
FINDING RACE CONDITIONS IN KERNELS:
FROM FUZZING TO SYMBOLIC EXECUTION

A Dissertation
Presented to

The Academic Faculty

By

Meng Xu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

August 2020

Copyright © Meng Xu 2020

FINDING RACE CONDITIONS IN KERNELS:
FROM FUZZING TO SYMBOLIC EXECUTION

Approved by:

Dr. Taesoo Kim (Advisor)
School of Computer Science
Georgia Institute of Technology

Dr. Wenke Lee
School of Computer Science
Georgia Institute of Technology

Dr. Alessandro Orso
School of Computer Science
Georgia Institute of Technology

Dr. Brendan D. Saltaformaggio
School of Electronical and Computer
Engineering
Georgia Institute of Technology

Dr. Marcus Peinado
Microsoft Research Lab – Redmond
Microsoft

Date Approved: July 16, 2020

To my family,

for the unconditional support.

ACKNOWLEDGEMENTS

My Ph.D. thesis would not be possible without the help from a number of people.

First and foremost, I would like to express my sincere gratitude and appreciation to my

advisor, Prof. Taesoo Kim, who not only inspires me to pursue the research direction in

system and software security, but also provides valuable guidance and generous support that

allows me to succeed in this direction. His innovative ideas and comments helped me shape

almost all my research projects in the six years. But more importantly, through the advice,

he taught me with arguably the most essential skill for an independent researcher: critical

thinking. I am forever thankful to the training Taesoo provides me and I hope that one day I

can be a good advisor to my future students as Taesoo has been to me.

I would like to express my special thanks to my collaborators who also mentored me

both at Georgia Tech and during my internships. In particular, many thanks to Prof. Wenke

Lee for the thought-provoking discussions and invaluable career advice. And my sincere

gratitude goes to Prof. Michael Backes, Dr. Sam Blackshear, and Dr. Marcus Peinado for

kindly hosting me at CISPA, Facebook, and Microsoft Research, respectively. Many parts

of the thesis are derived from our fruitful collaboration and those research projects will not

be successful without their trust, support, and constructive comments. I would also like to

thank Prof. Alessandro Orso and Prof. Brendan D. Saltaformaggio for taking time to serve

on my thesis committee. Their insightful feedback has improved this thesis significantly.

This thesis is a product of great team work. I have been fortunate to collaborate with

many brilliant and friendly colleagues in SSLab, IISP, or wherever I interned at. They not

only help me with research challenges but also make everyday life enjoyable: I would like

to take this opportunity to thank: Prof. Xinyu Xing, Prof. Byoungyoung Lee, Prof. Chengyu

Song, Prof. Kangjie Lu, Prof. Yeongjin Jang, Dr. Sangho Lee, Dr. Yang Ji, Dr. Hong Hu,

Dr. ChulWon Kang, Dr. Daehee Jang, Dr. Paul England, Dr. Manuel Huber, Dr. Ruian

Duan, Dr. Ming-Wei Shih, Sanidhya Kashap, Insu Yun, Chenxiong Qian, Seulbae Kim, Ren

v

Ding, Fan Sang, Hanqing Zhao, Wen Xu, Zhichuang Sun, Jinho Jung, and Jungyeon Yoon.

In addition, I am also grateful to our support staff, Elizabeth Ndongi, Sue Jean Chae, and

Trinh Doan for their help in all the administrative work.

Last but not least, to my parents back in China, I always thank you for your unconditional

love, patience, and support throughout my years at Georgia Tech. I am forever indebted to

Pei Wang for her love, patience, support, and encouragement, without which I could not

have survived the most difficult times in my PhD journey.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Problem Statement . 1

1.2 Navigating the Concurrency Dimension via Fuzz Testing 4

1.3 Finding Double-fetch Bugs with Symbolic Model Checking 7

1.4 Thesis Contribution . 10

Chapter 2: Background . 12

2.1 Race Condition Examples . 12

2.1.1 Data races . 12

2.1.2 Time-to-check vs time-to-use bugs 13

2.2 Hunting Security Vulnerabilities via Fuzz Testing 17

2.2.1 Fuzzing in general . 17

2.2.2 Fuzzing for data races in OS kernels 18

2.3 Hunting Semantic and Logic Errors via Symbolic Execution 20

vii

2.3.1 Symbolic execution in general . 20

2.3.2 Symbolic execution tailored for OS kernels 21

2.4 Other Approaches on Race Condition Detection 22

2.4.1 Static lockset analysis . 22

2.4.2 Dynamic lockset and happens-before analysis 23

Chapter 3: KRace: Generic Data Race Fuzzing for Kernel File Systems 25

3.1 A Coverage Metric for Concurrent Programs 25

3.1.1 Branch coverage for the sequential dimension 25

3.1.2 Alias coverage for the concurrency dimension 27

3.2 Input Generation for Concurrency Fuzzing 29

3.2.1 Multi-threaded syscall sequences 29

3.2.2 Thread scheduling control (weak form) 32

3.3 A Data Race Checker for Kernel Complexity 34

3.3.1 Data race detection procedure . 34

3.3.2 Lockset analysis . 35

3.3.3 Happens-before analysis . 38

3.3.4 Ad-hoc synchronization schemes in kernel file systems 40

3.4 Putting Everything Together . 42

3.4.1 Architecture . 42

3.4.2 Benign vs harmful data races . 46

3.4.3 The aging OS problem . 47

3.5 Implementation . 48

viii

3.6 Evaluation . 50

3.6.1 Data races in popular file systems 51

3.6.2 Fuzzing characteristics . 52

3.6.3 Component evaluations . 55

3.6.4 Comparison with related fuzzers 57

3.7 Discussion and Limitations . 58

Chapter 4: Deadline: Precise Detection of Kernel Double-Fetch Bugs 60

4.1 Double-fetch Bugs: a Formal Definition 60

4.2 DEADLINE Overview . 62

4.3 Finding Multi-reads . 64

4.3.1 Fetch pairs collection . 64

4.3.2 Execution path construction . 66

4.4 From Multi-reads to Double-fetch Bugs 67

4.4.1 A running example . 67

4.4.2 Transforming IR to SR . 70

4.4.3 Memory model . 73

4.4.4 Checking against the definitions 75

4.5 Implementation . 76

4.6 Findings . 80

4.6.1 Detecting multi-reads . 80

4.6.2 Detecting and reporting double-fetch bugs 81

4.6.3 Exploitation . 84

ix

4.6.4 Mitigation . 86

4.7 Discussion and Limitations . 88

4.8 Future work: Towards Comprehensive Checking with C-to-SMT Transpilation 91

4.8.1 Assumptions and Rationale . 93

4.8.2 Guarded Symbolic Representation 94

4.8.3 Loop Modeling with Recursive Functions 101

4.8.4 The Object-Chunk Symbolic Memory Model 105

4.8.5 Concurrent Memory Accesses and Scheduling 111

Chapter 5: Conclusion . 114

References . 125

x

LIST OF TABLES

3.1 Semantic mapping between the tree lock and conventional locks (in particu-
lar, the readers-writer lock). 42

3.2 Implementation complexity of KRACE in terms of LoC measurement of the
major components shown in Figure 3.11. 48

3.3 List of data races found and reported by KRACE so far. Status of benign*
means that it is a benign race according to the execution paths we submitted,
but the kernel developers suspect that there might be other paths leading to
potentially harmful cases. 51

4.1 Distribution of multi-reads and double-fetch bugs found by DEADLINE in
the Linux and FreeBSD kernels . 80

4.2 A listing of double-fetch bugs found and reported. In the complication
column, we anticipate the reasons why the bug cannot be found by prior
works. For 18 bugs that we submit patches for, we also list the strategy we
use to fix the bugs, which is discussed in detail in subsection 4.6.4. For the
remaining six bugs, the patching is likely to require a lot of code refactoring
and we are working with the kernel maintainers to finalize a solution. 82

4.3 Representing the running example (Figure 4.8) symbolically in KSA . . . 99

4.4 Illustration of the object-chunk memory model for the example in Fig-
ure 4.12 subfigure-a . 109

4.5 Application of the memory liveliness tracking algorithm on Figure 4.12
subfigure-d . 111

4.6 Guarded symbolic representation of versioned variables in Figure 4.13 . . . 111

4.7 Guarded symbolic representation of versioned variables in Figure 4.14 . . . 112

xi

LIST OF FIGURES

1.1 A simple illustration on the concept of data races. In the example on the left,
accesses to variable count is raced in the two threads. As a consequence,
the final value of count can be anything between 5 and 10. To fix this issue,
a typical approach is to place mutually exclusive locks around the accesses
to count to ensure that there should be at the maximum one thread mutating
the count variable—as shown in the example on the right. 2

2.1 A data race found by KRACE. This figure shows the complete call stack,
thread ordering information, and locking information when the data race
happens and the inconsistency it may cause (1 - 4). In particular, if the
execution happens in the order of 1 2 3 4 , the uuid_rescan thread will
think the reserve is not full and release the bytes added, which is not intended
as the fsync will be using them later. 13

2.2 A dependency lookup double-fetch bug, adapted from __mptctl_ioctl

in file drivers/message/fusion/mptctl.c 15

2.3 A protocol checking double-fetch bug, adapted from do_tls_setsockopt_txZ

in file net/tls/tls_main.c . 16

2.4 An information guessing double-fetch bug, adapted from con_font_set

in file drivers/tty/vt/vt.c . 16

3.1 A data race found by KRACE when symlink, readlink, and truncate

on the same inode run in parallel (simplified for illustration). The race is
on the indexed accesses to a global array G and occurs only when B==C.
A is lock-protected. This is one example showing branch coverage is not
sufficient in approximating execution states of highly concurrent programs.
It is not difficult to cover all branches in this case with existing fuzzers, but
to trigger the data race, merely covering branches e1-e3 is not enough. The
thread interleavings between four instructions i1-i4 are equally important.
The valid interleavings that may trigger the data race are shown in Figure 3.2. 26

xii

3.2 Possible thread interleavings among the four instructions shown in Fig-
ure 3.1. Out of the 6 interleavings, only 3 interleavings (1 / 4 , 2 / 3 , 5 / 6)
are effective depending on A’s value when B and C read it. Each effective
interleaving results in different alias coverage. Only 5 / 6 may trigger the
data race. 27

3.3 Illustration of four basic syscall sequence evolution strategies supported
in KRACE: mutation, addition, deletion, and shuffling. For KRACE, each
seed contains multi-threaded syscall sequences and each thread trace is
highlighted in different shades of greyscale. 31

3.4 Semantic-preserving combination of two seeds. For KRACE, each seed con-
tains multi-threaded syscall sequences and each thread trace is highlighted
in different shades of greyscale. 32

3.5 20 work queues and 2 background threads used by btrfs. This does not
cover all asynchronous activities observable at runtime. 33

3.6 The delay injection scheme in KRACE. In this example, white and black
circles represent the memory access points before and after delay injection.
Injecting delays uncovers new interleavings in this case, as the read and
write order to the memory address x is reversed. 34

3.7 Illustration of lockset analysis in KRACE. This example shows almost all
locking mechanisms commonly used in the kernel, including 1) spin lock and
mutexes—[un]lock(RW, -), 2) reader/writer lock—[un]lock(R/W, *),
3) RCU lock—specially denoted with symbol ∆, and 4) sequence lock—
begin/end/retry(R/W, *). The left column shows the content in the
reader lockset at the time of memory operation or changes to the lockset
caused by other operations (/ denotes no change). The right column shows
the writer counterpart. The two data races are highlighted in red and blue
squares. 37

3.8 Illustration of happens-before reasoning in KRACE. This example shows a
very typical execution pattern in kernel file systems where the user thread
schedules two asynchronous works on the work queue and checks for their
results later in the execution. In particular, one of the asynchronous works is
a delayed work that also goes through the timer thread. Fork-style, join-style,
and publisher-subscriber relations are represented by dashed, dotted, and
solid arrows, respectively. The only data race is highlighted in the red square. 39

3.9 A snippet of the btrfs tree lock (writer side only). 41

3.10 A snippet of the btrfs work queue implementation. 43

xiii

3.11 An overview of KRACE’s architecture and major components. Components
in italic fonts are either new proposals from KRACE or existing techniques
customized to meet KRACE’s purpose. 44

3.12 The seed evolution process (a.k.a the fuzzing loop) in KRACE 45

3.13 Implementation of the QEMU VM-based fuzzing executor in KRACE. The
VM instance and the host have three communication channels: 1) private
memory mapping, which contains the test case program to be executed
by the VM and the seed quality report generated by KRACE runtime; 2)
globally shared memory mapping, which contains the coverage bitmaps
globally available to the host and all VM instances; 3) file sharing under the
9p protocol for sharing of large files, including the file system image and
the execution log. 49

3.14 Evaluation of the coverage growth of KRACE when fuzzing the btrfs file
system for a week (168 hours) with various settings. 52

3.15 Evaluation of the coverage growth of KRACE when fuzzing the ext4 file
system for a week (168 hours) with various settings. 53

3.16 Evaluation of seed execution and analysis time in KRACE with a varying
number of syscalls in the seed . 54

4.1 A double-fetch bug in perf_copy_attr, with illustration on how it fits
the formal definition of double-fetch bugs (4.1b) and DEADLINE’s symbolic
engine can find it (4.1c). 69

4.2 A double-fetch bug in cmsghdr_from_user_compat_to_kern, with il-
lustration on how it fits the formal definition of double-fetch bugs (4.2b) and
DEADLINE’s symbolic engine can find it (4.2c). 71

4.3 DEADLINE’s memory model cannot prove that the two fetches come from
the same userspace object. Therefore, these two cases will not be considered
as double-fetch bugs. 74

4.4 An exploitable double-fetch bug in the FreeBSD kernel. 4.4a shows the
function flagged as buggy by DEADLINE and 4.4b shows the end-to-end
call stack in the kernel if a user thread tries to exploit this bug by issuing an
ioctl syscall. 84

4.5 The patch to perf_copy_attr follows the override strategy 86

xiv

4.6 The patch to cmsghdr_from_user_compat_to_kern follows the abort
on change strategy . 87

4.7 The patch to sg_scsi_ioctl follows the incremental copy strategy 88

4.8 Illustration of the DFS- and BFS-based CFG exploration strategies. The
DFS strategy (implied from the state forking approach) is used in major
symbolic execution engines while the BFS strategy is used in KSA. 96

4.9 Illustration on bounded vs unbounded loops 102

4.10 An example of a simple unbounded loop and its CFG 103

4.11 Modeling the loop in Figure 4.10 in the SMT format understandable by the
muZ fixed-points engine . 105

4.12 Illustration of various challenges caused by symbolic memory 106

4.13 Symbolic representation of the example in Figure 1.1 (the race version)
with the for-loop unrolled once and the ++ operator expanded. Timestamp
variables like T1(L) represent the logic clock time when the instruction is
executed. 112

4.14 Symbolic representation of the example in Figure 1.1 (the lock version)
with the for-loop unrolled once and the ++ operator expanded. Timestamp
variables like T1(M) represent the logic clock time when the mutex lock is
acquired. 113

xv

SUMMARY

The scale and pervasiveness of concurrent software pose challenges for security re-

searchers: race conditions are more prevalent than ever, and the growing software complexity

keeps exacerbating the situation — expanding the arms race between security practitioners

and attackers beyond memory errors. As a consequence, we need a new generation of bug

hunting tools that not only scale well with increasingly larger codebases but also catch up

with the growing importance of race conditions.

In this thesis, two complementary race detection frameworks for OS kernels are pre-

sented: multi-dimensional fuzz testing and symbolic checking. Fuzz testing turns bug

finding into a probabilistic search, but current practices restrict themselves to one dimension

only (sequential executions). This thesis illustrates how to explore the concurrency dimen-

sion and extend the bug scope beyond memory errors to the broad spectrum of concurrency

bugs. On the other hand, conventional symbolic executors face challenges when applied to

OS kernels, such as path explosions due to branching and loops. They also lack a systematic

way of modeling and tracking constraints in the concurrency dimension (e.g., to enforce

a particular schedule for thread interleavings) The gap can be partially filled with novel

techniques for symbolic execution in this thesis.

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Designing and maintaining operating system (OS) kernels are not easy. With the constant

development for performance optimizations and new features, popular kernel software have

grown too large to be bug-free. For example, the two most popular file systems, ext4 [1]

and btrfs [2], with 50K and 130K lines of code, respectively, witnessed 54 [3] and 113 [4]

bugs reported in 2018 alone. The Linux kernel version 4.15 (deployed by default in Ubuntu

18.04) witnessed over 650 bugs reported in a few months after its debut [5]. A bug in

kernel can wreak havoc on the user, as it not only results in reboots, deadlock, or corruption

of the whole system [6], but also poses severe security threats [7, 8, 9], such as privilege

escalation [10, 11], information leaks [12], and denial of service [13]. Thus, finding and

fixing bugs is a constant yet essential activity during the entire life cycle of any OS kernel.

Furthermore, the aggressive adoption of concurrent programming in kernel software

makes bug hunting even more complicated. In the current multi-core era, concurrency has

been a major thrust for performance improvements, especially for system software. As is

evident in kernel and file system evolution [6, 14, 15, 16], a whole zoo of programming

paradigms is introduced to exploit multi-core computation, including but not limited to

asynchronous work queues, read-copy-update (RCU), and optimistic locking such as se-

quence locks. However, alongside performance improvements, concurrency bugs also find

their ways to the code base and have become particularly detrimental to the reliability and

security of file systems due to their devastating effects such as deadlocks, kernel panics, data

inconsistencies, and privilege escalations [9, 17, 18, 7, 19, 4, 20, 3].

In the broad spectrum of concurrency bugs, race conditions are an important class in

1

Figure 1.1: A simple illustration on the concept of data races. In the example on the left, accesses
to variable count is raced in the two threads. As a consequence, the final value of count can be
anything between 5 and 10. To fix this issue, a typical approach is to place mutually exclusive locks
around the accesses to count to ensure that there should be at the maximum one thread mutating the
count variable—as shown in the example on the right.

which two threads erroneously access a shared memory location without proper synchro-

nization or ordering, as showcased in Figure 1.1. Obstructed by the non-determinism in

thread interleavings, race conditions are notoriously difficult to detect and diagnose, as they

only show up in rare interleavings that require precise timing to trigger. Even worse, unlike

memory errors that tend to crash the system immediately upon triggering, race conditions

do not usually raise visible signals in the short term and are often identified retrospectively

when analyzing assertion failures or warnings in production logs [21].

Although OS kernels have been increasingly hardened throughout the years, e.g.,

kASLR [22], kCFI [23, 24], and UniSan [25], these defenses are effective against memory

errors only (e.g., stack and buffer overflows) and have limited success in taming attacks

that exploit concurrency bugs. As the state of the practice, kernel developers often rely

on stress testing to find race conditions proactively [26, 27]. By saturating a kernel com-

ponent (e.g., a file system) with intensive workloads, the chance of triggering uncommon

thread interleavings, and thus race conditions, can be increased. However, while useful,

stress testing has significant shortcomings: handwritten test suites are far from sufficient

to cover the enormous state space in kernel execution, not to mention keeping up with the

rapid increase in code size and complexity. For example, we found a data race in btrfs

(Figure 2.1) that could render the management of the reserve space ineffective and might

2

eventually cause integer overflows. Both xfstests and fsck—the most commonly used

file system testing suites—miss this case. In fact, none of the test cases in xfstests or

fsck even attempt to stress the reserve management part of btrfs, which is completely

internal and implementation-dependent.

The incompleteness of hand-crafted test suites highlights the urgent need for an auto-

mated approach to explore execution states in OS kernels, which are essentially large and

complex software system with decades of development effort accumulated. Fortunately,

recent years have witnessed a surge of research in this direction, from expert communities

not only in the security domain, but also in systems, software engineering, and program-

ming languages. Prominent works include (but not limited to) KINT [28], SymDrive [29],

DrChecker [30], kAFL [31], Syzkaller [32], Janus [9] and its follow-up, Hydra [17]. These

works can be broadly classified into two categories:

• Fuzz testing, (a.k.a, fuzzing), executes a program at (almost) native speed with

concrete inputs for each execution. A typical fuzzer explores a target program

by tweaking inputs using simple rules (e.g., bit flips). Coupled with evolutionary

algorithms (a.k.a, genetic programming), the fuzzer will eventually be able to produce

complicated test cases that are hard to be even contemplated by a human expert, which

may expose corner and buggy states in program execution such as crashing. As a

result, fuzzing favors depth of execution over completeness of checking, i.e., fuzzing

is usually very effective in finding bugs deep in the program but do not provide any

bug-free guarantee on of states already checked.

• Symbolic execution, which sometimes might also be referred to as model checking, is

almost the complete opposite of fuzzing. Symbolic execution attempts to enumerate

possible program behaviors by statically emulating the program, either at source

code or intermediate representation (IR) level, with symbolic inputs that do not

have concrete values (e.g., a symbolic integer x vs a concrete value 10). During

the emulation, a symbolic executor typically collects a set of constraints for the

3

symbolic input (e.g., x < 0) in order for the execution to reach a given state (e.g., a

buffer overflow site) and dispatch the constraints to a satisfiability modulo theories

(SMT) solver for satisfiability checking. As a result, symbolic execution often favors

completeness over depth of examination as the deeper it explores, the more constraints

it collects, which might eventually exceed the capability of SMT solvers.

However, a vast majority these works have focused on memory safety violations only

(e.g., integer overflows, buffer overread, use-after-free), with less attention on concurrency

bugs, especially race conditions. More importantly, these works aim at exploring the

sequential aspect of program execution only and fail to treat concurrency as a first-class

citizen. This thesis is a partial effort to fill this gap by bringing both fuzz testing and

symbolic execution to the concurrency dimension with a focus on race condition detection.

The blueprint is outlined in this chapter and the complete framework is presented in the

subsequent chapters in this thesis. The rest of this chapter will 1) briefly explain the

challenges in applying fuzzing and symbolic execution to highly concurrent programs;

2) highlight the promising directions in solving these challenges; and 3) summarize the

contribution in this thesis work: an automated race condition detection framework.

1.2 Navigating the Concurrency Dimension via Fuzz Testing

In recent years, coverage-guided fuzzing has proven a useful technique in testing large

and complex software systems, with thousands of vulnerabilities found in userspace pro-

grams [33, 34, 35, 36, 37]. Without a doubt, OS kernels can be fuzzed, and generic OS

fuzzers [32, 31, 38] have demonstrated their viability with over 200 bugs found. In addition,

file system-specific fuzzers, Janus [9] and Hydra [17], have extended the scope of kernel

fuzzing from memory errors into a broad set of semantic bugs, while the data race-specific

fuzzer, Razzer [39], has shed lights on data race detection by combining fuzzing and static

analysis. At the core of these fuzzers is the coverage measurement scheme, which summa-

rizes unique program behaviors triggered by a given input in bitmaps. The fuzzer compares

4

per-input coverage against the accumulated coverage bitmaps to measure the “novelty” of

the input and determines whether it should serve as the seed for future fuzzing rounds.

However, to re-iterate this point, almost all existing coverage-guided fuzzers focus on

tracking the sequential aspect of program execution only and fail to treat concurrency as a

first-class citizen. To illustrate, branch coverage (i.e., control flow transition between basic

blocks) has been the predominant coverage measurement metric. But such a metric captures

little information about thread interleavings: different interleavings are likely to result in the

same branch coverage (as shown in Figure 3.1), while only a small fraction may trigger a

data race (as shown in Figure 3.2).

With the sequential view of program execution, existing kernel fuzzers have been very

effective in mutating and synthesizing single-threaded syscall sequences based on seed

traces [40, 41] to maximize branch coverage. But no heuristics have been proposed in

synthesizing multi-threaded sequences to maximize thread interleaving coverage. This

applies to Razzer [39] as well since its fuzzing component is used to generate single-

threaded syscall traces only instead of multi-threaded traces. Furthermore, given that data

races often lead to silent failures, treating kernel panics or assertion failures as the only types

of bug signals is not sufficient: a data race checker that understands the semantics in kernel

synchronization primitives and is capable of pinpointing data races in a dynamic execution

trace is needed as the signal raiser.

To bring coverage-guided fuzzing to the concurrency dimension, in this thesis, we

present KRACE, an end-to-end fuzzing framework that fills the gap with new components in

three fundamental aspects in kernel fuzzing:

Coverage tracking [section 3.1] KRACE adopts two coverage tracking mechanisms. Branch

coverage is tracked as usual to capture code exploration in the sequential dimension, anal-

ogous to the line coverage metric used in unit testing. In addition, to approximate the

exploration progress in the concurrency domain, KRACE proposes a novel coverage metric:

alias instruction pair coverage, short for alias coverage. Conceptually, if we could collect all

5

pairs of memory access instructions X↔Y such that X in one thread may-interleave against

Y in another thread, alias coverage tracks how many such interleaving points have been

covered in execution. Consequently, if the growth of alias coverage stalls, it signals the

fuzzer to stop probing for new interleavings in the current multi-threaded seed input.

Input generation [section 3.2] KRACE generates and mutates individual syscalls according

to a specification [42, 32], which is not new. The novel part of KRACE lies in evolving

multi-threaded seeds and merging them in an interleaved manner to preserve already-found

coverage as well as to maximize the chances of inducing new interleavings. Another

job of the input generator is to produce thread scheduling, in other words, to explore the

hidden input space in concurrent programs. Although enforcing fine-grained control over

thread scheduling is possible [18], the scheduling algorithm does not scale to whole-kernel

concurrency, as the latter consists of not only user threads, but also background threads

internally forked by file systems, work queues, the block layer, loop devices, RCUs, etc.,

and the total number of contexts often exceeds 60 at runtime. As a result, KRACE adopts a

lightweight delay injection scheme and relies on the alias coverage metric as feedback to

determine whether more delay schedules are needed.

Bug manifestation [section 3.3] KRACE incorporates an in-house developed detector to

reason about data races given an execution trace. In essence, KRACE hooks every memory

access and for each pair of accesses to the same memory address, KRACE checks whether

• they belong to two threads and at least one is a memory write;

• these two accesses are strictly ordered (i.e., happens-before relation); and

• at least one shared lock exists that guards such accesses (i.e., lockset analysis).

The challenges for KRACE lie in modeling the diverse set of kernel synchronization mecha-

nisms comprehensively, especially those uncommon primitives such as optimistic locking,

RCU, and ad-hoc schemes implemented in each file system.

KRACE adopts the software rejuvenation strategy to avoid the aging OS problem, i.e.,

every execution is a fresh run from a clean-slate kernel and empty file system image.

6

Doing so trades performance for trackability and debuggability but is worthwhile for data

race detection. The reason is that state exploration will gradually catches up and bypasses

conventional speed-oriented fuzzers (e.g., Syzkaller) upon saturation. KRACE also decouples

data race checking from state exploration. Unlike prior works where the bug checker runs

inline in each execution, in KRACE, the checker only kicks in when new coverage (either

branch or alias) is reported. This prevents the expensive data race checking from slowing

down the state exploration while still preserving the opportunity to test every new execution

state found through fuzzing. The checking progress will eventually catch up when the

coverage growth is toward saturation. More details of KRACE will be presented in chapter 3.

We evaluated KRACE by fuzzing two popular and heavily tested kernel file systems

(ext4 and btrfs) in recent kernel versions and we found 23 data races, nine of which are

confirmed as potentially harmful races, and 11 are benign races (for performance or allowed

by the POSIX specification).

1.3 Finding Double-fetch Bugs with Symbolic Model Checking

We use double-fetch bugs as a case study and entry point for applying symbolic checking

in the concurrency dimension. The Bochspwn project [43] first introduced double-fetch

bugs in the context of the Windows kernel while Wang et al. further studied double-fetch

bugs in the Linux kernel [44]. A double-fetch bug is a special type of race condition bug in

which (typically during syscall execution) the kernel reads a particular userspace memory

region more than once with the assumption that the content in the accessed region does not

change across reads. However, this assumption is not valid. A concurrently running user

thread can “scramble” the same memory region in between kernel reads, leading to data

inconsistencies in the execution path, which can lead to exploitable vulnerabilities such as

sanity check bypassing, buffer overflow, and confused deputy. In reality, researchers have

exploited double-fetch bugs to escalate privileges on Windows OS [45, 46].

What makes double-fetch bug detection an important problem is that, in kernel, it is

7

common to intentionally read data multiple times from the userspace for performance

reasons. We call this situation a multi-read. To illustrate, consider fetching a variable-length

message with a potentially maximum size of 4 KB from the userspace. One approach is to

always pre-allocate a 4 KB buffer and copy 4 KB from the userspace in one shot. However,

in most cases, this wastes memory and CPU cycles if the effective message payload is 64

bytes or less. Hence, the kernel handles this scenario by first fetching a 4-byte size variable

and later allocating the buffer and fetching the size-byte message. A quick scan over the

Linux kernel reveals that there are over 1,000 multi-reads. Then, a follow-up question would

be: How many of them are real double-fetch bugs? Until now, the only way to answer this

question was to manually vet the complicated source code of all multi-reads. However, this

is certainly a scale beyond manual vetting. It therefore becomes a pressing problem that we

have to both 1) formally define and distinguish double-fetch bugs and multi-reads and 2)

automatically verify each multi-read to check whether it is a bug.

Unfortunately, neither aspect has been addressed perfectly in prior works. Bochspwn [43]

defines multi-reads as at least two memory reads from the same userspace address within a

short time frame, while Wang et al. [44] defines multi-reads based on a few empirical static

code patterns. Due to the imprecise definitions, both works result in many false positives (i.e.,

incorrectly identified bugs) and false negatives (i.e., missing bugs). More importantly, neither

of them can systematically distinguish double-fetch bugs from multi-reads in definition and

they completely leave it to manual verification.

In this thesis, we present DEADLINE, an automatic tool to statically detect multi-reads

and double-fetch bugs with both high precision and code coverage. In particular, DEADLINE

covers all drivers, file systems, and other peripheral modules that can be compiled under the

x86 architecture for both Linux and the FreeBSD kernels.

To guide DEADLINE to detect double-fetch bugs, we first formally model and mathemat-

ically distinguish double-fetch bugs from multi-reads. In essence, a multi-read becomes a

double-fetch bug when

8

• two fetches are guaranteed to read from an overlapped userspace memory region,

• a relation between the two fetches is established based on the values in the overlap,

• the relation can be destroyed by a race condition that changes the value in the overlap.

With these definitions, DEADLINE detects double-fetch bugs in two steps. In the first

step, DEADLINE tries to find as many multi-reads as possible and also builds execution paths

for each multi-read by compiling the kernel source to LLVM intermediate representation

(IR) followed by a static code analysis. In the second step, DEADLINE follows the execution

paths to vet whether a multi-read turns into a double-fetch bug. To do this, DEADLINE

first transforms the LLVM IR into a symbolic representation (SR) in which each variable is

represented by a symbolic expression. After this procedure, DEADLINE detects a double-

fetch bug by solving symbolic constraints on the SR in accordance with the double-fetch bug

definitions. A satisfiable result indicates that a double-fetch bug exists, while an unsatisfiable

result means a bug does not exist.

Although the process sounds intuitive, applying it to kernel code imposes several prac-

tical challenges. For example, to detect multi-reads, DEADLINE needs to systematically

explore paths to collect multi-reads, and further trim irrelevant instructions and linearize

these execution paths. For double-fetch bug vetting, DEADLINE needs to symbolize memory

reads and writes, and emulate common library functions. DEADLINE embodies various

techniques to address these challenges. In particular, instead of using empirical lexical

matching [44], it relies on program analysis to collect multi-reads and further applies back-

ward slicing and loop unrolling to prune the execution path. For symbolic checking, we

propose our own memory model in extension to the model used by traditional symbolic

executors [47, 48, 49] to encode access sequence and memory object information. We also

write manual symbolic rules to emulate library functions, which alleviate DEADLINE from

having to handle the intricacies in these functions.

With DEADLINE, we find and report 23 new bugs in the Linux kernel and a new bug

in the FreeBSD kernel. Besides detection, we complete the analysis cycle of double-fetch

9

bugs by discussing how to exploit double-fetch bugs as well as four generic ways to fix

double-fetch bugs based on our experience in patching these bugs.

1.4 Thesis Contribution

In summary, this thesis makes the following contributions to advance the research on finding

race conditions in OS kernels:

Concept :

• Two novel concepts are proposed in KRACE to bring coverage-guided fuzzing to

highly concurrent programs: alias coverage and interleaved multi-threaded syscall

sequence merging. These concepts serve as the first step toward adapting fuzzing for

a wide range of concurrency bugs beyond data races.

• In DEADLINE, we proposed a formal and precise definition of double-fetch bugs and

such a formal definition helps to eliminate the need to manually verify whether a

multi-read is a double-fetch bug, and hence, significantly reduces the manual effort in

detecting this special type of TOCTOU bugs.

Design and implementation :

• KRACE’s data race checker encodes a comprehensive model of kernel synchronization

mechanisms in the form of over 100 kernel patches (for code instrumentation), which

are regularly updated as the kernel upgrades.

• DEADLINE sheds lights on the design and implementation of an end-to-end sys-

tem that automatically vet kernel code with a tailored symbolic execution model

specifically designed for double-fetch bug detection.

Broader impact :

10

• KRACE has found 23 data races and will be continuously running to find new cases.

We will open-source KRACE as well as the collection of syscall primitives for multi-

threaded execution as quality seeds for future concurrent file system fuzzing research.

• With DEADLINE, we found and reported 23 new bugs in the Linux kernel and a new

bug in the FreeBSD kernel. We further proposed four generic strategies to patch and

prevent double-fetch bugs in future kernel development based on our study and the

discussion with kernel maintainers.

11

CHAPTER 2

BACKGROUND

The past three decades have witnessed several efforts to find race conditions using various

techniques. In this chapter, we show a few examples on race conditions of various flavors,

discuss the types of approaches that prior works have taken, and introduce both coverage-

guided fuzzing and symbolic model checking as generic bug finding techniques.

2.1 Race Condition Examples

2.1.1 Data races

Intuitively, a data race is caused by two threads trying to perform unordered and unprotected

memory operations to the same address. Figure 2.1 shows two data races found by KRACE

that happen to make a complete scenario. The read of full is in race with both writes,

as the read is not protected by the corresponding delayed_rsv->lock as is done on the

writers’ side. According to btrfs developers, this results in ineffective management of

the reserve space internally used by btrfs, in particular, delays in releasing the reserved

space or space releasing followed by reservation instead of migration from one reserve to

another. Reflected in the call stack, if the execution takes the order of 1→ 2→ 3→ 4 ,

then block_rsv_release_bytes is inadvertently releasing bytes that will be used by

the fsync. Such a case might eventually cause integer overflows in the reserve space but

would probably require thousands of concurrent file operations to trigger.

In summary, data race is a special type of race condition, and hunting data races in

complex software involves two facets:

• how to confirm an execution is racy, and

• how to produce meaningful executions by exploring both code and thread-scheduling.

12

Figure 2.1: A data race found by KRACE. This figure shows the complete call stack, thread ordering
information, and locking information when the data race happens and the inconsistency it may cause
(1 - 4). In particular, if the execution happens in the order of 1 2 3 4 , the uuid_rescan thread
will think the reserve is not full and release the bytes added, which is not intended as the fsync will
be using them later.

2.1.2 Time-to-check vs time-to-use bugs

Racing to access a single memory location not only leads to inconsistencies among the two

threads (i.e., a data race) but also confusion in other threads which may not be aware that

the underlying memory might change (in other words, the operation is not atomic) during its

processing, leading to bugs named time-to-check vs time-to-use errors, short for TICTOU

bugs. A typical example is double-fetch bugs in kernels.

In modern operating systems, virtual memory is divided into userspace and kernel-space

13

regions. Most notably, the userspace region is separated for each process running in the

system, creating an illusion of exclusive address space for each program. Userspace memory

can be accessed from all threads running in that address space as well as from kernel. On

the other hand, the kernel memory is system-wide and is accessible from the kernel only.

Furthermore, although userspace memory is accessible to the kernel, in practice, the

kernel almost never directly dereferences an address supplied by user processes, as any

corrupted address, be it by mistake or by intention, will crash the whole system. Instead,

if the kernel requires userspace data for execution (as in the case of many driver IOCTL

routines), it first duplicates the data into kernel memory and then works on its internal

copy. Special schemes, termed transfer functions, are provided for this purpose, such

as copy_from_user, get_user in Linux, and copyin, fuword in FreeBSD. These

schemes not only perform data transfer, but also actively validate userspace accesses and

handle illegal addresses or page faults. In fact, extensive manual instrumentation (e.g., the

__user mark) are placed to ensure that userspace memory can be accessed only through

transfer functions.

Given the limited number of arguments a user process can directly pass to the kernel for

a syscall (e.g., maximum six arguments on x86 64), pointers pointing to block structures

in userspace memory are often passed to handle large or complex requests. In this case,

the kernel often needs to refer back to userspace memory during the syscall. Theoretically,

any multi-read can be re-designed to a single-read by pre-defining the shape of the buffer

(e.g., the maximum size) and always copying the whole buffer in one shot. However, in

practice, this pattern is rarely used due to the waste of memory and CPU cycles, especially

when the effective payload is often much smaller than the maximum allowed. Instead, what

is typically done in kernel is to first fetch a request header, often a few bytes only, and

then construct the whole request based on the information in the header. Wang et al. [44]

identified three scenarios of this pattern, namely, size checking, where the actual length of

the request depends on a size variable; type selection, where the actual length of the request

14

1 void mptctl_simplified(unsigned long arg) {
2 mpt_ioctl_header khdr, __user *uhdr = (void __user *) arg;
3 MPT_ADAPTER *iocp = NULL;
4

5 // first fetch
6 if (copy_from_user(&khdr, uhdr, sizeof(khdr)))
7 return -EFAULT;
8

9 // dependency lookup
10 if (mpt_verify_adapter(khdr.iocnum, &iocp) < 0 || iocp == NULL)
11 return -EFAULT;
12

13 // dependency usage
14 mutex_lock(&iocp->ioctl_cmds.mutex);
15 struct mpt_fw_xfer kfwdl, __user *ufwdl = (void __user *) arg;
16

17 // second fetch
18 if (copy_from_user(&kfwdl, ufwdl, sizeof(struct mpt_fw_xfer)))
19 return -EFAULT;
20

21 // BUG: kfwdl.iocnum might not equal to khdr.iocnum
22 mptctl_do_fw_download(kfwdl.iocnum,);
23 mutex_unlock(&iocp->ioctl_cmds.mutex);
24 }

Figure 2.2: A dependency lookup double-fetch bug, adapted from __mptctl_ioctl in file
drivers/message/fusion/mptctl.c

depends on the opcode of the action performed; and shallow copy, where the request header

contains a pointer to the second buffer in userspace.

Our analysis confirms these common scenarios but also discovers more interesting

reasons and patterns for multi-reads.

Dependency lookup. As shown in Figure 2.2, in the case where there could be multiple

handlers for a request, a lookup, based on the request header, is first performed to find the

intended handler, and later the whole request is copied in.

Protocol/signature checking. As shown in Figure 2.3, the request header is first checked

against a pre-defined protocol number. The kernel rejects the request early if the protocol is

not honored.

Information guessing. As shown in Figure 2.4, when certain information is missing, the

kernel might first guess this piece of information via a sequence of selective reads from the

userspace and later fetch in the whole data. A common rationale behind these cases is to

abort the processing early if the request is erroneous and save the cost of buffer allocation

and a full request copying.

15

1 void tls_setsockopt_simplified(char __user *arg) {
2 struct tls_crypto_info header, *full = /* allocated before */;
3

4 // first fetch
5 if (copy_from_user(&header, arg, sizeof(struct tls_crypto_info)))
6 return -EFAULT;
7

8 // protocol check
9 if (header.version != TLS_1_2_VERSION)

10 return -ENOTSUPP;
11

12 // second fetch
13 if (copy_from_user(full, arg,
14 sizeof(struct tls12_crypto_info_aes_gcm_128)))
15 return -EFAULT;
16

17 // BUG: full->version might not be TLS_1_2_VERSION
18 do_sth_with(full);
19 }

Figure 2.3: A protocol checking double-fetch bug, adapted from do_tls_setsockopt_txZ in file
net/tls/tls_main.c

1 void con_font_set_simplified(struct console_font_op *op) {
2 struct console_font font;
3

4 if (!op->height) { /* Need to guess font height [compat] */
5 u8 tmp, __user *charmap = op->data;
6 int h, i;
7 for (h = 32; h > 0; h--)
8 for (i = 0; i < op->charcount; i++) {
9 // first batch of fetches

10 if (get_user(tmp, &charmap[32*i+h-1]))
11 return -EFAULT;
12 if (tmp)
13 goto nonzero;
14 }
15 return -EINVAL;
16 nonzero:
17 op->height = h;
18 }
19

20 font.height = op->height;
21 // second fetch
22 font.data = memdup_user(op->data, size);
23 if (IS_ERR(font.data))
24 return -EINVAL;
25

26 // BUG: the derived font.height might not match with font.data
27 do_sth_with(&font);
28 }

Figure 2.4: An information guessing double-fetch bug, adapted from con_font_set in file
drivers/tty/vt/vt.c

16

However, it is worth noting that the goal of this analysis and categorization is not to

enumerate all possible patterns that might cause double-fetch bugs; instead, it shows the

diversity of TICTOU bugs as well as the importance of finding a generic, formal, yet

comprehensive definition of multi-reads and double-fetch bugs that can unify all these

patterns as well as potentially undiscovered ones.

2.2 Hunting Security Vulnerabilities via Fuzz Testing

2.2.1 Fuzzing in general

Fuzzing has proven to be a practical approach to find bugs in today’s software stack, both

in the userspace [33, 50, 37, 51, 52, 53, 54] and in the kernel space [31, 9, 17, 32, 55, 42].

Unfortunately, existing works cannot be trivially adopted for data race fuzzing. One reason

is that the main focus of fuzzing has been on finding memory corruptions or triggering

assertions. Although Hydra [17] extends the scope beyond memory errors into semantic

bugs in file systems, it does not provide any insight into finding data races.

Moreover, since modern coverage-guided fuzzing originates and prospers from testing

single-threaded programs such as binutils, encoder/decoders, and the CGC and LAVA-M

fuzzing benchmarks, recent fuzzing efforts have focused on optimizing fuzzers’ performance

on single-threaded executions too, such as approximating sequential execution with neural

networks [51]. Not surprisingly, when the fuzzing practice is carried down to the OS

level [32, 31, 55, 56, 57, 58, 42, 59], the same sequential view of program execution is

inherited.

Although generating structured inputs has been a challenge for kernel fuzzing, many

improvements have been proposed. For example, MoonShine [40] captures dependencies

between syscalls and DIFUZE [41] generates interface-aware inputs. However, lacking a

coverage metric and a seed evolution algorithm to handle state exploration in the concur-

rency dimension, existing OS fuzzers miss the opportunities to find the broad spectrum of

17

concurrency bugs, including data races. The motivation behind KRACE is to fill this gap and

to bring coverage-guided fuzzing to the concurrency dimension.

2.2.2 Fuzzing for data races in OS kernels

Code/thread-schedule exploration. The effectiveness of a data race checker depends not

only on the detection algorithm but also on how well the checker can explore execution

states and cover as many code paths and thread interleavings as possible. For code path

exploration, prior detectors mostly rely on manually written test suites [18, 60, 61] that

do not capture complicated cases. As shown in Figure 2.1, triggering the data race would

require a user thread to mkdir on the same block the background uuid_rescan thread is

working on, which (almost) in no way can be specified in manually written test cases. An

alternative is to enumerate code paths statically [62, 63, 64, 65, 66], but this is not scalable.

Recent OS fuzzers adopt specification-based syscall synthesization [9, 17, 32, 42]. However,

these fuzzers mostly focus on generating sequential programs instead of multi-threaded

programs and are not intended to explore interleavings in syscall execution. KRACE adopts

a similar synthesization approach, but instead of focusing on single-threaded sequences,

KRACE evolves multi-threaded programs.

In the case of thread-schedule exploration, prior approaches fall into three categories,

in decreasing order of scalability but increasing order of completeness: 1) stressing the

random scheduler with multiple trials [26]; 2) injecting delays at runtime [60, 61, 21]; and

3) enumerating every possible thread interleaving [18, 39]. KRACE uses delay injection, a

trade-off among scalability, practicality, and completeness.

Data race checking. Four prominent works [67, 18, 39, 68] lay the ground for data race

checking in a fuzzy way:

DataCollider [67] is the first work that tackles this problem by using randomized sam-

pling of a small number of memory accesses in conjunction with code breakpoint and data

breakpoint facilities for efficient sampling. DataCollider is simple enough to detect several

18

bugs in the Windows kernel modules. A similar strategy is used by Syzkaller [32] with its

Kernel Concurrent Sanitizer [68] (KCSan) module.

KCSan is a dynamic data race detector that uses compiler instrumentation, i.e., software

watchpoints instead of hardware watchpoints, to detect bugs on non-atomic accesses that

violate the Linux kernel memory model [69] using happens-before analysis.

SKI [18] focuses on comprehensive enumeration of thread schedules with the PCT

algorithm [70] and hardware breakpoints. However, SKI permutes user threads only to

find data races in the syscall handlers and thus forgoes the opportunities to find data races

in kernel background threads. Furthermore, even with user threads only, the number of

permutations can be huge to test thoroughly. In addition, the test suites used by SKI may be

too small to explore an OS for bugs.

Razzer [39] combines static analysis with fuzzing for data race detection. In particular,

Razzer first runs a points-to analysis across the whole kernel code base to identity potentially

alias instruction pairs, i.e., memory accesses that may point to the same memory location.

After that, per each alias pair identified, Razzer tries to generate syscalls that reach the racy

instructions at runtime. It does so with fuzzy syscall generation [32, 42], and sequential

syscall traces are generated first. Once the alias relation is confirmed in the sequential

execution, the trace is then paralleled into multi-threaded traces for actual data race detection.

Razzer presents an elegant pipeline for data race fuzzing, but it can be further improved:

1) running points-to analysis [71] on kernel file systems produces millions of may-alias

pairs, which is almost impossible to enumerate one by one; 2) even for one alias pair,

how to generate syscalls that may reach the racy instructions is less clear. KRACE aims to

improve both aspects with the novel notion of alias coverage. Instead of pre-calculating the

search space with points-to analysis, KRACE relies on coverage-guided fuzzing to expand

the search in the concurrency dimension gradually. Analogically, this is similar to not

enumerating every path in the control-flow graph but instead using an edge-coverage bitmap

to capture the search progress. Doing so also eliminates the concern on how to generate

19

syscalls that lead execution to specific locations.

2.3 Hunting Semantic and Logic Errors via Symbolic Execution

2.3.1 Symbolic execution in general

Symbolic execution is a popular program analysis technique introduced in the mid ’70s

to test whether certain properties can be violated by a piece of software. Aspects of

interest could be that no division by zero is ever performed, no NULL pointer is ever

dereferenced, no backdoor exists that can bypass authentication, etc. While in general

there is no automated way to decide some properties (e.g., the target of an indirect jump),

heuristics and approximate analyses can prove useful in practice in a variety of settings,

including mission-critical and security applications.

In a concrete execution, a program is run on a specific input and a single control flow

path is explored. Hence, in most cases concrete executions can only under-approximate

the analysis of the property of interest. In contrast, symbolic execution can simultaneously

explore multiple paths that a program could take under different inputs. This paves the road

to sound analyses that can yield strong guarantees on the checked property. The key idea is

to allow a program to take on symbolic—rather than concrete—-input values. Execution is

performed by a symbolic executor, which maintains for each explored control flow path:

• a first-order Boolean formula that describes the conditions satisfied by the branches

taken along that path, and

• a symbolic memory store that maps variables to symbolic expressions or values.

Branch execution updates the formula, while assignments update the symbolic store. A

model checker, typically based on a satisfiability modulo theories (SMT) solver [72], is

eventually used to verify whether there are any violations of the property along each explored

path and if the path itself is realizable, i.e., if its formula can be satisfied by some assignment

of concrete values to the program’s symbolic arguments

20

From a theoretical perspective, (exhaustive) symbolic execution provides a sound and

complete methodology for any decidable analysis. Soundness prevents false negatives,

i.e., all possible unsafe inputs are guaranteed to be found, while completeness prevents

false positives, i.e., input values deemed unsafe are actually unsafe. However, in practice,

we often face challenges in achieving both soundness and completeness. Two important

challenges are:

• State space explosion: how does symbolic execution deal with path explosion? Lan-

guage constructs such as loops might exponentially increase the number of execution

states. It is thus unlikely that a symbolic execution engine can exhaustively explore

all the possible states within a reasonable amount of time.

• Symbolic memory: how does the symbolic engine handle pointers, arrays, or other

complex objects? Code manipulating pointers and data structures may give rise not

only to symbolic stored data, but also to addresses being described by symbolic

expressions.

We will illustrate how these challenges can be systematically addressed in this thesis.

2.3.2 Symbolic execution tailored for OS kernels

With the recent advances in SMT solvers [72] such as Z3 [73] and CVC4 [74], symbolic

execution has proven to be an effective technique in finding bugs in complex software

applications [47, 48, 49, 75, 76]. Recent research has further made trade-offs between

scalability and path coverage of symbolic execution. A few symbolic execution techniques

are now able to analyze even OS kernels such as S2E [77] and FuzzBALL [78, 79]. In

particular, S2E employs selective symbolic execution and relaxed execution consistency

models to significantly improve the performance. A number of tools (e.g., SymDrive [29],

Stack Spraying [80], and CAB-Fuzz [81]) built on top of S2E have been designed to analyze

kernel code for various purposes.

21

Improvements by Deadline. DEADLINE also leverages the power of SMT solvers for

double-fetch bug detection and uses a similar way to collect constraints and assign SR to

variables as traditional symbolic executors. However, DEADLINE can be differentiated from

them in two ways:

Path exploration strategy : DEADLINE performs path exploration offline and symbol-

ically executes only within a particular path instead of exploring paths online by forking

states whenever a conditional branch is encountered. This is because, unlike traditional sym-

bolic executors whose primary goal is path discovery, DEADLINE is not bounded to execute

the instructions that are irrelevant to the cause of a double-fetch bug, and DEADLINE takes

full advantage of that by first filtering out these irrelevant instructions and then constructing

paths that must go through at least two fetches and only checks along these paths.

Memory model : DEADLINE extends the memory model used in traditional symbolic

executors in two aspects. 1) An epoch number is added to memory reads when they cross the

kernel-user boundary to denote that different userspace fetches from the same address can

be different, which is effectively the root cause of a double-fetch bug. 2) Instead of assuming

a pointer can point to anywhere in the memory (i.e., a flat linear array of bytes), DEADLINE

keeps a mapping of pointers to memory objects and uses this to filter out multi-reads that

are in fact unrelated fetches.

2.4 Other Approaches on Race Condition Detection

2.4.1 Static lockset analysis

Many works aim to find concurrency bugs with static analysis [62, 63, 64, 65, 66]. Most

of these approaches rely on static lockset analysis and, hence, suffer from the high false-

positive rate caused by missing the happens-before relation in the execution as well as the

inherent limitations of the points-to analysis. For instance, RacerX [63] suffers from 50%

false positives on the Linux kernel.

22

However, a major challenge in applying these works to data race detection in OS kernels

is their lack of statefulness, i.e., although extremely effective in finding bugs within one

syscall execution, they miss bugs that occur because of the interaction between multiple

syscalls, which happen to be the majority of cases in kernel operations.

2.4.2 Dynamic lockset and happens-before analysis

Happens-before + lockset tracking. Most of the initial works [82] found race conditions

by relying on the happens-before analysis [83]. However, one of the prime issues with this

approach is that it leads to false negatives. To improve the detection accuracy, Eraser [84]

proposed the lockset analysis, in which users annotate the common lock/unlock methods

and find atomicity violations. Later, several works [85, 86] proposed optimizations to either

mitigate the overhead or minimize false positives. To further improve the effectiveness of

dynamic data race detection, several works [87, 88] combined the idea of happens-before

relation with lockset analysis.

Limited applicability in OS kernels Unfortunately, most of these works target userspace

programs using simple synchronization primitives (e.g., those provided by pthread or Java

runtime), which only represent a small subset of synchronization mechanisms available in

the Linux kernel. KRACE follows the same trend in combining happens-before and lockset

analysis, but unlike prior works, KRACE provides a comprehensive framework that includes

not only simple locking methods, such as pessimistic locks (e.g., mutex, readers-writer lock,

spinlock, etc.), but also optimistic locking protocols, such as sequence locks, and other

forms of synchronization mechanisms that imply more than just mutual exclusion, e.g.,

RCU [89] and other publisher-subscriber models.

Timing-based detection. Both lockset and happens-before analysis require code annota-

tions and suffer from incompleteness, i.e., a missing lock model leads to false positives.

Several works overcome this issue with timing-based detection, i.e., a thread is delayed for

a certain duration at some memory accesses while the system observes whether there are

23

conflicting accesses to the same memory during the delay [60, 61, 21]. Moreover, most of

these works resort to sampling [88, 90, 91, 21, 61], as an optimization over completeness, to

further minimize the runtime overhead caused by tracking memory accesses or code paths.

However, complete timing-based detection relies on precise control of thread execution

speed and results in an enormous search space (both in where to delay and how long to

delay), which again is not scalable in the kernel scope. As a result, in terms of race detection,

KRACE resorts to a trial-and-error approach and fixes false positives introduced by ad-hoc

mechanisms along with the development. Fortunately, due to the high coding standard and

strict code review practice, ad-hoc synchronization is not common in kernel file systems.

24

CHAPTER 3

KRACE: GENERIC DATA RACE FUZZING FOR KERNEL FILE SYSTEMS

3.1 A Coverage Metric for Concurrent Programs

In this section, we show why branch coverage, the golden metric for fuzzing, might be

insufficient to represent the exploration in the concurrency dimension, while at the same

time, why alias coverage, our new proposal, fits this purpose.

3.1.1 Branch coverage for the sequential dimension

Branch coverage originates from the program control-flow graph (CFG), which is inherently

a sequential view of program execution. As shown in Figure 3.1, in CFGs, execution

flows through basic blocks and user-controllable inputs, e.g., size in SYS_truncate,

determine the set of edges that join the basic blocks. For a branch coverage-guided fuzzer:

given an input (e.g., a list of syscalls), it tracks the set of edges that are hit at runtime and

leverages this feedback to decide whether this input is “useful” and should be kept for more

mutations. Essentially, the more edges covered during execution, the more “useful” the

input is. Intuitively, the fuzzer expects to probe more branches by further mutating the seed,

and not surprisingly, once the branch coverage growth stalls, the fuzzer will shift its focus to

other seeds for a more economical use of computing resources.

In the case shown in Figure 3.1, exhausting all branches sequentially will only yield the

status of B==1, B==2, and C==0. After that, these execution paths (represented by the seeds

covering them) will be de-prioritized and considered non-interesting by the fuzzer. However,

this is not the end of the story. To trigger the data race when B==C==2, the execution of four

critical instructions (i1-i4) has to be interleaved in a special way, as shown in Figure 3.2.

Unfortunately, all six interleavings yield the same branch coverage, and the fuzzer is likely

25

A=1 A=0

T1 T2

i1 i3

B=A+1

C=A*2

i2

i4

G[B]=false

cond=G[C]

SYS_symlink

SYS_readlink

SYS_truncate

if(flag & DIR)
B=1

if(size >= res)

…… W

R

e1

e2

e3

Figure 3.1: A data race found by KRACE when symlink, readlink, and truncate on the same
inode run in parallel (simplified for illustration). The race is on the indexed accesses to a global
array G and occurs only when B==C. A is lock-protected. This is one example showing branch
coverage is not sufficient in approximating execution states of highly concurrent programs. It is not
difficult to cover all branches in this case with existing fuzzers, but to trigger the data race, merely
covering branches e1-e3 is not enough. The thread interleavings between four instructions i1-i4
are equally important. The valid interleavings that may trigger the data race are shown in Figure 3.2.

to give up the seed upon hitting a few of them.

Further note that this is an extremely simplified example that involves only six possible

interleavings among two threads. In actual executions, the concurrency dimension can

be huge, as the instructions executed by each thread are usually in the thousands or even

millions, while there will be tens of threads running at the same time. As a result, when

fuzzing highly concurrent programs, we need to pay attention to not only code paths explored,

but also meaningful thread interleavings explored that yield to the same branch coverage. In

other words, if the fuzzer believes that there could be unexplored thread interleavings in a

seed, the seed should not be de-prioritized.

26

A=1
B=A+1

A=0
C=A*2

T1 T2

A=1

B=A+1
A=0

C=A*2

T1 T2

A=1

B=A+1

A=0
C=A*2

T1 T2

A=1
B=A+1

A=0
C=A*2

T1 T2

A=1

B=A+1

A=0

C=A*2

T1 T2

A=1
B=A+1

A=0

C=A*2

T1 T2

<nil> i3→i2 i3→i2
B=2, C=0 B=1, C=0 B=1, C=0

<nil> i1→i4 i1→i4
B=2, C=0 B=2, C=2 B=2, C=2

① ② ③

④ ⑤ ⑥

Figure 3.2: Possible thread interleavings among the four instructions shown in Figure 3.1. Out of
the 6 interleavings, only 3 interleavings (1 / 4 , 2 / 3 , 5 / 6) are effective depending on A’s value
when B and C read it. Each effective interleaving results in different alias coverage. Only 5 / 6 may
trigger the data race.

3.1.2 Alias coverage for the concurrency dimension

Intuition. At first thought, recording the exploration of thread interleavings can be futile.

A realistic kernel file system at its peak time may use over 60 internal threads, where

each thread may execute over 100,000 instructions. The total possible number of thread

interleavings is 60100000, an enormous search space that no bitmap can ever approximate.

However, it is worth noting that not all interleaved executions are useful. In fact, only

interleavings of memory-accessing instructions to the same memory address matters. As

shown in Figure 3.1, interleaving instructions apart from i1-i4 has no effect on the final

results of B, C, as well as the manifestation of the data race. This is true in the actual code,

27

where hundreds and thousands of instructions sit between i1, i3 and i2, i4.

In other words, based on the crucial observation that data races, and even in the broader

term, concurrency bugs, typically involve unexpected interactions among a few instructions

executed by a small number of threads [92, 93, 18], if KRACE is able to track how many

interactions among these few memory-accessing instructions have been explored, it is

sufficient to represent thread interleaving coverage and to find data races. This is precisely

what gets tracked by alias coverage.

A formal definition. First, suppose all memory-accessing instructions in a program are

uniquely labeled: i1, i2,, iN. At runtime, each memory address M keeps track of its last

define operation, i.e., the last instruction that writes to it as well as the context (thread) that

issues the write, represented by A ← <ix, tx>. Now, in the case in which a new access to

M is observed, carried by instruction iy from context ty: if iy is a write instruction, update

A ← <iy, ty> to reflect the fact that A is redefined. Otherwise:

• if tx == ty, i.e., same context memory access, do nothing,

• or else, record directed pair ix→iy in the alias coverage.

Figure 3.2 is a working example of this alias coverage tracking rule. In cases 1 and 4 ,

there is no inter-context define-then-use of memory address A, and hence, the alias coverage

map is empty. On the other hand, in cases 2 and 3 , the calculation of B in T1 relies on A

defined in T2, hence the pair i3→i2. The same rule applies to cases 5 and 6 .

Feedback mechanism. Essentially, alias coverage provides a signal to the fuzzer on

whether it should expect more useful thread interleavings out of the current test case, i.e.,

a multi-threaded syscall sequence. If the alias coverage keeps growing, the fuzzer should

come up with more delay schedules to inject at the memory-accessing instructions (detailed

in subsection 3.2.2) in the hope of probing unseen interleavings. Otherwise, if the coverage

growth stalls, it is a sign that the concurrency dimension of the current test case is toward

saturation, and the most economical choice is to switch to other seeds for further exploration.

28

Coverage sensitivity fine-tuning. Finding one-suits-all coverage criteria has been a

never-ending quest in software engineering [94]. Even the branch coverage has several

variations, such as N-gram branch coverage, context-sensitive coverage [52], etc., which

are well-documented and compared in a recent survey [95]. However, despite the fact that

branch coverage is always subsumed by program whole-path coverage, branch coverage is

still preferred over path coverage, as the latter is overly sensitive to input changes and thus

requires a much larger bitmap to hold and compare. On the other hand, branch coverage

strikes a balance among effectiveness, execution speed, and bitmap accounting overhead.

Similarly, alias coverage strives to find such a balance point in the concurrency dimension.

In our experiments with kernel file system fuzzing, KRACE observed 63,590 unique pairs of

alias instructions (directed access). Based on the data, for an empirical estimation, a bitmap

of size 128KB should be sufficient to avoid heavy collisions, which is close to AFL’s branch

coverage bitmap size (64KB). In addition, if more sensitivity is needed for alias coverage,

KRACE can be easily adopted from 1st-order alias pair (alias coverage) to 2nd-order alias

pair, N th-order alias pair, and up-to total interleaving coverage. This is not planned in

KRACE but could be a promising extension for future exploration.

3.2 Input Generation for Concurrency Fuzzing

In this section, we present how to synthesize and merge multi-threaded syscall sequences

for file system fuzzing, as well as how to exploit a hidden input domain—thread delay

schedule—to accelerate thread interleaving probing.

3.2.1 Multi-threaded syscall sequences

Specification-based synthesization. The goal of syscall generation and mutation is to

generate diverse and complex file operations that are otherwise difficult for human developers

to contemplate. Given that syscalls are highly structured data, it is almost fruitless to mutate

their arguments blindly. As a result, we use a specification to guide the generation and

29

mutation of syscall arguments. A feature worth highlighting in KRACE’s specification is

the encoding of inter-dependencies among syscalls, especially path components and file

descriptors (fd), which are most relevant to file system fuzzing. To illustrate, as shown

in Figure 3.4, the open syscall in seed 1 reuses the same path component in the mkdir

syscall, while the write syscall in seed 2 relies on the return value of creat.

Seed format. The seed input for KRACE is a multi-threaded syscall sequence. Internally, it

is represented by a single list of syscalls (a.k.a, the main list) and a configurable number

of sub-lists (3 in KRACE) in which each sub-list contains a disjoint sequence of syscalls in

the main list. Each sub-list represents what will be executed by each thread at runtime. To

illustrate, as shown in Figure 3.4, seed 1 has three threads, where each thread will be ex-

ecuting mkdir-close, mknod-open-close, and dup2-symlink, respectively, marked

in different greyscale.

Evolution strategies. KRACE uses four strategies to evolve a seed for both branch and

alias coverage, as shown in Figure 3.3.

• Mutation: a randomly picked argument in one syscall will be modified according to

specification. If a path component is mutated, it is cascaded to all its dependencies.

• Addition: a new syscall can be added to any part of the trace in any thread, but must

be after its origins.

• Deletion: a random syscall is kicked out of the main list and the sub-list. In case a

file descriptor is deleted, its dependencies are forced to re-select another valid file.

• Shuffling: syscalls in the main list are redistributed to sub-lists, but their orders in the

main list are preserved.

Merging multi-threaded seeds. The power of fuzzing lies not only in evolving a single

seed but also in joining two seeds to produce more interesting test cases. To enable seed

merging in KRACE, a naive solution might be simply to concatenate two traces. However,

this is not the most economical use of seeds, as it forgoes the opportunities to find new

coverage by further interleaving these high-quality executions.

30

Figure 3.3: Illustration of four basic syscall sequence evolution strategies supported in KRACE:
mutation, addition, deletion, and shuffling. For KRACE, each seed contains multi-threaded syscall
sequences and each thread trace is highlighted in different shades of greyscale.

KRACE adopts a more advanced merging scheme: upon merging, the main lists of the

two seeds are interweavingly joined, i.e., the relative orders of syscalls are still preserved in

the resulting main list as well as in the sub-lists. As a result, the syscall inter-dependencies

are preserved too. As shown in Figure 3.4, all the dependencies on path and fds are properly

preserved after merging (highlighted in corresponding colors).

Primitive collection. Successful syscalls are valuable assets out of the file system fuzzing

practice, not only because they lead to significantly broader coverage than failed syscalls,

but also because they can be difficult, and sometimes even fortunate, to generate due to the

dependencies among them. This is true especially for long traces of closely related syscalls.

As a result, upon discovering a new seed, KRACE first prunes it and retains only successful

syscalls and further splits these syscalls into non-disjoint primitives where each primitive

is self-contained, i.e., for any syscall, all its path and fd dependencies (also syscalls) are

captured in the same primitive.

31

Figure 3.4: Semantic-preserving combination of two seeds. For KRACE, each seed contains multi-
threaded syscall sequences and each thread trace is highlighted in different shades of greyscale.

Over the course of fuzzing, KRACE has accumulated a pool of around 10,000 primitives

covering 68 file system related syscalls for which KRACE has a specification. In each

primitive, file operations span across 3 threads, with each thread containing 1-10 syscalls,

and most importantly, all syscalls succeed. We will open-source this collection in the hope

that these primitives may serve as quality seeds for future concurrent file system fuzzing.

3.2.2 Thread scheduling control (weak form)

Thread scheduling is a hidden input domain for concurrency programs. Unfortunately,

there is no way to control kernel scheduling by merely mutating syscall traces. Hooking

the scheduling implementation (or using a hypervisor) and systematically permuting the

schedules might be possible for small-scale programs [93] or for a few user threads in the

kernel [18, 39]. But these algorithms are far from being scalable enough to cover all kernel

threads. For a taste of the scalability requirement, Figure 3.5 shows the level of concurrency

32

1 struct btrfs_fs_info {
2 /* work queues */
3 struct btrfs_workqueue *workers;
4 struct btrfs_workqueue *delalloc_workers;
5 struct btrfs_workqueue *flush_workers;
6 struct btrfs_workqueue *endio_workers;
7 struct btrfs_workqueue *endio_meta_workers;
8 struct btrfs_workqueue *endio_raid56_workers;
9 struct btrfs_workqueue *endio_repair_workers;

10 struct btrfs_workqueue *rmw_workers;
11 struct btrfs_workqueue *endio_meta_write_workers;
12 struct btrfs_workqueue *endio_write_workers;
13 struct btrfs_workqueue *endio_freespace_worker;
14 struct btrfs_workqueue *submit_workers;
15 struct btrfs_workqueue *caching_workers;
16 struct btrfs_workqueue *readahead_workers;
17 struct btrfs_workqueue *fixup_workers;
18 struct btrfs_workqueue *delayed_workers;
19 struct btrfs_workqueue *scrub_workers;
20 struct btrfs_workqueue *scrub_wr_completion_workers;
21 struct btrfs_workqueue *scrub_parity_workers;
22 struct btrfs_workqueue *qgroup_rescan_workers;
23 /* background threads */
24 struct task_struct *transaction_kthread;
25 struct task_struct *cleaner_kthread;
26 };

Figure 3.5: 20 work queues and 2 background threads used by btrfs. This does not cover all
asynchronous activities observable at runtime.

introduced by the btrfs module alone, not to mention other background threads forked by

the block layer, loop device, timers, and RCU.

Runtime delay injection. KRACE resorts to delay injection to achieve a weak (and

indirect) control of kernel scheduling, based on the observation that only shared memory

accesses matter in thread interleavings. KRACE’s delay injection scheme is extremely

simple, as shown in Figure 3.6. Before launching the kernel, KRACE generates a ring buffer

of random numbers and maps it to the kernel address space. At every memory access point,

the instrumented code fetches a random number from the ring buffer, say T, and delays for T

memory accesses observed by KRACE system-wise (i.e., in other threads).

A ring buffer is used to hold the random numbers, as KRACE cannot pre-determine how

many injection points are needed for each execution, not to mention that such a number may

be extremely large. Injecting delays at memory access points is at the finest granularity for

delay injection. Although this works well in file system fuzzing, it might nevertheless be too

fine-grained and introduces too much overhead. The injection points can be at the granularity

33

Figure 3.6: The delay injection scheme in KRACE. In this example, white and black circles
represent the memory access points before and after delay injection. Injecting delays uncovers new
interleavings in this case, as the read and write order to the memory address x is reversed.

of basic blocks or functions or even customized locations such as locking operations, etc.

3.3 A Data Race Checker for Kernel Complexity

Although the definition of data races is simple, finding them in a kernel execution trace

can be difficult, primarily because of the variety of synchronization primitives available in

the kernel code base as well as the ad-hoc mechanisms implemented by each individual

file system. In this section, we enumerate the major categories of kernel synchronization

primitives and describe how they can be modeled in KRACE.

3.3.1 Data race detection procedure

Overview. We say a pair of memory operations, <ix, iy>, is a data race candidate if, at

runtime, we observed that

• they access the same memory location,

• they are issued from different contexts tx and ty,

• at least one of them is a write operation.

Such information is trivial to obtain dynamically by simply hooking every memory

access. The difficulty lies in confirming whether a data race candidate is a true race. For

34

this, we need two more analysis steps to check that:

• no locks are commonly held by both contexts, tx and ty, at the time when memory

operations ix and iy are issued from them, respectively. [lockset (subsection 3.3.2)]

• no ordering between ix and iy can be inferred based on the execution: i.e., there is

no reason ix must happen-before iy or the other way around, regardless of how tx

and ty are scheduled. [happens-before (subsection 3.3.3)]

Conceptually, lockset analysis produces no false negatives, i.e., if there is a data race

in the execution trace, it is guaranteed to be flagged by the lockset analysis. But lockset

analysis is prone to false positives, as it ignores the ordering information. Happens-before

analysis helps in filtering these false positives.

Kernel complexity. Although conceptually simple, lockset analysis requires a complete

model of all locking mechanisms available in the kernel, and similarly, happens-before

analysis requires all thread ordering primitives to be annotated. Otherwise, false positives

will arise. However, after nearly 30 years of development, the Linux kernel has accumulated

a rich set of synchronization mechanisms. KRACE takes a best-effort approach in model-

ing all major synchronization primitives as well as ad-hoc ones if we encounter them in

our experiment. Some representative ad-hoc schemes modeled by KRACE are presented

in subsection 3.3.4.

3.3.2 Lockset analysis

Most kernel locking primitives differentiate between reader and writer roles. The major

difference is that a reader-lock can be acquired by multiple threads at the same time, as

long as its corresponding writer-lock is not held; while a writer-lock can only be held by at

most one thread. KRACE follows this distinction and tracks the acquisitions and releases

of both reader- and writer-locks for each thread at runtime. Formally, such information is

stored in the form of a lockset: denoted by LSR
<t,i> for the reader-side lockset for thread t

35

at instruction i as well as LSW
<t,i> for the writer-side lockset. Both locksets are cached and

attached to a memory cell whenever a memory access on that thread is observed, as shown

in Figure 3.7.

The lockset analysis is simple as the following: for each data race candidate <tx, ix>

and <ty, iy>, if any of the following conditions holds, this candidate is not a true race.

LSR
<tx,ix> ∩ LSW

<ty,iy> 6= ∅ (3.1)

LSW
<tx,ix> ∩ LSR

<ty,iy> 6= ∅ (3.2)

LSW
<tx,ix> ∩ LSW

<ty,iy> 6= ∅ (3.3)

On the other hand, if none of the conditions hold for a data race candidate, then the

execution of tx and ty can be interleaved without restrictions around those memory accesses,

as shown in the reading and writing of addresses 0x34 and 0x46 in Figure 3.7, hence,

leading to data races.

Pessimistic locking. Most of the kernel locking primitives are pessimistic locking, i.e.,

whoever tries to acquire the lock will be blocked from further execution until the lock holder

releases it. As a result, their APIs are always in pairs of lock and unlock to mark the start

and end of a critical section. Examples of such locks include spin lock, reader/writer spin

lock, mutex, reader/writer semaphore, and bit locks.

A slightly trickier primitive is the RCU lock, in which only reader-side critical sections

are marked with rcu_read_[un]lock and the writer-side critical section is not marked

36

Figure 3.7: Illustration of lockset analysis in KRACE. This example shows almost all locking
mechanisms commonly used in the kernel, including
1) spin lock and mutexes—[un]lock(RW, -),
2) reader/writer lock—[un]lock(R/W, *),
3) RCU lock—specially denoted with symbol ∆, and
4) sequence lock—begin/end/retry(R/W, *).
The left column shows the content in the reader lockset at the time of memory operation or changes
to the lockset caused by other operations (/ denotes no change). The right column shows the writer
counterpart. The two data races are highlighted in red and blue squares.

by any lock/unlock APIs, instead, it is guaranteed by the RCU grace period waiting. More

specifically, when __rcu_reclaim schedules an RCU callback into execution, it is guaran-

teed that there is no RCU reader-side critical section running. Hence, in KRACE, we hook

the RCU callback dispatcher and mark RCU writer lock and unlock before and after the

callback execution.

Optimistic locking. The Linux kernel is gradually shifting toward lock-free design and

the most prominent evidence in recent years is the wide adoption of sequence locks [96].

A sequence lock is, in fact, more similar to a transaction than to a conventional lock. The

reader is allowed to run optimistically into the critical section, hoping that the data it reads

will not be modified during the transaction (hence the optimism), and aborts and retries if

the data does get modified.

37

While boosting performance, a challenge brought by the sequence lock is that there is

no clear end of the reader-side critical section. As shown in Figure 3.7, after a transaction

begins, the retry can be called multiple times, perhaps one for mid-of-progress checking

and the other one for before-commit checking; in theory, each retry could be an unlock-

equivalent that marks the end of the critical section. If the lockset analysis is performed

online (i.e., during execution), the lockset states should fork to capture that the retry

may or may not be an unlock. For KRACE, since it uses offline lockset analysis, it may

simply read the execution trace ahead to know whether there are more retries and behave

correspondingly.

3.3.3 Happens-before analysis

Intuitively, happens-before analysis tries to find the causal relations between specific exe-

cution points in the threads. For example, a kernel thread only gets into running if another

thread forks it; as a result, there is no way to schedule the spawned thread before the parent

thread creates it. This implies that whatever happens before the thread creation points cannot

be data racing against anything in the spawned thread. In the example shown in Figure 3.8,

there is no way for i2 to be racing against i6, as without queuing the work on the work

queue (c2→c8), i6 won’t even be executed in the first place. Similarly, scheduling a thread

that is waiting for a condition to be true will not make it run bypassing the barrier. Therefore,

it is not possible for i4 to race against i8, as only when the wake_up call is reached

(c12→c5) can i4 be executed.

This intuition shows how a happens-before relation can be formally checked: by hooking

kernel synchronization APIs, e.g., when a callback function is queued and when it is

executed, we could find the synchronization points (nodes) between threads as well as the

causality events (represented by edges), as shown in Figure 3.8. Since the nodes in one thread

are already inherently connected according to program order, the whole execution becomes

a directed acyclic graph. Consequently, determining whether two points, <tx, ix> and

38

Figure 3.8: Illustration of happens-before reasoning in KRACE. This example shows a very typical
execution pattern in kernel file systems where the user thread schedules two asynchronous works
on the work queue and checks for their results later in the execution. In particular, one of the
asynchronous works is a delayed work that also goes through the timer thread. Fork-style, join-style,
and publisher-subscriber relations are represented by dashed, dotted, and solid arrows, respectively.
The only data race is highlighted in the red square.

<ty, iy>, may race is translated into a graph reachability problem. If a path exists from

<tx, ix> to <ty, iy>, it means that point X happens-before Y and thus cannot be racing.

The same applies if we can establish Y happens-before X. On the other hand, if no such path

can be found, a happens-before relation cannot be established and the pair should be flagged,

as in the case of i3 and i8. All other accesses are reachable in the graph, and hence, they

cannot be racing even without lock protections.

The happens-before relation commonly found in kernel file systems can be broadly

categorized into three types:

39

Fork-style relations include RCU callbacks registered with call_rcu, work queues

and kthread-simulated work queues, direct kthread forking, timers, software interrupts

(softirq), as well as inter-processor interrupts (IPI). Hooking their kernel APIs is as easy

as finding corresponding functions that register the callback and dispatch the callback.

Join-style relations include the completion API and a wide variety of wait_* primitives

such as wait_event, wait_bit, and wait_page. Hooking their kernel APIs requires

locating their corresponding wake_up calls besides the wait calls.

Publisher-subscriber model mainly refers to the RCU pointer assignment and dereference

procedure [89]. For example, if one user thread retrieves a file descriptor (fd) from the

fdtable which is RCU-guarded, the new fd must have been published first, hence the

causality ordering. The object allocate-and-use pattern also falls into this realm: the publisher

thread allocates memory spaces for an object, initializes its fields, and inserts the pointer

to a global or heap-based data structure (usually a list or hashtable), while the subscriber

thread later dereferences the pointer and uses the object. As a result, KRACE also tracks the

memory allocation APIs and monitors when the allocated pointer is first stored into a public

memory slot and when it is used again to establish the ordering automatically.

3.3.4 Ad-hoc synchronization schemes in kernel file systems

Although ad-hoc synchronization schemes are considered harmful [97], they may still

exist in kernel file systems for performance or functionality enhancements. Whenever we

encounter an ad-hoc scheme (usually when analyzing false positives), we annotate it in the

same way as major synchronization APIs so that subsequent runs will not report the false

data races caused by it. In this section, we present two examples we encountered in btrfs.

Ad-hoc locking. An ad-hoc lock has two implications: 1) there will be data races in the

lock implementation and these data races are all benign races; and 2) lock internals should

be abstracted in a way that the lockset analysis can easily understand. A representative

example is the btrfs tree lock, and the purpose of having the tree lock is to be convertible

40

1 /* acquire a spinning write lock, wait for both
2 * blocking readers or writers */
3 void btrfs_tree_lock(struct extent_buffer *eb)
4 {
5 u64 start_ns = 0;
6 if (trace_btrfs_tree_lock_enabled())
7 start_ns = ktime_get_ns();
8

9 WARN_ON(eb->lock_owner == current->pid);
10 again:
11 wait_event(eb->read_lock_wq,
12 atomic_read(&eb->blocking_readers) == 0);
13 wait_event(eb->write_lock_wq, eb->blocking_writers == 0);
14 write_lock(&eb->lock);
15 if (atomic_read(&eb->blocking_readers)
16 || eb->blocking_writers) {
17 write_unlock(&eb->lock);
18 goto again;
19 }
20 btrfs_assert_spinning_writers_get(eb);
21 btrfs_assert_tree_write_locks_get(eb);
22 eb->lock_owner = current->pid;
23 }
24 /* drop a spinning or a blocking write lock. */
25 void btrfs_tree_unlock(struct extent_buffer *eb)
26 {
27 int blockers = eb->blocking_writers;
28 BUG_ON(blockers > 1);
29

30 btrfs_assert_tree_locked(eb);
31 eb->lock_owner = 0;
32 btrfs_assert_tree_write_locks_put(eb);
33

34 if (blockers) {
35 btrfs_assert_no_spinning_writers(eb);
36 eb->blocking_writers--;
37 cond_wake_up(&eb->write_lock_wq);
38 } else {
39 btrfs_assert_spinning_writers_put(eb);
40 write_unlock(&eb->lock);
41 }
42 }

Figure 3.9: A snippet of the btrfs tree lock (writer side only).

between blocking and non-blocking mode, as shown in Figure 3.9.

In these functions, almost every memory access to the fields in the extent buffer,

eb, could be racing against other accesses. e.g., eb->lock_owner at line 12 against

eb->lock_owner = 0 at line 40. So the first annotation for KRACE is to assume all data

races within these functions are safe and benign races.

To further encode the locking semantics for lockset analysis, we study the tree lock APIs

and map their functionality into a simple reader-writer lock format as shown in Table 3.1.

In other words, calling the, e.g., tree_lock will be treated equally as calling the writer-

41

Table 3.1: Semantic mapping between the tree lock and conventional locks (in particular, the
readers-writer lock).

Tree lock API Lockset mapping

tree_lock writer-lock

tree_unlock writer-unlock

tree_read_lock reader-lock

tree_read_lock_atomic reader-lock

tree_read_unlock reader-unlock

tree_read_unlock_blocking reader-unlock

tree_set_lock_blocking_read no-op if read-locked

tree_set_lock_blocking_write no-op if write-locked

try_tree_read_lock reader-lock if succeed

try_tree_write_lock writer-lock if succeed

lock in the conventional locking mechanisms. Although tree_lock performs much more

computation (e.g., waiting for both blocking and non-blocking readers), from the lockset

perspective, it is equivalent to a writer-lock.

Ad-hoc ordering. Ad-hoc ordering implies undocumented casual relations between thread

executions and a good example is the customization of the conventional kernel work queue

in btrfs, as shown in Figure 3.10.

In this example, the set_bit and test_bit (line 17 and 23), establish an additional

causal relation beyond the normal queue_work semantic: the ordered function only gets

into execution when the normal function finishes. Thus, although the observed happens-

before relation is line 8→ line 24 and line 11→ line 15, the actual relation is line 8→ line

11→ line 15→ line 24.

3.4 Putting Everything Together

3.4.1 Architecture

Figure 3.11 shows the overall architecture of KRACE. The primary purpose of having the

compile-time preparation is to embed a KRACE runtime into the kernel such that alias

coverage (as well as branch coverage) can be collected dynamically. The runtime is also

42

1 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
2 struct btrfs_work *work)
3 {
4 unsigned long flags;
5 work->wq = wq;
6 if (work->ordered_func) {
7 spin_lock_irqsave(&wq->list_lock, flags);
8 list_add_tail(&work->ordered_list, &wq->ordered_list);
9 spin_unlock_irqrestore(&wq->list_lock, flags);

10 }
11 queue_work(wq->normal_wq, &work->normal_work);
12 }
13 static void normal_work_helper(struct btrfs_work *work) {
14 /* ... */
15 work->func(work);
16 if (need_order)
17 set_bit(WORK_DONE_BIT, &work->flags);
18 /* ... */
19 }
20 static void run_ordered_work(struct __btrfs_workqueue *wq) {
21 /* ... */
22 work = list_entry(list->next, struct btrfs_work, ordered_list);
23 if (test_bit(WORK_DONE_BIT, &work->flags))
24 work->ordered_func(work);
25 /* ... */
26 }

Figure 3.10: A snippet of the btrfs work queue implementation.

responsible for collecting information for data race checking, leveraging the kernel API

hooking. On the other hand, the fuzzing loop is still conventional, covering seed selection,

mutation, and execution, with the exception that in KRACE, a test case is considered

“interesting” as long as new progress is found in either of the coverage bitmaps. In addition,

all components are updated to handle the new seed format for concurrency fuzzing: multi-

threaded syscall sequences.

Code instrumentation. Since the focus of KRACE is file systems, we only instrument

memory access instructions in the target file system module and its related components such

as the virtual file system layer (VFS) or the journaling module, e.g., jbd2 for ext4. On

the other hand, API annotations are performed on the main kernel code base and have an

effect even when the execution goes out of the functions in our target file system: the locks

acquired and released, as well as the ordering primitives (e.g., queuing a timer), will be

faithfully recorded. In this way, KRACE does not suffer from false positives in cases like

block layer calls into a callback in the file system layer but we do not know the prior locking

contexts.

43

Figure 3.11: An overview of KRACE’s architecture and major components. Components in italic
fonts are either new proposals from KRACE or existing techniques customized to meet KRACE’s
purpose.

Fuzzing loop. Figure 3.12 shows the fuzzing evolution algorithm in KRACE. Fuzzing starts

with producing a new program by merging two existing seeds. The seed selection criterion

used in KRACE so far is simply frequency count, i.e., less used seeds receive priority. We

expect more advanced seed selection algorithms to be developed later. After merging, each

program goes through several extension loops on which the program structure is altered

with syscalls added and deleted. Each structurally changed program will further go through

several modification loops in which the syscall arguments and distribution among the threads

are mutated. Finally, each modified program runs repeatedly for several times, each with a

different delay schedule, to probe for alias coverage.

Three parameters tunes the behaviors of the seed evolution loop: namely ext_limit,

mod_limit, and rep_limit as shown in Figure 3.12. In KRACE, they take the values of

10, 10, and 5 respectively. That is,

44

1 def fuzzing_loop(ext_limit, mod_limit, rep_limit):
2 while True:
3 program = merge_seeds(select_seed_pair())
4

5 ext_stall = 0
6 while ext_stall < ext_limit:
7 ext_stall++
8 [50%] program.add_syscall()
9 [50%] program.del_syscall()

10

11 mod_stall = 0
12 while mod_stall < mod_limit:
13 mod_stall++
14 [80%] program.mutate()
15 [20%] program.shuffle()
16

17 rep_stall = 0
18 while rep_stall < rep_limit:
19 rep_stall++
20 delay = randomize_delay()
21 cov, log = run(program, delay)
22

23 if not cov.empty():
24 rep_stall = mod_stall = ext_stall = 0
25 schedule_data_race_check(log)
26 prune_and_save_seed(program)

Figure 3.12: The seed evolution process (a.k.a the fuzzing loop) in KRACE

• if any new coverage, either branch or alias, is observed in 5 consecutive runs, KRACE

will continue to run the same multi-threaded seed for 5 more times but with a new

delay schedule each time;

• if no new coverage is observed for 5 consecutive runs, KRACE starts to mutate the

syscall arguments in the multi-threaded trace or shuffle the syscalls;

• if no new coverage is observed for 50 consecutive runs, KRACE starts to alter the

input structure by adding or deleting the syscalls in the multi-threaded traces;

• if no new coverage is observed for 500 consecutive runs, KRACE starts to merge two

seeds for a new seed.

In general, we give preference to alias coverage exploration over growing the multi-

threaded syscall sequences, as we prefer to explore the concurrency domain as much

as possible when the number of syscalls executed is small, making it easier for kernel

developers to debug a reported data race.

Offline checking. Data race checking is conducted offline, i.e., only when new coverage,

45

either branch or alias, is found. The reason is that data race checking is slow (several

minutes) and significantly hinders the fast fuzzing experience (which only requires a few

seconds to finish one execution). As a result, we allow the fuzzers to quickly expand

coverage and only dump execution logs without checking them. A few background threads

check the execution logs for data races whenever they have free capacity. The checking

progress has difficulty keeping up with seed generation in the beginning but will gradually

catch up, especially when the coverage is toward saturation.

3.4.2 Benign vs harmful data races

An unexpected problem we encountered when reporting the data races found by KRACE

is on differentiating benign and harmful data races. Despite the common belief that being

data-race free is one of the coding practices in the kernel, benign data races are not totally

uncommon. One major category is statistics accounting, such as __part_stat_add in the

block layer. These statistics are meant for information and hints only and do not provide

any accuracy guarantees. Another example is the reading and writing of different bits in the

same 2-, 4-, 8-byte variable, especially bit-flags such as inode->i_flag or flags in file

system control structures like fs_info.

Based on our experience, checking whether a data race is benign or harmful is often time

consuming, as it requires careful analysis of the code and documentation to infer developers’

intentions. In the worst cases, it may require consulting the file system developers, who may

not even agree among themselves. One possibility to confirm a harmful data race is to keep

the system running until the data race causes any visible effects such as violating assertions

or memory errors. However, this is not always feasible, as shown in the case in Figure 2.1.

It might need thousands of file operations running in parallel to trigger an integer overflow.

By then, debugging such an execution trace will be another problem.

To avoid reporting benign data races to developers, KRACE uses several simple heuristics

to filter the reports. In particular, a data race is mostly benign if:

46

• the race involves variables that have stat in their names or occurs within functions

for statistics accounting;

• the race involves reading and writing to different bits of the same variable;

• the race involves kernel functions that can tolerate being racy, e.g., list_empty_careful.

Unfortunately, these heuristics typically offer limited help for the more complicated cases.

3.4.3 The aging OS problem

When fuzzing file systems, most generic OS fuzzers do not reload a fresh copy of the kernel

instance or file system image [32, 31, 38] for a new fuzzing session. Instead, they directly

issue the syscall sequence on the old kernel state. The intention is to remove the overhead of

kernel booting, as a VM emulator might take seconds to load and boot the kernel. However,

this also means that any bugs found in this approach might come from the accumulated

effects of hundreds or even thousands of prior runs, making them extremely difficult to

debug and confirm by kernel developers, as is evident in the case when many bugs found by

Syzkaller cannot be confirmed [98].

The aging OS problem is already difficult for fuzzing in the sequential domain, and

bringing in the concurrency dimension further complicates the story, especially for KRACE,

as the lengthy thread interleaving traces are not only difficult to debug but also renders

analysis impossible. Slicing the execution traces does not seem feasible either, as cutting the

trace at the wrong points means losing the locking and happens-before context, ultimately

leading to false alarms. As a result, KRACE is forced to use a clean-slate execution for every

fuzzing run, i.e., a fresh kernel and a clean file system image.

The aging OS problem is also reported by Janus [9], which uses a library OS—LKL [99]—

to enable quick reloading. But unfortunately, LKL does not support the symmetrical multi-

processing (SMP) architecture, which is the prerequisite for multi-threading (e.g., without

SMP, all spin_locks becomes no-ops). As a result, LKL is mostly suitable for sequential

fuzzing, not for concurrency fuzzing.

47

Table 3.2: Implementation complexity of KRACE in terms of LoC measurement of the major
components shown in Figure 3.11.

Component LoC Languange

Compile-time preparation
Kernel annotations 5,653 C
LLVM instrumentation pass 1,977 C++
KRACE kernel runtime library 1,749 C

Fuzzing loop
Seed evolution (including syscall spec.) 9,394 Python
QEMU-based fuzzing executor 5,878 Python
Initramfs and the init program 2,527 Python
Data race checker 6,883 Python
Debugging tools and utilities 1,096 Python

3.5 Implementation

KRACE’s code base is divided into two parts: 1) compile-time preparation, including anno-

tations to the kernel source code (in the form of kernel patches), an LLVM instrumentation

pass, and the KRACE library compiled into the kernel that provides coverage tracking and

logging at runtime; and 2) a VM-based fuzzing loop that evolves test cases, executes them

in QEMU VMs, and checks for data races. The complexity of each component is described

in Table 3.2 and an overview of the runtime executor is shown in Figure 3.13.

Runtime executor. The most challenging part of KRACE’s implementation is to establish

information-sharing channels between the host and VM-based fuzzing instances for seed

injection, coverage tracking, and feedback collection. KRACE uses private memory mapping

(PCI memory bar), public memory mapping (ivshmem), and the 9p file sharing protocols

for this purpose, as shown in Figure 3.13.

Kernel building. Building the Linux kernel with LLVM is straightforward since kernel

v5.3 and LLVM 9.0. In addition, to get the smallest possible boot time, we opt for a minimal

kernel build with only necessary components enabled, including the block layer, loopback

device, and all other related drivers to support and accelerate execution in QEMU and

48

Figure 3.13: Implementation of the QEMU VM-based fuzzing executor in KRACE. The VM instance
and the host have three communication channels: 1) private memory mapping, which contains the
test case program to be executed by the VM and the seed quality report generated by KRACE runtime;
2) globally shared memory mapping, which contains the coverage bitmaps globally available to the
host and all VM instances; 3) file sharing under the 9p protocol for sharing of large files, including
the file system image and the execution log.

KVM. File systems are built as modules, not built-in, and these modules will be loaded by

our fuzzing agent (i.e., the init program) such that we could track the modules in full,

including the thread they fork on loading and their synchronization orders.

Initramfs. Again, to shorten the execution time, KRACE does not rely on full-blown

OSes, not even tools like busybox, as they may interfere with the file system under testing.

Instead, the init program in KRACE is the fuzzing agent that takes the multi-threaded seed

and interprets it. In particular, the init 1) starts tracing, 2) loads file system modules, 3)

mounts the file system image, 4) interprets the program, 5) unmounts the file system image,

6) unloads the modules, and 7) stops tracing.

49

Coverage tracking. Coverage tracking is handled by the instrumented code which are

essentially stub calls, e.g., on_basic_block_enter, on_memory_read, etc., into the

KRACE runtime library. KRACE directly updates the coverage bitmaps maintained in the

host memory regions that are globally visible to all VM instances (and their threads).

Effectively, each update is a test_and_set_bit operation while the QEMU ivshmem

protocol ensures atomicity.

Execution log. An execution log is simply an array of

[<event-type>, <thread-id>, <arg1>, <arg2>, ...]

filled by the KRACE runtime library and consumed by the data race checker for data race

detection as well as reporting purposes such as call trace reconstruction.

3.6 Evaluation

In this section, we evaluate KRACE as a whole as well as per each component. In particular,

we show the overall effectiveness of KRACE by listing previously unknown data races found

(subsection 3.6.1); provide a comprehensive view of KRACE’s performance characteristics,

e.g., speed, scalability, etc., as a file system fuzzer (subsection 3.6.2); justify major design

decisions with controlled experiments (subsection 3.6.3); and compare KRACE against

recent OS and data race fuzzers (subsection 3.6.4).

Experiment setup. We evaluate KRACE on a two-socket, 24-core machine running Fedora

29 with Intel Xeon E5-2687W (3.0GHz) and 256GB memory. All performance evaluations

are done on Linux v5.4-rc5, although the main fuzzer runs intermittently across versions

from v5.3. We build the kernel core with minimal components but enable as many features

as possible for the btrfs and ext4 file system modules. For all evaluations, the fuzzing

starts with an empty file system image created from the mkfs.* utilities. We run 24 VM

instances in parallel for fuzzing and each VM runs a three-thread seed.

50

Table 3.3: List of data races found and reported by KRACE so far. Status of benign* means that it is
a benign race according to the execution paths we submitted, but the kernel developers suspect that
there might be other paths leading to potentially harmful cases.

ID FS Racing access Status

1 btrfs heap struct: cur_trans->state pending
2 btrfs heap struct: cur_trans->aborted harmful
3 btrfs heap struct: delayed_rsv->full harmful
4 btrfs heap struct: sb->s_flags benign
5 btrfs global variable: buffers harmful
6 btrfs heap struct: inode->i_mode benign
7 btrfs heap struct: inode->i_atime harmful
8 btrfs heap struct: BTRFS_I(inode)->disk_i_size harmful
9 btrfs heap struct: root->last_log_commit harmful

10 btrfs heap struct: free_space_ctl->free_space benign
11 btrfs heap struct: cache->item.used harmful
12 ext4 heap struct: inode->i_mtime benign
13 ext4 heap struct: inode->i_state benign
14 ext4 heap struct: ext4_dir_entry_2->inode benign
15 ext4 heap array: ei->i_data[block] harmful
16 VFS heap string: name in link_path_walk pending
17 VFS heap struct: inode->i_state benign
18 VFS heap struct: inode->i_wb_list benign
19 VFS heap struct: inode->i_flag benign
20 VFS heap struct: inode->i_opflags benign
21 VFS heap struct: file->f_mode benign*
22 VFS heap struct: file->f_pos pending
23 VFS heap struct: file->f_ra.ra_pages harmful

3.6.1 Data races in popular file systems

Across intermittent fuzzing runs on two popular kernel file systems (btrfs and ext4)

during two months, KRACE found and reported 23 new data races, of which nine have been

confirmed to be harmful, 11 are benign, and the rest of them are still under investigation, as

listed in Table 3.3. Note that besides bugs in concrete file systems, KRACE also finds data

races in the virtual file system (VFS) layer, which might affect all file systems in the kernel.

Consequence. Based on our preliminary investigation, only one bug (#5) is likely to cause

immediate effects (null-pointer dereference) when triggered. Others are likely to cause

51

0 25 50 75 100 125 150 175
Fuzzing time (unit: hours)

16K

18K

20K

22K

24K

C
FG

 b
ra

nc
he

s (
br

an
ch

 c
ov

er
ag

e)

Branch
Branch (w/o alias feedback)
Branch (Syzkaller)

30K

35K

40K

45K

50K

55K

60K

al

ia
se

d
in

st
ru

ct
io

n
pa

irs
 (a

lia
s c

ov
er

ag
e)

Alias
Alias (w/o delay injection)
Alias (w/o seed merging)

Figure 3.14: Evaluation of the coverage growth of KRACE when fuzzing the btrfs file system for
a week (168 hours) with various settings.

performance degradation or specification violations, but we do not see a simple path toward

memory errors. This also means that relying on bug signals such as KASan reports or kernel

panics might not be sufficient to find data races.

3.6.2 Fuzzing characteristics

Coverage growth. The growth patterns for both branch and alias coverage are plotted

in Figure 3.14 (for btrfs) and Figure 3.15 (for ext4). There are several interesting

observations:

Alias coverage size. Although branch coverage for the two file systems grow into

roughly the same level (25K vs 20K), compared with ext4, btrfs has a significantly larger

alias coverage bitmap, (60K vs 9K). Given that the number of user threads is the same (3

threads), the difference is caused by the level of concurrency inherent in btrfs and ext4

design. As shown in Figure 3.5, btrfs uses at least 22 background threads and each thread

may additionally fork more helper threads, while the only background thread for ext4 is the

52

0 25 50 75 100 125 150 175
Fuzzing time (unit: hours)

13K

14K

15K

16K

17K

18K

19K

20K

C

FG
 b

ra
nc

he
s (

br
an

ch
 c

ov
er

ag
e)

Branch
Branch (w/o alias feedback)
Branch (Syzkaller)

1K

2K

3K

4K

5K

6K

7K

8K

9K

al

ia
se

d
in

st
ru

ct
io

n
pa

irs
 (a

lia
s c

ov
er

ag
e)

Alias
Alias (w/o delay injection)
Alias (w/o seed merging)

Figure 3.15: Evaluation of the coverage growth of KRACE when fuzzing the ext4 file system for a
week (168 hours) with various settings.

jbd2 journaling thread. In other words, btrfs is inherently more concurrent than ext4,

and dividing works among more threads naturally leads to more alias pairs. The similar

logic also applies to why alias coverage saturates much faster in ext4, the less concurrent

file system.

Growth synchronization. In general, the two coverage metrics grow in synchronization.

It is expected that progresses in the branch coverage will yield new alias coverage too

because new code paths mean new memory accessing instructions and hence, new alias

pairs. However, it is the other direction that matters more: branch coverage saturates but

alias coverage keeps growing, e.g., starting from hour 75 in the btrfs case or hour 25 in the

ext4 case. In other words, KRACE keeps finding new execution states (thread interleavings)

that would otherwise be missed if only branch coverage is tracked.

Instrumentation overhead. The code instrumentation from KRACE is heavy, and we

expect it to cause significant overhead in execution. To show this, we present the aggregated

statistics on the execution time for seeds bearing different numbers of syscalls. For compari-

53

0 5 10 15 20 25 30
syscalls in the seed input

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

A
ve

ra
ge

 se
ed

 e
xe

cu
tio

n
tim

e
(u

ni
t:

se
co

nd
) btrfs execution time

ext4 execution time
btrfs baseline
ext4 baseline

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 se
ed

 a
na

ly
si

s t
im

e
(u

ni
t:

se
co

nd
)

btrfs analysis time
ext4 analysis time

Figure 3.16: Evaluation of seed execution and analysis time in KRACE with a varying number of
syscalls in the seed

son, we also run these seeds on a bare-metal kernel built without KRACE instrumentation.

The results are plotted in Figure 3.16. In summary, in the zero-syscall case, i.e., by merely

loading (file system module)→ mounting (image)→ unmounting→ unloading, KRACE

already incurs 47.6% and 34.3% overhead, and the more syscalls KRACE executes, the more

overhead it accumulates.

The overhead mainly comes from memory access instrumentation, as every memory

access is now turned into a function call where atomic operations are performed and

synchronized, not only with respect to all other threads on the VM, but also against all

threads across all VMs, as the thread is updating the global bitmap on the host directly

(implicitly handled by the QEMU ivshmem module). As a result, further optimizations are

possible. For example, a VM instance may accumulate coverage locally and update the

global bitmap in batches instead of on every memory access.

It is, however, debatable whether the overhead is detrimental to KRACE since lower

overhead simply means that the coverage growth will converge and saturates faster. In

54

our opinion, we consider the overhead caused by tracking more coverage (including alias

coverage) as a trade-off between execution speed and seed quality. A fuzzer with fast

executions may waste resources in non-interesting test cases, while a fuzzer with slow

executions but finer-grained tracking might eventually have higher chances to explore more

states.

Data race checking cost. Another limiting factor for KRACE is the time needed to analyze

the execution logs for data race detection, which also depends on the length of the execution

trace. The trend is also plotted in Figure 3.16. In summary, the analysis time ranges from

4-7 minutes (0-30 syscalls per seed) for btrfs and 2-6 minutes for ext4. Such a time cost

is obviously not feasible for online checking (even after optimization) but can be tolerated

for offline checking, i.e., KRACE schedules a data race check only when a seed is discovered.

This strategy works especially when fuzzing saturates, as the bottleneck for making further

progress then becomes finding new execution states instead of checking the trace. Based on

our experience, running four checker processes alongside 24 fuzzing VM instances is more

than sufficient to catch up to the progress within 96 hours in both cases.

3.6.3 Component evaluations

Coverage effectiveness. Although the two coverage metrics represent different aspects of

program execution, we are also curious whether tracking explorations in the concurrency

dimension may help in finding new code paths (represented by branch coverage). To check

this, we disabled the alias coverage feedback and let KRACE explore the states mimicking

the feedback loop of existing OS and file system fuzzers. The results (Figure 3.14 and

Figure 3.15) show that exploring the concurrency domain also helps to find new code

coverage. Most notably, without alias coverage feedback, branch coverage grows much

faster at the beginning, because it does not spend fuzzing effort on exploring the thread

interleavings, but saturates at a lower number (7.2% and 4.0% less). Moreover, if just

counting the new branches explored (besides the branches in the initial seed), the coverage

55

reduces by 20.4% and 10.7%, respectively. The more concurrent the file system is, the

more branch coverage will be explored by enabling alias coverage feedback. This is not

surprising, as certain code paths exist to handle contention in the system, such as the paths

executed when try_lock fails or when sequence lock retries. Exploring in the concurrency

dimension helps to reveal these paths and boost the branch coverage.

Delay injection effectiveness. To test whether injecting delays helps in exploration in the

concurrency dimension, we disabled delay injection in this fuzzing experiment, and the alias

coverage growth is shown in Figure 3.14 and Figure 3.15. With delay injection disabled,

KRACE found 28.7% and 12.3% less alias coverage in btrfs and ext4, respectively. This

shows that delay injection is important in finding more alias coverage. Especially, when

the branch coverage saturates, delay injection becomes the leading force in finding alias

coverage, as shown by the enlarging gap between the growth. The more concurrent the file

system is, the more important delay injection becomes.

Seed merging effectiveness. To test whether reusing the seed helps in exploration in

the concurrency dimension, we disabled seed merging in this fuzzing experiment, i.e.,

KRACE only adds, deletes, and mutates syscalls but never reuses the found seeds. The alias

coverage growth is shown in Figure 3.14 and Figure 3.15. With seed merging disabled,

KRACE found 37.7% and 14.2% less alias coverage in btrfs and ext4, respectively. This

experiment shows that reusing the seed is important in quickly expanding the coverage.

More importantly, preserving the semantics among the syscalls and interleaving the seeds

help find more alias coverage.

Components in the data race checker. To show that it is important to have both happens-

before and lockset analysis (and their sub-components) in the data race checker, we sampled

a simple fuzzing run: load btrfs module, mount an empty image, execute two syscalls ×

three threads, unmount the image, and unload the btrfs module. The following shows the

filtering effects of each component in the data race checker:

• data race candidates: 35,658

56

+ after lockset analysis on pessimistic locks: 13,347

+ after lockset analysis on optimistic locks: 8,903

+ after tracking fork-style happen-before relation: 6,275

+ after tracking join-style happen-before relation: 3,509

+ after handling publisher-subscriber model: 103

+ after handling ad-hoc schemes: 7 (all benign races)

3.6.4 Comparison with related fuzzers

Execution speed vs coverage. In terms of efficiency, KRACE is not comparable to other

OS and file system fuzzers, as one execution takes at least seven seconds in KRACE, while

the number can be as low as 10 milliseconds for libOS-based fuzzers [9, 17] or never-

refreshing VM-based fuzzers like Syzkaller. However, the effectiveness of a fuzzer is not

solely decided by fuzzing speed. A more important metric is the coverage size, especially

when saturated. Intuitively, if the saturated coverage is low, being fast in execution only

implies that the coverage will converge faster and mostly stall afterward.

On the metric of saturated coverage, KRACE outperforms Syzkaller for both btrfs and

ext4 by 12.3% and 5.5%, respectively, as shown in Figure 3.14 and Figure 3.15. Even

without the alias coverage feedback, the branch coverage from KRACE still outperforms

Syzkaller, showing the effectiveness of KRACE’s seed evolution strategies, especially the

merging strategy for multi-threaded seeds, which is currently not available in Syzkaller. In

fact, KRACE is able to catch up to the branch coverage progress with Syzkaller within 30

hours and eight hours for btrfs and ext4, respectively.

Data race detection. Razzer [39] reports four data races in file systems and we find the

patches for two of them, both in the VFS layer. To check that KRACE may detect these

cases, we manually revert the patches in the kernel and confirm that both cases are found.

We would like to do the same for SKI [18], but the data races found by SKI are too old (in

3.13 kernels) and locating and reverting the patches is not easy.

57

3.7 Discussion and Limitations

Deterministic replay. Being able to replay an execution deterministically is extremely

helpful for debugging and also opens the door for advanced data race triaging techniques

such as controlled re-interleaving of thread executions. Unfortunately, we are sorry to report

that even with a totally linearized trace of basic block enter/exit, memory accesses, lock

acquisition/releases, and kernel synchronization API calls, KRACE is unable to deterministi-

cally replay an execution end-to-end. Part of the reason is the missing instrumentation in

other kernel components, including the kernel core (including the task and IO scheduler),

memory management, device drivers (except the block device), and most of the library

routines. We expect that deterministic replay may be possible if we instrument all kernel

components but at the expense of huge execution footprints (e.g., GB-level logs) as well as

significant performance drops. We are unaware of a system that permits deterministic replay

of over 60 kernel threads, but we are eager to integrate if possible.

Debuggability. To partially compensate for not being able to replay a found data race

deterministically, KRACE tries to generate a comprehensive report for each data race,

including 1) the conflicting lines in source code, 2) the full call stack for each thread, and 3)

the callback graph. Since each instruction is labeled with a compile-time random number,

KRACE is able to pinpoint the conflicting lines in the source code when a data race occurs.

Further coupled with the basic block branching information, KRACE is able to recover the

full call trace, up to the syscall entry point or the thread creation point, for all involving

threads during the race condition. The report may also involve the callback graph derived

from the happens-before analysis, to further assist the developers with the origin of the

threads. In fact, kernel developers have never asked for a deterministic replay of the trace and

are able to judge whether the race is harmful or benign based on the information provided.

Missing bugs. Offlining the data race checker means that KRACE might miss data race

bugs. As discussed in subsection 3.1.2, alias coverage is just an approximation of state

58

exploration progress in the concurrency dimension, and there might be new program states

explored at runtime but that do not show up as new coverage, i.e., meaningful interleavings

missed by alias coverage. KRACE forgoes the opportunities to check data races in those

cases and is a trade-off made in favor of expanding the coverage with efficiency.

59

CHAPTER 4

DEADLINE: PRECISE DETECTION OF KERNEL DOUBLE-FETCH BUGS

4.1 Double-fetch Bugs: a Formal Definition

As discussed in subsection 2.1.2, relying on empirical code patterns for double-fetch bug

detection is imprecise and could result in a lot of manual effort to verify that a multi-read is

indeed a double-fetch bug. Instead, DEADLINE labels an execution path as a double-fetch

bug when the following four conditions are met:

1. There are at least two reads from userspace memory, i.e., it must be a multi-read while

a userspace fetch can be identified by transfer functions like copy_from_user.

2. The two fetches must cover an overlapped memory region in the userspace. If this

condition is met, we call the multi-read an overlapped-fetch.

3. A relation must exist based on the overlapped regions between the two fetches. We

consider both control and data dependence as relations.

4. DEADLINE cannot prove that the relation established still holds after the second fetch.

In other words, a user process can do a race condition to change the content in the

overlapped region to destroy the relation.

Conditions 1) and 2) are straightforward to understand. For condition 3), if the execution

path can be deviated based on the values from the first fetch, it implies an assumption

about these values, and this assumption should be honored by the second fetch. A typical

example is shown in Figure 2.3, whereby after the first fetch, the control flow is deviated if

header.version != TLS_1_2_VERSION, i.e., the second fetch can never happen. The

fact that line 13 can be reached already implies that header.version == TLS_1_2_VERSION,

which is not re-checked after the second fetch and this makes it a double-fetch bug.

60

For data dependence, consider the bug shown in Figure 2.2, where the value khdr.iocnum

is used to look up the correct adapter, iocp, to handle the request. The fact that line 18 (the

second fetch) can be reached implies that an adapter is already found and a mutex is already

held. However, in line 22, the adapter is looked-up again (with kfwdl.iocnum), but this

time, an adapter different from iocp can be found if the iocnum is changed, leading to a

request performed without the intended adapter whose mutex is held.

It is also possible that both control and data dependence exist. This typically happens

when a variable representing total message size is fetched in, sanity-checked, and later

used to do the second fetch, as shown in Figure 4.1a. The variable size must be within

a reasonable range, and attr->size should hold the effective size of the attr buffer.

However, after the second fetch, both relations might not hold anymore.

For condition 4), if the relation established in condition 3) is control dependence only, we

need to prove that the same set of constraints still holds for the values copied in after the sec-

ond fetch. In the example of Figure 2.3, we should check that full->version == TLS_1_2_VERSION

still holds. On the other hand, if a data dependence is established, re-checking the conditions

is not sufficient and a full equality proof is needed. In the case of Figure 4.1a, checking

that PERF_ATTR_SIZE_VER0 <= attr->size <= PAGE_SIZE does not reflect the re-

lation that attr->size holds the effective size of attr. The correct way is to prove that

attr->size == size in all cases.

Put the above description in formal terms:

Fetch. We use a pair (A, S) to denote a fetch, where A represents the starting address of

the fetch and S represents the size of the memory (in bytes) copied into kernel.

Overlapped-fetch. Two fetches, (A0, S0) and (A1, S1), are considered to have an over-

lapped region if and only if:

A0 <= A1 < A0 + S0 or A1 <= A0 < A1 + S1

61

Correspondingly, we use a pair (A01, S01) to denote the overlapped memory region for the

two fetches and a triple (A01, S01, i = [0, 1]) to denote the memory copied in during the first

or second fetch.

Control dependence. A variable V is considered to be control dependent if V ∈

(A01, S01, 0) and V is subject to a set of constraints in order for the second fetch to happen.

The set of constraints V must satisfy is denoted as [Vc]. To prove that a double-fetch bug

cannot exist in this case, we have to prove that V ′ constructed from (A01, S01, 1) must also

satisfy [Vc].

Data dependence. A variable V is considered to be data dependent if V ∈ (A01, S01, 0)

and V is consumed, such as being assigned to other variables, involved in calculations, or

passed to function calls. To prove that a double-fetch bug cannot exist in this case, we have

to prove that V ′ constructed from (A01, S01, 1) must satisfy V ′ == V .

4.2 DEADLINE Overview

The formal modeling of double-fetch bugs inspired us to use symbolic checking for double-

fetch bug detection. Compared with actually executing the code with concrete inputs

(like Bochspwn [43]), symbolic execution gives us the power of generality, i.e., solving

for a case that can meet certain conditions or proving that these conditions can never be

satisfied. This gives DEADLINE the precision of detection and also alleviates the manual

effort. Furthermore, symbolic execution, being a static analysis technique, is not limited

by the availability of hardware or machine configurations and can theoretically be applied

against all the drivers, file systems, and peripheral modules in the kernel source tree. It also

enables DEADLINE to start path exploration and checking from virtually any point, in a

manner similar to UC-KLEE [100], instead of from fixed entry points like syscall entry or

kernel boot.

However, before rushing into symbolic checking, DEADLINE needs to collect as many

multi-reads as possible since every double-fetch bug must be a multi-read. Furthermore, for

62

each multi-read, DEADLINE constructs the execution paths for the symbolic execution to

follow along. DEADLINE achieves this by first compiling kernel source code into the LLVM

intermediate representation (IR) and statically analyzing the IR to identify multi-reads and

prune associated execution paths.

We choose to work with LLVM IR instead of the C source code for several reasons: 1)

LLVM IR preserves most of the information needed by DEADLINE, such as type information,

function names and arguments, etc. The only information loss is the __user mark, which

can be easily added back to the IR by adding the mark to LLVM metadata. The __user

mark is used to differentiate userspace and kernel memory objects, which will be illustrated

in detail in subsection 4.4.3. 2) LLVM IR is in the single static assignment (SSA) form,

which closely mimics the logic for symbolic execution, i.e., assigning a symbolic value to

each definition of a variable. Working with LLVM IR also enables the reuse of many LLVM

analysis passes such as call-graph construction, function inlining, etc.

Overall procedure. In short, DEADLINE’s detection procedure consists of two steps:

1. Scan the kernel and collect as many multi-reads as possible with their execution paths.

2. Check along each execution path to see if a multi-read turns into a double-fetch bug.

The high-level procedure for DEADLINE is illustrated in algorithm 1. The process

starts by scanning the kernel and collecting all fetches (line 2). This is an easy step, as

each userspace fetch is clearly marked by a call to a transfer function (e.g., get_user).

Then, for each fetch found, DEADLINE scans backward and forward along the control flow

graph for other fetches (line 4), and if other fetches are found, marks them as fetch pairs,

each constitutes a multi-read. Afterward, DEADLINE builds all possible execution paths

that run through both fetches for each fetch pair (line 6). We elaborate these two steps

in section 4.3. Finally, for each execution path constructed, DEADLINE invokes its symbolic

execution engine and checks whether the multi-read is a double-fetch bug based on the

formal definitions. This step is depicted in detail in section 4.4.

63

Algorithm 1: High-level procedure for double-fetch bug detection
In :Kernel - The kernel to be checked
Out :Bugs - The set of double-fetch bugs found

1 Bugs← ∅
2 Setf ← Collect Fetches(Kernel)
3 for F ∈ Setf do
4 Setmr ← Collect Multi Reads(F)
5 for < F0, F1, Fn >∈ Setmr do
6 Paths← Construct Execution Paths(F0, F1, Fn)
7 for P ∈ Paths do
8 if Symbolic Checking(P , F0, F1) == UNSAFE then
9 Bugs.add(< F0, F1 >)

10 end
11 end
12 end
13 end

4.3 Finding Multi-reads

Finding multi-reads is the first step for double-fetch bug detection. Prior works either

used empirical rules [44] or relied on dynamic memory access patterns [43] to find multi-

reads, both of which could be problematic (e.g., assuming multi-reads are intra-procedural).

To inherently improve the finding of multi-reads, DEADLINE instead employs static and

symbolic program analyses to systematically find multi-reads against the whole kernel

codebase.

4.3.1 Fetch pairs collection

In this step, the goal for DEADLINE is to statically enumerate all multi-reads that could

possibly occur. In particular, DEADLINE tries to identify all the fetch pairs that can be

reached at least statically, i.e., there exists a reachable path in the control flow graph (CFG)

between the two fetches (i.e., a fetch pair).

One approach is to 1) identify all fetches in the kernel, i.e., calls to transfer functions; 2)

construct a complete, inter-procedural CFG for the whole kernel; and 3) perform pair-wise

64

reachability tests for each pair of fetches. Although 1) is easy, given the scale and com-

plexity of kernel software, both 2) and 3) are hard if not impossible in practice. Therefore,

DEADLINE chooses to find fetch pairs in a bottom-up manner, as described in algorithm 2.

In short, starting at each fetch, within the function it resides in, DEADLINE scans through

both the reaching and reachable instructions for this fetch and among those instructions,

either marks that we have found a fetch pair (line 6, 15) or inline the function containing a

fetch and re-executes the search (line 9, 18).

Algorithm 2: Collect Multi Reads(F)
In :F - A fetch, i.e., a call to a transfer function
Out :R - A set of triples < F0, F1, Fn > representing multi-reads

1 Fn← Function that contains F
2 R← ∅
3 Setup← Get Upstream Instructions(Fn, F)
4 for I ∈ Setup do
5 if I is a fetch then
6 R.add(< I, F, Fn >)
7 end
8 if I is a call to a function that contains a fetch then
9 Inline I , redo the algorithm

10 end
11 end
12 Setdn← Get Downstream Instructions(Fn, F)
13 for I ∈ Setdn do
14 if I is a fetch then
15 R.add(< F, I, Fn >)
16 end
17 if I is a call to a function that contains a fetch then
18 Inline I , redo the algorithm
19 end
20 end

Note that, in addition to the two fetches, the enclosing function Fn is also attached to

the pair, and we use this triple to denote a multi-read in DEADLINE. Conceptually, this Fn

is the deepest function in the global call graph (if it can ever be constructed) that encloses

both fetches, and later the execution paths will be constructed within this Fn. This alleviates

DEADLINE in constructing execution paths from fixed entry and exit points such as syscall

65

enter and syscall return, which are usually very lengthy with many irrelevant instructions to

the forming of a double-fetch bug.

Indirect calls. One special case in this process is an indirect call, which is often used

in kernel to simulate polymorphic behaviors. DEADLINE does not attempt to resolve the

actual targets of an indirect call (in fact, in many cases, they can only be resolved at

runtime). Instead, DEADLINE conservatively identifies all potential targets of an indirect

call. Specifically, DEADLINE first collects the address-taken functions and then employs

the type-analysis-based approach [101, 102] to find the targets of indirect calls. That is, as

long as the type of arguments of an address-taken function matches with the call-site of an

indirect call, we assume it is a valid target of the indirect call.

4.3.2 Execution path construction

In this step, DEADLINE is given a triple < F0, F1, Fn > which represents a multi-read, and

the goal for DEADLINE is twofold:

1. to find all execution paths within the enclosing function (Fn) that connect both fetches

(F0 and F1) and

2. to slice out the irrelevant instructions that have no impact on the fetches or are not

affected by the fetches, for each execution path.

Both parts can be solved with standard program analysis techniques. The first part can

be done by a simple CFG traversal within the function Fn, while the second part can be

achieved by slicing the function CFG with the following criteria:

• An instruction is considered to have an impact on a fetch if the address or size of the

fetch is either derived from it or constrained by it.

• An instruction is considered to be affected by a fetch if it is derived from the fetched-in

value or it constrains the fetched-in value.

66

With these criteria, we preserve all the control and data dependence relations that we

need to prove and thus to decide whether a multi-read is a double-fetch bug, as defined

in section 4.1.

Linearize an execution path. One last step in the path construction is to linearize the

paths into a sequence of IR instructions. For a path without loops, linearization is simply

a concatenation of the basic blocks; however, for a path with loops, unrolling is required.

DEADLINE decides to unroll a loop only once1. This imposes a limitation to DEADLINE:

DEADLINE is unable to find double-fetch bugs caused by one fetch overlapping with itself

when the loop is executed multiple times. In fact, in kernel, such double-fetch bugs can

almost never happen, as fetches in loops are usually designed in an incremental manner, e.g.,

copy_from_user(kbuf, ubuf, len); ubuf += len;. In this case, the two fetches

are always from non-overlapping memory regions and will never satisfy the condition for

a double-fetch bug. On the other hand, unrolling the loop once does help DEADLINE find

double-fetch bugs caused by two fetches across loops, as shown in Figure 2.4.

4.4 From Multi-reads to Double-fetch Bugs

Prior works [43, 44] rely on manual verification to check whether a multi-read turns into

a double-fetch bug, which can be time consuming and error-prone. Instead, DEADLINE

applies symbolic checking to automatically vet whether a multi-read is a double-fetch bug

based on the formal definitions in section 4.1.

4.4.1 A running example

To help illustrate the concepts in this section, we provide a running example in Figure 4.1. It

is a double-fetch bug found by DEADLINE in the perf_copy_attr function and has been

patched in Linux kernel 4.13. In summary, the first fetch (line 8) copies in a 4-byte value

1If there are multiple paths inside the loop body, DEADLINE unrolls the loop multiple times, each covers
one path.

67

size, which is later sanity checked (line 12, 13) and also used for the second fetch (line 17).

However, after the second fetch, the overlapped region attr->size is not subject to any

constraints until the end of the function. In this case, a user process could put a proper value,

say uattr->size = 128, before the first fetch so that it will pass both sanity checks and

later uses a race condition to change it, say uattr->size = 0xFFFFFFFF, which will be

copied to attr->size and cause trouble if it is later used without caution (line 24). The

memory access pattern is also visualized in Figure 4.1b, which clearly shows that the two

fetches have an overlap of four bytes and the constraints on this overlapped region across

different fetches are different.

Given that both control dependence (i.e., the sanity checks) and data dependence

(i.e., size is used in the second fetch) are established between the two fetches, the

correct way to check for a double-fetch bug is to try an equality proof (i.e., proving

that size == attr->size), as explained in section 4.1. Since this cannot be proved,

DEADLINE flags this multi-read as a double-fetch bug.

The symbolic execution procedure is shown in Figure 4.1c. Note that, for illustration

purpose, we use $X to denote the symbolic value of the variable and @X to denote the

object in memory that is pointed to by $X . If $X is not a pointer, @X is nil. A memory

object can be accessed by a triple < i, j, L >, which means a memory access from byte i to

byte j. The label L can be either K or U , indicating whether this is a kernel or userspace

access, and for userspace accesses, the labels can be U0, U1, etc. to denote that this is the

first or second access to that memory object region.

Figure 4.2 presents a much more complicated example to illustrate DEADLINE’s sym-

bolic execution process. In particular, this examples shows two features of DEADLINE:

• Loop unrolling: each of the two while loops are unrolled once which is further

reflected in the symbolic execution trace: line 9-16, 22-35 (4.2c).

• Pointer resolving: in DEADLINE’s memory model, if DEADLINE can prove that two

pointer values are the same, they should be pointing to the same object, which is

68

1
s
t
a
t
i
c

i
n
t

p
e
r
f
_
c
o
p
y
_
a
t
t
r
_
s
i
m
p
l
i
f
i
e
d

2
(
s
t
r
u
c
t
p
e
r
f
_
e
v
e
n
t
_
a
t
t
r

_
_
u
s
e
r

*
u
a
t
t
r
,

3
s
t
r
u
c
t
p
e
r
f
_
e
v
e
n
t
_
a
t
t
r
*
a
t
t
r
)

{
4 5

u
3
2

s
i
z
e
;

6 7
/
/

f
i
r
s
t

f
e
t
c
h

8
i
f

(
g
e
t
_
u
s
e
r
(
s
i
z
e
,

&
u
a
t
t
r
-
>
s
i
z
e
)
)

9
r
e
t
u
r
n
-
E
F
A
U
L
T
;

10 11
/
/

s
a
n
i
t
y

c
h
e
c
k
s

12
i
f

(
s
i
z
e

>
P
A
G
E
_
S
I
Z
E

|
|

13
s
i
z
e

<
P
E
R
F
_
A
T
T
R
_
S
I
Z
E
_
V
E
R
0
)

14
r
e
t
u
r
n
-
E
I
N
V
A
L
;

15 16
/
/

s
e
c
o
n
d

f
e
t
c
h

17
i
f

(
c
o
p
y
_
f
r
o
m
_
u
s
e
r
(
a
t
t
r
,

u
a
t
t
r
,

s
i
z
e
)
)

18
r
e
t
u
r
n
-
E
F
A
U
L
T
;

19 20
.
.
.
.
.
.

21
}

22
/
/

E
x
a
m
p
l
e
:

i
f

a
t
t
r
-
>
s
i
z
e

i
s

u
s
e
d

l
a
t
e
r

23
/
/

B
U
G
:

a
t
t
r
-
>
s
i
z
e

c
a
n

b
e

v
e
r
y

l
a
r
g
e

24
m
e
m
c
p
y
(
b
u
f
,

a
t
t
r
,

a
t
t
r
-
>
s
i
z
e
)
;

(a
)C

so
ur

ce
co

de

u
at

tr
$

0
&

u
at

tr
si

ze
 +

 4
→

$
0

 +
 8

&
u

at
tr

si
ze

→
$

0
 +

 4
u

at
tr

 +
 s

iz
e

$
0

 +
 $

2

<=
 P

A
G

E
_S

IZ
E

>=
 P

E
R

F_
A

T
T

R
_S

IZ
E

_V
E

R
0

C
on

st
ra

in
ts

C
on

st
ra

in
ts

<
n

o
 c

o
n

st
ra

in
ts

>

1
st

 F
et

ch

2
n

d
 F

et
ch

(b
)M

em
or

y
ac

ce
ss

pa
tte

rn
s

1
/
/

i
n
i
t

r
o
o
t

S
R

2
$
0

=
$
P
A
R
M
(
0
)
,

@
0

=
$
U
M
E
M
(
0
)

/
/

u
a
t
t
r

3
$
1

=
$
P
A
R
M
(
1
)
,

@
1

=
$
K
M
E
M
(
0
)

/
/

a
t
t
r

4
-
-
-

5
/
/

f
i
r
s
t

f
e
t
c
h

6
f
e
t
c
h
(
F
1
)

i
s

{
A

=
$
0

+
4
,

S
=

4
}

7
$
2

=
@
0
(
4
,

7
,

U
0
)
,
@
2

=
n
i
l

/
/

s
i
z
e

8
-
-
-

9
/
/

s
a
n
i
t
y

c
h
e
c
k
s

10
a
s
s
e
r
t

$
2

<
=

P
A
G
E
_
S
I
Z
E

11
a
s
s
e
r
t

$
2

>
=

P
E
R
F
_
A
T
T
R
_
S
I
Z
E
_
V
E
R
0

12
-
-
-

13
/
/

s
e
c
o
n
d

f
e
t
c
h

14
f
e
t
c
h
(
F
2
)

i
s

{
A

=
$
0
,

S
=

$
2
}

15
@
1
(
0
,

$
2

-
1
,

K
)

=
@
0
(
0
,

$
2
,

U
1
)

16
-
-
-

17
/
/

c
h
e
c
k

f
e
t
c
h

o
v
e
r
l
a
p

18
a
s
s
e
r
t

F
2
.
A

<
=

F
1
.
A

<
F
2
.
A

+
F
2
.
S

19
O
R

F
1
.
A

<
=

F
2
.
A

<
F
1
.
A

+
F
1
.
S

20
/
/

-
-
>

s
a
t
i
s
f
i
a
b
l
e

w
i
t
h

@
0
(
4
,

7
,

U
)

21 22
/
/

c
h
e
c
k

d
o
u
b
l
e
-
f
e
t
c
h

b
u
g

23
p
r
o
v
e

@
0
(
4
,

7
,

U
0
)

=
=

@
0
(
4
,

7
,

U
1
)

24
/
/

-
-
>

f
a
i
l
,

n
o

c
o
n
s
t
r
a
i
n
t
s

o
n

@
0
(
4
,

7
,

U
1
)

(c
)S

ym
bo

lic
re

pr
es

en
ta

tio
n

an
d

ch
ec

ki
ng

Fi
gu

re
4.

1:
A

do
ub

le
-f

et
ch

bu
g

in
p
e
r
f
_
c
o
p
y
_
a
t
t
r

,w
ith

ill
us

tra
tio

n
on

ho
w

it
fit

s
th

e
fo

rm
al

de
fin

iti
on

of
do

ub
le

-f
et

ch
bu

gs
(4

.1
b)

an
d

D
E

A
D

L
IN

E
’s

sy
m

bo
lic

en
gi

ne
ca

n
fin

d
it

(4
.1

c)
.

69

reflected in line 20 (4.2c).

This example also shows that although developers tend to exercise precaution to prevent

double-fetch bugs, for example, by placing the sanity checks at line 36 (4.2a), such checks

might not be sufficient as shown in line 28 (4.2c).

4.4.2 Transforming IR to SR

Transforming the LLVM IR to SR is the same as symbolically executing the LLVM in-

structions along the path. In particular, each variable has an SR while the instructions and

function calls define how to derive these SRs and the constraints imposed. All the SRs are

derived from a set of root SRs, which could be function arguments, global variables (both

denoted as PARM), or two special types of objects, KMEM and UMEM, that represent memory

blobs in kernel and userspace, respectively. Function arguments and global variables are

considered roots because their values are not defined by any instructions along the execution

path. Similarly, the initial contents in KMEM and UMEM are unknown, and therefore we also

treat them as root SRs, although along the execution their contents can be defined through

operations such as memcpy, memset, and copy_from_user.

Symbolic execution of the majority of LLVM instructions is straightforward. For

example, to symbolically execute an add instruction %3 = add i32 %2 16, DEADLINE

simply creates a new SR, $3, and sets it to $3 = $2 + 16. However, three types of

instructions need special treatment: branch instructions, library functions/inline assemblies,

and memory operations.

Branch instructions. As stated before, DEADLINE does not perform new path discovery

during symbolic execution; instead, it only follows along a specific path (i.e., a sequence

of IR instructions) prepared before the symbolic execution, as illustrated in detail in sub-

section 4.3.2. Therefore, whenever DEADLINE encounters a branch instruction, it looks

ahead on the path, checks which branch is taken, and uses this information to infer the

constraints that must be satisfied by taking that branch, i.e., whether the branch condition

70

1
i
n
t
c
m
s
g
h
d
r
_
f
r
o
m
_
u
s
e
r
_
c
o
m
p
a
t
_
t
o
_
k
e
r
n

2
(
s
t
r
u
c
t

m
s
g
h
d
r
*
k
m
s
g
,

c
h
a
r
*
k
b
u
f
)

{
3 4

s
t
r
u
c
t

c
o
m
p
a
t
_
c
m
s
g
h
d
r

_
_
u
s
e
r
*
u
c
m
s
g
;

5
c
o
m
p
a
t
_
s
i
z
e
_
t

u
c
m
l
e
n
;

6
s
t
r
u
c
t

c
m
s
g
h
d
r
*
k
c
m
s
g
;

7
_
_
k
e
r
n
e
l
_
s
i
z
e
_
t

k
c
m
l
e
n
,

t
m
p
;

8 9
/
/

1
s
t

l
o
o
p
:

c
a
l
c
u
l
a
t
e

m
e
s
s
a
g
e

l
e
n
g
t
h

10
k
c
m
l
e
n

=
0
;

11
u
c
m
s
g

=
k
m
s
g
-
>
m
s
g
_
c
o
n
t
r
o
l
;

12
w
h
i
l
e

(
u
c
m
s
g

!
=

N
U
L
L
)

{
13

/
/

f
i
r
s
t

b
a
t
c
h

o
f

f
e
t
c
h
e
s

14
i
f
(
g
e
t
_
u
s
e
r
(
u
c
m
l
e
n
,

&
u
c
m
s
g
-
>
c
m
s
g
_
l
e
n
)
)

15
r
e
t
u
r
n

-
E
F
A
U
L
T
;

16 17
t
m
p

=
u
c
m
l
e
n

+
s
i
z
e
o
f
(
s
t
r
u
c
t
c
m
s
g
h
d
r
)

18
-
s
i
z
e
o
f
(
s
t
r
u
c
t

c
o
m
p
a
t
_
c
m
s
g
h
d
r
)
;

19 20
k
c
m
l
e
n

+
=

t
m
p
;

21
u
c
m
s
g

=
(
c
h
a
r
*
)
u
c
m
s
g

+
u
c
m
l
e
n
;

22
}

23 24
/
/

2
n
d

l
o
o
p
:

c
o
p
y

t
h
e

w
h
o
l
e

m
e
s
s
a
g
e

25
k
c
m
s
g

=
k
b
u
f
;

26
u
c
m
s
g

=
k
m
s
g
-
>
m
s
g
_
c
o
n
t
r
o
l
;

27
w
h
i
l
e
(
u
c
m
s
g

!
=

N
U
L
L
)

{
28

/
/

s
e
c
i
n
d

b
a
t
c
h

o
f

f
e
t
c
h
e
s

29
i
f
(
g
e
t
_
u
s
e
r
(
u
c
m
l
e
n
,

&
u
c
m
s
g
-
>
c
m
s
g
_
l
e
n
)
)

30
r
e
t
u
r
n

-
E
F
A
U
L
T
;

31 32
t
m
p

=
u
c
m
l
e
n

+
s
i
z
e
o
f
(
s
t
r
u
c
t
c
m
s
g
h
d
r
)

33
-
s
i
z
e
o
f
(
s
t
r
u
c
t

c
o
m
p
a
t
_
c
m
s
g
h
d
r
)
;

34 35
/
/

s
a
n
i
t
y

c
h
e
c
k
,

b
u
t

i
n
s
u
f
f
i
c
i
e
n
t

36
i
f
(
k
b
u
f

+
k
c
m
l
e
n

-
(
c
h
a
r
*
)
k
c
m
s
g

<
t
m
p
)

37
r
e
t
u
r
n

-
E
I
N
V
A
L
;

38 39
/
/

i
r
r
e
l
e
v
a
n
t

f
e
t
c
h

40
i
f
(
c
o
p
y
_
f
r
o
m
_
u
s
e
r
(

41
(
c
h
a
r

*
)
k
c
m
s
g

+
s
i
z
e
o
f
(
*
k
c
m
s
g
)
,

42
(
c
h
a
r

*
)
u
c
m
s
g

+
s
i
z
e
o
f
(
*
u
c
m
s
g
)
,

43
(
u
c
m
l
e
n

-
s
i
z
e
o
f
(
*
u
c
m
s
g
)
)
)
)

44
r
e
t
u
r
n

-
E
F
A
U
L
T
;

45 46
k
c
m
s
g

=
(
c
h
a
r
*
)
k
c
m
s
g

+
t
m
p
;

47
u
c
m
s
g

=
(
c
h
a
r
*
)
u
c
m
s
g

+
u
c
m
l
e
n
;

48
}

49 50
/
/

B
U
G
:

t
h
e

a
c
t
u
a
l

m
e
s
s
a
g
e

l
e
n
g
t
h

!
=

k
c
m
l
e
n

51
k
m
s
g
-
>
m
s
g
_
c
o
n
t
r
o
l
l
e
n

=
k
c
m
l
e
n
;

52
r
e
t
u
r
n
0
;

53
}

(a
)C

so
ur

ce
co

de

1
st

 F
et

ch

2
n

d
 F

et
ch

u
cm

sg
u

cm
sg

+

 4
u

cm
sg

+

 1
2

u
cm

sg

+
 u

cm
le

n

3
rd

 F
et

ch

C
on

st
ra
in
ts

<
=

(b
)M

em
or

y
ac

ce
ss

pa
tte

rn
s

1
/
/

i
n
i
t

r
o
o
t

S
R

2
$
0

=
$
P
A
R
M
(
0
)
,

@
0

=
$
K
M
E
M
(
0
)

/
/

k
m
s
g

3
$
1

=
$
P
A
R
M
(
1
)
,

@
1

=
$
K
M
E
M
(
1
)

/
/

k
b
u
f

4
-
-
-

5
/
/

p
r
e
p
a
r
e

f
o
r

t
h
e
1
s
t

b
a
t
c
h

o
f

f
e
t
c
h
e
s

6
$
2

=
0
,

@
2

=
n
i
l

/
/

k
c
m
l
e
n
_
0

7
$
3

=
@
0
(
4
8
,

5
5
,

K
)
,

@
3

=
$
U
M
E
M
(
0
)

/
/

u
c
m
s
g
_
0

8
-
-
-

9
/
/

u
n
r
o
l
l

1
s
t

l
o
o
p

10
a
s
s
e
r
t

$
2

!
=

N
U
L
L

11
f
e
t
c
h
(
F
1
)

i
s

{
A

=
$
3

+
0
,

S
=

4
}

12
$
4

=
@
3
(
0
,

3
,

U
0
)
,

@
4

=
n
i
l

/
/

u
c
m
l
e
n
_
0

13
$
5

=
$
4

-
1
2

+
1
6
,

@
5

=
n
i
l

/
/

t
m
p
_
0

14
$
6

=
$
2

+
$
5
,

@
6

=
n
i
l

/
/

k
c
m
l
e
n
_
1

15
$
7

=
$
3

+
$
4
,

@
7

=
$
U
M
E
M
(
1
)

/
/

u
c
m
s
g
_
1

16
a
s
s
e
r
t

$
7

=
=

N
U
L
L

(
i
.
e
.
,

@
7

=
n
i
l
)

/
/

e
x
i
t

l
o
o
p

17
-
-
-

18
/
/

p
r
e
p
a
r
e

f
o
r

t
h
e
2
n
d

b
a
t
c
h

o
f

f
e
t
c
h
e
s

19
$
8

=
$
1

@
8

=
$
K
M
E
M
(
1
)

/
/

k
c
m
s
g
_
0

20
$
9

=
@
0
(
4
8
,

5
5
,

K
)

=
=

$
3
,

@
9

=
@
3

/
/

u
c
m
s
g
_
2

21
-
-
-

22
/
/

u
n
r
o
l
l

2
n
d

l
o
o
p

23
a
s
s
e
r
t

$
9

!
=

N
U
L
L

24
f
e
t
c
h
(
F
2
)

i
s

{
A

=
$
9

+
0
,

S
=

4
}

25
$
1
0

=
@
3
(
0
,

3
,

U
1
)
,

@
1
0

=
n
i
l

/
/

u
c
m
l
e
n
_
1

26
$
1
1

=
$
1
0

-
1
2

+
1
6
,

@
1
1

=
n
i
l

/
/

t
m
p
_
1

27 28
a
s
s
e
r
t

$
1

+
$
6

-
$
8

>
=

$
1
1

-
-
>

@
3
(
0
,

3
,

U
0
)

>
=

@
3
(
0
,

3
,

U
1
)

29 30
f
e
t
c
h
(
F
3
)

i
s

{
A

=
$
9

+
1
2
,

S
=

$
1
0

-
1
2
}

31
@
8
(
1
2
,

$
1
0

-
1
3
,

K
)

=
@
3
(
1
2
,

$
1
0

-
1
3
,

U
0
)

32 33
$
1
2

=
$
8

+
$
1
1
,

@
1
2

=
$
K
M
E
M
(
2
)

/
/

k
c
m
s
g
_
1

34
$
1
3

=
$
9

+
$
1
0
,

@
1
3

=
$
U
M
E
M
(
3
)

/
/

u
c
m
s
g
_
3

35
a
s
s
e
r
t

$
1
3

=
=

N
U
L
L

(
i
.
e
.
,

@
1
3

=
n
i
l
)

/
/

e
x
i
t

l
o
o
p

36
-
-
-

37 38
/
/

c
h
e
c
k

f
e
t
c
h

o
v
e
r
l
a
p

39
a
s
s
e
r
t

F
2
.
A

<
=

F
1
.
A

<
F
2
.
A

+
F
2
.
S

40
A
N
D

F
1
.
A

<
=

F
2
.
A

<
F
1
.
A

+
F
1
.
S

41
/
/

-
-
>

s
a
t
i
s
f
i
a
b
l
e

w
i
t
h

@
3
(
0
,

3
,

U
)

42 43
a
s
s
e
r
t

F
3
.
A

<
=

F
1
.
A

<
F
3
.
A

+
F
3
.
S

44
A
N
D

F
1
.
A

<
=

F
3
.
A

<
F
1
.
A

+
F
1
.
S

45
/
/

-
-
>

u
n
s
a
t
i
s
f
i
a
b
l
e

46 47
a
s
s
e
r
t

F
3
.
A

<
=

F
2
.
A

<
F
3
.
A

+
F
3
.
S

48
A
N
D

F
2
.
A

<
=

F
3
.
A

<
F
2
.
A

+
F
2
.
S

49
/
/

-
-
>

u
n
s
a
t
i
s
f
i
a
b
l
e

50 51
/
/

c
h
e
c
k

d
o
u
b
l
e
-
f
e
t
c
h

b
u
g

52
p
r
o
v
e

@
3
(
0
,

3
,

U
0
)

=
=

@
3
(
0
,

3
,

U
1
)

53
/
/

-
-
>

f
a
i
l
,

a
s

@
3
(
0
,

3
,

U
0
)

>
=

@
3
(
0
,

3
,

U
1
)

(c
)S

ym
bo

lic
re

pr
es

en
ta

tio
n

an
d

ch
ec

ki
ng

Fi
gu

re
4.

2:
A

do
ub

le
-f

et
ch

bu
g

in
c
m
s
g
h
d
r
_
f
r
o
m
_
u
s
e
r
_
c
o
m
p
a
t
_
t
o
_
k
e
r
n

,w
ith

ill
us

tr
at

io
n

on
ho

w
it

fit
s

th
e

fo
rm

al
de

fin
iti

on
of

do
ub

le
-f

et
ch

bu
gs

(4
.2

b)
an

d
D

E
A

D
L

IN
E

’s
sy

m
bo

lic
en

gi
ne

ca
n

fin
d

it
(4

.2
c)

.

71

is true or false. After doing that, DEADLINE adds this constraint to its assertion set so that

later when solving (or proving), it ensures that this constraint is met (or cannot be met). In

the running example in Figure 4.1, line 10, 11 in Figure 4.1c illustrate this procedure. This

is in contrast to traditional symbolic executors [47, 48, 49] which fork states and try to cover

both branches upon encountering a branch instruction.

Library functions and inline assemblies. Although the kernel does not have the notion

of standard libraries like libc, common functionalities such as memory allocation are

abstracted out, and most of them reside in the lib directory in the kernel source tree. These

library functions can be generally categorized into five types:

• memory allocations (e.g., kmalloc),

• memory operations (e.g., memcpy),

• string operations (e.g., strnlen),

• synchronization operations (e.g., mutex_lock), and

• debug and error reporting functions (e.g., printk).

We choose to not let DEADLINE symbolically execute into these functions; instead, we

manually write symbolic rules for each of these functions to capture the interactions between

their function arguments and return values symbolically. Fortunately, for the purpose of

double-fetch bug detection, there are only 45 and 12 library functions we need to handle

for the Linux and the FreeBSD kernel, respectively, which incurs a reasonable amount of

manual effort.

In terms of inline assemblies, although they are commonly found in kernel code, not

many of them are related to double-fetch bug detection and hence will be filtered out early

without showing in the execution path. For those that commonly appear in the execution

paths (e.g., bswap), we write manual rules to approximate their effects on the symbolic

values and ignore the rest, i.e., assuming them to have no effects.

72

4.4.3 Memory model

Traditional symbolic executors model memory as a linear array of bits or bytes and rely on

the select-store axioms and its extensions [103, 104] to represent memory read and write.

The select expression, select(a, i), returns the value stored at position i of the array a

and hence models a memory read, while a store(a, i, v) returns a new array identical

to a, but on position i it contains the value v and hence models a memory write. This

model has been proven successful by symbolic executors like KLEE [48] and SAGE [49].

However, it cannot be directly applied in DEADLINE for double-fetch bug detection.

One missing piece in this memory model is that two reads from the same address are

assumed to always return the same value if there is no store operation to that address

between the reads. While this is true for single-threaded programs (or multi-threaded

programs with interleavings flattened), it does not hold for userspace accesses from kernel

code, as a user process might change the value between the two reads, but those operations

will not be backed by a store in the trace. In fact, if DEADLINE adopts this assumption, it

would never find a double-fetch bug.

To address this issue, DEADLINE extends the model by encoding a monotonically

increasing epoch number in the reads from userspace memory to represent that the val-

ues copied in at different fetches can be different. However, for kernel memory reads,

DEADLINE does not add the epoch number and does assume that every load and store to the

address is enclosed in the execution path. Otherwise, it becomes a kernel race condition,

which is out of the scope for DEADLINE and is assumed to be nonexistent. To infer whether

a pointer points to userspace or kernel memory, DEADLINE relies on the __user mark and

considers that any pointer marked as __user is a userspace pointer (e.g., variable uattr in

line 2, Figure 4.1a), and a pointer without the __user mark points to kernel memory (e.g.,

variable attr, in line 3, Figure 4.1a).

Another extension DEADLINE has to make to the memory model is that instead of

assuming the whole memory to be an array of bytes (or bits), DEADLINE uses an array of

73

1 static int not_buggy1
2 (int __user *uptr1,
3 int __user *uptr2) {
4 // uptr1 <-- UMEM(0)
5 // cannot prove
6 // uptr2 == uptr1, so
7 // uptr2 <-- UMEM(1)
8

9 int x1, x2;
10 get_user(x1, uptr1);
11 if(x1 == 0)
12 return -EINVAL;
13

14 get_user(x2, uptr2);
15 return x2;
16 }

1 static void *not_buggy2
2 (struct request __user *up,
3 struct request *kp) {
4 // up <-- UMEM(0)
5

6 void __user *ubuf, void *kbuf;
7 copy_from_user(kp, up, sizeof(*kp));
8 if(!kp->buf)
9 return -EINVAL;

10

11 ubuf = kp->buf;
12 // cannot prove ubuf == up, so
13 // ubuf <-- UMEM(1)
14 kbuf = memdup_user(kp->buf, kp->len);
15 return kbuf;
16 }

Figure 4.3: DEADLINE’s memory model cannot prove that the two fetches come from the same
userspace object. Therefore, these two cases will not be considered as double-fetch bugs.

bytes to represent each single memory object and maps each pointer to one memory object.

DEADLINE uses a few empirical rules to create this mapping:

• Different function arguments or global variables are assumed to be pointing to different

memory objects (if they are pointers or integers that can be casted to pointers);

• Newly allocated pointers (via kmalloc, etc) are assumed to be pointing to new

memory objects;

• When an assignment occurs, the object is also transferred (e.g., assigning a function

argument to a local variable), meaning that the local variable is pointing to the same

object as the argument. In fact, this is implicitly handled by the SSA form of the

LLVM IR;

• For any other pointer, if we cannot prove that its value falls in the range of any existing

object, assume it points to a new object. For example, a pointer like (&req->buf) is

considered as pointing to a sub-range of the req object, while req->buf is considered

as pointing to a new object.

Furthermore, when checking for double-fetch bugs, DEADLINE considers only the cases

where the address pointers are pointing to the same userspace object. For example, in both

cases shown in Figure 4.3, DEADLINE cannot prove that the two fetches come from the

same userspace memory object. Therefore, DEADLINE does not mark them as double-fetch

74

bugs. This design decision is made based on some implicit programming practices. For

example, there is no need to pass in two pointers that point to the same memory region (i.e.,

the case of uptr1 == uptr2 on the left side of Figure 4.3); or it is very uncommon to

copy from cyclic buffers (i.e., the case of up->buf == up on the right side of Figure 4.3).

However, in the case where DEADLINE can prove that two pointers have the same value,

the memory object reference is also transferred, as shown in the case of Figure 4.2c, line 20.

4.4.4 Checking against the definitions

Upon finishing the translation from IR to SR, DEADLINE invokes the SMT solver to check

whether all conditions listed in section 4.1 can be met.

DEADLINE first checks whether the two fetches, F0 =< A0, S0 >, F1 =< A1, S1 >,

share an overlapped memory region. To do this, on top of the path constraints (which are

already added to the solver during symbolization), DEADLINE further adds the constraint

(A1 ≤ A0 < A1 + S1 || A0 ≤ A1 < A0 + S0) to the solver (line 18 in the running

example Figure 4.1c). DEADLINE then asks the solver to check whether there exist any

overlapped regions with all the assertions. An overlap is represented by a triple < N, i, j >

and should be interpreted as that byte i to j in userspace object N being copied into the

kernel twice in this multi-read. In the running example, there is one overlap, < 0, 4, 7 >, as

shown in line 20.

If there are no overlapped regions, this multi-read is considered safe. Otherwise, for

each overlap identified, DEADLINE further checks whether there is control dependence or

data dependence established based on this region:

• In the case of control dependence only, collect the constraints for @N(i, j, U0) (de-

noted as C0) and @N(i, j, U1) (denoted as C1) and prove that C1 is the same as C0 or

is even more restrictive than C0.

• In the case of data dependence, prove that @N(i, j, U0) == @N(i, j, U1), as shown

in line 23 of the running example.

75

• In the very rare cases where there is no relation found, there is a redundant fetch.

Depending on the result, DEADLINE marks the multi-read as safe if the above proofs

succeed and a bug otherwise.

4.5 Implementation

DEADLINE is implemented as an LLVM pass (6,395 LoC) based on LLVM version 4.0

and uses Z3 [73] version 4.5 as its theorem prover. The rest of this section covers the

most important engineering problems we solved when developing DEADLINE, including

maximizing code coverage, compiling and linking kernel source into LLVM IR, as well as

program slicing and loop unrolling algorithms used in execution path construction.

Maximize code coverage. To detect double-fetch bugs for the whole kernel, we need to

compile not only the kernel base but also as many modules as possible, including drivers,

file systems, and peripheral modules that are rarely compiled in the generic configuration. In

addition, within a source file, the actual code compiled is usually guided by many #ifdef

statements. For example, the functions designed to bridge 32-bit applications with 64-bit

kernels will be compiled only when CONFIG_COMPAT is enabled. We would like to cover

these functions too.

To do this, we modify the configuration process for both the Linux and the FreeBSD

kernels. For Linux, we rely on the built-in allyesconfig setting, which effectively enables

all CONFIG_* macro (more than 10,000 items). Similarly, for FreeBSD, we rely on the

make LINT command to output all available options and enable them all to get the build

configuration file.

Compiling source code to LLVM IR. Since the Linux kernel is not yet compatible with

the LLVM tool-chain, we compile it with the following steps: 1) we first build the kernel

with GCC and collect the build log; 2) we then parse the log to extract compilation flags

(e.g., -I, -D) for each source file and feed the flags to Clang to compile the file again to

LLVM IR; 3) we again use the linking information in the build log and use llvm-link

76

to merge the generated bitcode files into a single module. Files that are incompatible with

LLVM will fail in step 2, which are only eight (out of 15,912 files in Linux 4.13.2).

For the FreeBSD kernel, although it can be successfully compiled with Clang, we cannot

directly add the -emit-llvm flag to generate LLVM IR because the compilation process

checks whether the generated object files are ELF files and will abort if not. Therefore,

similar to the Linux kernel compilation, we compile the FreeBSD kernel in the normal way,

parse the build log, re-compile the files to IR, and merge them into a single module.

Slicing and stitching. In order to obtain execution paths to feed to the symbolic engine,

we do backward slicing to get sensitive instructions that may affect or constraint the address

and size argument of transfer functions and do forward slicing to get sensitive instructions

that may be affected by the fetch-in values of transfer functions, respectively. We stitch the

sensitive instructions to construct paths that are possibly executed at runtime. algorithm 3

shows our slicing and stitching algorithm: the input is a function F that contains a pair of

call-sites, C1 and C2, which invoke transfer functions; the output is a set of paths (i.e., P)

that contain only sensitive instructions. Pseudo-code (i.e., line 4 – 16) shows the backward

slicing algorithm: starting from the parameters of the call-sites, which are initialized as the

seed vector Vv, we recursively identify all sensitive instructions (i.e., Si) that may affect

the values in Vv according to data and control dependencies, and recursively update Vv

according to the use-def chains. We also use a set Sv to record visited values to avoid

revisiting the same values. Similarly with the backward slicing, pseudo-code (i.e., line

17 – 30) shows the forward slicing algorithm, in which the instructions affected by the

arguments are obtained by checking a value v’s users, which can be a LoadInst loading

data from v, or a BranchInst using v in its condition, etc. With all sensitive instructions

(i.e., Si) generated from forward and backward slicing, we refine F ’s CFG by cutting off

the instructions not in Si (i.e., line 31), which provides a refined CFG used for constructing

paths (i.e., line 32). We follow original control flows to construct paths that are possibly

executed at runtime.

77

Algorithm 3: do slicing and stitching(F , < C1, C2 >)
In :F - A function contains a double-fetch pair ¡C1, C2¿
In :< C1, C2 > - A double-fetch pair callsites in F
Out :P - A set of paths

1 Si← ∅
2 Sv ← ∅
3 G← F ’s CFG

/* do backward slicing to identify instructions that
can affect the double-fetch pair */

4 Vv ← C1.params ∪ C2.params
5 while !Vv.empty() do
6 v← Vv.pop()
7 Sv.insert(v)
8 if v.isInst() then
9 Si.insert(v)

10 for Use u : v.operands() do
11 if !Sv.find(u) then
12 Vv.append(u)
13 end
14 end
15 end
16 end

/* do forward slicing to identify instructions that are
affected by the double-fetch pair */

17 Vv ← C1.params ∪ C2.params
18 Sv.clear()
19 while !Vv.empty() do
20 v← Vv.pop()
21 Sv.insert(v)
22 if v.isInst() then
23 Si.insert(v)
24 end
25 for User u : v.users() do
26 if !Sv.find(u) then
27 Vv.append(u)
28 end
29 end
30 end

31 refineCFG(G, Si)
32 P ← getPaths(G)

78

Loop unrolling. It is impossible to statically obtain all paths when a program contains

unbounded loops. Even for the loops with fixed bounds, exploring all paths is inefficient.

Therefore, we unroll each loop n times (n is configurable) to cover as many runtime paths

as possible. algorithm 4 shows how we unroll loops in a CFG. In procedure merge: for

each loop in a CFG, if the loop does not contain embedded loops, we merge all instructions

inside the loop as a single node, which simplifies the CFG to a directed acyclic graph (DAG),

in which we can directly get all paths. Procedure unroll takes in a path from the DAG,

and recursively unroll the loop nodes for n times until there are no loop nodes on the path.

Although this unrolling algorithm is simple, it is proved to be efficient and effective.

Algorithm 4: merge and unroll
1 Function merge(cfg):
2 while cfg.hasLoop() do
3 for Loop loop : cfg.loops() do
4 if loop.isAtomic() then
5 loop.merge()
6 end
7 end
8 end

9 Function unroll(path, n):
10 changed← true
11 while changed do
12 changed← false
13 for Node node : path do
14 if node.isLoopNode() then
15 for int i = 0; i < n; i = i+ 1 do
16 node.unroll()
17 end
18 changed← true

19 end
20 end
21 end

79

Table 4.1: Distribution of multi-reads and double-fetch bugs found by DEADLINE in the Linux and
FreeBSD kernels

Component # Multi-Reads # Double-fetch Bugs

Linux FreeBSD Linux FreeBSD

Core modules 25 4 2 0
Drivers 760 86 16 0
Filesystem 246 9 2 1
Networking 73 2 3 0

Total 1,104 101 23 1

4.6 Findings

In this section, we show DEADLINE’s performance in both detecting multi-reads and double-

fetch bugs in kernel software. Table 4.1 summarizes the number of multi-reads detected in

the Linux and FreeBSD kernels and how many of them are actually double-fetch bugs.

4.6.1 Detecting multi-reads

This experiment is conducted on version 4.13.3 for the Linux kernel and 11.1 (July, 2017

release) for the FreeBSD kernel. As shown in Table 4.1, DEADLINE reports 1,104 multi-

reads in the Linux kernel and 101 multi-reads in the FreeBSD kernel, as FreeBSD has a

much smaller codebase. Furthermore, besides device drivers which have been studied in

prior works [43, 44], many other kernel components, including the core modules (e.g., ipc,

sched, etc), might issue multiple fetches from userspace, and some of them can be buggy.

More importantly, the scale of 1,104 multi-reads is not suitable for manual verification,

not to mention keeping up with the frequent kernel updates. Therefore, this finding supports

the claims that formal definitions are needed to define when a multi-read turns into a double-

fetch bug and that automatic vetting is needed to alleviate this manual effort. This motivates

the development of DEADLINE.

80

4.6.2 Detecting and reporting double-fetch bugs

Confirming previously reported bugs. We first show that DEADLINE is at least as good as

prior works in detecting double-fetch bugs. In particular, DEADLINE runs against Linux ker-

nel 4.5, the same version Wang et al. [44] used in their work. Out of five bugs reported in [44],

DEADLINE found four of them, including vop_ioctl, audit_log_single_ execve_arg,

ec_device_ioctl_xcmd, and ioctl_send_fib. DEADLINE is unable to detect sclp_ctl_ioctl_sccb,

as DEADLINE compiles the kernel for the x86 architecture while sclp_ctl.c is only com-

pilable for the IBM S/390 architecture.

Finding new bugs. A more important task for DEADLINE is to find new bugs. This

experiment is conducted on version 4.12.7 to 4.13.3 for the Linux kernel and 11.1 (July,

2017 release) for the FreeBSD kernel 2.

Out of all multi-reads found in the kernels, DEADLINE detected 23 double-fetch bugs in

Linux and one bug in FreeBSD. We manually checked all the bugs and reported them to the

kernel maintainers. The full list of detected double-fetch bugs are shown in Table 4.2. At

the time of writing:

• Nine bugs have been fixed with the patches we provided.

• Four bugs are acknowledged. We are currently working with the kernel maintainers to

finalize the patches.

• Nine bugs are pending for review but no confirmation has been received.

• Two bugs are considered as “won’t fix,” as the maintainers do not think they are

exploitable right now.

In summary, the number of reported bugs is significantly higher than in prior works (six

in Linux and zero in FreeBSD). More importantly, while DEADLINE found significantly

2We perform bug finding iteratively as we develop and improve DEADLINE, which explains why several
versions of Linux kernel are used.

81

Ta
bl

e
4.

2:
A

lis
tin

g
of

do
ub

le
-f

et
ch

bu
gs

fo
un

d
an

d
re

po
rt

ed
.I

n
th

e
co

m
pl

ic
at

io
n

co
lu

m
n,

w
e

an
tic

ip
at

e
th

e
re

as
on

s
w

hy
th

e
bu

g
ca

nn
ot

be
fo

un
d

by
pr

io
rw

or
ks

.F
or

18
bu

gs
th

at
w

e
su

bm
it

pa
tc

he
s

fo
r,

w
e

al
so

lis
tt

he
st

ra
te

gy
w

e
us

e
to

fix
th

e
bu

gs
,w

hi
ch

is
di

sc
us

se
d

in
de

ta
il

in
su

bs
ec

tio
n

4.
6.

4.
Fo

r
th

e
re

m
ai

ni
ng

si
x

bu
gs

,t
he

pa
tc

hi
ng

is
lik

el
y

to
re

qu
ir

e
a

lo
to

fc
od

e
re

fa
ct

or
in

g
an

d
w

e
ar

e
w

or
ki

ng
w

ith
th

e
ke

rn
el

m
ai

nt
ai

ne
rs

to
fin

al
iz

e
a

so
lu

tio
n.

#
Fi

le
Fu

nc
tio

n
St

at
us

C
om

pl
ic

at
io

n
Pa

tc
hi

ng
St

ra
te

gy

1
bl

oc
k/

sc
si

io
ct

l.c
sg

sc
si

io
ct

l
A

ck
no

w
le

dg
ed

M
ac

ro
ex

pa
ns

io
n

In
cr

em
en

ta
lc

op
y

2
dr

iv
er

s/
ac

pi
/c

us
to

m
m

et
ho

d.
c

cm
w

ri
te

Su
bm

itt
ed

-
V

al
ue

ov
er

ri
de

3
dr

iv
er

s/
hi

d/
uh

id
.c

uh
id

ev
en

t
fr

om
us

er
W

on
’t

Fi
x

M
ac

ro
ex

pa
ns

io
n

A
bo

rt
on

ch
an

ge
4

dr
iv

er
s/

is
dn

/i4
l/i

sd
n

pp
p.

c
is

dn
pp

p
w

ri
te

Pa
tc

he
d

-
Si

ng
le

-f
et

ch
5

dr
iv

er
s/

m
es

sa
ge

/f
us

io
n/

m
pt

ct
l.c

m
pt

ct
l

io
ct

l
Su

bm
itt

ed
In

te
r-

pr
oc

/P
at

te
rn

-
6

dr
iv

er
s/

nv
di

m
m

/b
us

.c
nd

io
ct

l(
1)

Pa
tc

he
d

In
di

re
ct

ca
ll

Si
ng

le
-f

et
ch

7
dr

iv
er

s/
nv

di
m

m
/b

us
.c

nd
io

ct
l(

2)
A

ck
no

w
le

dg
ed

In
di

re
ct

ca
ll

-
8

dr
iv

er
s/

sc
si

/a
ac

ra
id

/c
om

m
ct

rl
.c

aa
c

se
nd

ra
w

sr
b

Su
bm

itt
ed

-
V

al
ue

ov
er

ri
de

9
dr

iv
er

s/
sc

si
/d

pt
i2

o.
c

ad
pt

i2
o

pa
ss

th
ru

Su
bm

itt
ed

-
-

10
dr

iv
er

s/
sc

si
/m

eg
ar

ai
d/

m
eg

ar
ai

d.
c

m
eg

a
m

to
n

Su
bm

itt
ed

U
nk

no
w

n
pa

tte
rn

Si
ng

le
-f

et
ch

11
dr

iv
er

s/
sc

si
/m

eg
ar

ai
d/

m
eg

ar
ai

d
m

m
.c

m
ra

id
m

m
io

ct
l

Su
bm

itt
ed

In
te

r-
pr

oc
ed

ur
al

-
12

dr
iv

er
s/

sc
si

/m
pt

3s
as

/m
pt

3s
as

ct
l.c

ct
l

ge
tio

ci
nf

o
Pa

tc
he

d
In

te
r-

pr
oc

ed
ur

al
Si

ng
le

-f
et

ch
13

dr
iv

er
s/

st
ag

in
g/

lu
st

re
/lu

st
re

/ll
ite

/ll
ite

lib
.c

ll
co

py
us

er
m

d
W

on
’t

Fi
x

-
O

ve
rr

id
e

14
dr

iv
er

s/
tty

/v
t/v

t.c
co

n
fo

nt
se

t
Pa

tc
he

d
L

oo
p

/P
at

te
rn

Si
ng

le
-f

et
ch

15
dr

iv
er

s/
vh

os
t/v

ho
st

.c
vh

os
t

vr
in

g
io

ct
l

Su
bm

itt
ed

In
te

r-
pr

oc
ed

ur
al

-
16

fs
/c

od
a/

ps
de

v.
c

co
da

ps
de

v
w

ri
te

A
ck

no
w

le
dg

ed
U

nk
no

w
n

pa
tte

rn
V

al
ue

ov
er

ri
de

17
fs

/n
fs

d/
nf

s4
re

co
ve

r.c
cl

d
pi

pe
do

w
nc

al
l

A
ck

no
w

le
dg

ed
-

V
al

ue
ov

er
ri

de
18

ke
rn

el
/e

ve
nt

s/
co

re
.c

pe
rf

co
py

at
tr

Pa
tc

he
d

-
V

al
ue

ov
er

ri
de

19
ke

rn
el

/s
ch

ed
/c

or
e.

c
sc

he
d

co
py

at
tr

Su
bm

itt
ed

-
V

al
ue

ov
er

ri
de

20
ne

t/c
om

pa
t.c

cm
sg

hd
r

fr
om

us
er

co
m

pa
t

to
ke

rn
Pa

tc
he

d
L

oo
p

in
vo

lv
em

en
t

A
bo

rt
on

ch
an

ge
21

ne
t/t

ls
/tl

s
m

ai
n.

c
do

tls
se

ts
oc

ko
pt

tx
Pa

tc
he

d
U

nk
no

w
n

pa
tte

rn
Si

ng
le

-f
et

ch
22

ne
t/w

ir
el

es
s/

w
ex

t-
co

re
.c

io
ct

l
st

an
da

rd
iw

po
in

t
Su

bm
itt

ed
-

-
23

so
un

d/
pc

i/a
si

hp
i/h

pi
oc

tl.
c

as
ih

pi
hp

i
io

ct
l

Pa
tc

he
d

-
V

al
ue

ov
er

ri
de

24
ne

ts
m

b/
sm

b
su

br
.c

sm
b

st
rd

up
in

Pa
tc

he
d

U
nk

no
w

n
pa

tte
rn

Si
ng

le
-f

et
ch

82

more multi-reads, it further automatically looks for real double-fetch bugs in the haystack of

multi-reads, which is otherwise beyond the scale of manual verification. Furthermore, we

anticipate that 14 out of the 24 bugs DEADLINE found could never be found by prior works

because of the complications in the bugs, such as falling out of the empirical bug patterns,

requiring inter-procedural analysis, loop involvement, and that a function is guarded by

#ifdef macros.

Bugs marked as “won’t fix”. We pay special attention to the two bugs rejected for fixing

by the developers, as they represent potential false alarms by DEADLINE as well as show

the limitations of DEADLINE.

In the case of uhid_event_from_user, the developers actually acknowledged that

the race condition can occur in userspace; however, they do not believe that this can cause

serious harm, as quoted by one of the maintainers: “With current code, worst case scenario

is someone short-cutting the compat-conversion by setting UHID CREATE after uhid -

event from user() copied it. However, this does no harm. If user-space wants to shortcut the

conversion, let them do so...”

In the case of ll_copy_user_md, DEADLINE falsely reports it due to an assumption

on an enclosing function. By constructing execution paths within the enclosing function only,

DEADLINE implicitly assumes that if there is an overlapped-fetch, careful developers should

finish checking that the doubly-fetched values are either the same or subject to the same con-

straints. In this case, the checking should be ll_lov_user_md_size(*kbuf) == lum_size

right after the second fetch. Otherwise, once the function returns, the developers lose the

opportunity re-assert this relation. However, this implicit assumption does not hold in this

case, as the derived value of the first fetch, lum_size, is passed out of the function as a

return value, and the result of the second fetch, kbuf, is passed out by pointer. In other

words, even outside this enclosing function, the relation between these two fetches can still

be re-checked.

Bug distribution. Aligned with prior research [43, 44], a majority of double-fetch bugs

83

are found in the driver code, indicating that drivers are still the most error-prone part in

the kernel. This also aligns with the distribution of multi-reads where a majority of the

multi-reads are located in drivers. However, file systems, networking components, or even

the core kernel might also be subject to double-fetch bugs.

Detection time. On a machine with Intel Xeon E5-1620 CPU (four cores) and 64GB RAM

running 64-bit Ubuntu 16.04.3 LTS, DEADLINE finishes detection in four hours for the

Linux kernel and one hour for the FreeBSD kernel. Around 20% of the execution time is

spent on finding multi-reads with static analysis and 80% of the time is spent on symbolic

checking on these multi-reads.

4.6.3 Exploitation

1 char *smb_strdupin
2 (char *s, size_t maxlen) {
3

4 char *p, bt; int error;
5 size_t len = 0;
6 // test and check user strlen
7 for (p = s; ;p++) {
8 if (copyin(p, &bt, 1))
9 return NULL;

10 len++;
11 if (maxlen && len > maxlen)
12 return NULL;
13 if (bt == 0)
14 break;
15 }
16 p = malloc(len, M_SMBSTR);
17 // copy the whole string
18 error = copyin(s, p, len);
19 if (error) {
20 free(p, M_SMBSTR);
21 return NULL;
22 }
23 // BUG: p is not NULL-termed
24 return p;
25 }

(a) Buggy function

1 // syscall entry point
2 entry: ioctl() {
3 ...
4 // dispatch to device ioctl
5 nsmb_dev_ioctl() {
6 ...
7 // dispatch by command
8 smb_usr_t2request() {
9 ...

10 // [!] double-fetch bug
11 buf = smb_strdupin();
12

13 ...
14

15 smb_t2_request() {
16 ...
17 smb_t2_request_int() {
18 ...
19 // [!] exploitation
20 nmlen = strlen(buf);
21 }
22 }
23 }
24 }
25 }

(b) Call stack for an ex-
ploit

Figure 4.4: An exploitable double-fetch bug in the FreeBSD kernel. 4.4a shows the function flagged
as buggy by DEADLINE and 4.4b shows the end-to-end call stack in the kernel if a user thread tries
to exploit this bug by issuing an ioctl syscall.

Exploiting double-fetch bugs can be profitable but also challenging. Prior works [43,

44] have identified several ways to exploit a double-fetch bug in kernel.

84

Leaking information. This exploitation typically occurs in a process that does data transfer

both to and from userspace, i.e., a request-response situation, as shown in the case of CVE-

2016-6130. The bug in CVE-2016-6130 is very similar to the bug in perf_copy_attr

(Figure 4.1), where the first fetch sanity checked the size value while the second fetch

assumes size does not change and omitted the sanity check. Later, when the response

is copied back to userspace based on the unchecked size value, a large chunk of kernel

memory will be copied, hence causing a kernel information leak.

Bypassing restrictions. This exploitation typically occurs when the kernel wants to early

reject a request from userspace. For example, in the tls_setsockopt case (Figure 2.3),

a malicious user process can bypass the TLS version checking (line 9) by exploiting this

double-fetch behavior although the intention of the kernel developers is to reject such

requests.

Denial-of-service (DoS). This exploitation typically occurs when a memory operation, e.g.,

buffer allocation, memory compare, string operations, etc, is affected by the double-fetch

procedure. For example, in the case of smb_strdupin (Figure 4.4), it is incorrect to assume

that the string copied in after the second fetch is NULL-terminated and later applying the

strlen on the string is likely to cause an overread into invalid kernel memory regions.

DEADLINE does not attempt to automatically reason about the exploitability of double-

fetch bugs for two reasons: 1) Unlike memory errors that raise a definitive signal upon

exploitation, e.g., an invalid memory access causing a crash, double-fetch bug exploitations

do not usually raise such a signal and might have to rely on manually defined rules to

measure whether the exploit succeeds. 2) Even if we could define all the exploitation rules,

constructing them could still be a challenge, as the exploitation point is usually far from to

the bug point. In the example shown in Figure 4.4, the exploitation point strlen is two

function calls away from the buggy function. In this case, in order to construct an end-to-end

exploit, DEADLINE needs to symbolically execute the whole ioctl syscall, which would

take significantly longer if ever possible. More importantly, even if a double-fetch bug is

85

1 kernel/events/core.c | 2 ++
2 1 file changed, 2 insertions(+)
3

4 diff --git a/kernel/events/core.c b/kernel/events/core.c
5 index ee20d4c..c0d7946 100644
6 --- a/kernel/events/core.c
7 +++ b/kernel/events/core.c
8 @@ -9611,6 +9611,8 @@ static int perf_copy_attr(struct perf_event_attr __user *uattr,
9 if (ret)

10 return -EFAULT;
11

12 + attr->size = size;
13 +
14 if (attr->__reserved_1)
15 return -EINVAL;

Figure 4.5: The patch to perf_copy_attr follows the override strategy

not exploitable right now, it does not mean that it will remain secure in the future. Careless

code updates can easily turn a non-exploitable double-fetch bug into an exploitable one, as

shown in the case of CVE-2016-5728.

4.6.4 Mitigation

Based on our experience in patch creation and our communications with kernel maintainers,

there are in general four ways to patch a double-fetch bug.

Override with values from the first fetch. In this case, we simply ignore the value copied

in during the second fetch and override it with the value from the first fetch. An example

is shown in Figure 4.5, which is actually the patch to Figure 4.1. By doing so, we ensure

that both the control dependence and data dependence established between these fetches are

preserved.

Abort if changes are detected. In this case, we add a sanity check after the second fetch

to ensure that the intended relation between the two fetches is honored by the user process,

as shown in the example of Figure 4.6, which is actually the patch to Figure 4.2.

Incremental fetch. In this case, we intentionally skip the bytes copied in during the first

fetch. In other words, we start the second fetch from an offset equal to the length of the first

fetch. An example is shown in Figure 4.7. By doing this, these two fetches are now from

non-overlapped userspace memory regions and will never constitute a double-fetch bug.

86

1 net/compat.c | 7 +++++++
2 1 file changed, 7 insertions(+)
3

4 diff --git a/net/compat.c b/net/compat.c
5 index 6ded6c8..2238171 100644
6 --- a/net/compat.c
7 +++ b/net/compat.c
8 @@ -185,6 +185,13 @@ int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg, struct sock *sk,
9 ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);

10 }
11

12 + /*
13 + * check the length of messages copied in is the same as the
14 + * what we get from the first loop
15 + */
16 + if ((char *)kcmsg - (char *)kcmsg_base != kcmlen)
17 + goto Einval;
18 +
19 /* Ok, looks like we made it. Hook it up and return success. */
20 kmsg->msg_control = kcmsg_base;
21 kmsg->msg_controllen = kcmlen;

Figure 4.6: The patch to cmsghdr_from_user_compat_to_kern follows the abort on change
strategy

Refactor into a single-fetch. If there is only control dependence between the two fetches,

we could reduce this double-fetch behavior into a single-fetch. This approach generally

improves the performance as we eliminate one fetch but might result in more lines of code,

as now we need to multiplex the if checks every time a fetch occurs.

In principle, all these strategies have the same effect—preventing a double-fetch bug

from being exploited. However, which strategy is taken for a specific double-fetch bug is

usually based on case-by-case considerations such as performance concerns, number of lines

changed, accordance with existing sanity checks, and the maintainers’ personal preferences.

Besides, several bugs cannot be patched within 50 lines of change due to the complications

in current codebases. We are working with the maintainers to finalize the patch.

Preventing exploits with transactional memory. As the root cause of a double-fetch

bug is the lack of atomicity and consistency in userspace memory accesses across fetches,

transactional memory (e.g., Intel TSX) can be a generic solution. Conceptually, one could

mark transaction start before the first fetch and mark transaction end after the second

fetch. If a race condition occurs, the transaction will abort and the kernel will be notified.

87

1 block/scsi_ioctl.c | 8 +++++++-
2 1 file changed, 7 insertions(+), 1 deletion(-)
3

4 diff --git a/block/scsi_ioctl.c b/block/scsi_ioctl.c
5 index 7440de4..8fe1e05 100644
6 --- a/block/scsi_ioctl.c
7 +++ b/block/scsi_ioctl.c
8 @@ -463,7 +463,13 @@ int sg_scsi_ioctl(struct request_queue *q, struct gendisk *disk, fmode_t mode,
9 */

10 err = -EFAULT;
11 req->cmd_len = cmdlen;
12 - if (copy_from_user(req->cmd, sic->data, cmdlen))
13 +
14 + /*
15 + * avoid copying the opcode twice
16 + */
17 + memcpy(req->cmd, &opcode, sizeof(opcode));
18 + if (copy_from_user(req->cmd + sizeof(opcode),
19 + sic->data + sizeof(opcode), cmdlen - sizeof(opcode)))
20 goto error;
21

22 if (in_len && copy_from_user(buffer, sic->data + cmdlen, in_len))

Figure 4.7: The patch to sg_scsi_ioctl follows the incremental copy strategy

DECAF [105] is a proof-of-concept based on these insights. However, it over-simplifies the

kernel code by failing to consider the cases of 1) false aborts due to large memory access

footprint (which is very likely for multi-reads), 2) multiple exit points in the syscall execution

(e.g., returning before second fetch), and 3) mixing of TSX-enabled and non-TSX code (e.g.,

a function can be called within or without a transactional context). Furthermore, DECAF

still requires the developers to manually inspect and instrument kernel code. Therefore, to

make the TSX-based solution practical, these technical challenges should be addressed and

automated integration of TSX APIs and kernel code is necessary.

4.7 Discussion and Limitations

Checking beyond kernels. It is worth-noting that double-fetch bugs are not specific

to kernels. In theory, it might exist in software systems in which 1) the memory region

is separated into sub-regions with various levels of privilege and 2) multi-threading is

supported. Therefore, software systems beyond kernels such as Xen, SGX, and even

userspace programs like the Chrome browser are also subject to double-fetch bugs.

To apply DEADLINE to these software systems, we need to clearly identify the boundary

88

of privileges and the interfaces for transferring data from a low-privilege memory region

to a high-privilege memory region. That is, DEADLINE requires pre-defined “fetching”

interfaces. Fortunately, we observed that privileged software systems typically have limited

interfaces for fetching data from low-privilege to high-privilege memory regions. This is

arguably to better maintain the boundary of separated regions. As such, we believe that it is

feasible to collect “fetching” interfaces with reasonable engineering effort.

We further discuss the limitations of DEADLINE from three aspects:

• which part of kernel source code DEADLINE cannot cover,

• what kind of execution paths DEADLINE cannot construct for multi-reads, and

• when the symbolic checking for double-fetch bugs fails.

Note that many of these limitations will be addressed in section 4.8.

Source code coverage. Although DEADLINE covers a majority of kernel codebase, there

are two cases DEADLINE currently cannot handle:

1) Files not compilable under LLVM cannot be analyzed by DEADLINE. For Linux

4.13.2, they include three file system files and four driver files, which are likely to contain

both multi-reads and double-fetch bugs. We believe this will not be addressed soon with the

synergy between the kernel and LLVM community.

2) Although DEADLINE enables all the config options during compilation, DEADLINE

certainly misses the code pieces that are compiled when a CONFIG_* should be disabled.

However, a complete solution would require tweaking Y and N for over 10000 config items,

which is unrealistic.

Path construction. DEADLINE aims to find all execution paths associated with a multi-

read. However, due to the complexity in kernel code, DEADLINE’s path construction has

three limitations:

1) DEADLINE enforces a limit (currently 4096) to the number of execution paths con-

structed within an enclosing function. Although in most of the cases there are less than 100

89

paths, we did observe 17 functions that exceed this limit. Therefore, DEADLINE could have

missed double-fetch bugs should they exists in those unconstructed paths.

2) DEADLINE also enforces a limit (currently 1) to the loop unrolling, with the assump-

tion that fetches in loops are usually designed in an incremental manner. However, this

assumption might be wrong and the fetch inside the loop itself makes a double-fetch bug

when the loop is unrolled multiple times. Furthermore, there could be cases when cross-loop

double-fetch bugs occur when a loop is unrolled to a specific time. Although we believe

both cases are rare, we cannot prove that they do not exist in kernel.

3) If there is a branch inside a loop, DEADLINE picks only one subpath to unroll the

loop. However, there might be cases when a double-fetch bug occurs when the sub-paths

are taken in a specific order when unrolling the loop multiple times, e.g., the true branch is

taken in the first unrolling and the false branch is taken in the second unrolling.

Symbolic checking. DEADLINE symbolic checker is limited by how well we model

complicated code pieces like assemblies and library function calls as well as the assumptions

in the memory model.

1) DEADLINE ignores a majority of inline assemblies, i.e., assuming they have no

impact on the symbolic checking. This could lead to missing constraints or incomplete SR

assignment, especially when the assemblies issue memory operations. In addition, for the

library functions that we manually write rules for, there might be imprecision. For example,

we assume that strnlen might return any value between 0 and the len argument, but

actually it is also constrained by the string buffer, which we do not model in the rule.

2) DEADLINE’s empirical mapping from pointers to memory object might not reflect

the actual situation. As shown in Figure 4.3, if the function calling not_buggy1 already

ensures that utrp1 == uptr2, or the struct request is designed in such a way that

up->buf == up, then it would be wrong for DEADLINE to treat them as non-buggy.

3) DEADLINE’s assumption about the enclosing function might be incomplete. As

shown in the “won’t fix” case ll_copy_user_md, it is possible that the information to

90

assert the relations established between the two fetches are passed out of the enclosing

function and re-checked elsewhere.

4.8 Future work: Towards Comprehensive Checking with C-to-SMT Transpilation

Although DEADLINE sheds lights on adapting conventional symbolic execution to concur-

rent programs, it is far from a sound and complete symbolic execution framework as many

compromisations are made to cope with the size and complexity of kernel code. Following

are the major blockades that prevent DEADLINE from being sound and complete:

• The CFG exploration strategy suffers from path explosion: in theory, due to the depth-

first search nature of DEADLINE’s path construction algorithm, the total number

of paths to be symbolic executed has a complexity of 2#branches. DEADLINE only

samples a few paths in face of path explosion.

• Loops are unrolled to a certain depth only: essentially, for 1) loops with a large

iteration count, or even worse, 2) unbounded loops with statically unknown iteration

count, the checking in DEADLINE is incomplete, which might lead to missing bugs

(e.g., bugs only show up after certain loop iterations).

• DEADLINE employs a simple but imperfect memory model, which is not suitable for

modeling memory access patterns other than plain reads and writes. For example,

several patterns we hope to address include: 1) memory allocations with symbolic

sizes, 2) memset/memcpy with a symbolic length, and 3) Memory content partial

override with path conditions. Although not a severe concern for double-fetch bugs

detection, handling these patterns is essential for detecting many other concurrency

bugs, including but not limited to, malicious data races.

• The concurrent memory versioning for DEADLINE applies to userspace memory

accesses only while still assuming that memory accesses in kernel space is sequential.

This limits DEADLINE to find only concurrency bugs that lives across the kernel-user

91

boundary. To extend DEADLINE for finding concurrency bugs arised from memory

accesses within the same address space, we need to apply memory versioning to

virtually all memory accesses.

To systematically address these limitations, we envision KSA, a symbolic execution

framework re-imagined for OS kernels. The mission of KSA is to derive a precise and

lossless symbolic representation for (in theory) each and every value in a complete kernel

component (e.g., the whole file system module ext4). By doing so, follow-up operations,

being them finding bugs or verifying properties, can be treated by composing and solving

constraints based on the symbolic representations produced by KSA. Any value that cannot

be modeled by KSA for practicality reasons belongs to an explicit list of incompleteness:

i.e., C programming constructs that we currently do not have a good theory to encode in

KSA. In this way, KSA is at least sound and complete in the subset of C programming

constructs that it can model.

Besides the more comprehensive modeling effort, another important distinction between

KSA and DEADLINE is that: unlike DEADLINE, the focus of KSA is not end-to-end

solvability, but devising a sound and complete representation of concurrent C programs

which is suitable for SMT solvers to reason about. In other words, KSA aims for a lossless

transpilation from C to SMT formulae. This separation of concerns allows KSA to focus on

faithfully capturing the semantic of concurrent C programs without losing genericity (e.g.,

representing arithmetic operations in two versions, one with integer theories and the other

with bit-vector theories); while leaving formulae simplification, optimization, and constraint

solving to the fast evolving SMT solvers.

Furthermore, in KSA, the tasks of information picking, filtering, and constraint compos-

ing are delegated to developers of specific bug checkers. The bug checker may also apply

abstraction techniques to ease the solving of complex constraints. For example, forcing a

limited depth of loop unrolling instead of using recursive functions to model unbounded

loops. Relaxations on the constraints might also derive from the characteristics of the bug to

92

be checked as well as the tolerance to false positives and false negatives. For example, an

unknown answer from the SMT solver may be treated as not-a-bug (being conservative for

bug reporting) or is-a-bug (being aggressive).

4.8.1 Assumptions and Rationale

As described in section 4.8, KSA aims to address the four issues that prevent DEADLINE

from being sound and complete. The solution proposed in KSA is to derive a symbolic

representation for (in theory) every value in a whole kernel component (e.g., the file system

module ext4). With such a symbolic representation, follow-up operations, being them

finding bugs or verifying properties, can be treated by creating and solving constraints on

these symbolic representations.

However, not any arbitrary C program can be transformed into symbolic formulae in

KSA. KSA makes a few assumptions on the programs it might deal with:

1. All functions are materialized. This assumption allows KSA to execute into any

function during symbolization process. As a result, creating function summaries is not

necessary for KSA as whenever a function call is encountered, KSA is allowed to insert

the CFG of the called function into the current CFG with existing execution context (i.e.,

symbolic values). The only exception to the rule is library functions. Essentially, a limited

number of library functions (e.g., malloc-related memory management routines, memset

and memcpy operations, etc.) can be declarations only and in these cases, KSA relies on

built-in summaries to emulate their effects.

2. All global variables are defined. In other words, all global variables have proper

initialization which is available statically. This assumption allows KSA to initialize and

evolve all global variables properly. Again, as an exception to this rule, assemblies and

linker-introduced constants (e.g., section alignments, etc), can be omitted. In these cases,

KSA might rely on built-in summaries to emulate their initial values.

3. Computationally intractable code can be skipped. A good example of computation-

93

ally intractable code is cryptography functions or hashing, which can never be symbolically

executed verbatim. In these cases, KSA relies on manual annotations to skip the symboliza-

tion of these functions.

Rationale. Essentially, these assumptions imply that there is no “external environment” for

the kernel module to be analyzed by KSA, except a very limited number of library functions

and constants. These assumptions might not hold in complex userspace programs (e.g.,

browsers), as for them, the execution environment (e.g., libraries linked into the program)

might be too complicated to be decoupled. For example, in browsers, it is hard to decouple

the JavaScript engine from the sandboxing mechanism or to decouple anything from libc.

But OS kernels provide such an opportunity partially thanks to the strict coding standards

enforced across various modules in the kernel.

4.8.2 Guarded Symbolic Representation

Being able to execute sequentially is the baseline of virtually any symbolic executor. Specif-

ically, by using the term “sequential”, we refer to the algorithm that 1) exhaustively explores

the CFG of an arbitrary program (that fits our assumptions in subsection 4.8.1), 2) from

entry to exit, and 3) in a single-threaded manner.

However, even for this basic requirement, the design space of a symbolic execution

engine is vast. In this section, we first give our reasoning on the infamous path explosion

problems commonly faced by any symbolic executor and try to comprehensively list the

design choices made by KSA solve this problem. We would like to point out early that a

common rationale behind all the design choices made by KSA is achieving both complete-

ness and soundness. In other words, the goal of KSA is to keep all possible information

about all values in the program. In particular,

• KSA does not assume a (set of) particular path(s) to enforce nor aims to maximize any

particular coverage metric. We want KSA to be as generic as possible and provide all

94

information in the subsequent checking phase.

• KSA does not invoke abstraction (e.g., abstract interpretation for branch merging or

loop summarization) because this is a lossy way to represent program states.

Of course, being both sound and complete is a greedy goal and pressures the downstream

for proper post-processing on the generated formulae. For example, individual bug checkers

are now responsible for abstraction and formulae simplification; while extra burden is also

added to constraint solvers for solving complicated constraints encoded with multiple theo-

ries. In essence, with separation of concerns, KSA is only responsible for the symbolization

part while bug checkers and SMT solvers consume the symbolization.

The reason behind branching-induced path explosion

A common frustration on applying symbolic execution to large and complex software is

the problem termed as path explosion. However, the reason for path explosion is usually

three-fold, including 1) if-else branches, 2) unrolling unbounded loops, and 3) pointer

aliases. All these problems will be addressed in KSA. This section focuses on the branching

issue, in particular, to reason why branching poses scalability challenges for a DFS-based

CFG exploration strategy and how to solve this problem with a BFS-based strategy.

Figure 4.8 shows a dummy function with three branches. Visualized in the CFG (see

subfigure-c), an if-else branch creates two paths in the control flow. In order to explore both

paths, a symbolic executor forks its internal states at the branching point (see subfigure-b).

After forking, one child will inherit the true condition, i.e., by asserting the condition to be

true in its context, while the other child will inherit the false condition. Intuitively, the more

branches a program have, the more forking is needed and the number of children grows

exponentially as a result of this.

Therefore, although state forking is intuitive to reason and easy to implement, the

scalability bottleneck has limited its usefulness in large programs. As illustrated, by forking

at each branching point, the number of children to execute is linearly related to the number

95

in
t
fo
o(
in
t
x)
 {

if
 (
x
==
 0
)
{

e1
 =
 5
;

}
el
se
 {

if
 (
x
>=
 2
)
{

e2
 =
 1
0;

}
el
se
 {

e3
 =
 1
5;

}
} e
=
ph
i(
e1
,
e2
,
e3
);

if
 (
e
>=
 1
0)
 {

f1
 =
 x
 +
 1
;

}
el
se
 {

f2
 =
 x
 +
 2
;

} f
=
ph
i(
f1
,
f2
);

re
tu
rn
 f
;

}

<?
 x
 =
=
0
?>

e=
ph
i(
e1
,
e2
,
e3
)

<?
 e
 >
=
10
 ?
>

<?
 x
 >
=
2
?>

e1
 =
 5

e2
 =
 1
0

e3
 =
 1
5

f1
 =
 x
 +
 1

f2
 =
 x
 +
 2

f
=
ph
i(
f1
,
f2
)

1

2

3

4
5

6

7
8

9

T

F

T
F

T
F

(a
) P

ro
gr

am
 fu

nc
tio

n
(b

) D
FS

-b
as

ed
 e

xp
lo

ra
tio

n
st

ra
te

gy
(c

) B
FS

-b
as

ed
 e

xp
lo

ra
tio

n
st

ra
te

gy

<?
 x
 =
=
0
?>

e=
ph
i(
e1
,
e2
,
e3
)

<?
 e
 >
=
10
 ?
><?
 x
 >
=
2
?>

e1
 =
 5

e2
 =
 1
0

e3
 =
 1
5

f1
 =
 x
 +
 1

f
=
ph
i(
f1
,
f2
)

e=
ph
i(
e1
,
e2
,
e3
)

<?
 e
 >
=
10
 ?
>

f2
 =
 x
 +
 2

f
=
ph
i(
f1
,
f2
)

e=
ph
i(
e1
,
e2
,
e3
)

<?
 e
 >
=
10
 ?
>

f1
 =
 x
 +
 1

f
=
ph
i(
f1
,
f2
)

Fi
gu

re
4.

8:
Ill

us
tra

tio
n

of
th

e
D

FS
-a

nd
B

FS
-b

as
ed

C
FG

ex
pl

or
at

io
n

st
ra

te
gi

es
.T

he
D

FS
st

ra
te

gy
(im

pl
ie

d
fr

om
th

e
st

at
e

fo
rk

in
g

ap
pr

oa
ch

)i
s

us
ed

in
m

aj
or

sy
m

bo
lic

ex
ec

ut
io

n
en

gi
ne

s
w

hi
le

th
e

B
FS

st
ra

te
gy

is
us

ed
in

K
S

A
.

96

of possible paths in the CFG, which, in theory, is characterized by 2|V | where |V | stands for

the total number of nodes (i.e., basic blocks) in the CFG.

In the example in Figure 4.8, a total of three children are forked and basic block 6 and

8 are executed repeated in 3 and 2 forked children, respectively, as shaded in gray color

in subfigure-b. More importantly, it is not hard to imagine that as the control-flow further

grows, the amount of repetition will grow exponentially too, which will eventually cause the

search tree shown in subfigure-b to explode.

A more philosophical reasoning about the path explosion is that forking at each if-else

branch implicitly assumes a DFS strategy in exploring the CFG. In other words, by forking

at branching points, at any point of time, the symbolic executor maintains only one context

(i.e., an append-only set of path conditions) and continue with that context as deep as

possible. The symbolic executor only backtracks and changes context when the current

context has been proved to be unsatisfiable.

A guarded representation for symbolic values

A nice property in the DFS-style CFG exploration is that every variable encountered will

be definitive (subject to the current path constraints). In the running example (Figure 4.8),

by forking at every branching point, whenever control reaches block 6 in each execution,

the value for variable e is definitive, as it can only be 5, 10, and 15 in the three forked

executions, respectively. However, this nice property comes at the cost of exploding the

search space. A natural question is: can we re-balance the trade-off? More specifically, can

we make the symbolic representation of variables more complicated but at the same time,

break the exponential growth of complexity?

To answer the question, and inspired by prior works such as Veritesting [106], Mul-

tiSE [107], we introduce guarded symbolic representation. In a high level description,

assuming that the program does not involve any memory operations (we will re-visit this

in subsection 4.8.4),

97

• Each program variable has a corresponding symbolic representation named SEValue.

• Each SEValue maintains a set of instances, named SEInstance, where each repre-

sents one possible state that might be taken by a program value.

• Each SEInstance has an expression expr which represents the symbolic formula

and a condition cond, which is a boolean predicate that represents the condition that

have to be satisfied for the Value to take the symbolic expr.

As an illustration, the guarded symbolic representation of the running example (Fig-

ure 4.8) is shown in Table 4.3. Pay special attention to the representation of variables

e and f in subtable-b. Both variables have multiple SEInstances and each instance is

guarded by different conditions on the symbolic input x. It is worth noting that the reaching

path is implicitly embedded in the guards. For example, there are two paths that could

reach f2 = x + 2, one by 1-3-4-6-8, baring condition x ≥ 2, the other by 1-3-5-6-8,

baring condition x < 2 ∧ x! = 0. Merging and simplifying both condition get exactly the

same guard x 6= 0 as KSA.

Such a guarded symbolic representation also opens the opportunities on checking based

on the values of e and f. For example, one can compose a query asking whether we

could ever reach to a state on e + f == x + 6 which is only possible if e == 5 ∧

f == x + 1. However, there is no x that satisfies their guards on x = 0∧x! = 0, therefore,

we can safely conclude that the query e + f == x + 6 is not reachable.

CFG path constraint tracking in a BFS way

Strictly speaking, the CFG exploration in KSA is more complicated than the basic BFS

algorithm. In KSA, before trying to derive the reachability condition of a basic block, KSA

needs to ensure that all its parents are visited first. This is an extra requirement not in the

conventional BFS algorithm. However, this does assume that there is no loops in the CFG,

(to be specific, no backedges), we will re-visit and relax this requirement in subsection 4.8.3.

The CFG exploration algorithm in KSA is presented in algorithm 5. Essentially, this

98

Ta
bl

e
4.

3:
R

ep
re

se
nt

in
g

th
e

ru
nn

in
g

ex
am

pl
e

(F
ig

ur
e

4.
8)

sy
m

bo
lic

al
ly

in
K

S
A

(a
)P

at
h

co
nd

iti
on

s
on

en
te

ri
ng

ea
ch

ba
si

c
bl

oc
k

B
B

R
ea

ch
ab

ili
ty

co
nd

iti
on

1
T
ru
e

2
x
=

0
3

x
6=

0
4

x
≥

2
5

x
6=

0
∧
x
<

2
6

x
=

0
∨
x
≥

2
∨
(x
6=

0
∧
x
<

2)
=
⇒

T
ru
e

7
x
6=

0
8

x
=

0
9

x
6=

0
∨
x
=

0
=
⇒

T
ru
e

(b
)G

ua
rd

ed
sy

m
bo

lic
re

pr
es

en
ta

tio
n

of
ea

ch
va

ri
ab

le

Va
ri

ab
le

O
pt

io
n

E
xp

r.
G

ua
rd

e
1
=
5

0
5

x
=

0
e
2
=
1
0

0
10

x
≥

2
e
3
=
1
5

0
15

x
6=

0
∧
x
<

2
e
=
p
h
i
(
e
1
,
e
2
,
e
3
)

0
5

x
=

0
e
=
p
h
i
(
e
1
,
e
2
,
e
3
)

1
10

x
≥

0
e
=
p
h
i
(
e
1
,
e
2
,
e
3
)

2
15

x
6=

0
∧
x
<

2
f
1
=
x
+
1

0
x
+
1

x
6=

0
f
2
=
x
+
2

0
x
+
2

x
=

0
f
=
p
h
i
(
f
1
,
f
2
)

0
x
+
1

x
=

0
f
=
p
h
i
(
f
1
,
f
2
)

1
x
+
2

x
≥

0

99

Algorithm 5: Reachability condition derivation for basic blocks
In :CFG - program control-flow represented in graph format
In :condbase - the base condition for the CFG entry block
Out :Reachability conditions for each node in CFG

1 root← CFG.entry()
2 Q← Queue(root)
3 H ← Set(root)
4 V ← Set()
5 while Q is not empty do
6 node← Q.pop()
7 if not all parents of node is visited (i.e., in set V) then
8 Q.queue(node)
9 else

10 if node has no parents (i.e., the entry block) then
11 node.cond← condbase
12 else
13 condnode← False
14 for each parent (p) of node do
15 if p→ node is unconditional branch then
16 rcp← True
17 condnode← condnode ∨ rcp
18 else
19 for each instance (i) of p’s predicate do
20 if p→ node is on True branch then
21 rcp← i.guard ∧ i.expr
22 else
23 rcp← i.guard ∧ ¬i.expr
24 end
25 condnode← condnode ∨ rcp
26 end
27 end
28 end
29 node.cond← condnode
30 end
31 V .add(node)
32 Q.queue(all children of node that are not in H)
33 H .add(all children of node that are not in H)
34 end
35 end

100

is a derivation procedure for the reachability condition for each basic blocks in the CFG.

The basic idea is that, for any basic block, KSA will first derive the reachability condition

for all its parent blocks first and OR-join their predicates that represent the reaching edges.

A sample output from this algorithm is presented in Table 4.3, subfigure-a. Although

the concept of augmenting symbolic expressions with guarding conditions is similar to

MultiSE [107] and Veritesting [106], KSA does not alternate the execution mode of DFS

and BFS. Instead, KSA enforces BFS strictly throughout the whole CFG. More importantly,

KSA further brings the guarded representation mode into loop handling and memory

modeling, which are not addressed in these two works.

4.8.3 Loop Modeling with Recursive Functions

The challenges caused by unbounded loops

In the literature on symbolic model checking, loops are generally treated as a roadblocker

for making symbolic execution scalable for large and complex programs. However, it is

worth-noting that not all loops pose challenges for symbolic executors. Figure 4.9 shows

three types of loops and the bounded loop, i.e., subfigure-a, can be well handled by existing

symbolic executors. The reason is that for bounded loops, the number of iteration count is

statically known. As a result, although each loop iteration runs into a branching point (e.g.,

i < 1000), the predicate is always evaluated to True in the first 1000 iterations. Hence,

not causing the symbolic executor to fork. Similarly, on the 1000th iteration, i < 1000

will be False and the state does not need to be forked neither. In other words, the whole

loop is implicitly linearized during the execution.

However, the same logic does not apply for the other two loops in Figure 4.9, as the

termination condition of these loops depends on a statically unknown variable, x, which

means that there is no statically computable iteration counts. In this case, per each loop

iteration, conventional symbolic executors such as KLEE or SAGE are forced to fork, to

explore the possibilities that, taking the example of subfigure-b, x >= i and x == i + 1.

101

1 int loop_bounded(void) {
2 int s = 0;
3 for (int i = 0; i < 100; i++) {
4 s += i;
5 }
6 return s;
7 }

(a) A bounded (fixed-iteration) loop

1 int **loop_unbounded_2(int x) {
2 int **matrix = malloc(x * sizeof(int*));
3 for (int i = 0; i < x; i++) {
4 matrix[i] = calloc(x, sizeof(int));
5 }
6 for (int i = 0; i < x; i++) {
7 matrix[i][i] = x;
8 }
9 return matrix;

10 }

(b) An unbounded loop with memory operations

Figure 4.9: Illustration on bounded vs unbounded loops

This quickly leads to path explosion based on the how many times the loop may iterate. Even

worse, the loop exploration might in theory, never stop as we can always keep unrolling the

loop by increasing the value of x. As a result, existing works typically limit the unrolling to

a certain depth, usually just a handful, to enforce a loop termination.

However, enforcing an arbitrary bound on the loops is not the ideal case and is far from

the design goal of KSA, which is to have a faithful and lossless representation of every

variable in the program. However, unbounded loops are extremely common in OS kernels.

With a simple checking on the btrfs file system module in the Linux kernel, we found that

around 80% of loops (4052 / 5124) are unbounded loops. This presses us to find a way to

systematically symbolize every loop in a lossless manner.

Loop-to-recursion transformation and SMT-solving

The key to symbolize loops losslessly is two-fold:

• Loops and recursive functions are equivalent constructs and can always be transformed

programmatically.

• Modern SMT solvers are capable of solving recursive constraints, such as the muZ

fixed-points engine shipped with Z3.

This section will shed light on how this can be done in KSA, with Figure 4.10 taken as a

running example.

102

1 int loop_unbounded_1(int x) {
2 int s = 1;
3 for (int i = 1; i <= x; i++) {
4 s *= i;
5 if (s > 1000) {
6 break;
7 }
8 }
9 return s;

10 }

(a) An unbounded loop

[#preheader]
 br #for.body

[#body]
 %i = phi [1, #preheader], [%inc, #body]
 %s = phi [1, #preheader], [%mul, #body]
 %mul = %s %i
 %cmp1 = %mul > 1000
 %inc = %i + 1
 %cmp2 = %inc > %x
 %cond = %cmp1 %cmp2
 br %cond, [True, #exit], [False, #body]

×

∨

[#exit]
 return %mul

(b) Control-flow graph of the loop part

Figure 4.10: An example of a simple unbounded loop and its CFG

Loop simplified form. The first thing to do is to transform a loop into a simplified form

which eases the subsequent symbolization phase. In loop simplified form, each loop has

• A preheader that unconditionally branch into the loop body.

• A single backedge (which implies that there is a single latch block).

• Dedicated exits. That is, no exit block for the loop has a predecessor that is outside

the loop. This implies that all exit blocks are dominated by the loop header.

The CFG shown in Figure 4.10 subfigure-b is a perfect illustration on loop simplified

forms. Given the algorithm provided by the LLVM compiler [108], we verified that all loops

in the Linux kernel can be transformed into this simplified form.

Transformation to recursive functions. A property derived from the loop simplification

process is that all the loop induction variables are placed in the loop entry block, i.e., the

first block in loop body. In the running example, the loop body has only one basic block, and

hence, that basic block is also the loop entry block and the induction variables are the two

phi instructions highlighted in gray. By definition, a loop induction variable is a variable

that has a base value when the loop is first entered and changes after every iteration. This

means, that the induction variable has to be a phi instruction placed in the loop entry block.

103

In the running example, assuming we are on the k-th iteration of the loop, (k = 0 means

when the loop is first entered), the recursion for the induction variables i and s can be

expressed in the following formulas:

fi(k) =


1 if k = 0

fi(k − 1) + 1 if k > 0

(4.1)

fs(k) =


1 if k = 0

fs(k − 1) × fi(k − 1) if k > 0

(4.2)

Beyond the induction variables, an implicit but important fact we need to capture is that:

if we manage to iterate the loop k times, then it must not exit in the prior k − 1 iterations.

This is essentially another recursive function expressed in the following formula:

floop(k) =


True if k = 0

floop(k − 1) ∧ (fi(k − 1) ≤ x) ∧ (fs(k − 1) ≤ 1000) if k > 0

(4.3)

Modeling with a fixed-point engine. Although the abovementioned formulas are intuitive,

they are not the best option to model for SMT solvers. The best way is to convert them

into a single fixed-points recursive relation. Essentially, the relation is a function with

signature rel(indvars...) → Bool. In the running example, the relation is essentially

loop(i, s)→ Bool where:


loop(1, 1)→ True

loop(i, s) ∧ (i ∗ s) ≤ 1000 ∧ (i+ 1) ≤ x =⇒ loop(i+ 1, i ∗ s)
(4.4)

Querying loop properties. The reason for going through the symbolization process is to

104

1 (declare-rel loop (Int Int))
2 (declare-var x Int)
3 (declare-var s Int)
4 (declare-var i Int)
5 (rule (loop 1 1))
6 (rule (let ((cond (or (> (* i s) 1000) (> (+ i 1) x))))
7 (=> (and (loop i s) (not cond)) (loop (+ i 1) (* i s)))))

Figure 4.11: Modeling the loop in Figure 4.10 in the SMT format understandable by the muZ
fixed-points engine

be able to pose loop properties as queries to SMT solvers. For example, if we would like to

query whether the loop in the running example may ever return a value greater than 5000,

we should post the following query to an SMT solver:

Query : ∃i, s, x, loop(i, s) ∧ (i ∗ s) > 5000 ∧ (i+ 1) ≤ x (4.5)

The answer will be satisfiable with i = 7, x = 8, s = 840 with an exact working of

each loop iteration:

loop(1, 1)∧ loop(2, 1)∧ loop(3, 2)∧ loop(4, 6)∧ loop(5, 24)∧ loop(6, 120)∧ loop(7, 840)

4.8.4 The Object-Chunk Symbolic Memory Model

The problems caused by symbolic pointers

Symbolic memory pointers are another major source of limitations on applying symbolic

execution to large programs. Suppose we encounter a statement like int val = *ptr dur-

ing symbolization, two issues we need to resolve before we could assign any representation

to the variable val:

1. which object(s) ptr might point to?

2. what is the value currently alive at that memory location?

105

1 // continued from Figure 5.1
2 // e = phi(5, 10, 15)
3 void *p = malloc(e);

(a) Allocation with a symbolic size

1 // continued from the above
2 void *q = malloc(f);
3 void *r = (e == f) ? p : q

(b) Multiple entries in points-to sets

1 char *g = malloc(128);
2 memset(g, 42, 20);
3 memset(g, 66, x);

(c) memset with a symbolic length

1 char *h = malloc(8);
2 h[0:7] = 1;
3

4 if (x > 100) {
5 h[0:5] = 2;
6 } else if (x < 100) {
7 h[2:7] = 3;
8 } else {
9 h[3:4] = 4;

10 }
11

12 if (x >= 100) {
13 h[1:6] = 5;
14 }

(d) Memory content partial override with conditions

Figure 4.12: Illustration of various challenges caused by symbolic memory

Unfortunately, neither question can be answered easily in the symbolic world. Figure 4.12

show four cases that pose challenges to existing symbolic executors.

Allocation with a symbolic size. As shown in Figure 4.12 subfigure-a, in many cases,

we observe memory allocation with a symbolic size which itself can take multiple values

depending on the guarding conditions. In this case, there are essentially three possibilities

(5, 10, and 15) for the size of object p, depending on the condition of x (see Table 4.3 for

details).

Multiple entries in points-to sets. Continued from the abovementioned example, there

could be multiple possibilities of the pointer itself. In Figure 4.12 subfigure-b, the pointer r

could points to either object p or q depending on the relationship between variables e and f.

As a result, if we see a statement *r = 10, we need to account for the fact that either p or

q could be changed, but not both.

Memset with a symbolic length. As shown in Figure 4.12 subfigure-b, we could change

the content of multiple memory locations at once with operations like memset or memcpy.

Similar to loops, if we know how many bytes are changed statically, we this could be handled

easily with a chain of memory writes, like unrolling a bounded loop. The difficulty lies

in unbounded range operations. In this case, how many bytes are flipped to 66 in object g

depends on the value of x and how many bytes might remain 42 depends on the relationship

106

between x and 20.

Memory content partial override with conditions. Even without the complexity of

symbolic length, the liveliness of the memory content can still pose an issue in conjunction

with the if-else branching in the control-flow. As shown in Figure 4.12 subfigure-d, the

content of the 8-byte object h depends on the path executed in the CFG, which is further

decided by the value of x. Not only that, the memory content of h can be different at

different timestamps. For example, if we load h[1:6] before line 12 and after line 13, the

content will be totally different as after line 13, the object is overridden by the latest store,

but only partially, as the value of h[0] and h[7] are not affected. This means that KSA

needs to track the liveliness of memory content throughout time.

Memory object representations

The solution proposed in KSA to solve all these problems is the object-chunk memory model.

As an illustration, how the memory allocation in Figure 4.12 subfigure-a is symbolized

in Table 4.4. Essentially, whenever we encountered a memory allocation with a symbolic

size with N instances, we will create corresponding N objects, where each object bearing a

particular size value. In this example, the symbolic size e has three guarded representations,

therefore we create 3 different objects and store them in the object table with corresponding

conditions. Note that we even assign different pointer values to the pointer p to denote that

they are essentially different objects, exploiting the chance that a pointer is just a symbol of

memory address and thus, we could assign different values to it according to our will.

For each object in the object table, we will further create a chunk table to hold the

records of writes (i.e., stores) to the actual memory content, as shown in subfigures-b,c,d.

Each record in the chunk table represent on write operations with recording on the

• starting address (i.e., offset),

• length,

• value stored into the bytes,

107

• the condition associated with the write,

• the current content (i.e., the blob),

• and most importantly, the liveliness condition.

Suppose that after the allocation of object p, we further issue two writes to it, p[2] = 4

and p[2] = 0. This will yield two records in each chunk table. And note that the liveliness

condition of the first record is True 2−→ False. This means that the liveliness is initially

True and later becomes False after the overwrite at record 2. As a result, if we were to

load the value of p[2] before the second write, we get 4, otherwise, we get 0.

Memory content liveliness tracking

Tracking memory content liveliness is a programmatic procedure as summarized in algo-

rithm 6. Note that the algorithm shows the most complicated case: memcpy(dst, src, len),

where dst, src, len are all symbolic values bearing multiple instances. Symbolically, all

other cases of assigning values to memory content are simplified version of memcpy. For

example, memset is simplified as everything from dst is fixed while *p = v means len

is a constant.

In general, whenever we observe a new write op in the object, we will go through each

existing record r in the chunk table for that object and if r.cond ∧ op.cond is satisfiable,

enter a new record in the chunk table, with blob as:

store(r.blob, op.offset, op.length, op.value).

At the same time, update the liveliness condition for r to be:

r.live = r.cond ∧¬ op.cond.

Applying the algorithm on the example in Figure 4.12 subfigure-d, we can get the guarded

symbolic representation for the operations on memory object h in Table 4.5.

108

Ta
bl

e
4.

4:
Il

lu
st

ra
tio

n
of

th
e

ob
je

ct
-c

hu
nk

m
em

or
y

m
od

el
fo

rt
he

ex
am

pl
e

in
Fi

gu
re

4.
12

su
bfi

gu
re

-a

(a
)T

he
ob

je
ct

ta
bl

e

#
Po

in
te

r
Si

ze
C

on
d.

1
0
x
0
0
0
1
_
0
0
0
0

5
x
=

0
2

0
x
0
0
0
2
_
0
0
0
0

10
x
≤

2
3

0
x
0
0
0
3
_
0
0
0
0

15
x
6=

0
∧
x
<

2

(b
)T

he
ch

un
k

ta
bl

e
fo

ro
bj

ec
t#

1,
w

ith
ba

se
co

nd
iti

on
x

=
0

#
O

ff
.

L
en

.
Va

lu
e

C
on

d.
B

lo
b

L
iv

e

1
2

1
4

T
ru
e

s
t
o
r
e
(
2
,
4
)

T
ru
e

2 −→
F
a
ls
e

2
2

1
0

T
ru
e

s
t
o
r
e
(
2
,
0
)

T
ru
e

(c
)T

he
ch

un
k

ta
bl

e
fo

ro
bj

ec
t#

2,
w

ith
ba

se
co

nd
iti

on
x
≥

2

#
O

ff
.

L
en

.
Va

lu
e

C
on

d.
B

lo
b

L
iv

e

1
2

1
4

T
ru
e

s
t
o
r
e
(
2
,
4
)

T
ru
e

2 −→
F
a
ls
e

2
2

1
0

T
ru
e

s
t
o
r
e
(
2
,
0
)

T
ru
e

(d
)T

he
ch

un
k

ta
bl

e
fo

ro
bj

ec
t#

3,
w

ith
ba

se
co

nd
iti

on
x
6=

0
∧
x
<

2

#
O

ff
.

L
en

.
Va

lu
e

C
on

d.
B

lo
b

L
iv

e

1
2

1
4

T
ru
e

s
t
o
r
e
(
2
,
4
)

T
ru
e

2 −→
F
a
ls
e

2
2

1
0

T
ru
e

s
t
o
r
e
(
2
,
0
)

T
ru
e

109

Algorithm 6: Memory liveliness tracking algorithm
In : objectsrc, offsetsrc, objectdst, offsetdst, length - guarded symbolic

representation (i.e., with multiple instances) of the memory objects, offsets,
and length in memcpy(src, dst, length), respectively

In :condpath - path condition for the current basic block
1 for each instance combination of < objsrci , off src

i , objdsti , offdst
i , leni > in symbolic

values < objectsrc, offsetsrc, objectdst, offsetsrc, length > do
2 cond← condpath
3 ∧ objsrci .cond ∧ off src

i .cond
4 ∧ objdsti .cond ∧ offdst

i .cond
5 ∧ leni.cond
6 if cond is satisfiable then
7 for each record recsrc in objsrci .chunk table do
8 for each record recdst in objdsti .chunk table do
9 condwrite← cond ∧ recsrc.live ∧ recdst.live

10 if condwrite is satisfiable then
11 blobwrite← ite(
12 offdst

i ≤ λ < offdst
i + leni,

13 select(recsrc.blob, off src
i + λ− offdst

i),
14 select(recdst.blob, λ)
15)
16 objdsti .chunk table.add < offdst

i , leni, blobwrite, condwrite >

17 recdsti .live← recdsti .live ∧¬ condwrite

18 end
19 end
20 end
21 end
22 end

110

Table 4.5: Application of the memory liveliness tracking algorithm on Figure 4.12 subfigure-d

Off. Len. Value Cond. Blob Live

1 0 8 1 True 11111111 True
2−→ x ≤ 100

3−→ x = 100
4−→ False

2 0 6 2 x > 100 22222211 x > 100
5−→ False

3 2 6 3 x < 100 11333333 x < 100

4 3 2 4 x = 100 11144111 x = 100
6−→ False

5 1 6 5 x > 100 25555551 x > 100
6 1 6 5 x = 100 15555551 x = 100

Table 4.6: Guarded symbolic representation of versioned variables in Figure 4.13

(a) Guarded representation of v1

v1 condition

0 ¬ T2(S)→ T1(L)

2 T2(S)→ T1(L)

(b) Guarded representation of v2

v2 condition

0 ¬ T1(S)→ T2(L)

1 T1(S)→ T2(L)

(c) Guarded representation of v3

v3 condition

1 T2(S)→ T1(S)

2 T1(S)→ T2(S)

4.8.5 Concurrent Memory Accesses and Scheduling

Version tracking for memory accesses

Entering the concurrency dimension for symbolic execution, a major difference, as explored

in subsection 4.4.3, is that loading from a memory address p may not always yield the same

value that is stored to p by the current thread. Mathematically, the conventional memory

model, select(store(M, p, x), p) = x does not hold anymore. The reason is that after the

last store(M, p, x) from one thread, another thread might issue a store(M, p, y) to the same

memory location, which means the next load on p might get either x or y depending on

which store is before the load.

To account for this, in KSA, we use an additional version number to indicate that the

memory content might have been overwritten by another thread since last store. Mathemat-

ically, we represent a store as store(M, {p, v}, x) and now the new primitive on memory

select-store relations select(store(M, {p, v}, x), {p, v}) = x hold.

As a concrete example, Figure 4.13 shows the symbolization of the classical counter

example (Figure 1.1). Whenever a thread try to load the address &count, it loads with a

111

load (M, (&count, v1))
store(M, (&count, 1), …+1)

store(M, (&count, 0), 0)

Thread 1 Thread 2

load (M, (&count, v2))
store(M, (&count, 2), …+1)

load (M, (&count, v3))

T1(L):
T1(S):

:T2(L)
:T2(S)

Figure 4.13: Symbolic representation of the example in Figure 1.1 (the race version) with the
for-loop unrolled once and the ++ operator expanded. Timestamp variables like T1(L) represent the
logic clock time when the instruction is executed.

Table 4.7: Guarded symbolic representation of versioned variables in Figure 4.14

(a) Guarded representation of v1

v1 condition

0 T1(M)→ T2(M)

2 T2(M)→ T1(M)

(b) Guarded representation of v2

v2 condition

0 T2(M)→ T1(M)

1 T1(M)→ T2(M)

(c) Guarded representation of v3

v3 condition

1 T2(M)→ T1(M)

2 T1(M)→ T2(M)

version number, i.e., v1, v2, or v3. And since there are three stores to the address &count,

v1, v2, or v3 can only take values of 0, 1, or 2. Further filtered by the program order (i.e.,

the order on the execution sequence), v1 can only take values of 0 or 2 but not 1, because

assuming sequential consistency, there is no way for the load in thread 1 to see the store

in thread 1 before execution (although weak memory consistency models and speculative

execution might invalid this assumption, they are out of scope for KSA). Similarly, v2 can

only take values of 0 or 1 but not 2, and v3 can either be 1 or 2 but never 0.

Furthermore, beyond which values the version numbers can take, we could also collect

the condition in order for that particular value to materialize. For example, if v1 is 1, it

means that T2(S) → T1(L), which represents that the store in thread 2 has to happen

before the load in thread 1 takes place. On the other hand, if v1 is 0, it means that the

store in thread 2 has not happened yet, this is denoted by neg T2(S)→ T1(L). The same

reasoning can be applied to all v1, v2, and v3 and the results are summarized in Table 4.6.

112

lock(mutex)
load (M, (&count, v1))
store(M, (&count, 1), …+1)
unlock(mutex)

store(M, (&count, 0), 0)

Thread 1 Thread 2

lock(mutex)
load (M, (&count, v2))
store(M, (&count, 2), …+1)
unlock(mutex)

load (M, (&count, v3))

T1(M): :T2(M)

Figure 4.14: Symbolic representation of the example in Figure 1.1 (the lock version) with the
for-loop unrolled once and the ++ operator expanded. Timestamp variables like T1(M) represent the
logic clock time when the mutex lock is acquired.

Enforcing constraints on thread scheduling

After symbolizing the multi-threaded program, we want to derive a thread scheduling that

leads the execution to certain states by solving constraints. Taking the example from Fig-

ure 4.13, we could check properties such as: is there a thread execution schedule that leads

to load(M, (&count, v3)) == 1? By giving all the constraints collected in Table 4.6

to an SMT solver, we get a trace: T1(L)→ T2(L)→ T2(S)→ T1(S) that satisfies all

the constraints, which can be directly translated to an interleaving of the two threads.

To further illustrate how KSA models synchronization primitives, we also models the

locked version in Figure 4.14. Compared with the racy version, a major difference is the

modeling of critical sections. In the locked version, since the mutex lock guards a critical

section, we only need to have one timestamp, T(M), for the whole critical section, which

basically decides who enters into the critical section first and how second. The values

v1, v2, and v3 might take do not change but their guarding conditions changed, as shown

in Table 4.7. With such a modeling, we could pose the same query to the SMT solver,

i.e., is there a thread execution schedule that leads to load(M, (&count, v3)) == 1?

However, this time, the solver will not be able to find an ordering between T1(M) and

T2(M) to meet all constraints, and hence, we can conclude that there is no way to have

count == 1 in the locked version.

113

CHAPTER 5

CONCLUSION

The scale and pervasiveness of concurrent software pose challenges for security researchers:

race conditions are more prevalent than ever, and the growing software complexity keeps

exacerbating the situation — expanding the arms race between security practitioners and

attackers beyond memory errors. As a consequence, we need a new generation of bug

hunting tools that not only scale well with increasingly larger codebases but also catch up

with the growing importance of race conditions.

In this thesis, I presented two complementary race detection frameworks for OS kernels:

multi-dimensional fuzz testing and symbolic checking. KRACE is an end-to-end fuzzing

framework that brings the concurrency aspects into coverage-guided file system fuzzing.

KRACE achieves this with three new constructs: 1) the alias coverage metric for tracking

exploration progress in the concurrency dimension, 2) the algorithm for evolving and

merging multi-threaded syscall sequences, and 3) a comprehensive lockset and happens-

before modeling for kernel synchronization primitives.

On the symbolic execution side, I presented DEADLINE for double-fetch bugs detection.

Detecting double-fetch bugs without a precise and formal definition has led to a lot of false

alerts where manual verification has to be involved to find real double-fetch bugs from

the haystack of multi-reads. At the same time, oversimplified assumptions about how a

double-fetch bug might appear have also caused true bugs to be missed. However, based

on the formal model presented in DEADLINE, multi-read detection can be done through

scalable and efficient static program analysis techniques, while the specialized symbolic

checking engine vets each multi-read by precisely checking whether it satisfies all the

conditions in the formal definition to become a double-fetch bug.

In the future work, we plan to extend DEADLINE into KSA for generic symbolic execu-

114

tion in OS kernels with capabilities of finding bugs in the full-fledged concurrency domain.

In particular, we plan to improve a conventional symbolic execution engine with four novel

techniques: 1) guarded symbolic representation to solve the path explosion problem caused

by if-else branching, 2) loop modeling with recursive functions to solve the problem of

unbounded loops, 3) the object-chunk memory model for handling various tricky cases

related to symbolic pointers, and 4) versioning on concurrent memory accesses to model

and track constraints in the concurrency dimension (e.g., to enforce thread scheduling).

115

REFERENCES

[1] M. Cao, S. Bhattacharya, and T. Ts’o, “Ext4: The next generation of ext2/3 filesys-
tem.,” in USENIX Linux Storage and Filesystem Workshop, 2007.

[2] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesystem,” in
Proceedings of the ACM Transactions on Storage (TOS), 2013.

[3] Kernel.org Bugzilla, ext4 bug entries, https://bugzilla.kernel.org/
buglist.cgi?component=ext4, 2018.

[4] ——, Btrfs bug entries, https://bugzilla.kernel.org/buglist.
cgi?component=btrfs, 2018.

[5] J. Corbet, Statistics for the 4.15 Kernel, https://lwn.net/Articles/
742672/, 2018.

[6] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A study of linux
file system evolution,” Trans. Storage, vol. 10, no. 1, 3:1–3:32, Jan. 2014.

[7] MITRE Corporation, CVE-2009-1235, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-1235, 2009.

[8] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler, “Automatically Generating
Malicious Disks Using Symbolic Execution,” in Proceedings of the 27th IEEE
Symposium on Security and Privacy (Oakland), Oakland, CA, May 2006.

[9] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File Systems
via Two-Dimensional Input Space Exploration,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA, May 2019.

[10] N. Wilfahrt, Dirty COW (CVE-2016-5195) is a privilege escalation vulnerability in
the Linux Kernel, https://dirtycow.ninja/, 2016.

[11] S. Khandelwal, 11-Year Old Linux Kernel Local Privilege Escalation Flaw Dis-
covered, http://thehackernews.com/2017/02/linux-kernel-
local-root.html, 2017.

[12] MITRE, CVE-2017-2584, https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2017-2584, 2017.

116

https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://lwn.net/Articles/742672/
https://lwn.net/Articles/742672/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://dirtycow.ninja/
http://thehackernews.com/2017/02/linux-kernel-local-root.html
http://thehackernews.com/2017/02/linux-kernel-local-root.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-2584
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-2584

[13] A. Konovalov, Exploiting the Linux Kernel via Packet Sockets, https://googleprojectzero.
blogspot.com/2017/05/exploiting-linux-kernel-via-packet.
html, 2017.

[14] J. Huang, M. K. Qureshi, and K. Schwan, “An Evolutionary Study of Linux Memory
Management for Fun and Profit,” in Proceedings of the 2016 USENIX Annual
Technical Conference (ATC), Berkeley, CA, USA, Jun. 2016, pp. 465–478, ISBN:
978-1-931971-30-0.

[15] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and G. Amvrosiadis,
“File Systems Unfit As Distributed Storage Backends: Lessons from 10 Years of
Ceph Evolution,” in Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Ontario, Canada, Oct. 2019.

[16] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim, “Understanding Manycore
Scalability of File Systems,” in Proceedings of the 2016 USENIX Annual Technical
Conference (ATC), Denver, CO, Jun. 2016.

[17] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding Semantic Bugs
in File Systems with an Extensible Fuzzing Framework,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), Ontario, Canada, Oct.
2019.

[18] P. Fonseca, R. Rodrigues, and B. B. Brandenburg, “SKI: Exposing Kernel Concur-
rency Bugs Through Systematic Schedule Exploration,” in Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
Broomfield, Colorado, Oct. 2014.

[19] J. Corbet, Unprivileged filesystem mounts, 2018 edition, https://lwn.net/
Articles/755593, 2018.

[20] MITRE Corporation, F2FS CVE entries, http://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=f2fs, 2018.

[21] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient Scalable Thread-
safety-violation Detection: Finding Thousands of Concurrency Bugs During Test-
ing,” in Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP), New York, NY, USA: ACM, Oct. 2019, pp. 162–180, ISBN: 978-1-4503-
6873-5.

[22] J. Edge, Kernel Address Space Layout Randomization, https://lwn.net/
Articles/569635/, 2013.

117

https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://lwn.net/Articles/755593
https://lwn.net/Articles/755593
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=f2fs
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=f2fs
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/

[23] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-Flow In-
tegrity for Commodity Operating System Kernels,” in Proceedings of the 35th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2014.

[24] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained Control-Flow Integrity for
Kernel Software,” in Proceedings of the 1st IEEE European Symposium on Security
and Privacy (Euro S&P), Saarbrücken, Germany, Mar. 2016.

[25] K. Lu, C. Song, T. Kim, and W. Lee, “UniSan: Proactive Kernel Memory Initializa-
tion to Eliminate Data Leakages,” in Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS), Vienna, Austria, Oct. 2016.

[26] Silicon Graphics Inc. (SGI), (x)fstests is a filesystem testing suite, https://
github.com/kdave/xfstests, 2018.

[27] SGI, OSDL and Bull, Linux Test Project, https://github.com/linux-
test-project/ltp, 2018.

[28] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek, “Improving Integer
Security for Systems with KINT,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Hollywood, CA, Oct.
2012.

[29] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing Drivers without
Devices,” in Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Hollywood, CA, Oct. 2012.

[30] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna, “DR.
Checker: A Soundy Analysis for Linux Kernel Drivers,” in Proceedings of the 26th
USENIX Security Symposium (Security), Vancouver, Canada, Aug. 2017.

[31] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, Canada, Aug. 2017.

[32] Google Inc., Syzkaller is an Unsupervised, Coverage-guided Kernel Fuzzer, https:
//github.com/google/syzkaller, 2019.

[33] M. Zalewski, American Fuzzy Lop (2.52b), http://lcamtuf.coredump.
cx/afl, 2019.

[34] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “VUzzer:
Application-aware Evolutionary Fuzzing,” in Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security (CCS), Dallas, TX, Oct. 2017.

118

https://github.com/kdave/xfstests
https://github.com/kdave/xfstests
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

[35] Google Inc., honggfuzz, http://honggfuzz.com/, 2019.

[36] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed Greybox
Fuzzing,” in Proceedings of the 24th ACM Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, Oct. 2017.

[37] Google, OSS-Fuzz - Continuous Fuzzing for Open Source Software, https://
github.com/google/oss-fuzz, 2018.

[38] NCC Group, AFL/QEMU Fuzzing with Full-system Emulation, https://github.
com/nccgroup/TriforceAFL, 2017.

[39] D. R. Jeong, K. Kim, B. A. Shivakumar, B. Lee, and I. Shin, “Razzer: Finding
Kernel Race Bugs through Fuzzing,” in Proceedings of the 40th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2019.

[40] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS Fuzzer Seed Selection
with Trace Distillation,” in Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug. 2018.

[41] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna,
“DIFUZE: Interface Aware Fuzzing for Kernel Drivers,” in Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS), Dallas, TX,
Oct. 2017.

[42] D. Jones, Linux system call fuzzer, https://github.com/kernelslacker/
trinity, 2018.

[43] G. C. Mateusz Jurczyk, “Bochspwn: Identifying 0-days via System-wide Memory
Access Pattern Analysis,” in Black Hat USA Briefings (Black Hat USA), Las Vegas,
NV, Aug. 2013.

[44] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How Double-Fetch Situ-
ations Turn into Double-Fetch Vulnerabilities: A Study of Double Fetches in the
Linux Kernel,” in Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, Canada, Aug. 2017.

[45] M. Jurczyk and G. Coldwind, Identifying and Exploiting Windows Kernel Race Con-
ditions via Memory Access Patterns, https://static.googleusercontent.
com/media/research.google.com/en//pubs/archive/42189.
pdf, 2013.

[46] I. Institute, Exploiting Windows Drivers: Double-fetch Race Condition Vulner-
ability, http://resources.infosecinstitute.com/exploiting-

119

http://honggfuzz.com/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42189.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42189.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42189.pdf
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability

windows-drivers-double-fetch-race-condition-vulnerability,
2016.

[47] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE: Auto-
matically Generating Inputs of Death,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS), Alexandria, VA, Oct. 2006.

[48] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs,” in Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), San
Diego, CA, Dec. 2008.

[49] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated Whitebox Fuzz Testing,” in
Proceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2008.

[50] LLVM Project, libFuzzer - a library for coverage-guided fuzz testing, https:
//llvm.org/docs/LibFuzzer.html, 2018.

[51] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,” in Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[52] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path
Sensitive Fuzzing,” in Proceedings of the 39th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2018.

[53] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing
as markov chain,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[54] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox
fuzzing,” in Proceedings of the 24th ACM Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, Oct. 2017.

[55] NCC Group, AFL/QEMU fuzzing with full-system emulation. https://github.
com/nccgroup/TriforceAFL, 2017.

[56] MWR Labs, Cross Platform Kernel Fuzzer Framework, https://github.
com/mwrlabs/KernelFuzzer, 2016.

[57] H. Han and S. K. Cha, “IMF: Inferred Model-based Fuzzer,” in Proceedings of the
24th ACM Conference on Computer and Communications Security (CCS), Dallas,
TX, Oct. 2017.

120

http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/KernelFuzzer

[58] NCC Group, A linux system call fuzzer using TriforceAFL, https://github.
com/nccgroup/TriforceLinuxSyscallFuzzer, 2017.

[59] MWR Labs, macOS Kernel Fuzzer, https://github.com/mwrlabs/
OSXFuzz, 2017.

[60] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity Violation Bugs from
Their Hiding Places,” in Proceedings of the 14th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), New York, NY, USA: ACM, Mar. 2009, pp. 25–36.

[61] K. Sen, “Race Directed Random Testing of Concurrent Programs,” in Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Tucson, AZ, Jun. 2008.

[62] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and Precise Symbolic
Analysis of Concurrency Bugs in Device Drivers (T),” in Proceedings of the 2015
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), ser. ASE ’15, Washington, DC, USA: IEEE Computer Society, 2015, pp. 166–
177.

[63] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race Conditions
and Deadlocks,” in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), Bolton Landing, NY, Oct. 2003.

[64] S. Hong and M. Kim, “Effective Pattern-driven Concurrency Bug Detection for
Operating Systems,” J. Syst. Softw., vol. 86, no. 2, pp. 377–388, Feb. 2013.

[65] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou, “MUVI:
Automatically Inferring Multi-variable Access Correlations and Detecting Related
Semantic and Concurrency Bugs,” in Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), Stevenson, WA: ACM, Oct. 2007, pp. 103–
116.

[66] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static Race Detection on Millions of
Lines of Code,” in Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ser. ESEC-FSE ’07, New York, NY, USA, 2007.

[67] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective Data-race
Detection for the Kernel,” in Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), Berkeley, CA, USA: USENIX
Association, Oct. 2010, pp. 151–162.

121

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/mwrlabs/OSXFuzz
https://github.com/mwrlabs/OSXFuzz

[68] M. Elver, Add Kernel Concurrency Sanitizer (KCSAN), https://lwn.net/
Articles/802402/, 2019.

[69] J. Alglave, W. Deacon, B. Feng, D. Howells, D. Lustig, L. Maranget, P. E. McKenney,
A. Parri, N. Piggin, A. Stern, A. Yokosawa, and P. Zijlstra, Who’s afraid of a big
bad optimizing compiler? https://lwn.net/Articles/793253/, 2019.

[70] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A Randomized
Scheduler with Probabilistic Guarantees of Finding Bugs,” in Proceedings of the
15th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), New York, NY, USA: ACM, Mar.
2010, pp. 167–178.

[71] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-Flow Analysis in LLVM,” in
Proceedings of the 25th International Conference on Compiler Construction (CC),
Barcelona, Spain, Mar. 2016.

[72] L. de Moura and N. Bjørner, “Satisfiability Modulo Theories: Introduction and
Applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–77, Sep. 2011.

[73] ——, “Z3: An Efficient SMT Solver,” in Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08), Berlin, Heidelberg, Mar. 2008.

[74] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c, T. King, A.
Reynolds, and C. Tinelli, “CVC4,” in Proceedings of the 23rd International Con-
ference on Computer Aided Verification (CAV ’11), ser. Lecture Notes in Computer
Science, vol. 6806, Springer, Jul. 2011.

[75] J. Burnim and K. Sen, “Heuristics for Scalable Dynamic Test Generation,” University
of California at Berkeley, Tech. Rep., Sep. 2008.

[76] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using Symbolic Evalu-
ation to Understand Behavior in Configurable Software Systems,” in Proceedings
of the 32th International Conference on Software Engineering (ICSE), Cape Town,
South Africa, May 2010.

[77] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-Vivo Multi-
Path Analysis of Software Systems,” in Proceedings of the 16th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Newport Beach, CA, Mar. 2011.

[78] D. Babić, L. Martignoni, S. McCamant, and D. Song, “Statically-directed dynamic
automated test generation,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), Toronto, Canada, Jul. 2011.

122

https://lwn.net/Articles/802402/
https://lwn.net/Articles/802402/
https://lwn.net/Articles/793253/

[79] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis, “Path-
exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings of the 17th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), London, UK, Mar. 2012.

[80] K. Lu, M.-T. Walter, D. Pfaff, S. Nürnberger, W. Lee, and M. Backes, “Unleashing
Use-Before-Initialization Vulnerabilities in the Linux Kernel Using Targeted Stack
Spraying,” in Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[81] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim, “CAB-Fuzz: Practical
Concolic Testing Techniques for COTS Operating Systems,” in Proceedings of the
2017 USENIX Annual Technical Conference (ATC), Santa Clara, CA, Jul. 2017.

[82] R. N. Netzer and B. P. Miller, “Detecting Data Races in Parallel Program Execu-
tions,” in In Advances in Languages and Compilers for Parallel Computing, 1990
Workshop, MIT Press, 1989, pp. 109–129.

[83] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[84] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A
Dynamic Data Race Detector for Multithreaded Programs,” ACM Trans. Comput.
Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[85] M. D. Bond, K. E. Coons, and K. S. McKinley, “PACER: Proportional Detection of
Data Races,” in Proceedings of the 2010 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), New York, NY, USA: ACM,
Jun. 2010, pp. 255–268.

[86] Z. Anderson, D. Gay, R. Ennals, and E. Brewer, “SharC: Checking Data Sharing
Strategies for Multithreaded C,” in Proceedings of the 2008 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), New York,
NY, USA: ACM, Jun. 2008, pp. 149–158, ISBN: 978-1-59593-860-2.

[87] E. Pozniansky and A. Schuster, “Efficient On-the-fly Data Race Detection in Multi-
threaded C++ Programs,” in Proceedings of the 9th ACM Symposium on Principles
and Practice of Parallel Programming (PPOPP), New York, NY, USA: ACM, Jun.
2003, pp. 179–190, ISBN: 1-58113-588-2.

[88] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: Effective Sampling
for Lightweight Data-race Detection,” in Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Dublin,
Ireland, Jun. 2009.

123

[89] P. McKenney, The RCU API, 2019 edition, https://lwn.net/Articles/
777036/, 2019.

[90] Y. Cai, J. Zhang, L. Cao, and J. Liu, “A Deployable Sampling Strategy for Data
Race Detection,” in Proceedings of the 24nd ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), Seattle, WA, Nov. 2016.

[91] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race Detection in Prac-
tice,” in Proceedings of the Workshop on Binary Instrumentation and Applications,
ser. WBIA ’09, New York, NY, USA, 2009, pp. 62–71.

[92] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes - A Comprehensive
Study on Real World Concurrency Bug Characteristics,” in Proceedings of the
13th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Seattle, WA, Mar. 2008.

[93] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A Randomized
Scheduler with Probabilistic Guarantees of Finding Bugs,” in Proceedings of the
15th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Pittsburgh, PA, Mar. 2010.

[94] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd. New York, NY,
USA: Cambridge University Press, 2016, ISBN: 1107172012, 9781107172012.

[95] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive and collaborative:
Analyzing impact of coverage metrics in greybox fuzzing,” in 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), Chaoyang
District, Beijing: USENIX Association, Sep. 2019, pp. 1–15, ISBN: 978-1-939133-
07-6.

[96] K. Owens and A. Arcangeli, Seqlock implementation in linux, https://github.
com/torvalds/linux/blob/master/include/linux/seqlock.h,
2019.

[97] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, “Ad Hoc Synchronization Consid-
ered Harmful,” in Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Vancouver, Canada, Oct. 2010.

[98] Google, syzbot, https://syzkaller.appspot.com, 2018.

[99] O. Purdila, L. A. Grijincu, and N. Tapus, “LKL: The Linux kernel library,” in
Proceedings of the 9th Roedunet International Conference (RoEduNet), IEEE, 2010.

124

https://lwn.net/Articles/777036/
https://lwn.net/Articles/777036/
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://syzkaller.appspot.com

[100] D. A. Ramos and D. Engler, “Under-Constrained Symbolic Execution: Correctness
Checking for Real Code,” in Proceedings of the 24th USENIX Security Symposium
(Security), Washington, DC, Aug. 2015.

[101] B. Niu and G. Tan, “Modular Control-Flow Integrity,” in Proceedings of the 2014
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Edinburgh, UK, Jun. 2014.

[102] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Úlfar Erlingsson, L. Lozano,
and G. Pike, “Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM,”
in Proceedings of the 23rd USENIX Security Symposium (Security), San Diego, CA,
Aug. 2014.

[103] J. McCarthy and J. Painter, “Correctness of a compiler for arithmetic expressions,”
Mathematical Aspects of Computer Science, vol. 1, 1967.

[104] L. de Moura and N. Bjorner, “Generalized, Efficient Array Decision Procedures,”
Microsoft Research, Tech. Rep., Sep. 2009.

[105] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and S. Mangard,
“Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs using
Modern CPU Features,” ArXiv e-prints, Nov. 2017. eprint: 1711.01254.

[106] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing Symbolic Exe-
cution with Veritesting,” in Proceedings of the 36th International Conference on
Software Engineering (ICSE), Hyderabad, India, May 2014.

[107] K. Sen, G. Necula, L. Gong, and W. Choi, “MultiSE : Multi-Path Symbolic Execu-
tion using Value Summaries,” in Proceedings of the 23rd ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), Bergamo, Italy, Aug. 2015.

[108] The LLVM Project, LLVM Loop Terminology (and Canonical Forms), https:
//llvm.org/docs/LoopTerminology.html, 2020.

125

1711.01254
https://llvm.org/docs/LoopTerminology.html
https://llvm.org/docs/LoopTerminology.html

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Navigating the Concurrency Dimension via Fuzz Testing
	Finding Double-fetch Bugs with Symbolic Model Checking
	Thesis Contribution

	Background
	Race Condition Examples
	Data races
	Time-to-check vs time-to-use bugs

	Hunting Security Vulnerabilities via Fuzz Testing
	Fuzzing in general
	Fuzzing for data races in OS kernels

	Hunting Semantic and Logic Errors via Symbolic Execution
	Symbolic execution in general
	Symbolic execution tailored for OS kernels

	Other Approaches on Race Condition Detection
	Static lockset analysis
	Dynamic lockset and happens-before analysis

	KRace: Generic Data Race Fuzzing for Kernel File Systems
	A Coverage Metric for Concurrent Programs
	Branch coverage for the sequential dimension
	Alias coverage for the concurrency dimension

	Input Generation for Concurrency Fuzzing
	Multi-threaded syscall sequences
	Thread scheduling control (weak form)

	A Data Race Checker for Kernel Complexity
	Data race detection procedure
	Lockset analysis
	Happens-before analysis
	Ad-hoc synchronization schemes in kernel file systems

	Putting Everything Together
	Architecture
	Benign vs harmful data races
	The aging OS problem

	Implementation
	Evaluation
	Data races in popular file systems
	Fuzzing characteristics
	Component evaluations
	Comparison with related fuzzers

	Discussion and Limitations

	Deadline: Precise Detection of Kernel Double-Fetch Bugs
	Double-fetch Bugs: a Formal Definition
	Deadline Overview
	Finding Multi-reads
	Fetch pairs collection
	Execution path construction

	From Multi-reads to Double-fetch Bugs
	A running example
	Transforming IR to SR
	Memory model
	Checking against the definitions

	Implementation
	Findings
	Detecting multi-reads
	Detecting and reporting double-fetch bugs
	Exploitation
	Mitigation

	Discussion and Limitations
	Future work: Towards Comprehensive Checking with C-to-SMT Transpilation
	Assumptions and Rationale
	Guarded Symbolic Representation
	Loop Modeling with Recursive Functions
	The Object-Chunk Symbolic Memory Model
	Concurrent Memory Accesses and Scheduling

	Conclusion
	References

