
Fuzzing JavaScript Engines with
Aspect-preserving Mutation

Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, Taesoo Kim

Everyone uses web browser (+ JS engine)

2

4,000,000,000

New Tab

https://gts3.org/

S&P’20!

3

Private
data

Bank
accountPassword

JS bugs are security-critical

5

2017

2018

2019

2020

()

9/11 (82%)

995K

797K

443KFinding JS bugs is hard

• Large codebase

6

1M

8

• Deep semantic bugs

Parser / Interpreter

JIT compiler

Executor

JS engine

Finding JS bugs is hard

9

2016 2017 2018 2019
Year

0

5

10

15

20

25

#
of

B
u
gs

JIT-OOB
JIT-Type confusion
JIT-Memory corruption
Parser/Interpreter

• Deep semantic bugs 1

Finding JS bugs is hard

1 Google Project Zero issue trackers and commits of ChakraCore for security updates by Aug 2019

Simple & shallow bugs

Complex & deep bugs

Motivating example

10

• Special conditions are necessary to discover new bug from old ones
• What human hacker is good at

Motivating example

11

• Special conditions are necessary to discover new bug from old ones
• JIT-able condition by for-loop & empty object

Motivating example

12

• Special conditions are necessary to discover new bug from old ones
• “Function” which has side-effect

Motivating example

13

• Special conditions are necessary to discover new bug from old ones
• Instruction order

Motivating example

14

• Special conditions are necessary to discover new bug from old ones
• Newly introduced code

Aspects

• Key features that guide to discover new bugs,
which are embedded in the Proof-of-Concept of existing bugs

15

Assign float values to an array
and order of the instructions

Type confusion

Aspects

• Key features that guide to discover new bugs,
which are embedded in the Proof-of-Concept of existing bugs

16

For loop to invoke JIT compiler

Assign float values to an array
and order of the instructions

Aspects

• Key features that guide to discover new bugs,
which are embedded in the Proof-of-Concept of existing bugs

17

For loop to invoke JIT compiler

Arrow function to assign object value
to the same array

Assign float values to an array
and order of the instructions

Our solution:
DIE: Fuzzing JS engine with
generation and Aspect-preserving mutation

21

DIE overview

22

Original Seeds

Preprocessing Input
generation Execution Crash!

Feedback

Dynamic &
Static analysis

Typed-AST

w/ instrumented
JS engine

Code coverage

JS file

Preprocessing for typed-AST

23

Original Seeds

Preprocessing Input
generation Execution Crash!

Feedback

Dynamic &
Static analysis

Typed-AST

w/ instrumented
JS engine

Code coverage

JS file

Instrument

Dynamic
Analysis

Type analysis

NUM

NUM
ARRAY

while

==

a
[]

0
1

NUM

NUM

IMMUTABL
E

Typed-AST

Type Information

AST +

Static Analysis

Pre-Processing

Input
generation

…

Type Analysis: dynamic analysis

• Execute instrumented corpus

24

recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus

Type Analysis: dynamic analysis

• Execute instrumented corpus

25

recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus

Type Analysis: dynamic analysis

• Execute instrumented corpus

26

recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus

n : number

Type Analysis: dynamic analysis

• Execute instrumented corpus

27

recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus

n : number
array:

numberArray

Type Analysis: dynamic analysis

• Execute instrumented corpus

28

Type Information

recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus

n : number

n : number
array:

numberArray

Type Analysis: static analysis

29

Type Information

while

==

a

[]

0

1

AST

+

• Propagate type information from bottom to top with custom rules

Type Analysis: static analysis

30

Type Information

while

==

a

[]

0

1

AST

+
while

==

a

[]

0

1
NUM

NUM ARRAY NUM

NUM

IMMUTABLE

• Propagate type information from bottom to top with custom rules

Typed-AST

Input generation

31

Original Seeds

Preprocessing Input
generation Execution Crash!

Feedback

Dynamic &
Static analysis

Typed-AST

w/ instrumented
JS engine

Code coverage

JS file

Mutated
Seeds

Generation
Engine

Mutation
Engine

Mutated Typed-AST

Mutate
(Aspect-preserving)

NUM
ARRAY

while

==

a
[]

.
NUM

NUM

IMMUTABL
E

a
[]

0

a

“length”

NUM
ARRAY

NUM

NUMNUM
ARRAY

Input Generation

NUM

NUM
ARRAY

while

==

a
[]

0
1

NUM

NUM

IMMUTABL
E

Typed-AST

…

Aspect-preserving mutation

• Type & structure preserving mutation

32

For loop to invoke JIT compiler

Arrow function to assign object value
to the same array

Assign float values to an array
and order of the instructions

Type-preserving mutation
• Mutate typed-AST node with same typed node

33

Generation
Engine

while

==

a

[]

0

1

Typed-AST

NUM

NUM ARRAY NUM

NUM

IMMUTABLE Type
Information

+

Type-preserving mutation
• Mutate typed-AST node with same typed node

34

Generation
Engine

Mutation
Engine

while

==

a

[]

0

1

Typed-AST

NUM

NUM ARRAY NUM

NUM

IMMUTABLE

a

.

length a 0

[]

NUM typed node

Type
Information

+

Type-preserving mutation
• Mutate typed-AST node with same typed node

35

Generation
Engine

Mutation
Engine

while

==

a

[]

0

1

Typed-AST

NUM

NUM ARRAY NUM

NUM

IMMUTABLE

while

==

a

[]

Mutated Typed-AST

NUM ARRAY

NUM

NUM

IMMUTABLE

a

.

length a 0

[]

a

.

length

a 0

[]

NUM ARRAY
NUM

NUM

NUM typed node

Type
Information

+

Structure-preserving mutation

• Selectively mutate nodes to avoid breaking control-flow structure

36

while

==

a

[]

0

1

Typed-AST

NUM

NUM ARRAY NUM

NUM

IMMUTABLE

Mutation
Engine

Structure-preserving mutation

37

while

==

a

[]

0

1

Typed-AST

NUM

NUM ARRAY NUM

NUM

IMMUTABLE

Mutation
Engine

• Selectively mutate nodes to avoid breaking control-flow structure

Execution with instrumented JS engine

38

Original Seeds

Crash!Preprocessing Input
generation Execution

Feedback

Dynamic &
Static analysis

Typed-AST

w/ instrumented
JS engine

Code coverage

JS file

Coverage Feedback

Instrumented
JS Engines

Execute

Execution/Feedback

Distributed
Fuzzing Platform

Mutated
Seeds

Input
generation

…

Implementation

• Core fuzzing engine
• Type analyzer

• Dynamic instrumentation tool
• Generation engine
• Mutation engine
• AFL modification

• Distributed fuzzing harness
• Coordinator
• Local agent
• Crash reporter

• Total

39

3,677 lines of TypeScript
222 lines of Python

10,545 lines of TypeScript
2,333 lines of TypeScript

453 lines of C

205 lines of TypeScript
1,419 lines of Python and Shell Script

492 lines of Python
19,346 lines of code

Evaluation
Fuzzing JS engines with DIE in the wild
... and extra information to understand the techniques applied on DIE

40

Fuzzing JS engines in the wild

• We ran DIE up to 3 weeks against 3 major JS engines
• 48 unique bugs in total
• 39 fixed bug
• 11 acknowledged CVEs
• 27K USD bug bounty reward as of now

41

Evaluation: effectiveness of leveraging aspect

• DIE found 84 distinct crashes and 28 unique bugs in ChakaCore

42

Preserved aspect Bug Crash

Structure & Type 14/28 (50.00%) 40/84 (47.62%)

Structure-only 12/28 (42.86%) 32/84 (42.86%)

Total 22/28 (92.86%) 72/84 (90.48%)

Case study: CVE-2019-0990

43

• corpus: CVE-2018-0777

Generation
w/ type information

Mutation
(type preserving)

Mutation
(structure preserving)

Evaluation: aspect preserving

• Ratio difference of JIT-optimization phase invocation between the
generated inputs and seed files
• vs DIEt : 1.53x
• vs CodeAlchemist : 4.29x
• vs Superion: negligible

• Mutation-based fuzzer

44

Die Diet Superion CodeAlchemist
0

25

50

75

100

125

150

175

200

O
p
ti
m

iz
at

io
n

In
vo

ca
ti
on

R
at

e
(%

)

Forward
FGPeeps
FGBuild
Backward
CaptureByteCodeRegUse
BackEnd
DeadStore
GlobOpt
Etc

DIEt : DIE without structure-preserving
(type preserving only)

Evaluation: validity of generated input

• Error rate of generated inputs
• vs Superion: 2.31x
• vs CodeAlchemist: 2.31x
• vs jsfunfuzz: 2.42x
• DIEc produces less error rate than

vanilla

45

Vanilla Diec Die
Superio

n

CodeAlchemist
jsfu

nfuzz
0

10

20

30

40

E
rr

or
R

at
e

(%
)

SyntaxError
ReferenceError
TypeError
RangeError

DIEc : DIE without coverage feedback

Original corpus

Evaluation: comparison w/ state-of-the-art fuzzers

• Number of unique crashes found by DIE vs state-of-the-art fuzzers
for 24 hours

47

JS engine DIE DIEt Superion CodeAlchemist

ChakraCore 1.11.10 17 7 0 3

JavaScriptCore
2.24.2 2 0 0 0

V8 7.7.100 2 1 1 0

DIEt : DIE without structure-preserving
(type preserving only)

Conclusion

• DIE is a JS engine fuzzer that preserves the aspects from PoC of
existing bugs achieved by type and structure preserving
• Discovered 48 unique bugs with 11 CVEs assigned
• Open sourced: https://github.com/sslab-gatech/DIE

48

Thank you!
Q & A

49

