
FreeDom: Engineering a State-of-the-Art DOM Fuzzer
Wen Xu

Georgia Institute of Technology
wen.xu@gatech.edu

Soyeon Park
Georgia Institute of Technology

spark720@gatech.edu

Taesoo Kim
Georgia Institute of Technology

taesoo@gatech.edu

ABSTRACT

The DOM engine of a web browser is a popular attack surface and
has been thoroughly fuzzed during its development. A common
approach adopted by the latest DOM fuzzers is to generate new
inputs based on context-free grammars. However, such a generative
approach fails to capture the data dependencies in the inputs of a
DOM engine, namely, HTML documents. Meanwhile, it is unclear
whether or not coverage-guided mutation, which is well-known to
be effective in fuzzing numerous software, still remains to be effec-
tive against DOM engines. Worse yet, existing DOM fuzzers cannot
adopt a coverage-guided approach because they are unable to fully
support HTML mutation and suffer from low browser throughput.

To scientifically understand the effectiveness and limitations of
the two approaches, we propose FreeDom, a full-fledged cluster-
friendly DOM fuzzer that works with both generative and coverage-
guided modes. FreeDom relies on a context-aware intermediate
representation to describe HTML documents with proper data de-
pendencies. FreeDom also exhibits up to 3.74× higher throughput
through browser self-termination. FreeDom has found 24 previ-
ously unknown bugs in commodity browsers including Safari, Fire-
fox, and Chrome, and 10 CVEs has been assigned so far. With the
context-aware generation, FreeDom finds 3× more unique crashes
in WebKit than the state-of-the-art DOM fuzzer, Domato. FreeDom
guided by coverage is more effective in revealing new code blocks
(2.62%) and finds three complex bugs that its generative approach
fails to find. However, coverage-guided mutation that bootstraps
with an empty corpus triggers 3.8× fewer unique crashes than the
generative approach. The newly revealed coverage, more often
than not, negatively affects the effectiveness of DOM fuzzers in bug
finding. Therefore, we consider context-aware generation the best
practice to find more DOM engine bugs and expect further improve-
ment on coverage-guided DOM fuzzing facilitated by FreeDom.

CCS CONCEPTS

• Security and privacy → Browser security; Vulnerability
scanners.

KEYWORDS

context-aware DOM fuzzing; coverage-guided DOM fuzzing;
browser vulnerability discovery

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423340

ACM Reference Format:

Wen Xu, Soyeon Park, and Taesoo Kim. 2020. FreeDom: Engineering a State-
of-the-Art DOM Fuzzer. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’20), November 9–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3372297.3423340

1 INTRODUCTION

A DOM (Document Object Model) engine is a core component of
every modern web browser, which is responsible for displaying
HTML documents in an interactive window on an end-user device.
Considering its giant code base and extraordinary complexity, a
DOMengine has always been one of the largest bug sources in aweb
browser. Meanwhile, we have witnessed many high-severity DOM
engine bugs being exploited consistently in remote attacks over
the past decade. Hence, to prevent such a prominent cybersecurity
threat, all the browser vendors have been working tirelessly to
discover and patch bugs in their DOM engines [14, 15, 26, 36, 37].

Though a DOM engine has complex implementation, its input
format (i.e., HTML) has detailed specifications. Therefore, smart
fuzzing becomes the dominant approach for finding DOM engine
bugs in practice [1, 7, 11, 23, 28, 33, 34, 47, 58]. For instance, Google
has heavily fuzzed Chrome on 25,000 cores and successfully found
over 16,000 bugs, the majority of which reside in the DOM en-
gine [15]. Nevertheless, after nearly 10 years of development, state-
of-the-art DOM fuzzers still adopt an obsolete design with a missing
justification for the resistance to the latest fuzzing techniques.

Particularly, all the recent DOM fuzzers [11, 33, 34] use static
grammars that describe the DOM specification to generate random
HTML documents with correct syntax. Nevertheless, an HTML
document has rich semantics, which are mainly reflected by all sorts
of explicit and implicit data dependencies that widely exist in the
specification. However, random generation driven by context-free
grammars suffers from a chicken-and-egg problem: a predefined
grammar provides several valid options to construct every possible
document unit. Meanwhile, constructing a context-dependent unit
relies on the concrete value of another unit in a specific document,
namely, the exact option rolled for the unit, which can never be
known by the static grammar before generating the document.
Unfortunately, existing DOM fuzzers fail to completely solve this
problem and suffer from semantic errors in their output documents.

More importantly, in research communities, a conventional wis-
dom is that coverage-guided mutation, which has recently gained
popularity [18, 19, 25, 57], outperforms blackbox generation. How-
ever, there is no solid evidence that supports or objects to this claim
regarding DOM fuzzing. Unfortunately, we are unable to directly
utilize existing DOM fuzzers to address this open problem. First,
those fuzzers output textual documents without preserving inter-
mediate information. The generated documents thus can only be
further mutated by appending new data rather than by many other

https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1145/3372297.3423340

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

operations such as data flipping and splicing. More importantly,
without sufficient context awareness, existing fuzzers still rarely
avoid semantic errors in mutation. Second, different from general
fuzzing targets, a launched browser instance never automatically
terminates unless a crash occurs. It is also difficult to know the ex-
act timing point when an input document is completely processed
because of dynamic rendering tasks (e.g., repainting, animations,
transitions, etc.) that may occur anytime. Therefore, existing DOM
fuzzers enforce every launched browser instance to exit within 5 to
10 seconds by a preset timeout. This setting results in severely low
throughput, which is not applicable in coverage-driven fuzzing.

To solve the aforementioned challenges, we present FreeDom,
the first end-to-end DOM fuzzing framework that fully supports
both document generation and coverage-guided mutation in a dis-
tributed environment. We also consider FreeDom as an ideal play-
ground for exploring the possibilities of adopting cutting-edge
techniques to fuzz DOM engines. FreeDom uses a custom inter-
mediate representation called FD-IR to describe HTML documents.
FD-IR manages to not only follow the DOM specification to record
document content in a structural manner but also preserve detailed
context information. Instead of emitting plain documents with
grammar rules, FreeDom defines various fuzzing operations based
on FD-IR, including generating new documents, fully mutating ev-
ery part of an existing document and merging two documents into a
new one. To introduce fewer semantic errors, FreeDom queries the
context information to fulfill any data dependence in a document.
In addition, FreeDom executes an optimized browser in coverage-
guided fuzzing that dynamically kills itself when the processing of
an input document mostly completes. The optimization improves
the fuzzing throughput of WebKit by 1.48–3.74× compared to using
a 5-second time limit and results in very few missed crashes.

We run FreeDom with its generative approach for fuzzing the
DOM engines of three mainstream browsers (i.e., Apple Safari,
Mozilla Firefox, and Google Chrome) and have successfully found
24 bugs, to which 10 CVEs and 65K USD bug bounty have been
awarded. In WebKit, FreeDom discovers nearly 3× more unique
crashes than the state-of-the-art DOM fuzzer, Domato, with a simi-
lar block coverage, thanks to its context awareness. When fuzzing
SVG documents in WebKit, FreeDom triggers around 8 crashes
on average, while Dharma, another recent fuzzer, fails to find any
crash. We also evaluate FreeDomwith its mutation-based approach
to determine the advantages and disadvantages of coverage-guided
DOM fuzzing. Compared to FreeDom with its generative approach,
coverage-guided mutation manages to visit 2.62% more code blocks
and discover three new bugs, but meanwhile triggers 3.8× fewer
unique crashes in 24 hours. When fuzzing complex software like
a DOM engine, the generative approach manages to explore the
numerous interfaces in an incomplete but efficient manner through
large documents with intended content and thus discovers more
bugs in limited time. Nevertheless, the coverage-driven approach
is more capable of triggering the bugs that occur with a set of
restricted values in a document by incremental mutations.

In summary, this paper makes the following contributions:
• We present an open-sourced1 DOM fuzzer, FreeDom, with
a redefined design, that can run with either a generative

1https://github.com/sslab-gatech/freedom

Element node

Child element node
Attribute node

<html>
<style>
#e4, .class1 { columns: 1264; filter: url(#e5) }
select { word-spacing: normal; }
</style>

<script>
function main() {

// Property write
try { e3.autofocus = true; } catch(e) {}
// Method call
try { e3.reportValidity(); } catch(e) {}
// Property read
try { var v1 = e2.control; } catch(e) {}
try { v1.outerText = "1"; } catch(e) {}

}
function f1() { ... }
function f2() { ... }
</script>

<body onload="main()">
<form id="e1" class="class1">

<label id="e2" for="e3"/>
<select id="e3" onblur="f2()">Text</select>

</form>
<svg id="e4" xmlns="http://www.w3.org/2000/svg"
width="100">

<filter id="e5"/>
</svg>
</body>
</html>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

CSS selector

CSS Rules

JavaScript

Text node

DOM Tree

Event handler

CSS property

Figure 1: An example of anHTML document. The document

is composed of three main parts that have distinct syntax

and semantics: (1) A DOM tree specifies objects to be dis-

played at the very beginning. (2) A list of CSS rules further

decorates the objects in the tree. (3) The JavaScript codes

modify the layout and effect of the objects at runtime.

approach or a coverage-guided mutational approach based
on a context-aware IR for describing HTML documents.
• We perform the first systematic study on the application
of coverage-guided mutation in DOM fuzzing and have a
detailed discussion of its opportunities and obstacles.
• We have reported 24 bugs found by FreeDom in three main-
stream browsers and gained 10 CVEs. Further, FreeDom
outperforms the most recent DOM fuzzer by discovering 3×
more unique crashes in WebKit.

2 BACKGROUND

2.1 DOM Explained

2.1.1 DOM: An HTML Document Representation. A web browser
accepts HTML documents as its input, which follows the Document
Object Model (DOM) standardized by W3C. Figure 1 presents an
example of a document that consists of the following parts:
The initial DOM Tree. The DOM logically treats a document
as a tree structure, and each tree node represents an object to be
rendered. An HTML document file specifies the initial object tree.
Most notable nodes represent elements. An element is identified by
its tag and has its own semantics. A leaf node of an element can
be another element or a text node. Moreover, each element owns a
list of attribute nodes. The attributes control various aspects of the
rendering behavior of an element. Note that for each element, the
DOM standard specifies exactly what child elements and attributes
it owns and whether it can have text in its content. For example,
the DOM tree presented in Figure 1 includes a <form> element that
owns two attributes and two child elements.
CSS Rules. Cascading Style Sheets (CSS) are used to specify in
which style the elements in the document are rendered. Contained

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

by <style>, a CSS rule consists of (1) a group of CSS selectors,
which determines the elements to be styled, and (2) a group of
CSS properties, each of which styles a particular aspect of the
selected elements. For instance, Line 3 in Figure 1 requires the
<form> selected by .class1 to split its content into 1,264 columns.
Event Handlers. To provide the interactivity of a web page, the
DOM standard defines various events being triggered at specific
timing points or user inputs. Event handlers can be registered in
<script> so as to programmatically access or control the objects
in the tree at runtime. For example, in Figure 1, main() and f2()
are executed when a document is loaded and the <select> element
loses focus, respectively. An event handler calls DOMAPIs declared
by the specification to manipulate DOM objects. Typical DOM APIs
include object property accesses and object method invocations.
Currently, all the popular browsers expose DOM APIs in JavaScript.

2.1.2 DOM Engine Bugs. A browser runs a DOM engine (e.g., We-
bKit in Apple Safari and Blink in Google Chrome), which literally
implements the DOM specification so as to interpret an HTML
document. In this work, we aim to find memory errors triggered by
a DOM engine when operating malformed documents. Such client-
side bugs result in data breaches or even remote code execution in
the context of a renderer process and therefore have always been
considered one of the most significant security threats to end users
over the past decade. Though browser vendors exert endless efforts
to eliminate DOM engine bugs [14, 15, 26, 36, 37], there still have
been quite a few full browser exploit chains that target DOM bugs
in recent years [5, 24, 49], including one developed by us based on
a bug found by FreeDom in Safari.
Caveat. In this work, we are not interested in the logical issues of
a DOM engine, such as Universal Cross-Site Scripting (UXSS). In
addition, finding the bugs that reside in the JavaScript engine used
by a DOM engine is also beyond the scope of this paper.

2.2 A Primer on DOM Fuzzing

The giant and rapidly growing DOM specification describes an
extremely complex format for an HTML document. Hence, fuzzing,
which requires minimal knowledge about the internals of the target
software, becomes the most preferable approach for finding DOM
engine bugs in practice. Over the last decade, researchers have
proposed numerous DOM fuzzers, which are summarized in Table 1.
The earliest DOM fuzzers, such as domfuzz [28] and cross_fuzz [58],
ran the fuzzer code in JavaScript together with a seed document
in the same window. At runtime, it crawled the available elements
on the page and invoked random DOM API calls to manipulate
them on-the-fly until the browser crashed. The popularity of such
dynamic fuzzers has declined because a target browser instance
ages after a long run, which results in unstable executions and
irreproducible crashes [55]. By contrast, most recent fuzzers are
static [1, 11, 34, 47] and generate syntactically correct documents
from scratch based on static rules or grammars that describe the
specification and execute every document with a fresh browser
instance for a limited amount of time. Since the rules and grammars
used by those fuzzers are not fully context-sensitive, the generated
documents suffer from semantic errors. As typical blackbox fuzzers,
they do not utilize existing testcases and feedback information for
input generation. Among the recent static DOM fuzzers, Domato

DOM fuzzer Year Type Method Str. Ctx. Cov. Active

domfuzz [28] 2008 D G - -
Bf3 [1] 2010 S G
cross_fuzz [58] 2011 D G - -
Dharma [34] 2015 S G ✓ ✓

Avalanche [33] 2016 S G ✓ ✓

Wadi [47] 2017 S G ✓

Domato [11] 2017 S G ✓ ✓

FreeDom 2020 S G/M ✓ ✓ ✓ ✓

Str.: Structure-aware, Ctx.: Context-aware, Cov.: Coverage-guided
D: Dynamic, S: Static, G: Generative,M: Mutational

Table 1: The classification of existingDOM fuzzers. Dynamic

fuzzers themselves are web pages executed by the target

browser, while static fuzzers generate documents first and

then test them. As a state-of-the-art DOM fuzzer, FreeDom

is also static, which supports both blackbox generation and

coverage-guided mutation in a context-aware manner.

is considered the most successful one, which has publicly revealed
more than 60 bugs in popular browsers. It is actively maintained and
widely used by browser vendors for internal testing [12, 16, 17, 39].
Thus, we select Domato as the main state-of-the-art fuzzer for
evaluation and comparison in this paper.

3 MOTIVATION

In this section, we systematically analyze the defects of conven-
tional generation-based DOM fuzzers. Their common approach
fails to construct inputs with complex semantics and, more impor-
tantly, restricts the exploration of applying up-to-date techniques
to a DOM fuzzer, which motivates us to propose FreeDom.

3.1 On the Ineffectiveness of Static Grammars

Previous research has pointed out that one crux of fuzzing com-
plex software effectively is to avoid semantic errors [20, 55], not
excepting DOM engines. Nevertheless, recent DOM fuzzers like
Domato use various context-free grammars to describe an HTML
document. Such a static grammar largely guarantees the syntactic
correctness of a generated input, but it is unable to describe every
data dependence throughout the input. As motivating examples,
we summarize the typical context-dependent values (CDVs) in a
document that Domato’s grammar cannot correctly describe.
CDV1: CSS selectors. CSS selectors explicitly refer to one or
more elements to be styled by id, class, or tag. Domato expresses
such references as shown in Figure 2(a). Basically, Domato only
considers a fixed number of HTML and SVG elements, a fixed
number of predefined class names, and all the HTML and SVG tags
for styling. The contradicted fact is that the number of elements
and the tags or class names available for reference in a document
randomly generated byDomato are undetermined before generation.
In practice, a document output by Domato probably has more than
30 HTML elements, only five SVG elements, or simply no <abbr>
elements, which are the counterexamples to the grammar rules
listed in Figure 2(a). In such cases, reference errors may occur;
meanwhile, particular valid elements are never utilized.
CDV2: CSS property. Certain CSS property values also refer
to existing elements. Normally, an element being referred to is
required to not only be live but also have a particular type according

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

<elementid> = htmlvar0000<int min=1max=9>
<svgelementid> = svgvar0000<int min=1max=9>
<class> = class<int min=0max=9>
<tagname> = a | abbr | acronym | ...
<svgtagname> = a | altGlyph | altGlyphDef | ...

<cssurl> = #<elementid>
<cssurl> = #<svgelementid>

<svgelement_animate> = <lt>animate <animattr> <svgattrs_animate> /<gt>
<animattr> = attributeName="x" from="<x_value>"
<animattr> = attributeName="y" from="<y_value>"
<animattr> = attributeName="d" from="<d_value>"
... and many more.

<SVGElement>.setAttribute("from","<from_value>");
<from_value> = <fuzzint> | <color> | currentColor

| <fuzzint>,<fuzzint> | <fuzzint> <fuzzint>
| <fuzzint> <fuzzint> <fuzzint> | inherit
| visible | none | hidden | inline

(a) (b)

(c) (d)

<selector> = .<class>
<selector> = #<elementid>
<selector> = <element>
<element p=0.5> = <tagname>
<element p=0.4> = <svgtagname>

<cssproperty> = filter: <cssproperty_filter>
<cssproperty_filter> = url(<cssurl>)
<cssproperty> = clip-path: <cssproperty_clip-path>
<cssproperty_clip-path> = url(<cssurl>)
… and many more.

<form_value> = <elementid>
<usemap_value> = #<elementid>

Figure 2: The grammar rules used by Domato that incorrectly generate four types of context-dependent values, including (a)

CSS selectors, (b) CSS property values, (c) attribute names, and (d) attribute values.

to the DOM standard. Nevertheless, Domato incorrectly describes
this data dependence as shown in Figure 2(b). Instead of any type of
element, the standard only allows an SVG <clipPath> element and
an SVG <filter> element to be used in the value of a clip-path
CSS property and a filter CSS property, respectively. Thus, those
CSS properties generated by Domato are likely not functional.
CDV3: Attribute name values. The attributes of an element are
referenced by their names for manipulating them. The validity of
such an attribute reference depends on the owner element of the
attribute, which is not fully presented by Domato’s grammar. First,
a number of previous DOM bugs involve dynamic updates of a
particular attribute of an element [7], which cannot be achieved
by Domato due to its lack of knowledge of what attributes ev-
ery existing element in a document has. For example, Domato
changes the value of a from attribute of any SVG element through
setAttribute() in Figure 2(d). However, from is only valid for an
SVG animation element. In addition, an SVG <animate> element
uses its attributeName attribute to indicate a particular attribute
of its parent element to be animated [52]. Being unaware of what
element the <animate> element exactly serves, Domato randomly
sets attributeName to any animatable SVG attribute, as described
in Figure 2(c). For instance, Domato probably generates a worthless
<animate> element that tries to change the non-existent x attribute
of a <path> element.
CDV4: Attribute values. First, similar to CSS selectors and prop-
erty values, the value of a particular attribute (e.g., form and usemap)
involves a reference to an element of a specific type (e.g., <form>
and <map>), which is again not correctly described by Domato, as
shown in Figure 2(d). More importantly, an attribute value can also
have implicit dependence on other attribute values. Regarding an
<animate> element, the value of the from attribute is determined by
the value of the sibling attribute, attributeName. Without know-
ing the exact value ever generated for the attributeName, the only
option for Domato is to statelessly specify some common attribute
values for the from, as listed in Figure 2(d), which does not take
effect at most times.
Summary. The dilemma of an existing DOM fuzzer based on a
context-free grammar is that the grammar predefines a random
approach to generate every possible unit of an HTML docu-
ment but cannot anticipate the exact unit values eventually
concretized in a document. Unfortunately, avoiding semantic
errors during generation requires being aware of those concrete
values. By contrast, FreeDom always memorizes the values that
have been generated (i.e., context information) in the current
document for generating new values afterwards.

3.2 Exploring Coverage-guided DOM Fuzzing

Most emerging fuzzers adopt a coverage-driven mutation-based
approach, which is proven to be effective in practice [18, 25, 57].
Nevertheless, as of now, pure generation-based fuzzing with no
runtime feedback is still the dominant approach for finding DOM
engine bugs. Meanwhile, no public research aims to understand
whether or not coverage-guided mutation-based fuzzing outper-
forms blackbox fuzzing against DOM engines. In other words, the
optimal design of a DOM fuzzer is still an open problem. To deter-
mine the answer, we cannot directly utilize existing DOM fuzzers
but design and implement a new one (i.e., FreeDom) for two pri-
mary reasons.
Stateless testcases. First, those fuzzers output final documents
in plaintext for one-time testing. Due to the lack of the detailed
context that originates from the use of static grammars, it is difficult
to extend such fuzzers to comprehensively mutate the documents
they generate. For instance, though the author of Domato imple-
ments an extension that enables mutation [12], the only supported
type of mutation is to append new data to an existing document.
Meanwhile, all the other known mutation strategies, such as flip-
ping and splicing existing data [25, 57] and merging two or more
existing inputs [20, 21], are not feasible over plaintext. The exten-
sion is thus incapable of achieving the full potential of mutation.
By contrast, FreeDom uses an intermediate representation called
FD-IR to present a document with stateful structures. FD-IR carries
detailed context information to ensure the semantic correctness of
a document after all sorts of mutations.
Low-throughput executions. Unlikemany other general applica-
tions, a browser never automatically terminates without any user in-
teraction. More importantly, particular DOM-rendering tasks such
as animations and timing events can be scheduled on-the-fly. There-
fore, managing the lifetime of a browser instance becomes chal-
lenging. The common solution adopted by existing DOM fuzzers
is to run every browser instance with a conservative time limit.
By default, ClusterFuzz tests an input for at most 10 seconds. This
setting is reasonable for generation-based fuzzing, where a gener-
ated input has certain complexity and is more likely to consume
much time to be rendered. However, always using several seconds
to execute an input largely degrades the performance of mutation-
based fuzzing. From our observation, a WebKit window becomes
completely idle after 1 second when loading more than 60% of the
documents generated by Domato, which generally have sizes of
more than 200K bytes. Most inputs processed by a mutation-based
fuzzer have a much smaller size, which do not require such a long
execution time. Therefore, FreeDom applies a workaround that

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

dynamically terminates a browser instance when the processing of
an input document mostly completes.

Summary. Building a mutation-based DOM fuzzer has two
unsolved challenges: (1) describing documents in mutable struc-
tures rather than in text and (2) improving browser throughput.
As the first known fuzzer that fully supports coverage-guided
mutation-based DOM fuzzing in practice, FreeDom adopts a
stateful IR for context-aware document mutation and optimizes
browser throughput with dynamic termination.

4 DESIGN

4.1 Overview

FreeDom is a distributed DOM fuzzer that can perform either black-
box generation-based fuzzing or coverage-guided mutation-based
fuzzing. Figure 3 illustrates the overall design of FreeDom. Basically,
a number of FreeDom instances run in a cluster and communicate
with a central server that manages all the fuzzing data. The testcases
processed by FreeDom, namely, HTML documents, are described
in FD-IR, which presents document structures along with context
information. When doing generation-based fuzzing, a FreeDom in-
stance repeatedly generates new documents in FD-IR, each of which
is lowered into an HTML file and opened by a browser instance.
If the browser crashes, a crash report that includes the crashing
input is uploaded to the server. In coverage-guided fuzzing, the
central server not only collects crashes but also maintains (1) a
queue that stores the testcases that discover new code paths and
(2) a global coverage map. A fuzzer instance iteratively fetches a
document in FD-IR from the queue and generates new documents
for testing by mutating different parts of it or merging it with an-
other document. The DOM engine of the browser is instrumented
for coverage measurement. Every newly generated document that
increases overall coverage is saved by the central server for further
mutation. In addition, FreeDom targets a high-throughput browser
in coverage-guided fuzzing. To avoid waiting for a long time to be
terminated by a preset timeout, the optimized browser instance
exits with an on-demand timeout installed by itself at the time it
completes loading the entire document. In the following paragraphs,
we use FDg and FDm to notate FreeDom working with generation
and coverage-guided mutation, respectively.

4.2 Context-aware Document Representation

FreeDom uses a custom intermediate representation called FD-IR
to describe both the syntax and semantics of an HTML document.
FD-IR strictly follows the DOM specification. Hence, a document in
FD-IR can be directly lowered into a real document in plaintext for
testing. More importantly, FD-IR carries the context information
to generate documents with fewer semantic errors.

4.2.1 Document Context. FreeDom maintains two types of con-
texts in FD-IR to enable context-aware fuzzing.
Global context. FD-IR maintains a tree structure that records all
the elements and their tags and attributes contained in the initial
DOM tree for reference. FD-IR also keeps track of all the avail-
able tokens (e.g., class names, CSS counter names, CSS keyframes

FreeDom

Generator

...

CSS Mutator

DOMTree Mutator

JS Mutator

Merger

Fuzzing Engine

Blackbox Fuzzing

Coverage-guided Fuzzing

FD-IR

HTML

Lowering

Execution

Web Browser

Crash
Reports

Corpus

Coverage
Map

Central Server

FD-IR

 §4.2
 §4.4

 §4.3.1

 §4.3.3
 §4.3.2

Figure 3: Overview of FreeDom’s architecture and work-

flow. FD-IR is a context-aware IR for describing HTML doc-

uments, which supports random generation and mutation.

names, etc.). Note that the in-tree elements and tokens are sepa-
rately organized by FD-IR into two maps, which are indexed by
element and token type for performant queries. The global context
serves as a basis for constructing four types of context-dependent
values, summarized in §3.1, in a document.
Local contexts. FD-IR describes a local context for every
JavaScript function, which is used to generate semantically correct
DOM API calls. The local context not only contains a reference
to the global context but also preserves every DOM object locally
defined by a particular API call in a distinct map. Different from
global elements that can be used by any API call in a function,
the local objects are only valid after being defined. Therefore,
FD-IR is also aware of the exact location where (i.e., at which line)
the object is defined in order to support various API mutations
(see §4.3.2) and function merging (see §4.3.3).

4.2.2 Document Representation. We first introduce an important
interface of FD-IR called Value. As the first-class citizen in FD-IR,
Value is implemented to represent all sorts of data values that may
appear in a document, including but not limited to, CSS selectors,
CSS properties, attributes and arguments and return values of API
calls. In particular, a concrete Value involves the definition of three
indispensable methods:
(1) generate(), which specifies how to randomly generate the data

that forms the Value given the global or local context.
(2) mutate(), which defines how to randomly mutate the Value

with the global or local context.
(3) lower(), which describes how to turn the FD-IR Value into the

corresponding text string in a document.
A Value in FD-IR can be built upon one or more sub-Values. For
example, the top code in Figure 4 presents the description of a
CSS filter property. The property itself is an FD-IR Value. And
its value is defined as CSSFilterValue, which is another Value that
can be either literal or context-dependent. Most basic Values like
CSSFilterValue that do not contain any other Values simplymutate
through regeneration. A compound Value such as CSSProperty
selectively mutates its contained Values (Line 6). However, the
FD-IR Values that serve as a part of the context to be referred to
by other Values are immutable once generated. For instance, the
bottom code in Figure 4 describes ReturnValue, which represents a

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

1 class CSSProperty(Value):
2 def __init__(name, value):
3 self.name = name
4 self.value = value
5 def generate(ctx): self.value.generate(ctx)
6 def mutate(ctx): self.value.mutate(ctx)
7 def lower(): return "{}: {}".format(name, lower(value))
8
9 class CSSFilter(CSSProperty):
10 def __init__(name, value):
11 super().__init__("filter", CSSFilterValue())
12
13 # filter: blur(5px) / url(#id)
14 class CSSFilterValue(Value):
15 def generate(ctx):
16 self.ref = None
17 if Random.bool():
18 self.ref = ctx.getElement("SVGFilterElement")
19 if self.ref is not None: return
20 self.value = "blur({})".format(Random.length())
21 def mutate(ctx): generate(ctx)
22 def lower():
23 if self.ref is None: return value
24 else: return "url(#{})".format(self.ref.id)

1 class ReturnValue(Value):
2 def __init__(t):
3 self.type = t
4 self.ref = None
5 def generate(ctx): # Here ctx is the local context
6 if self.ref is None:
7 self.ref = ctx.createObject(self.type)
8 def mutate(ctx): pass
9 def lower(): return self.ref.id

Figure 4: Two non-trivial Value instances in FD-IR, includ-

ing a CSS filter property, whose generation and mutation

depend on the context, and a return value of a DOMAPI call,

which updates the context when being generated and thus

becomes immutable. Note that a filter property has many

more value choices, which are omitted here.

return value of an API call. Its mutate() method is empty because
its generation introduces a new object into the local context. If
the return value were regenerated, the uses of the object in the
subsequent API calls would become invalid. Another example is
an attributeName attribute that decides the value of its sibling
attributes such as from (see §3.1). Based on Value, FD-IR manages
to describe the three parts of a document as follows.
The DOM tree. As mentioned in §4.2.1, FD-IR intuitively uses
a multi-branch tree to describe the DOM tree, whose nodes are
DOM elements and whose root is the only <body> element. In each
element node, FD-IR records its type, a unique id for reference, a list
of child nodes, and a list of attributes. Each attribute is a particular
Value instance.
CSS rules. FD-IR also records a list of CSS rules in a document.
For each rule, FD-IR maintains a list of CSS selectors and a list of
CSS properties, all of which are Value instances.
Event handlers. FD-IR maintains a list of event handlers for an
HTML document. Among them, one event handler, which is the
onload event handler of the <body> element, is treated specially as
the main event handler. The total number of other event handlers
in a document is predefined by FreeDom, which never increases
during mutation. Each event handler is composed of a list of DOM
API calls and the local context described in §4.2.1. FD-IR supports
all three types of DOM API calls in JavaScript (see §2.1.1). For an
object property read or write, besides the property name, FD-IR
records the accessed object and the return or new property value as
two Value instances. Similarly, for an object method call, in addition
to the method name, FD-IR presents the object, the return value,

and a list of arguments with more Value instances. Note that all
these Values rely on the local context for generation and mutation
and are lowered into corresponding JavaScript code units.

In general, a document in FD-IR is guaranteed to be:
(1) Stateful. FD-IR presents a document in a structural and pro-

grammable format rather than in plaintext.
(2) Context-aware. FD-IR carries not only document content but

also context information, including tree hierarchy and available
objects in the global and local scopes.

(3) Extensible. One can introduce more Value instances to sup-
port more DOM features effortlessly.

4.3 Context-aware DOM Fuzzing

A document in FD-IR is composed of many Value instances. Funda-
mentally, FreeDom performs document generation and mutation
in a context-aware manner by systematically calling generate()
and mutate() of specific Values with context information.

4.3.1 Document Generation. To generate a random input, FDg
always starts with a blank document in FD-IR, which only has a
<body> element, an empty main event handler, and a list of empty
event handlers. Then, FDg uses various methods to construct the
document content in the order of a DOM tree, CSS rules, and event
handlers, which involves heavy context queries and updates.
DOM tree generation. Generating the DOM tree in a document
has the highest priority because the tree determines the available
nodes to be styled andmanipulated by CSS rules and event handlers,
respectively. In particular, FDg builds a DOM tree by repeatedly
invoking the following three methods.
(1) Gt1: Insert an element. FDg creates a new element and inserts it

as the child of an existing element in the tree. The index of the
new element among all its siblings is random. Depending on
the type of parent, FDg randomly decides the corresponding
element type of the new child by specification. FDg finally adds
the element into the global context.

(2) Gt2: Append an attribute. FDg creates a new attribute that is
owned by an existing element yet is not set. FDg relies on the
global context to generate the initial value of the attribute,
which is defined as an FD-IR Value. If the attribute value in-
troduces a new token (e.g., class, CSS counters, etc.) during
generation, the global context will be updated correspondingly.

(3) Gt3: Insert a text node. FDg selects an existing element that is
allowed to have text content, generates a random string, and
inserts the string into the tree as a child of the selected element.

CSS Rule Generation. After having the DOM tree in a document,
FDg further generates a list CSS rules. The generation algorithm of
a CSS rule, called Gc1, repeatedly invokes two sub-routines.
(1) Gc2: Append a CSS selector. FDg generates a CSS selector and

adds it into the rule.
(2) Gc3: Append a CSS property. FDg constructs a CSS property and

appends it into the rule.
Both CSS selectors and properties are Value instances that are
generated based on the global context.
Event Handler Generation. FDg fills every event handler in a
document with a sequence of DOM API calls. In the procedure of
appending a random API call to a particular event handler (notated
as G

f
), FDg first queries both global and local contexts for available

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

Before After Wgt. New

Gt1
<select></select>

<select><option></option></select> M
Gt2 <select size="3"></select> M
Mt1

<select size="3"></select>
<select size="0"></select> H ✓

Mt2 <select autofocus=""></select> H ✓

Gt3 <option></option> <option>A</option> L ✓

Mt3 <option>A</option> <option>CCCCC</option> L ✓

Gc1

.class1 {font-size:15px;}

.class1 {font-size:15px;} div {color:red;} M
Mc1 div {color:red;} M ✓

Gc2 .class1, div {font-size:15px;} M
Mc2 div {font-size: 15px;} H ✓

Gc3 .class1 {font-size:15px; color:red;} M
Mc3 .class1 {font-size:1vmin;} H ✓

G
f

var v1 = window.getSelection();

var v1 = window.getSelection(); M
var v2 = v1.getRangeAt(0);

M
f1

document.createElement("div"); M ✓
var v1 = window.getSelection();

M
f2

document.createElement("div"); H ✓

M
f3

var v2 = v1.getRangeAt(0); var v2 = v1.getRangeAt(16); H ✓

Wgt.: Weight, H: High,M: Medium, L: Low

Table 2: The examples of the mutation algorithms used by

FDm for three different parts of a document. The Wgt. col-

umn indicates the preference of FDm to those algorithms.

We mark the algorithms that are beyond simple appending

and difficult to support by extending old DOM fuzzers.

DOM objects that can be used as the arguments of an API call in
the current event handler. Then, FDg chooses a satisfiable DOM
API (i.e., the types of all the required arguments of such an API are
supported by the context) defined by the specification and generates
a corresponding API call based on the context. If the API call returns
a new object, the object along with the line number of its definition
is recorded by the current local context.

4.3.2 Single Document Mutation. FDm aims to mutate three differ-
ent parts of an existing document with various granularities, while
maintaining context information during mutation. We present the
detailed mutation algorithms adopted by FDm as follows.
DOM treemutation. FDm may call Gt1, Gt2, and Gt3, as described
in §4.3.1, to grow the DOM tree in a document. In addition, FDm
mutates existing nodes in the tree in three ways.
(1) Mt1:Mutate an attribute value. FDm selects an existing attribute

and mutates it as a Value instance based on the global context.
(2) Mt2: Replace an attribute. FDm first selects an element and ran-

domly removes one of its attributes. Then, FDm applies Gt2 to
append a new attribute to the element. Here, FDm never re-
moves an attribute whose value is referred to by other attribute
values (e.g., attributeName of SVG <animate>).

(3) Mt3: Mutate a text node. FreeDom simply selects a text node
and regenerates its string content.

CSS rule mutation. FDm may directly invoke Gc1, Gc2, or Gc3 to
enlarge CSS rules in a document. Meanwhile, the existing CSS rules
can be mutated from the following three aspects.
(1) Mc1: Replace a CSS rule. FDm removes an existing CSS rule from

the document and inserts a new one generated by Gc1.
(2) Mc2: Mutate a CSS selector. FDm selects and mutates a selector

in an existing rule.
(3) Mc3: Mutate a CSS property. FDm selects a CSS property, and

similarly mutates its value.
Event handler mutation. FDm is also able to mutate event han-
dlers in JavaScript. In particular, FDm first randomly selects a target
event handler in the document. Note that main event handler has
a much higher probability to be selected, as it is triggered most of
the time. Besides appending a new API call (i.e., Gf) to the target
handler, FDm runs the following three mutation methods.

Algorithm 1:Merging two DOM trees in FreeDom.
Input: Two DOM trees𝑇𝑎 and𝑇𝑏 in two documents, an object map
Result:𝑇𝑎 being enlarged by merging with the nodes in𝑇𝑏
// ObjectMap: a global object map used throughout merging.

1 Procedure mergeElement(𝑛𝑎 , 𝑛𝑏 , ObjectMap)
2 TargetSet← ∅;
3 for each 𝑛 ∈ getOffsprings(𝑛𝑎) do
4 if getType(𝑛) = getType(𝑛𝑏) then
5 TargetSet← TargetSet ∪ {𝑛};
6 end

7 end

8 if TargetSet = ∅ then

// Move the sub-tree rooted at 𝑛𝑏 to be a child of 𝑛𝑎 .
9 insertChild(𝑛𝑎 , 𝑛𝑏);

10 else

11 𝑛𝑡 ∼ TargetSet; // Randomly sample a node from the set.
12 mergeAttributesAndText(𝑛𝑡 , 𝑛𝑏);
13 ObjectMap[𝑛𝑏]← 𝑛𝑡 ;
14 for each 𝑛 ∈ getChildren(𝑛𝑏) do
15 mergeElement(𝑛𝑡 , 𝑛, ObjectMap);
16 end

17 end

18 Procedure mergeTree(𝑇𝑎 ,𝑇𝑏 , ObjectMap)
19 𝑟𝑎 ← getRoot(𝑇𝑎); 𝑟𝑏 ← getRoot(𝑇𝑏); // The tree root is the <body> element.
20 for each 𝑛𝑏 ∈ getChildren(𝑟𝑏) do
21 mergeElement(𝑟𝑎 , 𝑛𝑏 , ObjectMap);
22 end

23 for each 𝑛𝑏 ∈𝑇𝑏 − {𝑟𝑏 } do
24 if ¬∃ ObjectMap[𝑛𝑏] then

25 addElementIntoGlobalContext(𝑛𝑏);
26 end

27 end

(1) M
f1
: Insert an API call. FDm first chooses a particular line of

the JavaScript function as the insertion point. After that, FDm
generates a new API call similar to how FDm does in Gf. The
only difference is that when FDm queries the context for avail-
able DOM objects, all the elements in the global context are
still usable. Meanwhile, only the local objects defined above
the insertion point can serve as the arguments of the API call.
The generated API call is eventually placed at the chosen line.
In addition, the line number of the definition of every DOM
object created below the line is incremented by one.

(2) M
f2
: Replace an API call. FDm first selects a random line within

the event handler. The original API call at this line is removed.
Then, FDm generates a new API call and inserts it into the
event handler at the line in the exact same way Mf1 does. Note
that FDm avoids removing any API call at a particular line that
returns an object, because the object may be used in the later
API calls and removing such a call introduces reference errors.

(3) M
f3
: Mutate API arguments. FDm first randomly selects an ex-

isting API call in the event handler and regenerates any of the
arguments of the API call in a randomway based on both global
and local contexts.

Table 2 summarizes the document mutation algorithms sup-
ported by FDm with examples. FDm assigns each algorithm a spe-
cific weight for random sampling at runtime. We empirically set
text-related mutations with low priority, as the exact text content
is generally not crucial to trigger a crash. In general, FDm prefers
to modify existing document content instead of adding new data to
fully explore the states of existing DOM objects and avoid a rapid
increase in testcase sizes.

4.3.3 Document Merging. Besides mutating a single document,
FDm also supports merging two or more documents into a new
document due to the effectiveness of combining existing seed inputs
for testing proven by [19, 20, 54]. Given two documents Da and Db ,
we present a random algorithm to merge Db into Da part by part.

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

Merging initial DOM trees. First, algorithm 1 presents how FDm
makes Da consume every node of the DOM tree in Db , which starts
from the direct child elements of Db’s tree root. For such an element
nb belonging to Db, FreeDom randomly selects an element node
nt in Da that has the same type (i.e., tag) and the same or smaller
tree depth. Next, FDm copies every missing attribute and all the
text content from nb into nt . In addition, FDm uses an object map
(i.e., ObjectMap in algorithm 1) to record the mapping from nb to
nt . The child elements of nb are then recursively merged with the
offspring of nt in the same way. In this case, nb no longer exists
in the new DOM tree. Sometimes, an element of the same type as
that to be merged with does not exist in Da. Then, FDm directly
inserts nb along with its offspring into a random location in the
DOM tree of Da, which has the same tree depth as nb . At the end,
FDm records every element that originates from Db and is directly
inserted into Da without merging in Da’s global context.
Merging CSS rules. Second, FDm directly copies the CSS rules
from Db into Da, which does not involve any merging conflicts.
Merging event handlers. Next, FDm merges the event handlers
in Da and Db . As every document in FDm is initialized with a fixed
number of event handlers, FDm simply shuffles two paired event
handlers Fa and Fb by inserting every API call from Fb into a
random line in Fa (see Mf1 in §4.3.2). Note that the relative order
of any two API calls from Fb is not changed.
Fixing references. FDm finally uses ObjectMap to fix every refer-
ence in the new Da that points to an element that originates from
Db but vanishes when merging the DOM trees.

FDm’s merging algorithm ensures that the resulting document
takes on the characteristics of the two input documents such as their
DOM tree hierarchies and API call sequences while not introducing
semantic errors.

4.3.4 Mutation-based DOM Fuzzing. Based on the aforementioned
algorithms, FDm has a straightforward workflow. First, FDm sup-
ports bootstrapping with the aid of FDg or restarting from an old
document corpus in FD-IR. FDm is currently incapable of working
with existing documents in plaintext because a transpiler that lifts
them into FD-IR is missing (see §7.1 for further discussion). Given
an input document in FD-IR every time, FDm first starts its mutation
phase, which is iterated 𝑁1 times. During each fuzzing iteration,
FDm mutates the selected document 𝑀 times to generate a new
one for testing. Each time, one of the mutation algorithms listed
in Table 2 is randomly chosen by weight. After 𝑁1 rounds of single
document mutation, if there is no progress in code coverage, FDm
merges the current document with another one randomly selected
from the corpus into a new one for testing. The merging phase
lasts 𝑁2 times. All the newly generated documents during both
phases that increase code coverage are saved into the corpus. Note
that FDm prefers mutation over merging to avoid a rapid growth
in document size. Also, 𝑁1, 𝑁2, and𝑀 are all configurable and the
heuristic values we use are 50, 5, and 5.

4.4 Distributed Fuzzing Environment

Due to the enormous input space and high execution cost of a
browser, it is common practice to run multiple DOM fuzzer in-
stances in a cluster. FreeDom is also designed to be cluster-friendly
with a centralized network. Basically, each FreeDom instance runs

on a dedicated core of a client machine and exchanges fuzzing data
with a central server. During generation-based fuzzing, an FDg
instance simply transfers crash information to the server. When
performing mutation-based fuzzing, the server additionally main-
tains the overall code coverage and a queue storing the documents
in FD-IR that discover new code blocks. An FDm instance always
fetches a testcase from the head of the queue for mutation. Mean-
while, the testcase itself is moved to the tail of the queue. The FDm
instance also maintains a local coverage map that is periodically
updated with the global coverage from the server. A newly gener-
ated document that increases the local coverage is uploaded to the
server for verification. If the document indeed increases the overall
coverage, the server pushes it to the head of the queue for mutation.
In general, the fuzzing infrastructure adopted by FreeDom is light-
weight and fully utilizes large-scale resources for DOM fuzzing.

5 IMPLEMENTATION

FreeDom is implemented in around 30K lines of Python3 code,
which consists of three main components.
Fuzzing engine. The majority of the code is used to implement
FreeDom’s fuzzing engine. First, all the FD-IR structures of a doc-
ument from the DOM tree and its nodes, CSS rules, event han-
dlers and their APIs and context information down to thousands
of Values are implemented as Python classes, which have their
specific implementation of generation and mutation based on the
context. In addition, FreeDom utilizes Python Pickle to serialize
a document in FD-IR into a string for storage and deserialize the
string back to FD-IR structures for mutation. FreeDom currently
covers the most common DOM features supported by a modern
browser, including HTML, CSS, SVG, and WebGL.
Browser instance management. FreeDom now supports
fuzzing Apple Safari (WebKit), Mozilla Firefox, and Google
Chrome. FreeDom compiles target browsers with AddressSanitizer
(ASan) [48] for memory-error detection. To automate browser
process creation and termination, FreeDom either uses existing
libraries [13, 35] for Firefox and WebKit on Linux or implements
custom scripts for Safari on macOS and Chrome on Windows.
Distributed fuzzing protocol. The current implementation of
FreeDom involves a central server that runs Redis [46], a fast in-
memory database, for storing fuzzing data. We use a Redis list to
store crashes. For FDm instances, we use an additional list to save
interesting documents and a set to record the distinct code blocks
that are covered in total.

Moreover, we introduce fewer than 10 lines of C++ code into
the WebKit project to increase browser throughput for FDm. Par-
ticularly, we determine the code point where the handling of an
onload event finishes. Then, we make the browser check whether
or not this happens in the main frame as the onload events in the
embedded frames (i.e., <iframe>) may take place in advance. If so,
we consider that the document is mostly processed but may still
have ongoing or planned transitions, animations, or painting tasks.
To leave a certain time for rendering those dynamic graphical ef-
fects, the browser sets an alarm clock on-the-fly, which will kill
itself within a fixed amount of time. This ad-hoc timeout value used
by FreeDom is 500ms considering the scale of its generated inputs.
Though the optimization requires source code modification, it is

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

technically straightforward to apply it in the same way to other
mainstream browsers like Chrome and Firefox with a tiny patch.

6 EVALUATION

We evaluate FreeDom by answering four questions:
• Q1. How effective is FreeDom in discovering new bugs in the
mainstream browsers (§6.1)?
• Q2. Does FreeDom become state of the art due to its context-
aware approach (§6.2)?
• Q3. How effective is coverage-driven mutation in fuzzing DOM
engines (§6.3)?
• Q4. How does our browser optimization impact fuzzing through-
put and results (§6.4)?

Experimental Setup. We run FreeDom and other DOM fuzzers in
a small fuzzing cluster that consists of five 24-core servers running
Ubuntu 18.04 with AMD Ryzen 9 3900X (3.8GHz) processors and
64GB memory. To display browser windows on a server without a
graphical device, we leverage X virtual frame buffer (Xvfb), which
is the most common solution in DOM fuzzing. Each fuzzer instance
owns a separated Xvfb session for running its generated inputs.

6.1 Discovering New DOM Engine Bugs

We have intermittently run FDg for finding zero-day vulnerabilities
in the DOM engines of all the mainstream browsers for two months.
By default, FDg fuzzes the HTML, CSS, and SVG standards together
since their corresponding implementations in a browser are closely
related. FDg separately fuzzes WebGL on different OS platforms,
whose implementation is independent of other browser components
but involves platform-dependent code. Table 5 lists a total of 24 bugs
found by FDg that have been confirmed by the browser vendors,
including 14 bugs in Safari/WebKit, four bugs in Chrome, and five
bugs in Firefox. Besides a few assertions, null dereferences, and
correctness issues, the vast majority of the bugs are security-critical,
which have helped us gain 10 CVEs and 65K USD bug bounty
rewards so far. The fuzzing results reflect that FreeDom is effective
in discovering new bugs in the latest DOM engines.

6.2 Effectiveness of Context-aware Fuzzing

To prove that FreeDom is state of the art with its context-aware
fuzzing approach, we compare the fuzzing performance of FDg
with that of Dharma [34] and Domato [11]. In this evaluation, we
always run 100 instances of every fuzzer in study on five machines
against an ASan build of WebKitGTK 2.28.0 on Linux for 24 hours
(see Appendix C for the detailed build options). According to public
record [11], Domato has found the most bugs in WebKit, which is
thus selected as our evaluation target. To retrieve the code coverage
of a document generated during the experiment, we re-run it with
an instrumented WebKit that profiles the visited basic blocks of the
DOM engine part (i.e., Source/WebCore/).

6.2.1 Comparison with Dharma. We first evaluate FDg with
Dharma, a generation-based fuzzer based on context-free gram-
mars. Dharma officially only provides the grammar file for SVG
documents with no support of HTML tags, CSS rules, and DOM
APIs. For a fair comparison, we use the original Dharma and
modify FDg to only generate the initial DOM tree with SVG tags

0.0 0.2 0.4 0.6 0.8 1.0

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20
10

12

14

16

18

B
lo

ck
co

ve
ra

ge
ra

te
(%

)

(a) Code coverage

FDg
Dharma

0 10 20

0

20

40

60

80

100

N
u

m
b

er
of

cr
a
sh

es

(b) Crash

total (FDg)
unique (FDg)

Figure 5: Achieved code coverage and triggered crashes of

FDg and Dharma when fuzzing SVG documents in WebKit

with 100 cores for 24 hours. Dharma fails to find any crash

during three fuzzing runs. In (b), we differentiate unique

crashes found by FDg based on their crashing PC values.

and attributes and skip the other two parts in a document. We also
configure the number of <svg> elements, SVG nodes rooted in an
<svg> element, and attributes of a node in a document output by
FDg to ensure that both fuzzers generate the inputs of similar size
and complexity. Both fuzzers execute a document for at most 5
seconds. The experiment is repeated for three times.

Figure 5 presents the experimental result. FDg visits 13.96% more
code blocks than Dharma on average. More importantly, FDg sta-
bly triggers at least 7 unique crashes during each fuzzing run and
totally discovers 18 unique ones. Meanwhile, Dharma fails to find
any crashes during the experiment. There is a higher chance that
Dharma may trigger a few of FDg’s crashes by adding more random
options for generating certain constant values like integers and
images into its grammar. Nevertheless, around 60% of the crashes
triggered by FDg involve SVG animations. Similar to Domato dis-
cussed in §3.1, Dharma, based on its context-free grammar, is not
aware of the exact element whose attributes are to be animated
and simply animates an attribute that is randomly selected from
30 candidates that are neither all animatable nor always owned
by the element. Therefore, Dharma rarely constructs a valid SVG
animation. By contrast, FDg is more likely to generate working
animations and manages to trigger those crashes, which prelim-
inarily reflects the effectiveness of context-aware generation in
DOM fuzzing.

6.2.2 Comparison with Domato. We then evaluate FDg and Do-
mato, both of which fuzz the HTML, SVG, and CSS specifications
together by default. Although the two fuzzers have completely dif-
ferent designs, we do not introduce any change to Domato’s fuzzing
engine and take great effort to configure FDg to generate the docu-
ments that have complexity similar to those generated by Domato.
We present the detailed composition of a random document gener-
ated by both fuzzers in Appendix D for reference. In addition, both
fuzzers run with a 5-second timeout and are evaluated three times.

Figure 6 presents the evaluation results.With nearly 3%more exe-
cutions, the overall code coverage of Domato is slightly higher than
that of FDg by 2.69% on average. Nevertheless, FDg triggers around
9.7× more crashes and 3× more unique ones than Domato. In par-
ticular, FDg discovers 112 unique crashes in three runs, 11 of which
have explicit security implications reported by ASan (i.e., heap

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

0.0 0.2 0.4 0.6 0.8 1.0

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20
40

42

44

46

48

50

B
lo

ck
co

ve
ra

ge
ra

te
(%

)

(a) Code coverage

FDg
Domato

0 10 20
0

20

40

60

80

100

N
u

m
b

er
o
f

u
n

iq
u

e
cr

a
sh

es

(b) Crash

unique (FDg)
unique (Domato)
total (FDg)
total (Domato) 102

103

104

N
u

m
b

er
o
f

cr
as

h
es

(l
og

sc
a
le

)

Figure 6: Achieved code coverage and triggered crashes of

FDg and Domato for a 24-hour run with 100 cores. Note

that we use a log scale on the right side to present the total

number of crashes. We differentiate unique crashes based

on their crashing PC values.

#Crashes

Data Dependence

None CDV1 CDV2 CDV3 CDV4

Domato 5 4 (80.00%) 1 (20.00%) N/A N/A N/A
FDg 78 21 (26.92%) 49 (62.82%) 20 (25.64%) 8 (10.25%) 14 (17.94%)
Both 34 20 (58.82%) 9 (26.47%) N/A N/A 1 (2.94%)

Table 3: The unique crashes discovered by Domato, FDg,

and both fuzzers during three 24-hour runs. We also count

the number of crashes that have one of the four types of

context-dependent values (CDVs) described in §3.1. Note

that some crashes that involve more than one type of CDVs

are counted more than once.

buffer overflow and use-after-free bugs rather than null pointer
dereferences and infinite recursions). By contrast, Domato only
finds a total of 39 unique crashes, three of which are security-related.
More importantly, 34 (87%) crashes found by Domato are also trig-
gered by FDg. The evaluation results indicate that the ability of
FreeDom to find bugs in the latest DOM engine largely surpasses
that of the state-of-the-art DOM fuzzer.

To further understand how context awareness enables FDg to
outperform Domato, we minimize the inputs of 117 unique crashes
found by both fuzzers into PoCswith theHTMLminimizer provided
by ClusterFuzz.We then determine what types of data dependencies
(see §3.1) every PoC file involves through manual inspection, which
is presented in Table 3. Among the PoCs of 39 crashes found by
Domato, a majority of them do not contain any context-dependent
part. Around 25% of them have context-dependent CSS selectors
(i.e., CDV1), which Domato has certain chances to construct cor-
rectly through a fixed number of predefined elements, classes, and
tags. At most times, a minimized PoC generated by Domato only
remains the universal selector (i.e., *), which is context-free. Mean-
while, the context-dependent selectors generated by FDg are much
more likely to be valid and thus FDg manages to find another 49
crashes that require specific live elements to be styled. Furthermore,
during nearly 5 million executions in total, Domato fails to trigger
any crash but one that involves any of the other three types of
data dependencies, which are largely not addressed by its static
grammar. Contrary to Domato, FDg manages to generate a number
of PoCs that cover from CDV1 to CDV4. To have a grasp on the

context complexity of such a PoC that Domato fails to produce, we
list an example in Appendix E for additional reference.

In a nutshell, our in-depth analysis shows that (1) the context-
aware approach adopted by FDg still manages to find the old types
of bugs that existing DOM fuzzers target by their context-free
grammars, and (2) the additional context information maintained
by FDg for generation is effective in finding many more bugs in
the latest DOM engines that have not been explored. Therefore, we
believe FreeDom’s design fundamentally outperforms the state-of-
the-art DOM fuzzer, Domato.

6.3 Effectiveness of Coverage-driven Fuzzing

We now evaluate FDm to understand the effectiveness of coverage
guidance in DOM fuzzing. Similarly, we launch 100 FDm instances
to fuzz the optimized build of WebKitGTK 2.28.0 on 100 cores for 24
hours. The DOM engine part of WebKit is instrumented for block
coverage measurement. Meanwhile, we introduce a tailored version
of FDm, called FDm-, whose merging phase is removed.We run FDm-
together with FDm to verify the effectiveness of testcase merging
(see §4.3.3) in DOM fuzzing. Both FDm and FDm- bootstrap with
two simple seeds: a blank document and a document with a single
<svg> element under <body>. Table 4 presents the fuzzing results,
and the average coverage growth is illustrated by Figure 7(a). We
interpret the evaluation results as follows.
Effectiveness of merging. FDm completely outperforms FDm-
with 1.8% more code coverage and 1.8× more unique crashes, two
of which are heap-related memory issues. By contrast, FDm- fails
to find any security-related crashes. All of the above facts indicate
that adopting document merging largely improves the performance
of coverage-guided DOM fuzzing.
Effectiveness of coverage-guidedmutation. Compared to FDg,
FDm- and FDm visit around 1.2% and 2.62% more code blocks, re-
spectively. More importantly, FDm successfully discover three new
crashes, including two security-related ones that are never trig-
gered by running FDg for 24 hours. As a generation-based fuzzer,
FDg intends to generate a large-size document that contains a lot of
randomly chosen elements, attributes, and CSS rules and hopefully
covers various DOM features within one execution. Meanwhile,
FDm focuses on repetitive mutations and gradual growth of its in-
puts. Compared to FDg, FDm is more likely to trigger the crashes
that require strict or subtle settings. For example, one crash missed
by FDg is triggered by an SVG <text> element that has a single
attribute x="8192em". The element is required to have no surround-
ing elements and no additional attributes or CSS styles that affect
its text position, which is difficult to find in a document output by
FDg that has a deep element tree, 10 attributes for an element, and
50 CSS rules. The PoC of another new crash has three sibling <set>
elements to animate the same attribute of their parent. FDg selects
child elements and a parent attribute to be animated uniformly
from various available candidates and therefore rarely generates
such a document from a statistical perspective. By contrast, FDm
equipped with fine-grained mutation strategies manages to grow a
blank document into the inputs of these new crashes step by step.
Limitation of coverage-guided mutation. Unfortunately, we
witness the weak implication of code coverage for finding bugs
when comparing FDm to FDg. With 3.5× more executions and a

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

0.0 0.2 0.4 0.6 0.8 1.0

Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20
40

42

44

46

48

50

B
lo

ck
co

ve
ra

ge
ra

te
(%

)

(a) Coverage

FDg
FDm (w/o merge)
FDm

0 10 20
0

50

100

150

200

250

300

350

N
u

m
b

er
of

u
n
v
is

it
ed

b
lo

ck
s

(a) Distance toward the crashes

Figure 7: (a) Average block coverage rate of running FDg and

FDm with or without merging to fuzz WebKit for 24 hours;

(b) Number of basic blocks covered by the PoCs of seven

security-related crashes that are not visited by FDm at dif-

ferent times during a 24-hour fuzzing process.

2.62% coverage improvement, FDm finds nearly 3.8× fewer unique
crashes on average compared to FDg. FDm misses around 75%
unique crashes, including seven security-related ones found by FDg
during three 24-hour runs. To further study the failure of coverage-
guided fuzzing, we determine the minimal basic blocks required
to be covered for triggering the seven crashes and observe how
FDm approaches the crashes (i.e., covers those code blocks) during a
fuzzing run. Figure 7(b) presents the result, which shows that FDm
is extremely close to most of the crashes after four hours. However,
due to an increasing number of interesting testcases waiting to be
mutated, FDm tries to expand its coverage without any particular
direction and thus fails to make a final push to trigger any of the
crashes in the remaining 20 hours. Though FDg blindly generates
the documents that can never explore the browser code thoroughly
in process of time, at least FDg consistently tests certain deep code
paths through every execution due to the fact that a generated
document has a large size and rich semantics. By contrast, code
coverage makes FDm that starts with a blank document wander
around numerous shallow code paths and cannot move downward
for a long time because of the extreme complexity of a DOM engine.

In general, blackbox generation is not comprehensive but is still
recommended for discovering a vast number of bugs in a DOM
engine in a reasonable time. Meanwhile, coverage-driven mutation
is also considered an irreplaceable approach, especially for finding
the bugs that occur with exacting conditions. One more advantage
of mutation-based fuzzing is that minimizing its crashing docu-
ments of much smaller sizes is less time consuming. We also believe
that its performance can be largely improved with more computing
resources and better seeding inputs (see §7.2).

6.4 High-Throughput Executions

We finally present several micro-benchmarks to evaluate the effi-
ciency and effectiveness of our self-terminating browser.
Performance. Table 4 shows that the throughput of an optimized
browser arrives at most 74.7 executions per second when used in
the coverage-guided fuzzing. Considering using a 5-second hard
time limit, the maximum throughput in theory is only 20 executions
per second with 100 cores, which is 3.74× fewer. We also perform a
stress test by running the optimized browser with large documents
generated by FDg to understand the least throughput improvement

ID Execs/s Coverage rate #Crash #Unique #Security #New

FDg 18.17 47.40(±0.05)% 47058.67 79.67 11 -

FDm- 74.73 47.97(±0.18)% 68.33 11.67 0 1
FDm 63.94 48.64(±0.13)% 331.67 21 6 3

Table 4: Fuzzing results of running FreeDom with several

approaches against WebKit for 24 hours. We list the total

number of unique security-related crashes found in three

fuzzing runs and the average values for other metrics. The

Newcolumnpresents the number of distinct crashes that are

only found by the coverage-guided mutation-based fuzzing.

we can achieve. In particular, FDg fuzzes our custom WebKit build
under the same setting used in §6.2. The evaluation result shows that
FDg can test around 26.92 documents per second with a dynamic
alarm, which is 1.48× more than the throughput of fuzzing the
original WebKit with a 5-second limit.
False negatives. We then justify that the dynamic alarm rarely
makes a browser instance terminate too early to trigger an expected
crash in practice. Regarding a total of 112 unique crashes found by
FDg in the original WebKit, our optimized WebKit can trigger 97%
of them, including all of the 11 security-related crashes. Particularly,
we observe two types of crashes that are not reproduced by the
optimized WebKit. First, one missed crash involves an SVG ani-
mation with specific timing control. The PoC of the crash sets the
attribute max="1s" for an SVG <set> element [51], which specifies
the maximum animation duration. If we set the attribute value be-
low 300ms, the crash can be triggered again under the optimization.
Generating relatively small timing values is considered practical
to avoid such a case. The other type of missed crashes involve a
window.requestAnimationFrame(f) call, which registers a function
f that is invoked by the browser before repainting the window [50].
Due to the unique feature of the API, it is infeasible to control
when f starts to execute. Therefore, we cannot find a general way
to prevent such a missed crash with optimization. Based on our
finding, one workaround is to use setTimeout(f, delay) instead,
which allows us to schedule the execution of f to a certain extent.

7 DISCUSSION

We now discuss the limitations and future directions of FreeDom.

7.1 More Discussions on FD-IR

Limitations of FD-IR. First, FreeDom currently does not support
parsing an existing HTML document into FD-IR. Developing a tran-
spiler to achieve this is technically feasible, as FD-IR strictly follows
the specification. Next, FD-IR does not cover various web APIs such
as Canvas, Audio and IndexedDB APIs [27, 29, 32]. As they are also
used with JavaScript, we can support them with minimal efforts. In
addition, different browsers do not provide exactly the same sup-
port of certain character encodings, HTML tags, CSS functions, and
DOM APIs [10, 30, 31], which are not handled by FD-IR. Thanks
to its strong programmability, it is possible to make FD-IR to se-
lectively enable or disable DOM features depending on the target
browser. Lastly, FreeDom involves a great deal of engineering effort
to implement numerous FD-IR Values (see §4.2). To minimize the
manual labor, the code of the Values that are context-independent
can be automatically emitted from existing grammars.

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

Generalizability of FD-IR. Besides HTML documents, FD-IR
can be generalized to fuzz other complicated file formats by mainly
adding new Value instances with custom generation, mutation, and
lowering methods. FD-IR is mostly suitable for targeting the tree-
like formats that consist of interdependent fields, such as PDF [6],
Microsoft Office Open XML [40], Apple property list files [3], and
hierarchical filesystems [2, 45]. Meanwhile, extending FD-IR to
describe the API calls of other systems like RPC services and OS
kernels is also practicable by adding new API formats and lowering
methods for other languages or encodings besides JavaScript.

7.2 Potentials of Coverage-driven DOM fuzzing

Our performance comparison between FDm and FDg does not nec-
essarily justify one approach is superior than the other. In particular,
we propose future research directions for coverage-driven DOM
fuzzing, which can be implemented by using FDm.
Corpus-based fuzzing. Recent mutation-based fuzzers [20, 22,
41] achieve great success by leveraging a high-quality corpus. With
respect to DOM engines, all themainstream browsersmaintain their
regression and unit test suites that contain thousands of HTML
documents. Once we support lifting documents in plaintext into
FD-IR, FDm is likely to have better performance by starting with
these existing testcases.
Intelligent seed scheduling. FDm now simply prefers to further
mutate the testcases that are generated more recently. Nevertheless,
it is worthwhile to extend FDm with various recent testcase sched-
uling algorithms [8, 9, 43, 44], which are proven to be effective in
discovering more deep program paths in many general applications.
Non-compliant document fuzzing. FD-IR now strictly observes
the DOM standard. Nevertheless, all the mainstream browsers try
to load even a non-standard document as much as possible with
automatic repair in their own ways. For instance, some browsers
automatically complete non-closing HTML tags in a document or
still display an SVG document that involves incorrect transform
functions to a certain extent. FreeDom based on FD-IR is thus un-
able to find the bugs in the related code. On the one hand, the design
principle of FD-IR is still essential to FDg, which will blindly pro-
duce numerous invalid documents with common errors if FD-IR’s
non-complicance with the standard cannot be fully handled by the
browser. On the other hand, FDm can work effectively with modi-
fied FD-IR that describes and mutates documents in a non-standard
manner, because code coverage helps to self-correct its mutation
directions for avoiding repetitive loading errors and effectively
explore autocorrection in the browser.

8 RELATEDWORK

DOM fuzzing. The pioneering DOM fuzzers [23, 28, 47, 58] em-
bedded themselves in a page loaded by the target browser and called
random DOMAPIs on-the-fly. For example, domfuzz [28] randomly
acts on the DOM tree of a web page with 35 fuzzing modules.
Cross_fuzz [58] focuses on visiting DOM tree nodes and creating
circular references among them to stress memory management.
SDF [23] proposes an integration of several DOM fuzzers for better
performance. All of those dynamic fuzzers are no longer maintained
and the generate-and-test fuzzers have become mainstream. Qu et
al. [7] find more than 100 use-after-free bugs by generating paired

DOM operations based on static rules. Domato [11], Dharma [34],
Avalanche [33], and Wadi [47] are recent generation-based fuzzers
based on context-free grammars. FreeDom is also a static DOM
fuzzer but works in a context-aware manner.
Generation-based versusmutation-based fuzzing. Generation-
based fuzzing has been long established, especially for a structural
input format not limited to HTML documents. For example,
Peach [42] is known for generating the inputs of any format that
can be expressed as a grammar definition. Jsfunfuzz [38] constructs
random code chunks for testing JavaScript engines. Csmith [56]
generates random C source text for stress-testing compilers. On the
other side, more and more fuzzers nowadays also mutate existing
testcases. A series of JavaScript engine fuzzers [4, 19, 21, 53, 54]
transform existing JavaScript programs into new ones for testing.
Syzkaller [18] mutates system calls for fuzzing OS kernels. As
a font fuzzer, BrokenType can generate valid TTF files and also
mutate them in a structure-aware manner. In the DOM fuzzing
field, FreeDom is considered the first static fuzzer to work both
generatively and mutationally guided by coverage.
Structure-aware versus context-aware fuzzing. To generate
valid payload for testing, smart fuzzers are aware of input format
or grammar. For example, the aforementioned DOM and JavaScript
engine fuzzers always produce syntactically correct HTML files and
JavaScript programs. Nevertheless, recent research reveals the im-
portance of leveraging context information for reducing semantic
errors in generated inputs. For example, CodeAlchemist [20] assem-
bles JavaScript code with guaranteed type correctness. Janus [55],
a filesystem fuzzer, maintains the status of every file and directory
on an image for generating valid file operations.

9 CONCLUSION

In this work, we propose FreeDom, an evolutionary static DOM
fuzzer, that supports fuzzing HTML documents generatively and
mutationally. FreeDom relies on a newly designed IR to describe
both structures and context information of a document so as to
avoid semantic errors. In addition, FreeDom also utilizes a dynamic
timeout mechanism to largely improve the browser throughput
by 1.48–3.74×. We have reported 24 bugs found by FreeDom in
mainstream browsers. In particular, FreeDom that adopts context-
aware generation can find 3×more unique crashes than the state-of-
the-art fuzzer, Domato. FreeDom also finds several bugs inWebKit’s
SVG renderer, where another recent fuzzer, Dharma, fails to trigger
any crash. Compared to blackbox generation, FreeDom guided
by coverage covers 2.62% more code blocks and discovers several
new bugs, but meanwhile triggers a total of 3.8× fewer crashes.
Nevertheless, we expect further research based on FreeDom for an
improved utilization of code coverage in DOM fuzzing.

10 ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback. This
research was supported, in part, by the NSF award CNS-1563848,
CNS-1704701, CRI-1629851 and CNS-1749711 ONR under grant
N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-2895, DARPA
AIMEE, and ETRI IITP/KEIT[2014-3-00035], and gifts from Face-
book, Mozilla, Intel, VMware, and Google.

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

REFERENCES

[1] Aldeid. Bf3. https://www.aldeid.com/wiki/Bf3 (visited on September 12, 2020).
[2] Apple Inc. HFS Plus Volume Format. https://developer.apple.com/library/archive/

technotes/tn/tn1150.html (visited on September 12, 2020).
[3] Apple Inc. Property List Programming Topics for Core Foundation.

https://developer.apple.com/library/archive/documentation/CoreFoundation/
Conceptual/CFPropertyLists/CFPropertyLists.html (visited on September 12,
2020).

[4] Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R., and
Teuchert, D. Nautilus: Fishing for deep bugs with grammars. In Proceedings
of the 2019 Annual Network and Distributed System Security Symposium (NDSS)
(San Diego, CA, Feb. 2019).

[5] Beterke, F., Geshev, G., and Plaskett, A. Apple Safari - PWN2OWN Desktop
Exploit. https://labs.f-secure.com/assets/BlogFiles/apple-safari-pwn2own-vuln-
write-up-2018-10-29-final.pdf (visited on September 12, 2020).

[6] Bienz, T., Cohn, R., and Systems, A. Portable document format reference manual.
Citeseer, 1993.

[7] Bo, Q., and Lu, R. POWER IN PAIRS: How one fuzzing template revealed over 100
IE UAF vulnerabilities. In Black Hat USA Briefings (Black Hat USA) (Amsterdam,
The Netherlands, Oct. 2014).

[8] Böhme, M., Pham, V.-T., Nguyen, M.-D., and Roychoudhury, A. Directed
greybox fuzzing. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS) (Dallas, TX, Oct.–Nov. 2017).

[9] Böhme, M., Pham, V.-T., and Roychoudhury, A. Coverage-based greybox
fuzzing as markov chain. In Proceedings of the IEEE Transactions on Software
Engineering (2017).

[10] Deveria, A. WebGL 2.0. https://caniuse.com/#feat=webgl2 (visited on September
12, 2020).

[11] Fratric, I. DOM fuzzer. https://github.com/googleprojectzero/domato (visited
on September 12, 2020).

[12] Fratric, I. The Great DOM Fuzz-off of 2017. https://googleprojectzero.blogspot.
com/2017/09/the-great-dom-fuzz-off-of-2017.html (visited on September 12,
2020).

[13] Fratric, I. WebKit Fuzzing. https://github.com/googleprojectzero/p0tools (vis-
ited on September 12, 2020).

[14] Google. Chrome Vulnerability Reward Program Rules. https://www.google.
com/about/appsecurity/chrome-rewards/index.html (visited on September 12,
2020).

[15] Google. ClusterFuzz. https://google.github.io/clusterfuzz (visited on September
12, 2020).

[16] Google. Issue 666246. https://bugs.chromium.org/p/chromium/issues/detail?id=
666246 (visited on September 12, 2020).

[17] Google. Issue 671328. https://bugs.chromium.org/p/chromium/issues/detail?id=
671328 (visited on September 12, 2020).

[18] Google. syzkaller is an unsupervised, coverage-guided kernel fuzzer. https:
//github.com/google/syzkaller (visited on September 12, 2020).

[19] Gross, S. Fuzzil: Coverage guided fuzzing for javascript engines. Master’s thesis,
TU Braunschweig, 2018.

[20] Han, H., Oh, D., andCha, S. K. CodeAlchemist: Semantics-aware code generation
to find vulnerabilities in javascript engines. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS) (San Diego, CA, Feb.
2019).

[21] Holler, C., Herzig, K., and Zeller, A. Fuzzing with code fragments. In Pro-
ceedings of the 21st USENIX Security Symposium (Security) (Bellevue, WA, Aug.
2012).

[22] Lee, S., Han, H., Cha, S. K., and Son, S. Montage: A Neural Network Language
Model-Guided JavaScript Engine Fuzzer. In Proceedings of the 29th USENIX
Security Symposium (Security) (Boston, MA, Aug. 2020).

[23] Lin, Y.-D., Liao, F.-Z., Huang, S.-K., and Lai, Y.-C. Browser fuzzing by scheduled
mutation and generation of document object models. In Proceedings of the 49th
IEEE International Carnahan Conference on Security Technology (Taipei, Taiwan,
Sept. 2015).

[24] Liu, J., and Xu, C. Pwning Microsoft Edge Browser: From Memory Safety
Vulnerability to Remote Code Execution. POC.

[25] LLVM Project. libFuzzer - a library for coverage-guided fuzz testing. https:
//llvm.org/docs/LibFuzzer.html (visited on September 12, 2020).

[26] Microsoft Security Research and Defense. VulnScan - Auto-
mated Triage and Root Cause Analysis of Memory Corruption Issues.

https://msrc-blog.microsoft.com/2017/10/03/vulnscan-automated-triage-and-
root-cause-analysis-of-memory-corruption-issues/ (visited on September 12,
2020).

[27] Mozilla. Canvas API. https://developer.mozilla.org/en-US/docs/Web/API/
Canvas_API (visited on September 12, 2020).

[28] Mozilla. DOM fuzzers. https://github.com/MozillaSecurity/domfuzz (visited on
September 12, 2020).

[29] Mozilla. IndexedDB API. https://developer.mozilla.org/en-US/docs/Web/API/
IndexedDB_API (visited on September 12, 2020).

[30] Mozilla. Localizations and character encodings. https://developer.mozilla.
org/en-US/docs/Web/Guide/Localizations_and_character_encodings (visited on
September 12, 2020).

[31] Mozilla. Vendor Prefix. https://developer.mozilla.org/en-US/docs/Glossary/
Vendor_Prefix (visited on September 12, 2020).

[32] Mozilla. Web Audio API. https://developer.mozilla.org/en-US/docs/Web/API/
Web_Audio_API (visited on September 12, 2020).

[33] Mozilla Security. Avalanche. https://github.com/MozillaSecurity/avalanche
(visited on September 12, 2020).

[34] Mozilla Security. dharma. https://github.com/MozillaSecurity/dharma (visited
on September 12, 2020).

[35] Mozilla Security. FFPuppet. https://github.com/MozillaSecurity/ffpuppet
(visited on September 12, 2020).

[36] Mozilla Security. Grizzly Browser Fuzzing Framework. https://blog.mozilla.
org/security/2019/07/10/grizzly (visited on September 12, 2020).

[37] Mozilla Security. Introducing the ASan Nightly Project. https://blog.mozilla.
org/security/2018/07/19/introducing-the-asan-nightly-project/ (visited on Sep-
tember 12, 2020).

[38] Mozilla Security. JavaScript engine fuzzers. https://github.com/
MozillaSecurity/funfuzz (visited on September 12, 2020).

[39] Mozilla Security. Writing an Adapter. https://github.com/MozillaSecurity/
grizzly/wiki/Writing-an-Adapter (visited on September 12, 2020).

[40] Paoli, J., Valet-Harper, I., Farqhar, A., and Sebestyen, I. Ecma-376 office
open xml file formats. http://www.ecmainternational.org/publications/standards/
Ecma-376.htm (visited on September 12, 2020).

[41] Park, S., Xu, W., Yun, I., Jang, D., and Kim, T. Fuzzing JavaScript Engines
with Aspect-preserving Mutation (to appear). In Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland) (San Francisco, CA, May 2020).

[42] Peach Tech. Peach Fuzzer. https://sourceforge.net/projects/peachfuzz (visited
on September 12, 2020).

[43] Pham, V.-T., Böhme, M., Santosa, A. E., Caciulescu, A. R., and Roychoudhury,
A. Smart greybox fuzzing. In Proceedings of the IEEE Transactions on Software
Engineering (2019).

[44] Rebert, A., Cha, S. K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., and
Brumley, D. Optimizing seed selection for fuzzing. In Proceedings of the 23rd
USENIX Security Symposium (Security) (San Diego, CA, Aug. 2014).

[45] Rodeh, O., Bacik, J., and Mason, C. Btrfs: The linux b-tree filesystem. ACM
Transactions on Storage (TOS) 9, 3 (2013), 1–32.

[46] Sanfilippo, S. Redis, Open source in-memory database, cache and message
broker. https://redis.io/ (visited on September 12, 2020).

[47] SensePost. Wadi Fuzzing Harness. https://github.com/sensepost/wadi (visited
on September 12, 2020).

[48] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. Addresssanitizer:
A fast address sanity checker. In Proceedings of the 2012 USENIX Annual Technical
Conference (ATC) (Boston, MA, June 2012).

[49] Veditz, D. Fixing an SVG Animation Vulnerability. https://blog.mozilla.org/
security/2016/11/30/fixing-an-svg-animation-vulnerability/ (visited on Septem-
ber 12, 2020).

[50] W3C. HTML: 8.11 Animation frames. https://html.spec.whatwg.org/multipage/
imagebitmap-and-animations.html#animation-frames (visited on September 12,
2020).

[51] W3C. SVG Animations Level 2: 2.14. The ’set’ element. https://svgwg.org/specs/
animations/#SetElement (visited on September 12, 2020).

[52] W3C. SVG Animations Level 2: Attributes to identify the target at-
tribute or property for an animation. https://svgwg.org/specs/animations/
#AttributeNameAttribute (visited on September 12, 2020).

[53] Wang, J., Chen, B., Wei, L., and Liu, Y. Skyfire: Data-driven seed generation
for fuzzing. In Proceedings of the 38th IEEE Symposium on Security and Privacy

https://www.aldeid.com/wiki/Bf3
https://developer.apple.com/library/archive/technotes/tn/tn1150.html
https://developer.apple.com/library/archive/technotes/tn/tn1150.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html
https://labs.f-secure.com/assets/BlogFiles/apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf
https://labs.f-secure.com/assets/BlogFiles/apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf
https://caniuse.com/#feat=webgl2
https://github.com/googleprojectzero/domato
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://github.com/googleprojectzero/p0tools
https://www.google.com/about/appsecurity/chrome-rewards/index.html
https://www.google.com/about/appsecurity/chrome-rewards/index.html
https://google.github.io/clusterfuzz
https://bugs.chromium.org/p/chromium/issues/detail?id=666246
https://bugs.chromium.org/p/chromium/issues/detail?id=666246
https://bugs.chromium.org/p/chromium/issues/detail?id=671328
https://bugs.chromium.org/p/chromium/issues/detail?id=671328
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://msrc-blog.microsoft.com/2017/10/03/vulnscan-automated-triage-and-root-cause-analysis-of-memory-corruption-issues/
https://msrc-blog.microsoft.com/2017/10/03/vulnscan-automated-triage-and-root-cause-analysis-of-memory-corruption-issues/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://github.com/MozillaSecurity/domfuzz
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/Guide/Localizations_and_character_encodings
https://developer.mozilla.org/en-US/docs/Web/Guide/Localizations_and_character_encodings
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://github.com/MozillaSecurity/avalanche
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/ffpuppet
https://blog.mozilla.org/security/2019/07/10/grizzly
https://blog.mozilla.org/security/2019/07/10/grizzly
https://blog.mozilla.org/security/2018/07/19/introducing-the-asan-nightly-project/
https://blog.mozilla.org/security/2018/07/19/introducing-the-asan-nightly-project/
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/grizzly/wiki/Writing-an-Adapter
https://github.com/MozillaSecurity/grizzly/wiki/Writing-an-Adapter
http://www.ecmainternational.org/publications/standards/Ecma-376.htm
http://www.ecmainternational.org/publications/standards/Ecma-376.htm
https://sourceforge.net/projects/peachfuzz
https://redis.io/
https://github.com/sensepost/wadi
https://blog.mozilla.org/security/2016/11/30/fixing-an-svg-animation-vulnerability/
https://blog.mozilla.org/security/2016/11/30/fixing-an-svg-animation-vulnerability/
https://html.spec.whatwg.org/multipage/imagebitmap-and-animations.html#animation-frames
https://html.spec.whatwg.org/multipage/imagebitmap-and-animations.html#animation-frames
https://svgwg.org/specs/animations/#SetElement
https://svgwg.org/specs/animations/#SetElement
https://svgwg.org/specs/animations/#AttributeNameAttribute
https://svgwg.org/specs/animations/#AttributeNameAttribute

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

(Oakland) (San Jose, CA, May 2017).
[54] Wang, J., Chen, B., Wei, L., and Liu, Y. Superion: Grammar-aware greybox

fuzzing. In Proceedings of the 41st International Conference on Software Engineering
(ICSE) (Montreal, Canada, May 2019).

[55] Xu, W., Moon, H., Kashyap, S., Tseng, P.-N., and Kim, T. Fuzzing File Systems
via Two-Dimensional Input Space Exploration. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland) (San Francisco, CA, May 2019).

[56] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and understanding bugs in C
compilers. In Proceedings of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (San Jose, CA, June 2011).

[57] Zalewski, M. american fuzzy lop (2.52b). http://lcamtuf.coredump.cx/afl (visited
on September 12, 2020).

[58] Zalewski, M. cross_fuzz. https://lcamtuf.coredump.cx/cross_fuzz/ (visited on
September 12, 2020).

http://lcamtuf.coredump.cx/afl
https://lcamtuf.coredump.cx/cross_fuzz/

FreeDom: Engineering a State-of-the-Art DOM Fuzzer CCS ’20, November 9–13, 2020, Virtual Event, USA

Browser Report ID Component Summary Status

1 Safari 12.0.2 705074056 SVG Use-after-free CVE-2019-6212
2 Safari 12.1.0 709777313 WebGL Arbitrary memory access CVE-2019-8596
3† Safari 12.1.0 - SVG Heap overflow CVE-2019-8609
4 Safari 13.0.1 710042930 SVG Heap overflow CVE-2019-8720
5 Safari 13.0.5 727800575 SVG Null dereference Patched
6 Safari 13.0.5 729340941 SVG Race condition Patched
7 Safari 13.0.5 729379682 SVG/CSS Use-after-free Patched
8 Safari 13.0.5 729429465 SVG Use-after-free CVE-2020-9803
9 Safari 13.0.5 - CSS Null dereference Patched
10* Safari 13.0.5 - HTML/SVG Use-after-free Patched
11 Safari 13.0.5 730447379 HTML/SVG/CSS Use-after-free CVE-2020-9806
12 Safari 13.1.0 732608208 HTML/SVG/CSS Use-after-free CVE-2020-9807
13 Safari 13.1.0 734414767 HTML/CSS Use-after-free CVE-2020-9895
14‡ WebKitGTK 2.24.0 - WebGL Out-of-bound memory access Patched
15‡ * WebKitGTK 2.28.0 731291111 HTML Use-after-free Patched

16† Chrome 73.0 943087 WebGL2 Integer overflow CVE-2019-5806
17† Chrome 73.0 943709 WebGL2 Heap overflow CVE-2019-5817
18† Chrome 74.0 (beta) 943424 WebGL2 Use-after-free Patched
19† Chrome 74.0 (beta) 943538 WebGL2 Use-after-free Patched

20 Firefox 76.0 1625051 HTML/CSS Out-of-bound access Patched
21 Firefox 76.0 1625187 HTML/CSS Rust assertion Acknowledged
22 Firefox 76.0 1625252 HTML/SVG/CSS Null dereference Acknowledged
23 Firefox 76.0 1625369 HTML Correctness issue Patched
24 Firefox 76.0 1626152 SVG/CSS Use-after-free Patched
† The bugs which earn bug bounty rewards.
‡ The WebKit bugs that only affect WebKitGTK builds on Linux and do not affect Safari on macOS.
* The duplicated bugs which are also reported from internal efforts or other external researchers.

Table 5: The reported bugs found by FreeDom in Apple Safari (WebKit), Google Chrome, and Mozilla Firefox. We mark out

the latest browser versions that are affected by the bugs. The Component column indicates what specific DOM components a

document is required to contain for triggering the bugs. In particular, bugs #18, #19, and #24 only affect the beta version and

are never shipped into a release; though they are security bugs, there are no CVEs assigned for them.

CCS ’20, November 9–13, 2020, Virtual Event, USA Wen Xu, Soyeon Park, and Taesoo Kim

A DOM ENGINE BUGS FOUND BY FREEDOM

Table 5 presents the description of the bugs discovered by FreeDom in the DOM
engines of three known web browsers (i.e., Apple Safari, Google Chrome and Mozilla
Firefox).

B THE GENERATION ENGINE OF DOMATO

Figure 8 serves as an examples of how Domato generates HTML documents based
on its grammar. Basically, the listed grammar rules are essential for generating the
CSS rules, JavaScript code, and initial DOM tree below. Note that the demonstrated
document is incomplete. The CSS rule originally owns more CSS properties. And both
the <form> and <select> are supposed to have more attributes and children.

1 <!--
2 <rule> = <selector> { <declaration> }
3 <selector> = .<class>
4 <class> = class<int min=0 max=9>
5 <declaration> = <cssproperty>; <cssproperty>; ...
6 <cssproperty> = columns: <cssproperty_columns>
7 <cssproperty_columns> = <fuzzint>
8 -->
9 <style>
10 .class1 { columns: 1246; }
11 </style>
12
13 <!--
14 <HTMLSelectElement>.autofocus = <boolean>;
15 <boolean> = true
16 <boolean> = false
17
18 <new boolean> = <HTMLSelectElement>.reportValidity();
19 -->
20 <script>
21 function jsfuzzer() {
22 htmlvar00002.autofocus = true;
23 var var00001 = htmlvar00002.reportValidity();
24 }
25 </script>
26
27 <!--
28 <HTMLFormElement> = <lt>form <form_attributes>
29 <attributes><gt><formchildren><lt>/form<gt>
30 <attributes> = <attribute> <attribute> <attribute>
31 <attribute> <attribute>
32 <attribute> = <attribute_class>
33 <attribute_class> = class="<class_value>"
34 <class_value> = <class>
35 <class> = class<int min=0 max=9>
36 <formchildren> = <newline><formchildelement><newline>
37 <formchildelement> = <HTMLSelectElement>
38
39 <HTMLSelectElement> = <lt>select <select_attributes>
40 <attributes><gt><selectchildren><lt>/select<gt>
41 <attribute> = <attribute_eventhandler>
42 <attribute_eventhandler> = <attribute_onblur>
43 <attribute_onblur> = onblur="<eventhandler>"
44 <eventhandler> = eventhandler1()
45 <eventhandler> = eventhandler2()
46 <eventhandler> = eventhandler3()
47 <eventhandler> = eventhandler4()
48 <eventhandler> = eventhandler5()
49 <selectchildren> = <optionelements>
50 <optionelements> = <htmlsafestring min=32 max=126>
51 -->
52 <body onload="jsfuzzer()">
53 <form id="htmlvar00001" class="class1">
54 <select id="htmlvar00002" onblur="eventhandler2()">
55 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
56 </select>
57 </form>
58 </body>

Figure 8: An example of how Domato randomly generates

an HTML document.

C WEBKIT BUILD OPTIONS

We refer to the build options Domato uses to compile WebKit on Linux for our evalua-
tion. The detailed command line is listed in Figure 9.

1 cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=.
2 -DCMAKE_SKIP_RPATH=ON -DPORT=GTK -DUSE_LIBHYPHEN=OFF
3 -DENABLE_MINIBROWSER=ON -DUSE_SYSTEM_MALLOC=ON -DUSE_WPE_RENDERER=OFF
4 -DENABLE_INTROSPECTION=OFF -DENABLE_SPELLCHECK=OFF
5 -DENABLE_BUBBLEWRAP_SANDBOX=OFF -DENABLE_GTKDOC=OFF
6 -DUSE_GSTREAMER_GL=OFF -DENABLE_MEDIA_STREAM=OFF
7 -DENABLE_VIDEO=OFF -DENABLE_WEB_AUDIO=OFF -DENABLE_GEOLOCATION=OFF
8 -DUSE_LIBSECRET=OFF -DENABLE_WEB_RTC=OFF -DUSE_LIBNOTIFY=OFF
9 -DENABLE_WEB_CRYPTO=OFF -DUSE_WOFF2=OFF -Wno-dev

Figure 9: The WebKit build options used in evaluation.

D TESTCASE COMPLEXITY OF FREEDOM

AND DOMATO

To have a fair comparison between FreeDom and Domato (see §6.2.2), we use the
original Domato and configure FreeDom to make a random document generated by
both fuzzers generally have:

• a tree of 60 HTML and SVG elements on average;
• 50 CSS rules, each of which has two selectors on average and 20 CSS properties;
• five event handlers besides main(). main() has 1,000 lines of DOM API calls,

while every other event handler only has 500. Every event handler installs a
counter check at the beginning to ensure that it is never executed for more
than two times.

E A POC GENERATED BY FREEDOM

1 <style>
2 *::first-letter { -webkit-justify-content: space-between; }
3 #v22 { content: url(#foo); }
4 * { -webkit-filter: url(#v21); -webkit-border-radius: inherit }
5 </style>
6
7 <script>
8 function main() { document.bgColor = "rgba(40,125,181,209)"; }
9 function f3() { var v62 = v22.getBoundingClientRect(); }
10 </script>
11
12 <body onload="main()">
13 <svg id="v9" xmlns="http://www.w3.org/2000/svg">
14 <defs id="v10"></defs>
15 <set id="v20" attributeName="preserveAspectRatio" onbegin="f3()"></set>
16 <filter id="v21"></filter>
17 <rect id="v22" y="32" rx="32" height="82%" x="32"></rect>
18 </svg>
19 </body>

Figure 10: The PoC snippet of a bug in WebKit found by

FreeDom.

In Figure 10, we list the PoC of a crash found by FreeDom that has various context-
dependent values (CDVs) and is thus missed by Domato in our evaluation. The PoC
includes (1) #v22 at Line 3, which is CDV1 , (2) -webkit-filter: url(#v21) at Line 4,
which is CDV2 , and (3) attributeName="preserveAspectRatio" at Line 15, which is
CDV3 .

	Abstract
	1 Introduction
	2 Background
	2.1 DOM Explained
	2.2 A Primer on DOM Fuzzing

	3 Motivation
	3.1 On the Ineffectiveness of Static Grammars
	3.2 Exploring Coverage-guided DOM Fuzzing

	4 Design
	4.1 Overview
	4.2 Context-aware Document Representation
	4.3 Context-aware DOM Fuzzing
	4.4 Distributed Fuzzing Environment

	5 Implementation
	6 Evaluation
	6.1 Discovering New DOM Engine Bugs
	6.2 Effectiveness of Context-aware Fuzzing
	6.3 Effectiveness of Coverage-driven Fuzzing
	6.4 High-Throughput Executions

	7 Discussion
	7.1 More Discussions on FD-IR
	7.2 Potentials of Coverage-driven DOM fuzzing

	8 Related work
	9 Conclusion
	10 Acknowledgment
	References
	A DOM engine bugs found by FreeDom
	B The Generation Engine of Domato
	C WebKit Build Options
	D Testcase complexity of FreeDom and Domato
	E A PoC generated by FreeDom

