000 10000 15000 20000

Time (s)
= Staged  — Linear = Basic block
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Staged reduction outperforms each reduction mechanism
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Staged reduction outperforms each reduction mechanism
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Staged reduction outperforms each reduction mechanism

xfs
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Combining both techniques is useful
to achieve higher code coverage! -
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Evaluation

e Effective to discover new bugs in file systems?

e Qutperforms the fuzzing-only solution, Hydra?



Hybridra is effective in finding bugs in file systems

* We fuzz for 2 weeks
e Each fuzzing takes 24 hours

e Target: Linux v5.3 (LKL), but the latest Linux is v5.8

File system File Function Type Concolic New
fs/btrfs/extent_io.c extent_io_tree_panic Null pointer dereference v’ v
fs/btrfs/free-space-cache.c tree_insert_offset BUG() v
fs/btrfs/extent-tree.c btrfs_drop_snapshot BUG()

btefs fs/btrfs/extent-tree.c walk_down_proc BUG() v
fs/btrfs/relocation.c merge_reloc_root BUG()
fs/btrfs/root-tree.c btrfs_find_root BUG() v v
fs/btrfs/ctree.c setup_items_for_insert BUG() v
fs/btrfs/volumes.c calc_stripe_length Divide by zero v

ext4 fs/ext4/super.c ext4_clear_journal_err BUG()

f2fs fs/f2fs/segment.c f2fs_build_segment_manager Out-of-bounds read
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Hybridra is effective in finding bugs in file systems

* We fuzz for 2 weeks
e Each fuzzing takes 24 hours

e Target: Linux v5.3 (LKL), but the latest Linux is v5.8

Four new bugs

File system File

Function

Type

Concolic New

fs/btrfs/extent_io.c extent_io_tree_panic Null pointer dereference v’ v
fs/btrfs/free-space-cache.c tree_insert_offset BUG() v
fs/btrfs/extent-tree.c btrfs_drop_snapshot BUG()

btefs fs/btrfs/extent-tree.c walk_down_proc BUG() v
fs/btrfs/relocation.c merge_reloc_root BUG()
fs/btrfs/root-tree.c btrfs_find_root BUG() v v
fs/btrfs/ctree.c setup_items_for_insert BUG() v
fs/btrfs/volumes.c calc_stripe_length Divide by zero v

ext4 fs/ext4/super.c ext4_clear_journal_err BUG()

f2fs fs/f2fs/segment.c f2fs_build_segment_manager Out-of-bounds read
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Hybridra is effective in finding bugs in file systems

* We fuzz for 2 weeks
e Each fuzzing takes 24 hours

e Target: Linux v5.3 (LKL), but the latest Linux is v5.8

File system File Function Type Concolic New

fs/btrfs/extent_io.c extent_io_tree_panic Null pointer dereferencs v
fs/btrfs/free-space-cache.c tree_insert_offset BUG()
fs/btrfs/extent-tree.c btrfs_drop_snapshot BUG()

btefs fs/btrfs/extent-tree.c walk_down_proc BUG()
fs/btrfs/relocation.c merge_reloc_root BUG()
fs/btrfs/root-tree.c btrfs_find_root v
fs/btrfs/ctree.c setup_items_for_insert v
fs/btrfs/volumes.c calc_stripe 1- ) v

Many bugs directly from
ext4 fs/ext4/super.c exy’/ _ _
f2fs fs/f2fs/segment.c f2\ concolic execution /

e.g., BUG(x |=0);
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Hybridra outperforms the fuzzing-only
approach, Hydra

e Setting: Image only (+ Random), fixed timeout (24 hours)

Coverage (%)
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Hybridra outperforms the fuzzing-only
approach, Hydra

e Setting: Image only (+ Random), fixed timeout (24 hours)

Coverage (%)
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Concolic execution can help fuzzing in file systems

by discovering interesting test cases!
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Discussion & Limitation
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Discussion & Limitation

* Apply to other applications
e Our library OS (LKL) also supports network simulation.
* Thus, it is possible to extend it to network stacks
* We can apply other user-mode kernel (e.g., Kunit) to test other features

* Limitations
e Currently, Hybridra does not support floating point and vector operation

* The limited number of symbols (23°) because of shadow memory
* In our evaluation, this is fine for testing file systems
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Conclusion

e Designing a concolic executor tailored for hybrid fuzzing is important
for scaling hybrid fuzzing to real-world software

e Systematic approaches for fast symbolic simulation
* New heuristics for test case generation

* This dissertation demonstrates this idea with
* QSYM: Hybrid fuzzing for binary-only applications
* Hybridra: Hybrid fuzzing for file systems
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