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JS bugs are security-critical
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• Large codebase
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• Deep semantic bugs
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• Deep semantic bugs 1

Finding JS bugs is hard

1 Google Project Zero issue trackers and commits of ChakraCore for security updates by Aug 2019 

Simple & shallow bugs

Complex & deep bugs



Motivating example
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• Special conditions are necessary to discover new bug from old ones
• What human hacker is good at



Motivating example
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• Special conditions are necessary to discover new bug from old ones
• JIT-able condition by for-loop & empty object



Motivating example
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• Special conditions are necessary to discover new bug from old ones
• “Function” which has side-effect



Motivating example
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• Special conditions are necessary to discover new bug from old ones
• Instruction order



Motivating example
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• Special conditions are necessary to discover new bug from old ones
• Newly introduced code



Aspects

• Key features that guide to discover new bugs,
which are embedded in the Proof-of-Concept of existing bugs
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Assign float values to an array 
and order of the instructions

Type confusion



Aspects

• Key features that guide to discover new bugs,
which are embedded in the Proof-of-Concept of existing bugs
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For loop to invoke JIT compiler

Assign float values to an array 
and order of the instructions



Aspects

• Key features that guide to discover new bugs,
which are embedded in the Proof-of-Concept of existing bugs
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For loop to invoke JIT compiler

Arrow function to assign object value 
to the same array

Assign float values to an array 
and order of the instructions



Our solution: 
DIE: Fuzzing JS engine with 
generation and Aspect-preserving mutation
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DIE overview
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Preprocessing for typed-AST
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Type Analysis: dynamic analysis

• Execute instrumented corpus
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recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus



Type Analysis: dynamic analysis

• Execute instrumented corpus
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Type Analysis: dynamic analysis

• Execute instrumented corpus
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recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()

Corpus

n : number



Type Analysis: dynamic analysis

• Execute instrumented corpus
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recordType()
var n = 3
recordType()
var array = new Array(n)
recordType()
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numberArray



Type Analysis: dynamic analysis

• Execute instrumented corpus
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Type Information 
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Type Analysis: static analysis
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• Propagate type information from bottom to top with custom rules



Type Analysis: static analysis
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Input generation
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Aspect-preserving mutation

• Type & structure preserving mutation
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For loop to invoke JIT compiler

Arrow function to assign object value 
to the same array

Assign float values to an array
and order of the instructions



Type-preserving mutation
• Mutate typed-AST node with same typed node
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Type-preserving mutation
• Mutate typed-AST node with same typed node
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Type-preserving mutation
• Mutate typed-AST node with same typed node
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Structure-preserving mutation

• Selectively mutate nodes to avoid breaking control-flow structure
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Structure-preserving mutation
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Execution with instrumented JS engine
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Implementation

• Core fuzzing engine
• Type analyzer 

• Dynamic instrumentation tool
• Generation engine
• Mutation engine
• AFL modification

• Distributed fuzzing harness
• Coordinator
• Local agent
• Crash reporter

• Total
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3,677 lines of TypeScript
222 lines of Python

10,545 lines of TypeScript
2,333 lines of TypeScript

453 lines of C

205 lines of TypeScript
1,419 lines of Python and Shell Script

492 lines of Python
19,346 lines of code



Evaluation
Fuzzing JS engines with DIE in the wild
... and extra information to understand the techniques applied on DIE
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Fuzzing JS engines in the wild

• We ran DIE up to 3 weeks against 3 major JS engines
• 48 unique bugs in total
• 39 fixed bug 
• 11 acknowledged CVEs
• 27K USD bug bounty reward as of now

41



Evaluation: effectiveness of leveraging aspect

• DIE found 84 distinct crashes and 28 unique bugs in ChakaCore
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Preserved aspect Bug Crash

Structure & Type 14/28 (50.00%) 40/84 (47.62%)

Structure-only 12/28 (42.86%) 32/84 (42.86%)

Total 22/28 (92.86%) 72/84 (90.48%)



Case study: CVE-2019-0990
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• corpus: CVE-2018-0777

Generation
w/ type information
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Evaluation: aspect preserving

• Ratio difference of JIT-optimization phase invocation between the 
generated inputs and seed files
• vs DIEt : 1.53x
• vs CodeAlchemist : 4.29x
• vs Superion: negligible

• Mutation-based fuzzer
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Evaluation: validity of generated input

• Error rate of generated inputs
• vs Superion: 2.31x
• vs CodeAlchemist: 2.31x
• vs jsfunfuzz: 2.42x
• DIEc produces less error rate than

vanilla
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Evaluation: comparison w/ state-of-the-art fuzzers

• Number of unique crashes found by DIE vs state-of-the-art fuzzers
for 24 hours
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JS engine DIE DIEt Superion CodeAlchemist

ChakraCore 1.11.10 17 7 0 3

JavaScriptCore
2.24.2 2 0 0 0

V8 7.7.100 2 1 1 0

DIEt : DIE without structure-preserving
(type preserving only)



Conclusion

• DIE is a JS engine fuzzer that preserves the aspects from PoC of 
existing bugs achieved by type and structure preserving
• Discovered 48 unique bugs with 11 CVEs assigned
• Open sourced: https://github.com/sslab-gatech/DIE
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Thank you!
Q & A
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