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SUMMARY

Over the past decade, multicore machines have become the norm. A single machine is

capable of having thousands of hardware threads or cores. Even cloud providers offer such

large multicore machines for data processing engines and databases. Thus, a fundamental

question arises is how efficient are existing synchronization primitives—timestamping and

locking—that developers use for designing concurrent, scalable, and performant applications.

This dissertation focuses on understanding the scalability aspect of these primitives, and

presents new algorithms and approaches, that either leverage the hardware or the application

domain knowledge, to scale up to hundreds of cores.

First, the thesis presents Ordo, a scalable ordering or timestamping primitive, that forms

the basis of designing scalable timestamp-based concurrency control mechanisms. Ordo

relies on invariant hardware clocks and provides a notion of a globally synchronized clock

within a machine. We use the Ordo primitive to redesign a synchronization mechanism and

concurrency control mechanisms in databases and software transactional memory.

Later, this thesis focuses on the scalability aspect of locks in both virtualized and non-

virtualized scenarios. In a virtualized environment, we identify that these locks suffer from

various preemption issues due to a semantic gap between the hypervisor scheduler and

a virtual machine scheduler—the double scheduling problem. We address this problem

by bridging this gap, in which both the hypervisor and virtual machines share minimal

scheduling information to avoid the preemption problems.

Finally, we focus on the design of lock algorithms in general. We find that locks in

practice have discrepancies from locks in design. For example, popular spinlocks suffer

from excessive cache-line bouncing in multicore (NUMA) systems, while state-of-the-art

locks exhibit sub-par single-thread performance. We classify several dominating factors that

impact the performance of lock algorithms. We then propose a new technique, shuffling,

that can dynamically accommodate all these factors, without slowing down the critical

xviii



path of the lock. The key idea of shuffling is to re-order the queue of threads waiting to

acquire the lock with some pre-established policy. Using shuffling, we propose a family of

locking algorithms, called SHFLLOCKS that respect all factors, efficiently utilize waiters,

and achieve the best performance.
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CHAPTER 1

INTRODUCTION

The last decade has seen dramatic changes in the hardware landscape. Until the last

decade, processor vendors improved application performance by increasing CPU frequency.

However, physical limitations in the form of CPU to heat up has resulted in pursuing the

direction of multicore machines. As a result, microprocessor vendors have been building

bigger multi-core and multi-socket (NUMA) machines [7, 8]. These machines provide a

massive amount of memory, accessible by tens-to-hundreds of CPUs in a single machine.

Besides, these machines are also capable of supporting non-volatile memory [9, 10, 11],

storage devices [12, 13, 14], and even specialized support for hardware virtualization [15,

16, 17]. Because of fast-evolving hardware, concurrent programming is now the de-facto

standard to design today’s application to leverage today’s hardware.

On the software front, almost every application, such as databases [18], processing

engines [19, 20], and operating systems are now concurrent. Application developers are

parallelizing their applications to use multiples of available cores efficiently. Also, to further

improve hardware utilization, organizations are predominantly using virtualization to run

multiples of applications together. This scheduling leads to over-subscribing hardware

resources, even for large multicore and multi-socket machines.

Thus, application developers rely on various types of synchronization primitives to

design concurrent data structures, algorithms, concurrency frameworks, and applications.

These primitives handle the concurrency of operations by not only ensuring the correct use

of the shared resources but also scheduling the concurrent events. For example, several

applications use timestamping as an ordering mechanisms to design 1) concurrency control

algorithms in databases and software transactional memory (STM); 2) logging in databases

and file systems; and 3) memory reclamation in both memory allocators and garbage
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collectors. Furthermore, application developers rely on the lock-based programming model

to design concurrent and parallel applications. Lock-based programming model provides

mutual exclusion (i.e., exclusive access to shared resources) and also schedule the concurrent

requests to access or modify the shared resource. The reason this model is so successful

because it is the easiest to reason about correctness and enables easy composability of

multiple data structures.

The basic premise of these primitives is to not only ensure application correctness but

also have almost negligible overhead while scheduling concurrent events in an application.

Unfortunately, with today’s evolving hardware and ever-changing application requirements,

most of these synchronization primitives have been designed specifically for either hardware

or software requirements. For instance, first, most of the timestamp-based concurrency

algorithms rely on atomic instructions that become scalability bottleneck with increasing

thread count. Second, in the case of lock-based programming, there is no lock algorithm

that satisfies various factors, such as data movement, thread contention, over-subscription,

and memory footprint, which impact the scalability of locks and their adoption. Finally, the

introduction of multiple layers of abstractions, such as virtualization, introduces scheduling

overhead for VMs. This overhead stems from the missing semantic information across

layers that inhibits the forward progress of applications running inside VMs.

Thesis Statement

Synchronization primitives are the basic building blocks for today’s software stacks that

not only ensure application correctness but also schedule concurrent events. Hence, this

thesis further improves the performance of applications by providing right abstractions

for these primitives that leverage both software and hardware interfaces to efficiently

schedule such concurrent events.

This thesis focuses on efficiently scheduling concurrent events at various levels with

respect to synchronization primitives: 1) leveraging hardware to minimize ordering over-
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head (timestamping); 2) exposing semantic information across layers to solve the double-

scheduling issues; and 3) decoupling the policy from the design/implementation of lock

algorithms. Hence, this thesis makes the following contributions:

1.1 Ordering in Concurrency Control Algorithms

Chapter 3 describes Ordo, a scalable timestamping primitive for multicore machines that

employs invariant hardware clocks to address problem of timestamping. This invariant

hardware clock is already supported by current major processor architectures [21, 22, 23,

24]. An invariant clock has a unique property: It is monotonically increasing and has a

constant skew, regardless of dynamic frequency and voltage scaling, and resets itself to

zero whenever a machine resets (on receiving the RESET signal), which is ensured by

the processor vendors [25, 26, 22, 24]. However, assuming that all invariant clocks in

a machine are synchronized is incorrect because processors do not receive the RESET

signal at the same time, which makes these clocks unusable. Thus, we cannot compare two

clocks with confidence when correctly designing any time-based concurrent algorithms.

The comparison of clocks with no confidence makes them unusable to correctly design a

concurrent algorithm. To provide a guarantee of correct use of these clocks, we propose

a new primitive, called Ordo, that embraces uncertainty while comparing two clocks and

provides an illusion of a globally synchronized hardware clock in a single machine. We find

that various timestamp-based algorithms can benefit from the Ordo primitive. We expose

three simple clock-specific methods to replace existing clock with Ordo in applications. The

only trick lies in handling the uncertainty window. We modify both physical and logical

timestamp-based algorithms with the Ordo primitive. Some examples include concurrent

data structure libraries and concurrency control algorithms for STM and databases.

3



1.2 Double Scheduling in Virtualization

Cloud providers provide the notion of horizontal as well as vertical application scaling. By

running oversubscribing resources. Unfortunately, the multiplexing of VMs introduces the

double scheduling problem: 1) the guest OS schedules processes on virtual CPUs (vCPUs)

and 2) the hypervisor schedules vCPUs on physical CPUs. The root cause of this problem is

a semantic gap between a hypervisor and guest OSes. Chapter 4 identifies several symptoms

of the problem that have been individually studied and are very limited. We present an

overall one-shot solution with a particular insight: if a certain component of a guest OS

is allowed to proceed further, that guest OS will make forward progress. These critical

components are the shared critical sections that synchronization mechanisms guard to ensure

OS correctness. We bridge the semantic gap between a guest OS and the hypervisor with

the following four ideas for making an effective scheduling decision to allow its forward

progress. First, we consider shared resources running inside VMs as a critical component.

Such resources are guarded by locks or are executing inside interrupt contexts Hence, these

components act as forward progress indicators for an applications running inside VMs.

Second, we devise a set of para-virtualized methods that annotate these critical components

as enlightened critical sections (eCS). These methods are lightweight and rely on shared

memory operations to notify a hypervisor from the VM and vice-versa, Third, the hypervisor

can now figure out whether a vCPU is executing an eCS and can reschedule it. Finally, we

leverage our methods to design a virtualized schedule-aware spinning strategy that allows

VMs to be more cooperative to other VMs running on a machine.

1.3 Scalable and Practical Locking Primitives

Chapter 5 answers a fundamental question regarding the design of locking primitives. We

first present four dominating factors that affect the locks’ scalability and their adoption

for evolving hardware and software requirements. Moreover, none of the existing lock
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algorithms meet all the required criteria. We address all these factors by designing a new

breed of locking protocols, called SHFLLOCKS, that are highly performant and practical

locks. SHFLLOCKS rely on the shuffling technique, that allows the decoupling of the

lock design from policy enforcement, such as NUMA-awareness and parking/wake-up

strategies. Moreover, shuffling enables enforcing these policies mostly off the critical path

by the waiters. Our evaluation in both kernel space and userspace shows that SHFLLOCKS

maintain the best throughput regardless of the number of threads contending for the lock.

1.4 Outline and Contributions

The main contributions of this thesis are designing 1) a new ordering primitive that handles

the scalability bottleneck in timestamp concurrency control algorithms, 2) understanding

the scalability bottlenecks that arise due to synchronization primitives, 3) addressing the

limitations of existing synchronization primitives by designing five new algorithms 4) even

in the case of virtualized environments.

The rest of this dissertation is organized in the following chapters. Chapter 2 provides the

necessary background used throughout this dissertation, such as the importance of ordering,

synchronization in the age of many-core machines across the software stack. Chapter 3

presents the Ordo, a scalable ordering primitive for multicore machines. The later part

of this dissertation focuses on rethinking the design of synchronization primitives and the

associated problems occurring in a virtualized environment. Chapter 4 describes an approach

to address the double scheduling problem in a virtualized environment. Chapter 5 presents

a family of locking algorithms that use a new technique, called shuffling, that allows the

decoupling of lock design from policy enforcement. Then Chapter 6 peruses over a set of

related works that led us to this dissertation. In Chapter 7, we discuss some of the limitations

of proposed approaches and some open-ended questions. Finally, Chapter 8 concludes this

dissertation.
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CHAPTER 2

BACKGROUND AND MOTIVATION

Synchronization primitives are the backbones for designing concurrent applications. At the

hardware level, users rely on hardware constructs, such as atomic instructions that provide a

linearizability guarantee [27]. At the software level, we rely on these atomic instructions

to provide basic software abstractions, such as synchronization frameworks, and locking

primitives for designing concurrent applications. This chapter offers some general ideas,

concepts, and background material for such constructs on multicore machines.

2.1 A Primer on Multicore Machines

Socket Core LLC DRAM Interconnect

Figure 2.1: Multicore machine design.

Figure 2.1 shows a modern multicore machine, which comprises several sockets. Each

socket has several homogeneous cores and a set of private and shared caches. Generally,

a core has its private cache (L1 and L2). It accesses a bigger shared cache (LLC) with
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other cores in a socket. Moreover, each core stores data in DRAM, which is accessible

via the memory controller. These multicore machines have non-uniform memory access

(NUMA) architecture, i.e., a high-speed interconnect (e.g., Intel QPI/UPI [28, 29] or AMD

HyperTransport [30]) links all sockets together. On such machines, accessing the local

socket memory is faster than accessing the remote socket memory (hence, the term NUMA).

Moreover, each machine provides a coherent view of memory to all cores through a cache-

coherence protocol [31]. The coherence protocol works at the granularity of a cache line

(64 bytes), as each core tracks the status of a memory location and communicates to

other cores when the location is modified or accessed. Unfortunately, maintaining cache-

coherence is costly in NUMA machines because of the expensive communication through

the interconnect. This latency cost is up to 2-3× higher than within a socket [32].

2.2 Ordering in Concurrency

With the advent of multicore machines, concurrent programming is the de facto approach

to design today’s algorithms, which applications rely upon. Hence, ordering becomes

fundamental to the design of any concurrent algorithm. With ordering, algorithms can

achieve varying levels of consistency to squeeze out the performance from hardware. For

systems software, consistency depends on algorithms that require linearizability [27] for

the composability of data structures [33, 6], concurrency control mechanisms for software

transactional memory (STM) [1], or different isolation levels for database transactions [5,

34, 3]. The notion of ordering not only is limited to consistency, but also is applicable to

either maintaining the history of operations for logging [35, 36, 37, 38] or determining the

quiescence period for memory reclamation [39, 40, 33]. Depending on the consistency

requirement, ordering such as a logical timestamping [33, 1], physical timestamping [39,

41, 6, 42, 43], and data-driven versioning [34, 44] can be achieved in several ways. The

most common approach is to use a logical clock that is easier to maintain by software and is

amenable to various ordering requirements.
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A logical clock is a favorable ordering approach. An algorithm can globally update

or access the clock in a single machine. However, the logical clock is one of the prime

scalability bottlenecks on large multicore machines [7, 8] because it is maintained via

an atomic instruction that incurs cache-coherence traffic. Unfortunately, these atomic

instructions create cache-line contention that becomes the scalability bottleneck and it is

more severe in multi-socket machines and in hyper-threaded scenarios [32, 45, 46]. Thus,

maintaining a software clock is a deterrent to the scalability of an application, which holds

true for several concurrency control mechanisms for concurrent programming [1, 47] and

database transactions [3, 5]. To address this problem, various approaches—ranging from

batched-update [5] to local versioning [34] to completely share-nothing designs [48, 49]—

have been put into practice. However, these approaches have some side effects. They

either increase the abort rates for STM [50] and databases [5] or complicate the design of the

system software [49, 34, 51]. In addition, in the past decade, physical timestamping has

been gaining traction for designing data structures [52, 43] synchronization mechanisms [6]

for large multicore machines. However, such approaches assume that timestamp counters

provided by hardware are synchronized, which is not entirely correct for existing hardware.

2.2.1 Multicore Hardware Clocks

Today’s multicore machines provide per-core or per-processor hardware clocks [21, 22,

23, 24]. For example, all modern processor vendors such as Intel and AMD provide an

RDTSC counter, while Sparc and ARM have stick and cntvct counter, respectively. These

hardware clocks are invariant in nature, i.e., processor vendors guarantee that these clocks

are monotonically increasing at a constant rate,1 regardless of the processor speed and its

fluctuation. Moreover, they reset to zero whenever a processor receives a RESET signal (i.e.,

reboots). To provide such an invariant property, the current hardware always synchronizes

these clocks from an external clock on the motherboard [53, 26, 25]. This is required

1These clocks may increase at a different frequency than that of a processor.
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because vendors guarantee that the clocks do not fluctuate even if a processor goes to deep

sleep states, which is always ensured by the motherboard clock. However, vendors do not

guarantee the synchronization of clocks across a processor (socket) boundary in a multicore

machine [21], not even within a processor because there is no guarantee that each processor

can receive the broadcasted RESET signal at the same instant either inside a socket or across

them. In addition, these hardware clocks do not provide the notion of real time.

These current invariant clocks are not reliable enough to design concurrent algorithms. To

use them with confidence, we need to have a clock synchronization mechanism that provides

constant physical skew between clocks, or we measure our offset to synchronize these

clocks in software. Unfortunately, none of clock synchronization approaches work because

hardware vendors cannot provide physical skew for every processor, and we cannot measure

using existing clock synchronization protocols [54, 55, 56, 57], as software measurement

induces overhead, in which the measured offset may be greater than the physical offset.

2.3 Locking Primitives

Locks are one of the easiest approach to designing concurrent application. Figure 2.2

illustrates the increasing use of locks in the Linux OS. Similar to the evolution of multicore [7,

8], not only the use of locks has dramatically increased for fine-grained locking [58], but

also they have evolved into several types to minimize the cost of handling critical sections.

For instance, the current OSes rely on several types of locks, ranging from non-blocking

(e.g., spinlocks, read-write locks) to blocking (e.g., mutex, read-write semaphores). This

trend is also applicable in other concurrent applications, such as databases, and other OSes.

Another interesting trend is that these locks have been continuously evolving, as shown in

Table 2.1, to improve the scalability of OS. For instance, a simple spinlock has evolved from

a simple test-and-set (TAS) lock to a para-virtualized qspinlock (a variant of MCS lock and

also supports virtualized environment). Hence, we try to understand the implication of these

primitives and their interplay with the task scheduler on application performance. We first
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Figure 2.2: Indirect metric of the growing complexity of lock usage: the number of lock() API calls
in the Linux kernel source code.

describe the general evolution of locks and later contrast it with lock evolution inside the

Linux kernel.

2.3.1 Evolution of Lock design

Since the dawn of concurrent programming, hardware has been the dominant factor [32]

in the evolution of lock algorithms. For instance, queue-based locks [59] reduce cache

traffic relative to test-and-set (TAS) and ticket locks. On NUMA architectures, hierarchical

locks improve throughput [60, 61, 62, 63, 64, 65] as they amortize remote access cost by

physically partitioning a lock into a global lock and per-node locks. Cohort locks [63]

generalize this design for any lock combination up to two levels, while Chabbi et al. [64,

65] further extended this approach to multiple hierarchies, using the MCS lock as a building

block. Unfortunately, hierarchical locks have two issues: degraded performance for small

numbers of cores, and, most importantly, memory overhead. AHMCS [65] addresses the

problem of single thread performance but suffers from the memory overhead of hierarchical

locks. Meanwhile, our CST locks work [66] partially addresses the problem of memory

overhead by allocating the lock’s memory on a first touch basis. However, it still suffers from
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Table 2.1: Evolution of synchronization primitives in the last 15 years in Linux along with their
introduction with the corresponding Linux version.

Locks Features/Optimization Reason: Linux ver

spinlock (NB)

TAS Simple test-and-set based lock that continously spins v2.6.12
Ticket FIFO locks for fairness up to 255 cores v2.6.25
Ticket with para-virtualized TAS Ticket lock in normal case, but TAS lock in para-virtualized scenario v2.6.27
Paravirtualized Ticket Use Ticket locks in both para-virtualized and non-paravirtualized sce-

nario
v2.6.30

Paravirtualized Ticket with slow-
path

Schedule out vCPUs in paravirtualized case to mitigate LHP/LWP v3.11

qspinlock with paravirtualized TAS 4 byte MCS lock to remove cache-line contention, but TAS to remove
LHP/LWP

v4.4

Unfair paravirtualized qspinlock Limited lock stealing and adaptive lock spinning to mitigate LHP/LWP v4.5

rwlock (NB)

4 byte TAS Simple test-and-set lock with first byte for storing reader count v2.6.12
4 byte TAS with 4 byte read count Increase the readers count to compensate for larger machines v3.11
Ticket with 4 byte read/write
(qrwlock)

Improves the throughput and latency of the rwlock v3.16

qspinlock with four byte read-
/write counter (qrwlock)

Further removes cache-line contention of the Ticket lock v4.4

seqlock (NB)
spinlock with sequence number Non-starving writers with retrying readers to read consistent data v2.6.12
New locking reader type method Allow readers to acquire the lock without updating the sequence count v3.12
New latch API Allows queries during non-atomic modifications with two versions v4.2

mutex (B)

A counter with a spinlock and a
wait list

A semaphore with a wait queue that maintains waiters v2.6.12

atomic counter with a waiting
queue

An atomic counter with a simple wait queue to handle waiters v2.6.16

Optimistic spinning Allowed waiters to spin for a time period before scheduling out v2.6.30
Queue-based optimistic spinning Allow waiters to form a queue while spinning to reduce cache-line con-

tention
v3.16

Lockless next waiter wakeup Shortens the fast path to wake-up the very next waiter, thereby decreas-
ing spinlock contention

v4.5

Break if vCPU is preempted Schedule out in the mid-path phase if the owner vCPU is preempted v4.9

rwsem (B)
A counter with a spinlock and a
wait list

A counter maintains both writers and readers with wait list for waiters v2.6.12

Optimistic spinning Allow waiters to wait while spinning to mitigate blocked-waiter wakeup
problem

v3.15

Writer optimistic spinning Disallow waiting writers to waste CPU cycles v4.7

percpu-rwsem (B)
percpu counter with mutex Lightweight RCU-based readers, with rcu_synchronize()-based mutex

writers
v3.6

rwsem with percpu and global
counter

Optimize readers’ counter latency after a writer unlocks v3.7

Optimized readers Removed the global counter by ordering reader-state vs reader-count
with RCU

v4.8

the memory overhead in the worst case and introduces a large memory allocate overhead on

the critical path. Unfortunately, both of these works partially address one of these issues,

but not both concurrently.

We observe a similar evolution in designing readers-writer locks. Mellor-Crummey

and Scott [67] proposed variants of readers-writer locks on top of the queue-based locks.

However, these locks create coherence traffic in NUMA machines. Calciu et al. [68]

proposed a per-socket read indicator on top of Cohort locks to localize the reader contention

within a socket, but both per-socket or per-CPU [69] approaches require extra memory and

are beneficial only in particular cases [70, 71, 72].
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2.3.2 Locks in the kernel space (Linux)

Over the past decade, the Linux kernel has been striving for more concurrency by switching

to finer granularity locks, as shown in Table 2.1. One of the most significant goals is to

maintain optimal single-thread performance. In addition, lock design must consider: 1) the

interaction with the scheduler, 2) the size of the lock structure, and 3) avoiding any explicit

memory allocation. These factors have led to sophisticated optimizations. The spinlock is

the primary locking construct in Linux; it has evolved from TAS to ticket locks to an MCS

variant [73]. The current design is an amalgamation of two locks: a TAS lock in the fast path

and an MCS lock in the slow path.

The second most widely used synchronization primitives are blocking locks. Moreover,

various OSes, in particular Linux, do not allow nested critical sections for any blocking

locks. Currently, these locks can be considered as the big-kernel locks in Linux, as they are

the most common guards that an OS uses for guarding inodes in file system, and address

space manipulation. There are two variants: mutex and rwsem.

mutex incorporates a fast path comprising of test-and-test-and-set lock (TTAS), an

abortable queue-based spinning in mid-path [74], and a parking list per-lock instance in the

slow path. The algorithm works by first trying to atomically update the lock variable, called

fast path; on failure, the mid-path phase (optimistic spinning) begins in which only a single

waiter is queued up if there is no spinning waiter and optimistically spins until its schedule

quota expires. If the waiter still does not acquire the lock, it goes to the slow-path phase

in which it acquires a lock on the parking list (parking lock), adds itself, and schedules out

after releasing the parking lock. During the unlock phase, the lock holder first resets the

TTAS variable and wakes up a waiter from the parking list while holding the parking lock.

Meanwhile, it is possible that either a new waiter can acquire the lock in the fast path or

a spinning waiter in the mid path. Now, once a waiter is scheduled in, it again acquires

the parking lock and tries to acquire the TTAS lock. If successful, it removes itself from

the parking list and enters the critical section; otherwise, it schedules itself out again and
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sleeps until a lock holder wakes it up. The current algorithm is unfair because of the TTAS

lock; even starves its waiters in the slow-path phase. Moreover, the algorithm also suffers

two overheads. Firs is from cache-line contention because of the TTAS lock and waiters

maintenance. Second is the scheduling overhead in the slow-path phase and the unlock

phase for parking a running waiter and waking up a sleeping waiter [66].

The readers-writer semaphore (rwsem) is an extension of mutex, with a writer-preferred

version [75, 76]. Both the write lock and the readers count are encoded in a word to decide

readers, writer, and waiting writers or readers. Moreover, rwsem maintains a single parking

list in which both readers and writers are added in the slow path. Similar to mutex, it also

suffers from severe cache-line movement both when the cores are over- and under-subscribed

because of the contention on the reader-writer indicator.

In summary, these both blocking and non-blocking locks are the most widely used

locking primitives. Unfortunately, these locks degrade the performance of applications. We

particularly study the scalability bottlenecks in OS by focusing on one component: the file

system. We design a new benchmarking suite, called FxMark, that is a collection of micro-

and macro-benchmarks that stresses various components of file systems. We now discuss

the identified locking bottlenecks in five widely deployed file systems.

2.3.3 Locking Bottlenecks in Deployed File Systems

Table 2.2 presents the lock-based scalability bottlenecks with our tool (FxMark), which found

22 bottlenecks in five widely deployed file systems. We draw the following observations, to

which I/O-intensive applications must pay close attention:

• rename() is commonly used in many applications for transactional updates [79, 80,

81]. However, we found that rename() operations are completely serialized at a

system level by two locks in Linux for consistent updates of the dentry cache.

• All of the tested file systems hold an exclusive lock for a file (inode->i_mutex)

during a write operation. This is a critical bottleneck for high-performance database
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Table 2.2: Identified lock-based scalability bottlenecks in tested file systems with FxMark [77].

FS Bottleneck Sync. object Scope Operation

VFS

Rename lock rename_lock System rename()

inode list lock inode_sb_list_lock System File creation and deletion
Directory access lock inode->i_mutex Directory All directory operations
dentry lockref [78] dentry->d_lockref dentry Path name resolution

btrfs

Acquiring a write lock for a B-tree node btrfs_tree_lock() File system All write operations
Acquiring a read lock for a B-tree node btrfs_set_lock_blocking_rw() File system All read operations
Checking data free space data_info->lock File system File append
Reserving data blocks delalloc_block_rsv->lock File system File append
File write lock inode->i_mutex File File write

ext4

Acquiring a read lock for a journal journal->j_state_lock Journal Heavy metadata update operations
Orphan inode list sbi->s_orphan File system File deletion
Block group lock bgl->locks Block group File creation and deletion
File write lock inode->i_mutex File File write

F2FS

Single-threaded writing sbi->cp_rwsem File system File write
SIT (segment information table) sit_i->sentry_lock File system File write
NAT (node address table) nmı->nat_tree_lock File system File creation, deletion, and write
File write lock inode->i_mutex File File write

tmpfs
Capacity limit check (per-CPU counter) sbinfo->used_blocks File system File write near disk full
File write lock inode->i_mutex File File write

XFS

Journal writing log->l_icloglock File system Heavy metadata update operations
Acquiring a read lock of XFS inode ip->i_iolock File File read
File write lock inode->i_mutex File File write

systems allocating a large file but not maintaining the page cache by themselves

(e.g., PostgreSQL). Even in the case of using direct I/O operations, this is the critical

bottleneck for both read and write operations.

• Operations such as creating, deleting, growing, and shrinking a file are not scalable

in Linux. The key reason is that existing consistency mechanisms (i.e., journaling

in ext4 and XFS, copy-on-write in btrfs, and log-structured writing in F2FS) are not

designed with multicore scalability in mind.

• Some file systems have peculiar scalability characteristics for some operations; a single

file read of multiple threads is not scalable in XFS due to the scalability limitation of

Linux’s read/write semaphore; in F2FS, a checkpointing operation caused by segment

cleaning freezes entire file system operations so scalability will be seriously hampered

under write-heavy workloads with low free space; enumerating directories in btrfs

is not scalable because of too frequent atomic operations. The scalability of an

I/O-intensive application is very file system-specific.

• In file systems, concurrent operations are coordinated mainly by locks. Because
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of spinning of spinlock and optimistic spinning of blocking locks, non-scalable

file systems tend to consume more CPU cycles to alleviate the contention. In our

benchmarks, about 30-90% of CPU cycles are consumed for synchronization.

In summary, FxMark points out that some of the file system operations are inherently

non-scalable. However, some of the operations suffer from inefficient locking primitives,

as shown in Table 2.2. Thus, we need scalable locking primitives, both blocking and

non-blocking, that do not degrade the performance of applications.

We now discuss how task scheduling impacts the performance of applications that use

various synchronization primitives to guard shared resources. In particular we focus on

the problem of double scheduling that occurs when multiple task schedulers are stacked

together. This thesis considers the case of virtualized environment to discuss various issues

with the task scheduling problem.

2.4 Double Scheduling in VMs

Double scheduling is a phenomenon in which two schedulers are stacked on top. In the

case of virtualized environment, the VM schedules processes on vCPUs and the hypervisor

schedules vCPUs on physical CPUs. One of the major issues with double scheduling or any

n-level scheduling is there is a missing semantic information among task schedulers. The

semantic gap introduces forward progress of applications because a vCPU can be evicted,

while executing a critical task. We describe several symptoms in the form of preemption

problems that occur in a virtualized environment.

Symptoms of Double Scheduling. In a virtualized environment, a hypervisor multiplexes

the hardware resources for a VM, such as assigning vCPUs to physical CPUs (pCPUs). In

particular, it runs a vCPU to execute by its fair share [82], which is a general policy of

commodity OSes such as Linux, and preempts it because of either vCPUs of other VM or of

the intermittent processes of the OS and bookkeeping tasks of the hypervisor such as I/O

threads. Hence, there is a possibility that the hypervisor can preempt a vCPU while executing
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some critical task inside a VM that leads to an application performance anomaly, which we

enumerate below:

1 Lock holder preemption (LHP) problem occurs when a vCPU holding a lock gets pre-

empted and all waiters waste CPU cycles for the lock. Most of the prior works [83, 84, 85,

86] have focused on non-blocking primitives such as spinlocks.2 On the other hand, LHP also

occurs in blocking primitives such as mutex [89] and rwsem [90, 71], which the prior works

have not identified. However, LHP accounts up to 90% preemptions for blocking primitives

in some of the memory intensive applications that have short critical sections.

2 Lock waiter preemption (LWP) problem stems when the very next waiter is preempted

just before acquiring the lock, which occurs due to the strict FIFO ordering of spinlocks [85,

86]. Fortunately, this problem has been mostly mitigated in existing spinlock design [87, 91],

as the current implementation allows waiters to steal the lock before joining the waiter queue.

We do not see such a problem in blocking primitives because the current implementation is

based on the TTAS lock—an unfair lock, which inherently mitigates LWP.

3 Blocked-waiter wakeup (BWW) problem occurs mostly for blocking primitives in which

the latency to wake up a waiter to pass the lock is quite high. This issue severely degrades the

throughput of applications running on a high core count [66], even in a native environment.

Moreover, it is evident in both under- and over-committed VM scenarios. For example, the

BWW problem degrades the application scalability up to 60%.

4 Readers preemption (RP) problem is a new class of problem that occurs when a vCPU

holding a read lock among multiple readers gets preempted. This problem impedes the

forward progress of a VM and also increases the latency of the write lock. For instance,

various memory-intensive workloads have sub-optimal throughput as RP accounts to at most

20% of preemptions. We observe this issue in various read-dominated memory-intensive

workloads in which the readers are scheduled out.
2Non-blocking locks, both holders and waiters, do not schedule out. However, the para-virtualized interface

converts spinlocks to blocking locks (only waiters) with hypercalls [87, 88] to overcome LHP/LWP issues.
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5 RCU reader preemption (RRP) problem is a type of RP problem that occurs when an RCU

reader is preempted, while holding the RCU read lock [92]. Because of RRP, the guest OS

suffers from an increased quiescence period. This issue can increase the memory footprint

of the application, and is responsible for 5% of preemptions.

6 Interrupt context preemption (ICP) problem happens when a vCPU that is executing

an interrupt context gets preempted. In particular, this problem is different from prior works

that focus on interrupt delivery [93, 94] rather than interrupt handling. This issue occurs in

cases such as TLB shootdowns, function call interrupts, rescheduling interrupts, IRQ work

interrupts, etc. in every commodity OS. For example, we found that Apache web server, an

interrupt-intensive workload, suffers from the ICP problem as it accounts to almost 18% of

preemptions for evaluated workloads.

2.5 Conclusion

In summary, this chapter showed how scheduling of events: from ordering in concurrency

algorithms, waiters in lock algorithms, to stacked task scheduling impacts the performance

of applications. At a high level, applications are suffering from synchronization primitives

that degrade the performance of applications on large multicore machines. This happens

because these primitives rely on primitives that suffer from higher overhead and do not

cater to the evolving hardware and software requirements. Moreover, levels of indirection

introduce semantic gap, which affects the performance of these primitives, thereby affecting

the performance of applications.
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CHAPTER 3

ORDERING PRIMITIVE

This chapter presents a scalable timestamping primitive, called Ordo, by employing invari-

ant hardware clocks, which current major processor architectures already support [21, 22,

23, 24]. An invariant clock has a unique property: It is monotonically increasing and has

a constant skew, regardless of dynamic frequency and voltage scaling, and resets itself to

zero whenever a machine is reset (on receiving the RESET signal), which is ensured by the

processor vendors [25, 26, 22, 24]. However, assuming that all invariant clocks in a machine

are synchronized is incorrect because processors do not receive the RESET signal at the

same time, which makes these clocks unusable. Thus, we cannot compare two clocks with

confidence when correctly designing any time-based concurrent algorithms. Moreover, we

cannot exactly synchronize these clocks because 1) the conventional clock algorithms [56,

57, 54] provide only a time bound that can have a lot of overhead, and 2) the hardware

vendors do not divulge any communication cost that is required to establish strict time

bounds for software clock synchronization to work effectively.

The comparison of clocks with no confidence makes them unusable to correctly design a

concurrent algorithm. Thus, to provide a guarantee of correct use of these clocks, we propose

a new primitive, called Ordo, that embraces uncertainty when we compare two clocks and

provides an illusion of a globally synchronized hardware clock in a single machine. However,

the notion of a globally synchronized hardware clock is only feasible if we can measure the

offset between clocks. Unfortunately, accurately measuring this offset is difficult because

hardware does not provide minimum bounds for the message delivery [56, 57, 54]. To solve

this problem, we exploit the unique property of invariant clocks and empirically define the

uncertainty window by utilizing one-way-delay latency among clocks.

Under the assumption of invariant clocks, Ordo provides an uncertainty window that
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1 def get_time(): # Get timestamp without memory reordering
2 return hardware_timestamp() # Timestamp instruction
3

4 def cmp_time(time_t t1, time_t t2): # Compare two timestamps
5 if t1 > t2 + ORDO_BOUNDARY: # t1 > t2
6 return 1
7 elif t1 + ORDO_BOUNDARY < t2: # t1 < t2
8 return -1
9 return 0 # Uncertain

10

11 def new_time(time_t t): # New timestamp after ORDO_BOUNDARY
12 while cmp_time(new_t = get_time(), t) is not 1:
13 continue # pause for a while and retry
14 return new_t # new_t is greater than (t + ORDO_BOUNDARY)

Listing 3.1: Ordo clock API. The get_time() method returns the current timestamp without reorder-
ing instructions.

remains constant while a machine is running. Thus, Ordo enables algorithms to become

multicore friendly by either replacing the software clock or correctly using a timestamp with

a minimal core-local computation for an ordering guarantee. We find that various timestamp-

based algorithms can be simplified as well as benefit from our Ordo primitive, which has led

us to design a simple API. The only trick lies in handling the uncertainty window, which

we explain for both physical and logical timestamp-based algorithms such as a concurrent

data structure library, and concurrency control algorithms for STM and databases. With

our Ordo primitive, we improve the scalability of various algorithms and systems software

(e.g., RLU, OCC, Hekaton, TL2, and process forking) up to 39.7× across four architectures:

Intel Xeon and Xeon Phi, AMD, and ARM, while maintaining equivalent performance in

optimized scenarios. Moreover, our version of the conventional OCC algorithm outperforms

the state-of-the-art algorithm by 24% in a lightly contended case for the TPC-C workload.

3.1 Ordo: A Scalable Ordering Primitive

Ordo relies on invariant hardware clocks to provide an illusion of a globally synchronized

hardware clock with some uncertainty. To provide such an illusion, Ordo exposes a simple

API that allows applications either to obtain a global timestamp or to order events with some

uncertainty. Thus, we introduce an approach to measure the uncertainty window, followed
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by a proof to ensure its correctness.

3.1.1 Embracing Uncertainty in Clock: Ordo API

Timestamp-based concurrent algorithms can reliably use an invariant clock if we define

the uncertainty period. Moreover, such algorithms are designed to execute on two or more

cores/threads, which require two important properties from invariant clocks: 1) establishing

a relation among two or more cores to compare events and 2) providing a notion of a

monotonically increasing globally synchronized clock to order events in a single machine.

Thus, we propose Ordo, which provides a notion of a monotonically increasing timestamp

but also exposes an uncertainty window, called ORDO_BOUNDARY, in which we are unsure

of the ordering. To ease the use of our Ordo primitive, we expose three simple methods

(Listing 3.1) for such algorithms:

• get_time() is the hardware-specific timestamping instruction that also takes care of

the hardware-specific requirements such as instruction reordering.

• new_time(time_t t) returns a new timestamp at the granularity of ORDO_BOUNDARY

and is greater than t.

• cmp_time(time_t t1, time_t t2) establishes the precedence relation between

timestamps with the help of ORDO_BOUNDARY. If the difference between t1 and t2 is

within ORDO_BOUNDARY, it returns 0, meaning that we are uncertain.

3.1.2 Measuring Uncertainty between Clocks: Calculating ORDO_BOUNDARY

Under the assumption of invariant clocks, the uncertainty window (or skew) between clocks

is constant because both clocks monotonically increase at the same rate but may receive a

RESET signal at different times. We define this uncertainty window as a physical offset: ∆.

A common approach to measure ∆ is to use a clock-synchronization mechanism, in which a

clock reads its value and the value of other clocks, computes an offset, and then adjusts its

clock by the measured offset [95]. However, this measurement introduces various errors,
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1 runs = 100000 # multiple runs to minimize overheads
2 shared_cacheline = {"clock": 0, "phase": INIT}
3

4 def remote_worker():
5 for i in range(runs):
6 while shared_cacheline["phase"] != READY:
7 read_fence() # flush load buffer
8 ATOMIC_WRITE(shared_cacheline["clock"], get_time())
9 barrier_wait() # synchronize with the local_worker

10

11 def local_worker():
12 min_offset = INFINITY
13 for i in range(runs):
14 shared_cacheline["clock"] = 0
15 shared_cacheline["phase"] = READY
16 while shared_cacheline["clock"] == 0:
17 read_fence() # flush load buffer
18 min_offset = min(min_offset, get_time() -
19 shared_cacheline["clock"])
20 barrier_wait() # synchronize and restart the process
21 return min_offset
22

23 def clock_offset(c0, c1):
24 run_on_core(remote_worker, c1)
25 return run_on_core(local_worker, c0)
26

27 def get_ordo_boundary(num_cpus):
28 global_offset = 0
29 for c0, c1 in combinations([0 ... num_cpus], 2):
30 global_offset = max(global_offset,
31 max(clock_offset(c0, c1),
32 clock_offset(c1, c0)))
33 return global_offset

Figure 3.1: Algorithm to calculate the ORDO_BOUNDARY: a system-wide global offset.

such as reading remote clocks and software overheads, including network jitter. Thus, we

cannot rely on this method to define ORDO_BOUNDARY because 1) hardware vendors do not

provide minimum bounds on the message delivery; 2) the algorithm is erroneous because of

the uncertainty of the message delivery [56, 57, 54];1 and 3) periodically using the clock

synchronization will waste CPU cycles, which will increase with core count. Moreover,

the measured offset can be either larger or smaller than ∆, which renders it unusable for

concurrent algorithms.
1 Although clock synchronization algorithms are widely used in distributed systems settings where multiple

clocks are in use, they are also applicable in a single machine with per-core clocks, and it maintains the notion
of a global clock by synchronizing itself with an outside clock over the network [56].
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Measuring global offset

Instead of synchronizing these clocks among themselves, we exploit their unique invariant

property and empirically calculate a system-wide global offset, called ORDO_BOUNDARY,

which ensures that the measured offset between clocks is always greater than their physical

offset. We define measured offset (δij) as a one-way-delay latency between clocks (ci to

cj), and this measured offset (δ) will be greater than the physical offset because of the extra

one-way-delay latency.

Figure 3.1 illustrates our algorithm to calculate the global offset after calculating the

correct pairwise offset for all clocks in a machine. We measure the offset between core ci

and cj as follows: ci atomically writes its timestamp value to the variable (line 8), which

notifies waiting cj (line 16). On receiving the notification, cj reads its own timestamp

(line 18) and then calculates the difference (line 19), called δij , and returns the value. The

measured offset has an extra error over the physical offset because δij , between cores ci

and cj , also includes software overhead, interrupts, and the coherence traffic. We reduce

this error by calculating the offset multiple times (line 1) and taking the minimum of all

runs (line 19–21). To define the correct offset between ci and cj , we calculate offset from

both ends (i.e., δij and δji) and choose their maximum since we do not know which clock

is ahead of the other (line 31). After calculating pairwise offsets among all cores, we

select the maximum offset as the global offset, or ORDO_BOUNDARY, (line 30). We take the

maximum offset among all cores because it ensures that any arbitrary core is guaranteed to

see a new timestamp once the ORDO_BOUNDARY window is over, which enables us to compare

timestamps with confidence. Moreover, the calculated ORDO_BOUNDARY is reasonably small

because we use cache coherence as our message delivery medium, which is the fastest means

of communication between cores.
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Figure 3.2: Calculating offset (δi↔j) using pairwise one-way-delay latency between clocks (ci and
cj). ∆ij and ∆ji are the physical offsets between ci and cj , and cj and ci, respectively. δij and δji
are measured offsets with our approach. Depending on physical and measured offsets, there are four
possible cases. Unlike existing clock-synchronization protocols [56, 57, 54, 95]3 that average the
calculated latency based on RTT, we consider each direction separately to measure the offset and
consider only the direction that is always greater the positive physical offset, such as cases 1 and 4.

Correctness of the measured offset

For invariant clocks to be useful, our approach to calculate the ORDO_BOUNDARY must have

the following invariant:

Invariant:

The global measured offset is always greater than the maximum physical offset

between cores.

We first state our assumptions and prove with a lemma and a theorem that our algorithm

(Figure 3.1) to calculate the global offset is correct with respect to invariant clocks.

Assumptions. Our primary assumption is that clocks are invariant and have a physical

offset that remains constant until the machine is reset. Moreover, the hardware’s external

clock-synchronization protocol maintains the monotonic increase of these clocks because it

guarantees an invariant clock [25, 26, 53], which is a reasonable assumption for modern,

mature many-core processors such as X86, Sparc, and ARM. Hence, with the invariant

timestamp property, the physical offset, or skew, between clocks also remains constant.

Lemma

The maximum of calculated offsets from ci to cj and cj to ci pairs (i.e., δi↔j =

max(δij, δji)) is always greater than or equal to the physical offset (i.e., ∆ij).
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Proof

For cores ci and cj:

δij = |cj(t1)− ci(t0)| = |cj(t0 + T )− ci(t0)| (3.1)

δji = |ci(t1)− cj(t0)| = |ci(t0 + T ′)− cj(t0)| (3.2)

δij and δji denote the offset measured from ci to cj and cj to ci, respectively, and

|∆ij| = |∆ji|. ci(t0) and cj(t0) denote the clock value at a real time t0, which is a

constant monotonically increasing function with a defined timestamp frequency by

the hardware. T and T ′ are the recorded true time when they receive a message from

another core (Figure 3.1: line 16), which denotes the one-way-delay latency in either

direction (Figure 3.1: line 31). Depending on the relation between clocks at time t (ci(t)

and cj(t)) and measured offsets (δij and δji) from Equation 3.1 and 3.2, Figure 3.2

presents four possible cases: 1 and 2 if cj(t) ≥ ci(t), and 3 and 4 if ci(t) ≥ cj(t).

Let us consider a scenario in which cj(t) ≥ ci(t) representing cases 1 and 2 and

assume that we obtain case 2 . By contradiction, case 2 is not possible because our

algorithm adds an extra cost of cache-line transfer (line 16) to measure the offset of

constant monotonically increasing clocks, which will always return case 1 ; thus, δji

is going to be greater than δij . Since we do not know which clock is lagging, we

calculate other possible scenarios, (ci(t) ≥ cj(t): cases 3 and 4 ) so that we always

obtain the maximum of two measured offsets without any physical offset information

(lines 31–32). Thus, either case 1 or case 4 always guarantees that measured offset is

greater than the physical offset.
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Theorem

The global offset is the maximum of all the pairwise measured offsets for each core.

Proof

δg = max(δi↔j) = max(max(δij, δji)) | ∀i, j ∈ {0..N}.

N is the number of cores and δg is the ORDO_BOUNDARY. We extend the lemma to all

pairwise combinations of cores (refer to Figure 3.1 line 29) to obtain the maximum

offset value among all cores. This approach 1) establishes a relation among all cores

such that if any core wants to have a new timestamp, it can obtain such a value at the

expiration of ORDO_BOUNDARY and 2) also establishes an uncertainty period at a global

level in which we can definitely provide the precedence relationship among two or

more timestamps if all of them have a difference of the global offset; otherwise, we

mark their comparison as uncertain if they fall in that offset window.

Logical Timestamping: CC Algorithm

txn_read/write(txn):

    txn.timestamp = get_timestamp()

    # Add to read/write set

txn_commit(txn):

    lock_writeset(txn)

    commit_txn = get_new_timstamp()

    if validate_readset(txn, commit_txn) is True:

         commit_write_changes(txn, commit_txn)     

Physical Timestamping: oplog

op_log(op):

    local_log = get_local_log()

    thd.log.append([op, get_timestamp()])

op_synchronize(op):

    # Acquire per-object lock

    current_log = []

    for log in all_logs():

        # Add all op object to the current_log

    current_log.sort() # Sort via timestamp

    apply(current_log) # Apply all op objects

Listing 3.2: Pseudo-code of logical timestamping algorithms used in STM [1, 2] and databases [3, 4,
5], and that of physical timestamping used in Oplog [6].
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3.2 Algorithms with Ordo without Uncertainty

With the Ordo API, an important question is how do we handle the uncertainty exposed

by the Ordo primitive while adopting it for timestamp-based algorithms? We answer this

question by classifying them into two categories:

• Physical to logical timestamping: Algorithms that rely on logical timestamping

or versioning (refer to Listing 3.2) will require all three methods, but the most

important one is the cmp_time(), which provides the ordering between clocks to

ensure their correctness. By introducing the ORDO_BOUNDARY, we now need to extend

these algorithms to either defer or wait to execute any further operations.

• Hardware timestamping: Algorithms that use physical timestamping [43, 6] can use

new_time()method to access a globally synchronized clock to ensure their correctness

under invariant clocks.

3.2.1 Read-Log-Update (RLU)

RLU is an extension to the RCU framework that enables a semi-automated method of

concurrent read-only traversals with multiple updates. It is inspired by STM [96] and

maintains an object-level write-log per thread, in which writers first lock the object and then

copy those objects to their own write log and manipulate them locally without affecting

the original structure. RLU adopts the RCU barrier mechanism with a global clock-based

logging mechanism [1, 50].

Listing 3.3 illustrates the pseudo-code of the functions of RLU that use the global clock.

We refer to the pseudo-code to explain its workings, limitations, and our changes to the RLU

design. RLU works as follows: All operations reference the global clock in the beginning

(line 2) and rely on it to dereference the shared objects (line 15). For a write operation, each

writer first dereferences the object and copies it in its own log after locking the object. At

the time of commit (line 25), it increments the global clock (line 27), which effectively splits
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1 # All operations acquire the lock
2 def rlu_reader_lock(ctx):
3 ctx.is_writer = False
4 ctx.run_count = ctx.run_count + 1 # Set active
5 memory_fence
6 - ctx.local_clock = global_clock # Record global clock
7 + ctx.local_clock = get_time() # Record Ordo global clock
8

9 def rlu_reader_unlock(ctx):
10 ctx.run_count = ctx.run_count + 1 # Set inactive
11 if ctx.is_writer is True:
12 rlu_commit_write_log(ctx) # Write updates
13 --------------------------------------------------------------
14 # Pointer dereference
15 def rlu_dereference(ctx, obj):
16 ptr_copy = get_copy(obj) # Get pointer copy
17 # Return object or object copy
18 other_ctx = get_ctx(thread_id) # check for stealing
19 - if other_ctx.write_clock <= ctx.local_clock:
20 + if cmp_time(ctx.local_clock, other_ctx.write_clock) == 1:
21 return ptr_copy # return ptr_copy (stolen)
22 return obj # no stealing, return the oject
23 --------------------------------------------------------------
24 # Memory commit
25 def rlu_commit_write_log(ctx):
26 - ctx.write_clock = global_clock + 1 # Enable stealing
27 - fetch_and_add(global_clock, 1) # Advance clock
28 + # Ordo clock with an extra ORDO_BOUNDARY for correctness
29 + ctx.write_clock = new_time(ctx.local_clock + ORDO_BOUNDARY)
30 rlu_synchronize(ctx) # Drain readers
31 rlu_writeback_write_log(ctx) # Safe to write back
32 rlu_unlock_write_log(ctx)
33 ctx.write_clock = INFINITY # Disable stealing
34 rlu_swap_write_logs(ctx) # Quiesce write logs
35 --------------------------------------------------------------
36 # Synchronize with all threads
37 def rlu_synchronize(ctx):
38 for thread_id in active_threads:
39 other = get_ctx(thread_id)
40 ctx.sync_cnts[thread_id] = other.run_cnt
41 for thread_id in active_threads:
42 while:
43 if ctx.sync_cnts[thread_id] & 0x1 != 0:
44 break # not active
45 other = get_ctx(thread_id)
46 if ctx.sync_cnts[thread_id] != other.run_cnt:
47 break # already progressed
48 - if ctx.writer_clock <= other.local_clock:
49 + if cmp_time(other.local_clock, ctx.writer_clock) == 1:
50 break # started afer me

Listing 3.3: RLU pseudo-code including our changes.
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the memory snapshot into the old and new one. While old readers refer to the old snapshot

that have smaller clock values than the incremented global clock, the new readers read the

new snapshot that starts after the increment of the global clock (lines 18 – 22). Later, after

increasing the global clock, writers wait for old readers to finish by executing the RCU-style

quiescence loop (lines 41 – 50), while new operations obtain new objects from the writer

log. As soon as the quiescence period is over, the writer safely writes back the new objects

from its own log to the shared memory (line 31) and then releases the lock (line 32). In

summary, RLU has three scalability bottlenecks: 1) maintain and reference the global clock,

which does not scale with increasing core count; 2) lock/unlock operation on an object, and

3) copy an object for a write operation. RLU tries to mitigate the first problem by employing

a defer-based approach, but it comes at the cost of extra memory utilization. The last two

are design choices that prefer programmability over the hand-crafted copy management

mechanism.

We address the scalability bottleneck of the global clock with the Ordo primitive. Now,

every read and write operation refers to the global clock via get_time() (line 6), and

relies on it to dereference the object by comparing the timestamp for two contexts with

the cmp_time() method (line 7), which provides the same comparison semantics before

the modification (line 6). At the time of commit, we demarcate between the old and new

snapshot by obtaining a new timestamp via the new_time() method (line 29), and later rely

on this timestamp to maintain the clock-based quiescence period for readers that are still

using the old snapshot (line 49). Note that we add an extra ORDO_BOUNDARY to correctly

differentiate between the old snapshot and the newer one, as we may obtain an incorrect

snapshot if one of the clocks has negative skew.

Our modification does not break the correctness of the RLU algorithm, i.e., to always

have a consistent memory snapshot in the RLU protected section. In other words, at time

t′ > t; because of the constant monotonically increasing clock, the time obtained at the

commit time of the writer (line 29) is always greater than the previous write timestamp,
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thereby keeping a protected RLU section from seeing its concurrent overwrite. There can be

an inconsistency if a thread has just updated a value and another thread is trying to steal the

object while having a negative skew than the committed thread’s clock. In this case, the

reading thread may read an old snapshot, which can have an inconsistent memory snapshot.

Since RLU only supports only a single version, we address this issue by adding an extra

ORDO_BOUNDARY at the commit time, which ensures that we have at least one ORDO_BOUNDARY

difference between or among threads. Moreover, our modification enforces the invariant

for writers in the following ways: 1) If a new writer is able to steal the copy from the other

writer (line 20), it still holds the invariant; 2) If a new writer is unable to steal the copy of the

locked object (line 22), the old writer will quiesce while holding the writer lock (line 37),

which will force the new writer to abort and retry because RLU does not allow writer-writer

conflict. Note that the RLU algorithm already takes care of the writer log quiescence by

maintaining two versions of logs, which are swapped to allow stealing readers to use them

(line 34).

3.2.2 Concurrency Control for Databases

Database systems serve highly concurrent transactions and queries, with strong consistency

guarantees by using concurrency control (CC) schemes. Two main CC schemes are popular

among state-of-the-art database systems: optimistic concurrency control (OCC) and multi-

version concurrency control (MVCC). Both schemes use timestamps to decide global commit

order without locking overhead [97]. Listing 3.2 presents the pseudo-code of CC algorithms.

OCC is a single CC scheme that consists of three phases: 1) read, 2) validation, and 3)

write. In the first phase, a worker keeps footprints of a transaction in local memory. At

commit time, it acquires locks on the write set. After that, it checks whether the transaction

violates serializability in the validation phase by assigning a global commit timestamp to

the transaction and validates both the read and write set by comparing their timestamps

with the commit timestamp. After the validation phase, the worker enters the write phase in
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which it makes its write set visible by overwriting original tuples and releasing held locks.

To address the problem of logical timestamps in OCC [3], some state-of-the-art OCC schemes

have mitigated the updates with either conservative read validation [5, 98] or data-driven

timestamping [34].

To show the impact of Ordo, we modify the first two phases—read and validation phases—

of the OCC algorithm [3]. In the read phase, we assign the timestamp via new_time(), which

guarantees that the new timestamp will be greater than the previous one. The validation

scheme is the same as before, but the difference is that get_time() provides the commit

timestamp. The worker then uses the commit timestamp to validate the read set by comparing

it with the recorded timestamp of both the read and write set. We apply a conservative

approach of aborting the transactions if two timestamps fall within the ORDO_BOUNDARY in

the validation step. Two requirements ensure serializability: 1) obtain a new timestamp that

new_time() ensures, and 2) handle the uncertainty window, in which we conservatively abort

transactions, thereby resolving the later-conflict check [99] to ensure the global ordering of

transactions.

MVCC is another major category of CC schemes. Unlike other single-version CC schemes,

MVCC takes an append-only update approach and maintains a version history, and uses

timestamps to determine which version of records to serve. MVCC avoids reader-writer

conflicts by forwarding them to physically different versions, thereby making this scheme

more robust than OCC under high contention. To support time traveling and deciding the

commit order, MVCC relies on logical timestamping, in the read and validation phase, which

leads to severe scalability collapse (4.1–31.1× in Figure 3.9) due to the timestamp allocation

with increasing core count [100]. We chose Hekaton as our example because it is the

state-of-the-art in-memory database system [101]. Although it supports multiple CC levels

with varying consistency guarantees, we focus on serializable, optimistic MVCC mode. We

first describe the workings of the original algorithm and then introduce our modifications

with the Ordo primitive.
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Hekaton has the same three phases as OCC and works as follows: A worker in a trans-

action, reads the global clock at the beginning of the transaction. During the read stage, a

transaction reads only a version when its begin timestamp falls between the begin and end

timestamps2 of the committed version. During update, a worker immediately appends its

version to the database. The version consists of the transaction ID (TID) of the owner trans-

action marked in the begin timestamp field. At commit, the transaction assigns a commit

timestamp to 1) determine the serialization order, 2) validate the read/scan sets, and 3) iterate

the write set to replace TIDs installed in the begin timestamp field with that timestamp.

Meanwhile, another transaction that encounters a TID-installed version examines visibility

with the begin and end timestamps of the owner transaction.

We apply the Ordo primitive by first replacing the timestamp allocation to use new_time

method in the beginning and during the commit phase of a transaction. As a result, this

modification introduces uncertainty to compare timestamps from different local clocks

during the visibility check. We substitute the comparison with cmp_time() to ensure

correctness. Thus, a worker proceeds only if the difference between timestamps is greater

than the ORDO_BOUNDARY that provides a definite precedence relation. Otherwise, we either

restart that transaction or force it to abort. However, given the small size of ORDO_BOUNDARY,

we expect the aborts caused by this uncertainty to be rare. In terms of correctness, our

approach provides the same consistency guarantee as the original one, i.e., 1) obtaining a

unique timestamp, which new_time() ensures, and 2) maintaining the serial schedule, which

is also maintained by cmp_time(), that only, conservatively, commits the transaction that

has a precedence relation.

3.2.3 Software Transactional Memory (TL2)

We choose TL2 [1], an ownership- and word-based STM algorithm that employs times-

tamping for reducing the common-case overhead of validation. TL2 works by ordering

2Each version of records have begin timestamp, which indicates when the version becomes valid, and an
end timestamp, which denotes when the version becomes invalid.
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the update and access relative to a global logical clock and checking the ownership record

only once, i.e., it validates all transactional reads at the time of commit. The algorithm

works as follows: 1) A transaction begins by storing a global time value (start). 2) For a

transactional load, it first checks whether an orec3 is unlocked and has no newer timestamp

than the start timestamp of that transaction; it then adds the orec to its read set, and appends

the address-value pair in the case of a transactional write. 3) At the time of commit, it first

acquires all of the locks in the write set and then validates all elements of the read set by

comparing the timestamp of the orec with that of the start timestamp of the transaction. If

successful, the transaction writes back the data and obtains a new timestamp, denoting the

end of the timestamp (end). It uses the end timestamp as a linearization point, which it

atomically writes in each orec of the write set (write address) and also releases the lock. Here,

end is guaranteed to be greater than the start timestamp because a transaction atomically

increments the global clock, which ensures the linearizability of a transactional update.

The basic requirement of the TL2 algorithm is that end should be greater than start,

which the Ordo primitive (new_time()) ensures. Moreover, two disjoint transactions can

share the same timestamp [102]. Thus, by using the Ordo API, we modify the algorithm

as follows: We assign start with the value of new_time(), and use new_time() to obtain

a definite newer timestamp for the end variable. Here, we again adopt a conservative

approach of aborting transactions if two timestamps fall in the ORDO_BOUNDARY, as this can

corrupt the memory or result in an undefined behavior of the program [1]. Although we

can even use timestamp extension to remove aborts that occur during the read timestamp

validation at the beginning of a transactional read, it may not benefit us because of the

very small ORDO_BOUNDARY. Our modification ensures linearizability by 1) first providing an

increasing timestamp via new_time() that globally provides a new timestamp value and 2)

always validating the read set at the time of commit. In addition, we abort transactions if

two timestamps (read set timestamp and commit timestamp) fall in the ORDO_BOUNDARY to

3Orec is a ownership record, which either stores the identity of a lock holder or the most recent unlocked
timestamp.
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remove uncertainty during the validation phase. Similarly, while performing a transactional

load, we apply the same strategy to remove any inconsistencies.

3.2.4 Oplog: An Update-heavy Data Structures Library

Besides logical timestamping, physical timestamping is becoming common. In particular,

there is an efficient implementation of a concurrent stack [43] and an update-heavy concur-

rency mechanism (Oplog [6]), with the same commonality of performing operations in a

decentralized manner. We extend the Ordo primitive to Oplog. It maintains a per-core log,

which stores update operations in a temporal order, and it applies logs on the centralized data

structure in a sorted temporal order during the read phase. To ensure the correct temporal

ordering across all per-core logs, Oplog requires a system-wide synchronized clock to deter-

mine the ordering of operations. We modify Oplog to use the new_time()method, which has

a notion of a globally synchronized hardware clock while appending operations to a per-core

log and use cmp_time() to compare timestamps. Oplog ensures linearizability by relying

on the system-wide synchronized clock, which ensures that the obtained timestamps are

always in increasing order. Our modification guarantees linearizability because new_time()

exposes a globally synchronized clock, which always provides a monotonically increasing

timestamp that will always be greater than the previous value across all invariant clocks.

There is a possibility that two or more timestamps fall inside the ORDO_BOUNDARY during

the merge phase, which denotes concurrent update operations, which is also possible in the

original Oplog design. We address this problem by using the same technique of the original

Oplog design, which is to apply these operations in an ascending order of the core ID.

3.3 Implementation

Our library and micro benchmarks comprise 200 and 1,100 lines of code (LoC), in C,

respectively, which support architecture-specific timers for different architectures. We

modify various programs to show the effectiveness of our Ordo primitive. We modify 50
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LoC in the RLU code base to support both the Ordo primitive and the architecture-specific code

for ARM. To specifically evaluate database concurrency protocols, we choose DBx1000 [103]

because it includes all database CC algorithms. We modify 400 LoC to support both OCC

and Hekaton algorithms, including changes for the ARM architecture. We use an x86 port of

the TL2 algorithm [104], which we extend (25 LoC) using the Ordo API.

3.4 Evaluation

We evaluate the effectiveness of the Ordo primitive by answering the following key questions:

• How does an invariant hardware clock scale on various commodity architectures?

(§3.4.1)

• What is the scalability characteristic of the Ordo primitive? (§3.4.2)

• What is the impact of the Ordo primitive on algorithms that rely on synchronized

clocks? (§3.4.3)

• What is the impact of the Ordo primitive on version-based algorithms? (§3.4.4, §3.4.5,

§3.4.6)

• How does the ORDO_BOUNDARY affect the scalability of algorithms? (§3.4.7)

Experimental setup. Table 3.1 lists the specifications of four machines, namely, a 120-core

Intel Xeon (having two hyperthreads), a 64-core Intel Xeon Phi (having four hyperthreads),

a 32-core AMD, and a 96-core ARM machine. The first three machines have x86 architecture,

out of which Xeon has a higher number of physical cores and sockets, Phi has a higher

degree of parallelism, and AMD is from a different processor vendor. These three processors

have invariant hardware clocks in their specification. Moreover, we also use a 96-core ARM

machine, whose clock is different from existing architectures. It supports a separate generic

timer interface, which exists as a separate entity inside a processor [24]. We evaluate the

scalability of clocks and algorithms up to the maximum number of hardware threads in a

machine.
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Table 3.1: Various machine configurations that we use in our evaluation as well as the calculated
offset between cores. While min is the minimum offset between cores, max is the global offset,
called ORDO_BOUNDARY (refer to Figure 3.1), which we used, including up to the maximum hardware
threads (Cores∗SMT) in a machine.

Machine Cores SMT
Speed

Sockets
Offset between clocks

(GHz) min (ns) max (ns)

Intel Xeon 120 2 2.4 8 70 276
Intel Xeon Phi 64 4 1.3 1 90 270
AMD 32 1 2.8 8 93 203
ARM 96 1 2.0 2 100 1,100

3.4.1 Scalability of Invariant Hardware Clocks

We create a simple benchmark to measure the cost of hardware timestamping instructions

on various architectures. The benchmark forks a process on each core and repeatedly issues

the timestamp instruction for a period of 10 seconds. Figure 3.3 shows the cost of the

timestamp instruction on four different architectures. We observe that this cost remains

constant up to the physical core count, but increases with increasing hardware threads, which

is evident in Xeon and Phi. Still, it is comparable to an atomic instruction operation in a

medium contended case. One important point is that ARM supports a scalable timer whose

cost (11.5 ns) is equivalent to that of Xeon (10.3 ns). In summary, the current hardware

clocks are a suitable foundation for mitigating contention problem of the global clock with

increasing core count, potentially together with hyperthreads.

3.4.2 Evaluating Ordo Primitive

Figure 3.4 presents the measured offset (δij) for each pair-wise combination of the cores

(with SMT). The heatmap shows that the measured offset between adjacent clocks inside a

socket is the least on every architecture. One important point is that all measured offsets are

positive. As of this writing, we never encountered a single negative measured offset while

measuring the offset in either direction from any core over the course of the past two months.

This holds true with prior results [40, 6, 42] and illustrates that the added one-way-delay
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Figure 3.4: Clock offsets for all pairs of cores. The measured offset varies from a minimum of 70 ns
to 1,100 ns for all architectures. Both Xeon (a) and ARM (d) machines show that the one of the sockets
has a 4–8× higher offset than the others. To confirm this, we measured the bandwidth between the
sockets, which is symmetric in both machines.

latency is greater than the physical offset, which always results in giving a positive measured

offset in any direction. For a certain set of sockets, we observe that the measured offset,

within that socket is less than the global offset. For example, the fifth socket in the Xeon

machine has a maximum offset of 120 ns compared with the global offset of 276 ns.

We can define the ORDO_BOUNDARY based on an application use in which the application

can choose the maximum offset of a subset of cores or sockets inside a machine. But, they

need to embed the timestamp along with the core or thread id, which will shorten the length

of the timestamp variable and may not be advantageous (§3.4.7). Therefore, we choose the

global offset across all cores as the ORDO_BOUNDARY for all of our experiments. Table 3.1
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shows the minimum and maximum measured offset for all of the evaluated machines,

with maximum offset being the ORDO_BOUNDARY. We create a simple micro benchmark

to show the impact of timestamp generation by each core by using our new_time() and

the atomic increments. Figure 3.3 (b) shows the results of obtaining a new timestamp

from a global clock, which is a representative of both physical timestamping and read-only

transactions. The Ordo-based timestamp generation remains almost constant up to the

maximum core count. It is 17.4–285.5× faster than the atomic increment at the highest

core count, thereby showing that transactions that use logical timestamping will definitely

improve their scalability with increasing core count.

One key observation is that one of the sockets in both Xeon (eighth socket: 105–119

cores) and ARM (second socket: 48–96 cores) has a 4–8× higher measured offset when

measured from a core belonging to the other socket, even though the measured socket

bandwidth is constant for both architectures [105]. For example, the measured offset from

core 50 to core 0 is 1,100 ns but is only 100 ns from core 0 to core 50 for the ARM machine.

We believe that one of the sockets received the RESET signal later than the other sockets in

the machine, thereby showing that the clocks are not synchronized. For Phi, we observe

that most of the offset lies in the window of 200 ns, but adjacent cores have the least offset.

3.4.3 Physical Timestamping: Oplog

For physical timestamping, we evaluate the impact of Oplog on the Linux reverse map [106].

rmap uses RB-tree data structure for recording the page table entries that map a physical

page for every physical page, and it is primarily used by fork(), exit(), mmap(), and

mremap() system calls. We modify the reverse mapping for both anonymous and file rmaps

in the Linux kernel [6]. We use Exim mail-server [107] on the Xeon machine to evaluate the

scalability of the rmap ordo/data structure. Exim is a part of the Mosbench [108] benchmark

suite; it is a process-intensive application that listens to SMTP connections and forks a

new process for each connection, and a connection forks two more processes to perform

38



0k

20k

40k

60k

80k

100k

120k

30 60 90 120 150 180 210 240

M
es

sa
ge

s/
se

c

#core

Vanilla

Oplog

OplogORDO
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various file system operations in shared directories as well as on the files. Figure 3.5 shows

the results of Exim on the stock Linux (Vanilla) and our modifications that include kernel

versions with (OplogORDO) and without the Ordo primitive (Oplog). The Oplog version directly

reads the value from the unsynchronized hardware clocks. The results show that Oplog

does alleviate the contention from the reverse mapping, which we observe after 60 cores,

and the throughput of Exim increases by 1.9× at 240 cores. The Oplog version is merely

4% faster than the OplogORDO approach because Exim is now bottlenecked by the file system

operations [77] and zeroing of the pages at the time of forking after 105 cores. We do not

observe any huge difference between Oplog and OplogORDO because a reverse mapping is

updated only when a system call is issued, which amortizes the cost ORDO_BOUNDARY window,

besides other virtual file system layer overhead [77].

3.4.4 Read Log Update

We evaluate the throughput of RLU for the hash table benchmark and citrus tree benchmark

across architectures. The hash table uses one linked list per bucket, and the key hashes
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into the bucket and traverses the linked list for a read or write operation. Figure 3.6 shows

the throughput of the hash table with varying update rates of 2% and 40% across the

architectures, where RLU is the original implementation and RLUORDO is the modified version.

The results show that RLUORDO outperforms the original version by an average of 2.1× across

the architectures for all update ratios at the highest core.

Across architectures, the result for the starting number of cores for RLU is better than for

RLUORDO because 1) coherence traffic until certain core counts (Xeon: within a socket, Phi:

until 4 cores, ARM: 36 cores and AMD: 12 cores) assists the RLU protocol that has lower abort

rates than RLUORDO, and 2) RLUORDO has to always check for the locks while dereferencing

because the invariant clock does not provide the semantic of fetch_and_add(). Thus,

in the case of only readers (100% reads), RLUORDO is 8% slower than RLU at the highest

core across the architectures, but even with a 2% update rate, it is the atomic update that

degrades the performance of RLU. On further analysis, we find that the RLUORDO spends at

most 20% less time in the synchronize phase, which happens because of the decrease in

the cache-coherence traffic on higher core count across all architectures. Furthermore, our

Ordo’s new_time() does not act as a backoff mechanism. Figure 3.12 illustrates that even on

varying the ORDO_BOUNDARY boundary by 1/8×–8×, the scalability of RLU algorithm changes

by only ±3% while running on 1-core, 1-socket, and 8-sockets.

Overall, all multisocket machines show a similar scalability trend after crossing the

socket boundary and are saturated after a certain core count because they are bottlenecked

by the locking and creation of the object and its copy, which is more severe in the case of

ARM for crossing the NUMA boundary, as is evident after 48 cores. In the case of Phi, there

is no scalability collapse because it has a higher memory bandwidth and slower processor

speed, which only saturates the throughput. However, as soon as we remove the logical

clock, the throughput increases by an average of 2× in each case. Even though the cost of

the timestamp instruction increases with hyperthreads (3× at 256 threads), the throughput is

almost saturated because of the object copying and locking. Even with the deferrals (refer
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to Figure 3.8), RLUORDO is at most 1.8× faster than the base version, thereby illustrating that

the defer-based approach still suffers from the contention on the global clock. We also

evaluate the citrus-tree benchmark that involves complex update operations.

Figure 3.7 shows the results of the citrus-tree benchmark for the 10% and 40% updates

across various operations. We can observe that RLUORDO outperforms RLU even in the compli-

cated scenario by a factor of two on every architecture. The scalability behavior is similar to

the hash table benchmark across the architectures.

3.4.5 Concurrency Control Mechanism

We evaluate the impact of Ordo primitive on the existing OCC and Hekaton algorithms with

YCSB [109] and TPC-C benchmarks. We execute read-only transactions to focus only on

the scalability aspect without transaction contentions (Figure 3.9), which comprises two

read-queries per transaction and a uniform random distribution. We also present results from

the TPC-C benchmark with 60 warehouses as a contentious case (Figure 3.10). Figure 3.9

shows that both OCCORDO and HekatonORDO not only outperform OCC (5.6–39.7×) and Hekaton

43



0
30
60
90

120
150
180

0 60 120 180 240

0

20

40

60

80

100

0 64 128 192

0

8

16

24

32

40

0 16 32 48 64 80 96

0

7

14

21

28

35

0 8 16 24 32

T
xn

s/
µ

se
c

(a) Xeon

Silo
TicToc

OCC
OCCORDO

Hekaton
HekatonORDO

T
xn

s/
µ

se
c

(b) Phi

T
xn

s/
µ

se
c

(c) ARM

T
xn

s/
µ

se
c

# core

(d) AMD

Figure 3.9: Throughput of various concurrency control algorithms of ordo/databases for read-only
transactions (100% reads) using the YCSB benchmark on various architectures. We modify the
existing OCC and Hekaton algorithms to use our Ordo primitive (OCCORDO and HekatonORDO, respectively)
and compare them against the state-of-the-art OCC algorithms: Silo and TicToc. Our modifications
removes the logical clock bottleneck across various architectures.

44



0

5

10

15

20

0 60 120 180 240

0.0

0.2

0.4

0.6

0 60 120 180 240

T
xn

s/
µ

se
c

Throughput
Silo

TicToc
OCC

R
at

io

# core

Abort rate
OCCORDO

Hekaton
HekatonORDO

Figure 3.10: Throughput and abort rates of concurrency control algorithms for TPC-C benchmark
with 60 warehouses on 240 Intel Xeon machine.

(4.1–31.1×), respectively across architectures, but also achieve almost similar scalability

as that of TicToc and Silo, which do not have global timestamp allocation overhead. The

reason for such an improvement is that both OCC and Hekaton waste 62–80% of their

execution time in allocating the timestamps, which has also been shown by Yu et al. [100],

whereas Ordo successfully eliminates the logical timestamping overhead with a modest

amount of modification. Compared with state-of-the-art optimistic approaches that avoid
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global logical timestamping, OCCORDO shows comparable scalability, thereby enabling Ordo

to serve as a push-button accelerator for timestamp-based applications, which provides a

simpler way to scale these algorithms. In addition, HekatonORDO has comparable performance

to that of other OCC-based algorithms and is only 1.2–1.3× slower because of its heavyweight

dependency-tracking mechanism that maintains multiple versions.

Figure 3.10 presents the throughput and abort rate for the TPC-C benchmark. We

run NewOrder (50%) and Payment (50%) transactions only with hash index. The results

show that OCCORDO is 1.24× faster than TicToc and has a 9% lower abort rate, since TicToc

starts to spend more time (7%) in the validation phase because of the overhead of its

ordo/data-driven timestamp computation, as it has to traverse the read and write set to

find the common commit timestamp; OCCORDO already has a notion of global time, which

speeds up the validation process, thereby increasing its throughput with lower aborts. Thus,

hardware clocks provide better scalability than software bypasses that come at the cost of

extra computation. In the case of multi-version CC, HekatonORDO also outperforms Hekaton

by 1.95× with lower aborts.

3.4.6 Software Transactional Memory

We evaluate the impact of Ordo primitive by evaluating the TL2 and TL2ORDO algorithms on the

set of STAMP benchmarks. Figure 3.11 presents the speedup over the sequential execution

of these benchmarks. The results show that TL2ORDO improves the throughput of every

benchmark. TL2ORDO has higher speedup over TL2 for both Ssca2 and Kmeans because they

have short transactions, which in turn results in more clock updates. Genome, on the other

hand, is dominated by large read conflict-free transactions; thus, it does not severely stress

the global clock with an increasing core count. In the case of Intruder, we observe some

performance improvement up to 60 cores. However, after 60 cores, TL2ORDO has 10% more

aborts than TL2, which in turn slows down the performance of the TL2ORDO, as the bottleneck

shifts to the large working set maintained by the basic TL2 algorithm. We can circumvent
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Figure 3.11: Speedup of the STAMP benchmark with respect to the sequential execution on Xeon
machine for TL2 and TL2ORDO algorithms. TL2ORDO improves the throughput up to 3.8× by alleviating the
cache-line contention that occurs of the global logical clock. TL2ORDO shows significant improvement
in the case of workloads running with very short transactions (Kmeans and Ssca2) and the ones with
very long transactions by decreasing their aborts due to the cache-line mitigation (Labyrinth).
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Figure 3.12: Normalized throughput of the RLUORDO algorithm for varying ORDO_BOUNDARY on the Xeon
machine on 1-core, 1-socket (30 cores), and 8-sockets (240 cores) with 98% reads and 2% writes. We
vary the ORDO_BOUNDARY from 1/8×–8× for all three configurations, which shows that the throughput
varies by only ±3%, thereby proving two points: 1) timestamping is one of the bottlenecks, and 2)
ORDO_BOUNDARY does not act as a backoff mechanism for such logical timestamping-based algorithms.

this problem by employing type-aware transactions [110]. In the case of Labyrinth, we

observe that the TL2ORDO improves the throughput by 2–3.8×. Although Labyrinth has long

running transactions [104], we observe that the number of aborts decreases by 5.8–15.5×,

which illustrates that transactions in Labyrinth spend almost twice the amount of time in

re-executing the aborted transactions, which occurs because of the cache-line contention of

the global clock. Finally, TL2ORDO also improves the performance of Vacation because it is a

transactional-intensive workload, as it performs at least 3 M transactions with abort rates

on the order of 300K–400K, which results in stressing the global clock. In summary, Ordo

primitive improves the throughput of the TL2 by a maximum factor of two.

3.4.7 Sensitivity Analysis of ORDO_BOUNDARY

To show that the calculated ORDO_BOUNDARY does not hamper the throughput of the algorithm,

we ran the hash table benchmark with the RLUORDO algorithm on the Xeon machine with 98%

reads and 2% writes for three configurations: 1-core, 1-socket (30 cores), and 8-sockets
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(240 cores). We found that on either increasing or decreasing the ORDO_BOUNDARY by 1/8×

or up to 8× of the global offset (refer to Table 3.1), the scalability of RLUORDO algorithm only

varies by ±3% in all three configurations because the algorithm has other bottlenecks that

overshadow the cost of both the lower and higher offsets. We can further confirm this result

from Figure 3.3 (b) results, as hardware clocks can generate 1.4 billion timestamps at 240

cores, while the maximum throughput of the hash table is only 102 million for a 2% update

operation. We observe a similar trend on a single core as well as for multiples of sockets.

Furthermore, we can also infer that another important point is that the Ordo’s new_time()

method does not act as a backoff mechanism, as we can see consistent throughput even

on decreasing the ORDO_BOUNDARY to 1/8×, which is merely 34 ns on the Xeon machine.

This point also holds true for other timestamp algorithms, as they have to perform other

tasks [100, 104].

3.5 Chapter Summary

Ordering still remains the basic building block to reason about the consistency of operations

in a concurrent application. However, ordering comes at the cost of expensive atomic

instructions that do not scale with increasing core count and further limit the scalability

of concurrency on large multicore and multisocket machines. We propose Ordo, a simple

scalable primitive that addresses the problem of ordering by providing an illusion of a

globally synchronized hardware clock with some uncertainty inside a machine. Ordo relies

on invariant hardware clocks that are guaranteed to be increasing at a constant frequency

but are not guaranteed to be synchronized across the cores or sockets inside a machine,

which we confirm for Intel and ARM machines. We apply the Ordo primitive to several

timestamp-based algorithms, which use either physical or logical timestamping, and scale

these algorithms across various architectures by at most 39.7×, thereby making them

multicore friendly.
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CHAPTER 4

IMPACT OF SCHEDULING ON VIRTUAL MACHINES

Virtualization is now the backbone of every cloud-based organization to run and scale

applications horizontally on demand. Recently, this scalability trend is also extending

towards vertical scaling [111, 112], i.e., a virtual machine (VM) has up to 128 virtual

CPUs (vCPUs) and 3.8 TB of memory to run large in-memory databases [18, 19] and

data processing engines [20]. At the same time, cloud providers strive to oversubscribe

their resources to improve hardware utilization and reduce energy consumption, without

imposing any permissible overhead on the application [113, 114]. Thus, the multiplexing

of VMs leads to a breed of different types of symptoms in the form preemption problems

that occur because of the double scheduling problem [115]: 1) the guest OS schedules

processes on vCPUs and 2) the hypervisor schedules vCPUs on physical CPUs. The root

cause of this double scheduling phenomenon is a semantic gap between a hypervisor and

guest OSes, in which the hypervisor is agnostic of not only the scheduling of VMs but

also guest OS-specific critical code that deter the scalability of applications. Some of the

prior works address this problem by adopting co-scheduling approaches [116, 117, 118],

which can suffer from priority inversion, CPU fragmentation, and may mitigate the double

scheduling symptoms [115]. Such symptoms, that have mostly been addressed individually,

are lock-holder preemption (LHP) [84, 83, 86, 119], lock-waiter preemption (LWP) [84], and

blocked-waiter wakeup (BWW) [120, 16], problems.

To solve these symptoms as a whole, we make a key observation: These symptoms occur

because 1) the hypervisor is scheduling out a vCPU at a time when the vCPU is executing a

critical code, and 2) a vCPU, waiting to acquire a lock, is either uncooperative or sleeping [66],

leading to LWP and BWW issues. Thus, we propose an alternative perspective, i.e., instead of

devising a solution for each symptom, we use four key ideas that allows a VM to hint the
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hypervisor for making an effective scheduling decision to allow its forward progress. First,

we consider all of the locks and interrupt contexts as critical components. Second, we devise

a set of para-virtualized methods that annotate these critical components as enlightened

critical sections (eCS). These methods are lightweight in nature and notify a hypervisor

from the VM and vice-versa with memory operations via shared memory, while avoiding

the overhead of hypercall and interrupt injection. Third, the hypervisor now can figure out

whether a vCPU is executing an eCS and can reschedule it. However, by rescheduling a vCPU,

we introduce unfairness in the system. We tackle this issue with the OS’s fair scheduling

policy [82], which compensates for that additional schedule by allowing other tasks to run

for extra time, thereby maintaining the eventual fairness in the system. Lastly, we leverage

our methods to design a virtualized schedule-aware spinning strategy that enables lock

waiters to be work conserving as well as cooperative inside a VM. That is, a vCPU now

cooperatively spins for the lock, if a physical CPU is under-committed, else it yields the

vCPU.

Our approach improves the scalability of real-world applications by 1.2–1.6× in an

under-committed case. Moreover, our eCS annotation, combined with eSCHDSPIN, avoids

preemption by 85–100%, while improving the scalability of applications by 1.4–2.5× in an

over-committed scenario on an 80-core machine.

4.1 Design

A hypervisor can mitigate various preemption problems, if it is aware of a vCPU executing

a critical section. We denote such a hypervisor-aware critical section as an enlightened

critical section (eCS), that can be executed for one more schedule. eCS is applicable to all

synchronization primitives and mechanisms such as RCU and interrupt contexts. We now

present our lightweight methods that act as a cross-layer interface for annotating an eCS and

later focus on our notion of an extra schedule and our approach to maintain eventual fairness

in the system.
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4.1.1 Lightweight Para-virtualized methods

We propose a set of six lightweight para-virtualized methods to bridge the semantic gap that

both VM and hypervisor use for conveying information between them. These methods rely

on four variables (refer Figure 4.1) that are local to each vCPU. They are exposed via shared

memory between the hypervisor and a VM and the notification happens via simple read and

write memory operations. A simple memory read is sufficient for the hypervisor to decide

on scheduling because 1) it tries to execute each vCPU on a separate pCPU, 2) and it requires

knowing about an eCS only at the schedule boundary, thereby removing the cost of polling

and other synchronous notifications [121]. To consider an OS critical section as an eCS,

we mark the start and unmark the end of a critical section, which lets the hypervisor know

about an eCS. However, a process in an OS can be of two types. First is the non-preemptable

process that can never be scheduled out. Such a process is either an interrupt or a kernel

thread running after acquiring a spinlock. Another one is the preemptable task such as a

user process or a process with blocking lock. Hence, we introduce four methods (VM →

Hypervisor) to separately handle these two types of tasks. The last two methods (Hypervisor

→ VM) provide the hypervisor context to the VM, which a lock waiter can use to mitigate

the LWP problem or yield the vCPU to other hypervisor tasks or vCPUs in an over-committed

scenario. Figure 4.1 illustrates those four states:

• non_preemptable_ecs_count maintains the count of active non-preemptable eCSs,

such as non-blocking locks, RCU reader, and interrupt contexts. It is similar to the

preemption count of the OS.

• preemptable_ecs_count is similar to the preemption count variable of the OS, but

it only maintains the count of active preemptable eCSs, such as blocking primitives,

namely, mutex and rwsem.

• vcpu_preempted denotes whether a vCPU is running. It is useful for handling the BWW

problem in both under- and over-committed scenarios.

• pcpu_overloaded denotes whether a physical CPU, executing that particular vCPU, is
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Figure 4.1: Overview of the information flow between a VM and a hypervisor. Each vCPU has a
per-CPU state that is shared with the hypervisor, denoted as eCS state. Figure (a) shows how the
vCPU2 relays information about an eCS to the hypervisor. On entering a critical section or an interrupt
context ( 1), vCPU2 updates the non_preemptable_ecs_count ( 2). After a while, before scheduling
out vCPU2, the hypervisor reads its eCS state ( 3), and allows it run for one more schedule to mitigate
any of the double scheduling problems. Figure (b) shows how the hypervisor shares the information
whether a vCPU is preempted or a physical CPU is overloaded, at the schedule boundary. For instance,
the hypervisor marks vcpu_preempted, while scheduling out a vCPU; or updates pcpu_overloaded
flag to one if the number of active tasks on that physical CPU is more than one. Both try to further
mitigate LWP and BWW problems.

over-committed. Lock waiters can use this information to address the BWW problem in

an over-committed scenario.

Figure 4.1 presents two scenarios in which the schedule context information is shared

between a vCPU and the hypervisor. Figure 4.1 (a) shows how a vCPU, i.e., entering an

eCS, shares information with the hypervisor. During entry ( 1), vCPU2 first updates its

corresponding state (non_preemptable_ecs_count or preemptable_ecs_count) ( 2) and

continues to execute its critical section. Meanwhile, the hypervisor, before scheduling out

vCPU2, checks vCPU2’s eCS states ( 3) and allows it to run for extra time if certain criteria are

fulfilled (§4.1.2); otherwise, it schedules out vCPU2 with other waiting tasks. When vCPU2

exits the eCS, it decreases the eCS state count, denoting the end of critical section. Figure 4.1

(b) illustrates another scenario that addresses the BWW problem. in which the hypervisor

updates the eCS states: pcpu_overloaded and vcpu_preempted while scheduling in and
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out vCPU2, respectively, at each schedule boundary ( 1). We devise a simple approach—

virtualized scheduling-aware spinning (eSCHDSPIN)—that enables efficient scheduling

aware waiting for both blocking and non-blocking locks (§4.2). That is, vCPU2 reads both

states ( 2) and decides whether to keep spinning until the lock is acquired if the pCPU is not

overloaded ( 3), else it yields, which allows the other vCPU (in VM2) or a hypervisor’s task

to progress forward by doing some useful task, thereby mitigating the double scheduling

problems.

4.1.2 Eventual Fairness with Selective Scheduling

As mentioned before, the hypervisor relies on its scheduler to figure out whether a vCPU is

executing an eCS. That is, when a vCPU with a marked eCS is about to be scheduled out, the

hypervisor scheduler checks the value of eCS count variables (Figure 4.1). If any of these

values are greater than zero, the hypervisor lets the vCPU run for an extra schedule. However,

vCPU rescheduling introduces two problems: 1) How does the hypervisor handles a task with

eCS, which the guest OS can preempt or schedule out? 2) How does it ensure the system

fairness?

We handle an eCS preemptable task with preemptable_ecs_count counter methods,

which differentiate between a preemptable task and a non-preemptable task. We do so be-

cause the guest OS can schedule out a preemptable task. In this case, the hypervisor should

avoid rescheduling that vCPU because 1) it will result in false rescheduling, and 2) it can ham-

per the VM performance. We address this issue inside the guest OS, i.e., before scheduling

out an eCS-marked task inside a guest OS, we save the value of preemptable_ecs_count to

a task-specific structure and reset the counter to zero. Later, when the task is rescheduled

again by the guest OS, we restore the preemptable_ecs_count with the saved value from

the task-specific structure, thereby mitigating the false scheduling.

With vCPU rescheduling, we introduce unfairness at two levels: 1) An eCS marked vCPU
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Table 4.2: Applicability of our six lightweight para-virtualized methods that strive to address the
symptoms of double scheduling.

Method LHP RP RRP ICP LWP BWW

activate_non_preemptable_vcs() ✓ ✓ ✓ ✓ - -
deactivate_non_preemptable_vcs() ✓ ✓ ✓ ✓ - -
activate_preemptable_vcs() ✓ ✓ - - - -
deactivate_preemptable_vcs() ✓ ✓ - - - -
is_vcpu_preempted() - - - - ✓ ✓
is_pcpu_overcommitted() - - - - - ✓

will always ask for rescheduling on every schedule boundary.1 2) By rescheduling a vCPU,

the hypervisor is unfair to other tasks in the system. We resolve the first issue by allowing

the hypervisor to reschedule an eCS-marked vCPU only once during that schedule boundary

as rescheduling extends the boundary. At the end of schedule boundary, the hypervisor

schedules other tasks to avoid the starving other tasks or VMs and addresses indefinite

rescheduling. In addition, the hypervisor also keeps track of this extra reschedule information

and runs other vCPUs for longer duration and inherently balances the running time, an

equivalent to vCPU penalization. Thus, our approach selectively reschedules and penalizes

a vCPU rather than balancing the extra reschedule information across all cores, which will

result in an unnecessary overhead of synchronizing all runtime information of rescheduling.

We call our approach as the local CPU penalization approach, as we only penalize a vCPU

that executed an eCS, thereby ensuring eventual fairness in the system. Moreover, our local

vCPU scheduling is a form of selective-relaxed co-scheduling of vCPUs depending on what

kind of tasks are being executed, while without maintaining any synchronization among

vCPUs, unlike prior approaches [116, 117].

4.2 Use Case

The double scheduling phenomenon introduces the semantic gap in three places: 1) from a

vCPU to a physical CPU that results in LHP, RP, and ICP problems; 2) from a pCPU to a vCPU;

and 3) from one vCPU to another in a VM, both suffer from LWP and BWW problems. Table 4.2

1Such a VM can be either an I/O or an interrupt-intensive VM that spends most of its time in the kernel, or
even a compromised VM.
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shows how to use our methods to address these problems.

LHP, RP, RRP, and ICP problem. To circumvent these problems, we rely on the VM →

hypervisor notification because a vCPU running any spinlocks, read-write locks, mutex, rwsem,

or an interrupt context is already inside the critical section. Thus, we call activate_*()

and deactivate_*() methods for annotating critical sections. For example, the first two

methods are applicable to spinlocks, read-write locks, RCU, and interrupts, and the next two

are for mutex and rwsem. (refer Table 4.2).

LWP and BWW problem. The LWP problem occurs in the case of FIFO-based locks such as

MCS and Ticket locks [59]. However, unfair locks, such as qspinlock [88], mutex [122],

and rwsem [76], do not suffer from this problem, and are currently used in Linux. The reason

is that they allow other waiters to steal the lock, while suffering from the issue of starvation.

On the other hand, all of these locks suffer from the BWW problem because the cost to wake

up a sleeping in a virtualized environment varies from 4,000–10,000 cycles. as a wake-up

call results in a VMexit, which adds an extra overhead to notify a vCPU to wake up a process.

This problem is severe for blocking primitives because they are non-work conserving in

nature [66], i.e., the waiters schedule out themselves, even if a single task is present in

the run queue of the guest OS. We partially mitigate this issue by allowing the waiters to

spin rather than sleep if a single task is present in the run queue of the guest scheduler

(SCHDSPIN). However, this approach is non-cooperative when multiple VMs are running.

Thus, to avoid unnecessary spinning of waiters, we rely on our is_pcpu_overcommitted()

API that notifies a waiter to only spin if the pCPU is not over-committed. We call this

approach the virtualized scheduling-aware spinning approach (eSCHDSPIN).

4.3 Implementation

We realized the idea of eCS by implementing it on the Linux kernel version 4.13. Besides

annotating various locks and interrupt contexts with eCS, we specifically modified the

scheduler and the para-virtual interface of the KVM hypervisor. Our changes are portable
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Table 4.3: eCS requires small modifications to the existing Linux kernel, and the annotation effort is
also minimal: 60 LoC changes to support the 10 million LoC Linux kernel that has around 12,000 of
lock instances with 85,000 lock invocations.

Component Lines of code

eCS annotation 60
eCS infrastructure 800
Scheduler extension 150
Total 1,010

enough to apply on the Xen hypervisor too. The whole modification consists of 1,010 lines

of code (see Table 4.3).

Lightweight para-virtualized methods. We share the information between the hy-

pervisor and a VM with a shared memory between them, which is similar to the

kvm_steal_time [123] implementation. For instance, each VM maintains a per-core eCS

states, and the hypervisor maintains per-vCPU eCS states for each VM.

Scheduler extension. We extend a scheduler-to-task notification mechanism,

preempt_noti-fier [124], for identifying an eCS-marked vCPU at the schedule boundary.

Our extension allows the scheduler to know about the task scheduling requirement and

decide scheduling strategy at the schedule boundary. For example, in our case, the extension

reads the non_preemptable_ecs_count and preemptable_ecs_count to decide the schedul-

ing strategy for the vCPU. Besides this, we rely on the notifier’s in and out methods to set the

value of vcpu_preempted and pcpu_overloaded variables.

We implemented our vCPU rescheduling decision in the schedule_tick function [125].

The schedule_tick function performs two tasks: 1) It does the bookkeeping of the task

runtime, which is used for ensuring the fairness in the system. 2) It also is responsible for

setting the rescheduling flag (TIF_NEED_RESCHED) if there is more than one task on that run

queue, which is used by the scheduler to schedule out the task if the reschedule flag is set.

We implemented the rescheduling strategy by bypassing the setting up of the reschedule

flag in case the preempt_notifier check function returned true, meanwhile updating the

runtime statistics of the vCPU.
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Annotating locks for eCS. We mark eCS by using the non-preemptable methods for non-

blocking primitives, preemptable ones for mutex and rwsem. Our annotation comprises only

60 LoC that covers around 12,000 lock instances with 85,000 lock method calls in the Linux

kernel that has 10 million LoC for the kernel version 4.13.

4.4 Evaluation

We evaluate our approaches by answering the following questions:

• What is the overhead of an eCS annotation and the scheduler overhead to read the

values? (§4.4.1)

• Does eCS helps in an over-committed case? (§4.4.2)

• How does eCS impact the scalability of a VM? (§4.4.3)

• How do our methods address the BWW problem? (§4.4.4)

• Does our schedule penalization approach maintain the eventual fairness of the system?

(§4.4.5)

Experimental setup. We extended VBench [126] for our evaluation. We chose four bench-

marks: Apache web server [127], Metis [128], Psearchy from Mosbench, and Pbzip2 [129].

The Apache web server serves a 300 bytes static page for each request that is generated by

WRK [130]. Both of them are running inside the VM to remove the network wire overhead

and only stress the VM’s kernel components. We choose Apache to stress the interrupt

handler to emphasize the importance of eCS for an interrupt context. Metis is a map-reduce

library for a single multi-core server that mostly stresses the memory allocator (spinlock)

and the page-fault handler (rwsem) of the OS. Similar to Metis, Psearchy is an in-memory

parallel search and indexer that stresses the writer side of the rwsem design. In addition,

we also choose Pbzip2—a parallel compression and decompression program—because we

wanted to use a minimally kernel-intensive application. Moreover, none of these work-

loads suffer from performance degradation from any known user space bottleneck in a

non-virtualized environment. We use memory-based file system, tmpfs, to isolate the effect
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Table 4.4: Cost of using our lightweight para-virtualized methods with various synchronization
primitives and mechanism. 1 core and 80 core denote the time (in ns) to execute an empty critical
section with one and 80 threads, respectively. Although, our approach slightly adds an overhead on a
single core count, there is no performance degradation for our evaluated workloads.

Critical sections

Time (ns)

1 core 80 core

W/o eCS W/ eCS W/o eCS W/ eCS

API cost – 16.4 – 16.4

spinlock 31.2 44.8 4,782.3 4,772.9
rwlock (read) 32.0 38.8 2,418.2 2,519.4
rwlock (write) 27.4 45.8 4,363.3 4,784.5
mutex 33.5 34.4 49,116.4 48,125.7
rwsem (read) 35.6 36.6 2,588.8 2,737.0
rwsem (write) 33.3 38.1 7,055.7 7,150.1
RCU 9.8 19.7 9.8 19.8

of I/O. We further pin the cores to circumvent vCPU migration at the hypervisor level to

remove the jitter from our evaluation.

We evaluate our eCS approach against the following configurations: 1) PVM is a para-

virtualized VM that includes unfair qspinlock implementation, which mitigates LWP and

BWW issues, which already incorporates the idea of oticket as well as preemptable ticket

locks [131]. This is the default configuration since Linux v4.5. 2) HVM is the one without

para-virtualization support and also includes unfair qspinlock implementation. Both PVM

and HVM are not eCS annotated. Note that we could not compare other prior works because

they are not open sourced [121, 116] and are very specific to the Xen hypervisor [86].

We evaluate these configuration on an eight socket, 80-core machine with Intel E7-8870

processors. Another point is that the current version of KVM partially addresses the BWW

problem that can occur from the user space [132].

4.4.1 Overhead of eCS

We evaluate the cost of our lightweight para-virtualized methods on various blocking and

non-blocking locks, and RCU. Table 4.4 enumerates the overhead of the sole method cost

including the cost of executing a critical section with a simple microbenchmark that executes
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an empty critical section to quantify the impact of eCS method on these primitives in both

lowest (1 core) and highest contention (80 core) scenarios. 1 core denotes that a thread is

trying to acquire a critical section, whereas 80 core denotes that 80 threads are competing.

We observe that eCS adds an overhead of almost 0.9–18.4 ns in low contention, whereas

negligible overhead in high contention scenario, except RCU. For RCU, the empty critical

section suffers from almost twice the overhead because both RCU’s lock/unlock operations

do a single memory update on the preempt_count variable for a preemptable kernel. Even

though our methods add an overhead in the low contended scenario, we do not observe any

performance degradation for any of our evaluated workloads.

4.4.2 Performance in an Over-committed Scenario

We evaluate the performance of the aforementioned workloads in an over-committed scenario

by running two VMs in which each vCPU from both VMs share a physical CPU. Figure 4.2

and Figure 4.3 (i) show the throughput of these workloads for PVM, HVM, and eCS; (ii) show

the number of unavoidable preemptions that we capture while running these workloads when

a vCPU is about to be scheduled out for eCS; and (iii) represent the percentage of types of

observed preemptions, namely, LHP for blocking (B-LHP) and non-blocking (NB-LHP) locks,

RP, RRP, ICP problems that we observe for the eCS configuration, including both avoided and

unavoided preemptions.
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Apache. eCS outperforms both PVM and HVM by 1.2× and 1.6×, respectively (refer (t:a)

in Figure 4.2). Moreover, our approach reduces the number of possible preemptions by

85.8–100% (refer (n:a)) because of our rescheduling approach. We cannot completely avoid

all preemptions because of our schedule penalization approach, as some of the preemptions

occur consecutively. Even though eCS adds overhead, especially to RCU, it still does not

degrade the scalability for four reasons: 1) We address the BWW problem, which allows for

more opportunities to acquire the lock on time; 2) both hypervisor → VM methods allow

cooperative co-scheduling of the VMs; 3) our extra schedule approach avoids 85.8–100% of

captured preemptions with the help of our VM → hypervisor methods; and 4) the methods

overhead partially mitigates the highly contended system at higher core count by acting as a

back-off mechanism. Another interesting observation is that we observe almost every type

of preemption (refer Figure 4.2 (p:a)) because of serving the static pages, which involves

blocking locks for the socket connection and softirq and spinlocks use for the interrupts

processing. In particular, the number of preemptions is dominated by LHP for non-blocking

and blocking locks, followed by ICP and then RP. We believe that the ICP problem will

further exacerbate with optimized interrupt delivery mechanisms [93, 94]. PVM is 1.36× faster

than HVM at 80 cores because of the support of para-virtualized spinlock (qspinlock [87]) as

well as the asynchronous page fault mechanism that decreases the contention [133].

The major bottleneck for this workload is the interrupt injection, which can be mitigated

by proposed optimized methods [93, 94]. In addition, Figure 4.4 (b) presents the latency

CDF for the Apache workload at 80 cores in both under- and over-compression case. We

observe that eCS not only maintains almost equivalent latency as that of PVM in an under-

committed case, but also decreases in the over-committed case by 10.3–17% and 9.5–27.9%

against PVM and HVM, respectively.

Psearchy mostly stresses the writer side of rwsem as it performs 20,000 small and large

mmap/munmap operations along with stressing the memory allocator for inode operations,

which mostly idles the guest OS because of the non-work conserving blocking locks [66].
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Figure 4.4: CDF of the latency of requests for the Apache web server workload in both under- and
over-committed scenarios at 80 cores. It clearly shows the impact of eCS in the over-committed
scenario, while having minimal impact in the under-committed case.

Figure 4.2 (t:b) shows the throughput, in which eCS outperforms both PVM and HVM by 2.3×

and 1.7×, respectively. The reason is that we 1) partially mitigate the BWW problem with

our eSCHDSPIN approach, and 2) decrease the number of preemptions by 95.7–100% with

an extra schedule (refer (n:b)). In addition, our eSCHDSPIN approach decreases the idle

time from 65.4% to 45.2%, as it allows waiters to spin than schedule out themselves, which

severely degrades the scalability in a virtualized environment, as observed for both PVM
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and HVM. This workload is dominated by mostly blocking and non-blocking locks, as they

account to almost 98% preemptions (refer (p:b)). We also observe that HVM outperforms PVM

by 1.33× because the asynchronous page fault mechanism introduces more BWW issue as it

schedules out a vCPU if the page is not available, which does not happen for HVM.

Metis is a mix of both page fault and mmap operations that stress both the reader and the

writer of the rwsem. Hence, it also suffers from the BWW problem, as we observe in Figure 4.3

(t:c). eCS outperforms PVM and HVM by 1.3× at 80 cores because of the reduced BWW problem

and decreased preemptions that account to 91.4–99.5% (Figure 4.3 (n:c)). Note that the

reader preemptions are 20%, thereby illustrating that readers preemptions is possible for

read-dominated workloads, which has not been observed by any prior works. We do not

observe any difference in the throughput of HVM and PVM.

Pbzip2 is an efficient compression/decompression workload that spends only around 5% of

the time in the kernel space. Figure 4.3 (t:d) shows that the performance of eCS is similar

to PVM and HVM, while decreasing the number of preemptions by 98.4–100% (refer (n:d)).

We do not observe any performance gain in this scenario because 1) these preemptions may

not be too critical to affect the application scalability, and 2) the overhead of our methods,

which do not provide any gains even after decreasing the preemptions. Similar to the other

workloads, LHP dominates the preemption, followed by RP, ICP, and RRP.

In summary, our methods not only reduce preemptions by 85–100%, but also improve

the scalability of applications that use these synchronization primitives up to 2.5×, while no

observable overhead on these applications. Moreover, we found that these preemptions occur

for almost every type of primitives, specifically in the case of blocking synchronization

primitives, read locks (Metis and Pbzip2), and interrupts (e.g., TLB operations, packet

processing etc.). In addition, most of the workloads still suffer from the BWW problem

because of them being non-work conserving. We partially address this problem with the

help of our eSCHDSPIN approach. One point to note is that we do not observe too many

preemptions, as shown by prior works [86], because the current Linux kernel has dropped the
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FIFO-based Ticket spinlock and has replaced it with a highly optimized unfair queue-based

lock [87] that mitigates the problem of LHP and LWP.

4.4.3 Performance in an Under-committed Case

We evaluate our eCS approach against PVM and HVM configurations in which a VM is running

to show the impact of both methods and eSCHDSPIN approach. We also include bare-

metal configuration (Host) as a baseline (Figure 4.5). We observe that eCS addresses the BWW

problem, and outperforms both PVM and HVM in the case of Apache (1.2× and 1.2×), Psearchy

(1.6× and 1.9×), Metis (1.2× and 1.3×), and Psearchy (1.2× and 1.4×), while having almost

similar latency for the Apache workload (Figure 4.4 (a)). Likewise, eCS performance is

similar to that of bare-metal, except for the Psearchy workload.

For Apache, our methods act as a back-off mechanism to improve its scalability, as

the system is heavily contended. The throughput degrades after 30 cores because of the

overhead of process scheduling, socket overhead, and inefficient kernel packet processing.

Besides this, both Psearchy and Metis suffer from the BWW problem, which we improve with

our eSCHDSPIN approach that results in better scalability as well as reduction in the idling

of VMs. In particular, we decrease the idle time of Psearchy and Metis by 25% and 20%,

respectively, by using our approach. One point to note is that blocking locks are based on

the TAS lock, whose throughput severely degrades with increasing core count because of

the increase cache-line contention, which we observe after 40 cores for Psearchy for all

configurations. We also find that the Host is still 1.4× faster than eCS because eSCHDSPIN

only partially mitigates the BWW problem, while introducing excessive cache-line contention,

which we can circumvent with NUMA-aware locks [66]. For Pbzip2, we observe that eCS

performs equivalent to the Host, while outperforming PVM and HVM after 60 cores, because

Pbzip2 spends the least amount of time in the kernel space (5%), and starts to suffer from

the BWW problem only after 60 cores, which our eSCHDSPIN easily tackles.
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4.4.4 Addressing BWW Problem via eCS

We evaluate the impact of the BWW problem on Psearchy in both under- and over-committed

scenarios. Figure 4.6 (a) shows that our scheduling-aware spinning approach (marked

as eCS + SCHDSPIN) improves the throughput of Psearchy by 1.5× and 1.2× at 40 and

80 cores, respectively, in an under-committed scenario. SCHDSPIN approach allows a

blocking waiter, both reader and writer, to actively spin for the lock if the number of tasks
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in the run queue is one, else the task schedules itself out. This approach is similar to the

scheduling-aware parking/wake-up strategy [66], which we applied to the stock mutex and

rwsem. As mentioned before, the reason for such an improvement is that the current design

is not scheduling aware, as the waiter parks itself if it is unable to acquire the lock. With

our approach, we try to mitigate this performance anomaly and allow the applications to

scale further. Unfortunately, the scheduling-aware approach is inefficient in the case of the

over-committed scenario, as shown in Figure 4.6 (b). The reason is that current waiters are

guest OS agnostic, which leads to wasting CPU resources and resulting in more LHP and LWP

problems, thereby degrading the scalability by almost 4.4× (marked eCS + SCHDSPIN in (b))

against a simple eCS configuration that still suffers from the BWW problem. We overcome this

issue by using our is_pcpu_overcommitted() method that allows the SCHDSPIN approach

to spin only when there is no active task on the pCPU’s run queue; otherwise, the waiter

is scheduled out when more than one task are in the run queue of the pCPU. By using our

method (marked eCS + eSCHDSPIN), we outperform the baseline eCS approach by 1.8× and

the eCS + SCHDSPIN approach by 8×.2

4.4.5 System Eventual Fairness

We now evaluate whether we are able to achieve eventual fairness while allowing eCS

annotated VMs to obtain an extra schedule followed by local vCPU penalization. To evaluate

the fairness, we run a simple micro-benchmark in two VMs (marked VM1 and VM2). VM1 is a

non-annotated VM, whereas VM2 is an eCS annotated one. This micro-benchmark indefinitely

reads the content of a file that stresses the read side of the rwsem and spends around 99% of

the time in the kernel without scheduling out the task, thereby prohibiting the guest OS from

doing any halt exits. Figure 4.7 (a) shows the time difference between two VM runtimes that

we measure at every 100 ms window for each VM as well as the number of preemptions for

VM2 in that window. Figure 4.7 (b) shows the cumulative runtime of the VMs. We observe

2We have used eCS + eSCHDSPIN approach for our evaluation against PVM and HVM in §4.4.2 and §4.4.3.
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Figure 4.7: Fairness in eCS. Running time of a vCPU of two co-scheduled VMs (VM1 and VM2) with
eCS annotations for a period of 10 seconds with 100 ms window granularity while executing a kernel
intensive task (reading the contents of a file) that involves read side of rwsem. (a) shows the difference
in running time of vCPU per window granularity as well as the number of preemptions occurring per
window, while (b) illustrates the cumulative running time, and shows that the hypervisor maintains
eventual fairness in the system, even if VM2 is allowed extra schedules. Both VMs get 4.95 seconds to
run.

from Figure 4.7 (a) that even after allowing for extra schedules, the CFS scheduling policy

balances out these extra schedules, which does not affect the runtime difference between

VM1 and VM2. For example, at the end of one second window, marked 10, we observe that the
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number of extra schedules that the hypervisor granted VM2 was 34 (34 milliseconds of extra

time), but the runtime difference between VM1 and VM2 is 7.8 ms, which becomes -1.9 ms at

the end of two seconds, while VM2 received a total of 54 extra schedules (54 milliseconds).

Hence, the extra schedule approach followed by our local vCPU penalization ensures that

none of the tasks running on that particular physical CPU suffers from the fairness issue,

also referred as eventual fairness. Moreover, Figure 4.7 (b) shows that both VMs get almost

equivalent runtime in a lockstep fashion with both VMs getting almost 4.95 seconds at the

end of 10 seconds.

4.5 Chapter Summary

Double scheduling phenomenon is a well-known problem in the domain of virtualization

that leads to several symptoms in the form of LHP, LWP, and BWW. We identify that it not only

is limited to non-blocking locks, but also is applicable to blocking locks and reader side of

locks. We present a single shot solution with our key insight: if a certain key component

of a guest OS is allowed to proceed further, the guest OS will make forward progress. We

identify these critical components as synchronization primitives and mechanism such as

spinlocks, mutex, rwsem, RCU, and even interrupt context, which we call enlightened critical

sections (eCS). We annotate eCS with our lightweight methods that expose whether a VM is

executing a critical section, which the hypervisor uses to provide an extra schedule at the

scheduling boundary, thereby allowing the guest OS to progress forward. In addition, by

leveraging the hypervisor scheduling context, a VM mitigates the effect of BWW problem with

our simple virtualized spinning-aware spinning strategy. With eCS, we not only decrease the

spurious preemptions by 85–100% but also improve the throughput of applications up to

1.6× and 2.5× in an under- and over-committed scenario, respectively.
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CHAPTER 5

SCALABLE LOCKING PRIMITIVES

Since the invention of concurrent programming, lock design has been influenced by hardware

evolution. For instance, MCS [59] was proposed to address excessive cache-line traffic

resulting from an increasing number of threads trying to acquire the lock at the same time,

while Cohort locks [63] were proposed in response to the emergence of the non-uniform

memory access (NUMA) architecture. NUMA machines consist of multiple nodes (or

sockets), each with multiple cores, locally attached memories, and fast caches. In such

machines, the access from a socket to its local memory is faster than remote access to

memory on a different socket [62] and each socket has a shared last-level-cache. Cohort

locks exploit this characteristic to improve application throughput.

Unfortunately, The influence of hardware evolution on lock design has resulted in a

tight coupling between hardware characteristics and lock algorithms. Meanwhile, other

factors have been neglected, such as memory footprint [134], low thread counts, and core

over-subscription.

This chapter investigates the main dominating factors that impact the scalability of locks

and their adoption: 1) cache-line movement between different caches, 2) level of thread

contention, 3) core over-subscription, and 4) memory footprint. We propose a new lock

design technique called shuffling that decouples the lock-acquire/release phases from the

lock order policy, and uses lock waiters (i.e., threads waiting to acquire the lock) to enforce

those policies, mostly off the critical path. In shuffling, a waiter in the waiting queue takes

the role of a shuffler and re-orders the queue of waiters based on the specified policy. This

technique gives us the freedom to design and multiplex new policies based not only on

the characteristics of fast-evolving hardware, but also on software characteristics. Our

new family of locks, called SHFLLOCKS, augment existing locks (TAS and MCS) and use

73



shuffling. Our first lock algorithm is a non-blocking lock that implements NUMA-awareness

as a shuffling policy to implement a compact NUMA-aware lock. We further add a core

over-subscription policy to implement a blocking lock. We also implement a readers-writer

lock on top of our blocking lock. We evaluate our locks in both kernel space and in userspace,

and find that our lock algorithms maintain the best throughput regardless of the number of

threads contending for the lock. In particular, SHFLLOCKS improve application throughput

by 1.2–12.5×, while reducing the memory footprint up to 35.4% and 98.8%, against the

currently used Linux kernel locks and against state-of-the-art locks, respectively.

5.1 Dominating Factors in Lock Design

Locks not only serialize data access, but also add their overhead, directly impacting applica-

tion scalability. Looking at the evolution of locks and their use, we identify four main factors

that any practical lock algorithm should consider. These factors are critical in achieving

good performance in current architectures, but their relative importance can vary not only

across architectures, but also across applications with varying requirements. Therefore, we

should holistically consider all four factors when designing a lock algorithm. Table 5.1

shows how these factors impact state-of-the-art locks.

F1. Avoid data movement. Memory bandwidth and the interconnect bandwidth between

NUMA sockets are limited, leading to performance bottlenecks when applications incur re-

mote cache traffic or remote memory accesses. Thus, every lock algorithm should minimize

cache-line movement and remote memory accesses for both lock structures and data inside

the critical section. This movement is quite expensive in NUMA machines: the cost of

accessing a remote cache line can be 3× higher than local access [32]. Moreover, for future

architectures, even L1/L2 cache-line movements will further exacerbate this cost [135].

Similarly, for readers-writer locks, their readers indicator incurs cache-line movement. A

lock algorithm should amortize data movement from both the lock structure and the data

inside the critical section, to hide non-uniform latency and minimize coherence traffic.
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F2. Adapt to different levels of thread contention. Most multi-threaded applications use

fine-grained locking to improve scalability. For example, Dedup and fluidanimate [137]

create 266K and 500K locks, respectively. Similarly, Linux has also adopted fine-grained

locking over time (Figure 2.2) and only a subset of locks heavily contend based on the

workload [46]. Generally, lock designs optimize either for low contention or for high

contention: TAS results in better performance when contention is low, while Cohort locks

are a better choice for high contention. Similarly, the scalability of a readers-writer lock is

determined by its low-level design and choices, such as using a centralized readers indicator

vs. per-socket indicators vs. per-core indicators impact scalability depending on the ratio

of readers and writers. For the best performance in all scenarios, a lock algorithm should

adapt to varying thread contention.

F3. Adapt to over- or under-subscribed cores. Applications can instantiate more threads

than available cores to parallelize tasks, to improve hardware utilization, or to efficiently deal

with I/O. In these scenarios, blocking locks need to efficiently choose between spinning

or sleeping, based on the thread scheduling. Spinning results in the lowest latency, but

can waste CPU cycles and underutilize resources while starving other threads, leading to

lock-holder preemption [138]. In contrast, sleeping enables threads to run and utilize the

hardware resources more efficiently. However, this can result in latency as high as 10ms to

wake up a sleeping thread. Thus, a lock algorithm should consider the mapping between

threads and cores and whether cores are over-subscribed.

F4. Decrease memory footprint. The memory footprint of a lock not only affects its

adoption, but also indirectly affects application scalability. Generally, the structures of a lock

are not allocated inside the critical section or on the critical path, so many algorithms do not

consider these allocations as a performance overhead. However, in practical applications,

locks are embedded inside other structures, which can be instantiated on the critical path. In

such scenarios, this allocation aggravates the memory footprint, which stresses the memory

allocator, leading to performance degradation. For example, Exim, a mail server, creates
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three files for each message it delivers. Locks are part of the file structure (inode), so large

locks can slow down allocation and directly affect performance [134]. This is even worse

for locks that dynamically allocate their structure before entering the critical section [66].

The memory allocation can fail, leading to an application crash. Extra per-task or per-

CPU allocations can further exacerbate the issue, e.g., for queue-based locks [139, 140].

Memory footprint also affects readers-writer scalability because the memory consumption

dramatically increases for the readers indicators from centralized (8 bytes) to per-socket (1

KB) to per-CPU (24KB) for each lock instance.1 Thus, a lock algorithm should consider

memory footprint, as it affects both the adoption of the lock and applications performance.

5.2 SHFLLOCKS

To adapt to such a diverse set of factors, we propose a new lock design technique, called shuf-

fling. Shuffling enables the decoupling of lock operations from a lock policy enforcement,

which happens off the critical path. Policies can include NUMA-awareness and efficient

parking/wakeup strategies. Using shuffling, we design and implement a family of lock

algorithms called SHFLLOCKS. At its core, a SHFLLOCK uses a combination of TAS as a

top-level lock and a queue of waiters (similar to MCS). We rely on the shuffling mechanism

to enable NUMA-awareness that minimizes cache-line movement (F1). SHFLLOCKS work

well under high contention due to their NUMA-awareness, while maintaining good perfor-

mance for low contention due to their TAS lock (F2). Besides NUMA-awareness, we also

add a parking/wakeup policy to design an efficient blocking SHFLLOCK (F3). SHFLLOCKS

requires a constant, minimal data structure and does not require additional allocations within

the critical section, thereby reducing memory footprint (F4).

1Per-socket: 8 sockets × 128 bytes; per-CPU: 192 cores × 128 bytes.
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5.2.1 The Shuffling Mechanism

Shuffling is a new technique for designing locks in which a thread waiting for the lock (the

shuffler) re-orders the queue of waiters (shuffles) based on a policy specified by the lock

developer. Shuffling is similar to sorting a list with a user-defined comparison function.

Here, the list represents a set of waiters and the comparison function is a set of policies, such

as NUMA-awareness or a wakeup/parking strategy. This shuffling mechanism is mostly off

the critical path because a thread handles the task of policy enforcement while waiting to

acquire the lock. Thus, shuffling enables the decoupling of lock-acquire/release operations

from policy enforcement, and allows lock developers to easily optimize for particular design

factors (§5.1) or architectures. In this paper, we use a policy designed to optimize for NUMA

architectures. Moreover, shuffling can group multiple policies together to devise complex

lock algorithms. For example, in the blocking SHFLLOCK we combine the NUMA-aware

policy with an efficient parking/wakeup strategy: the shuffler groups waiters based on their

NUMA socket and wakes up a nearby sleeping waiter. This approach solves the lock-waiter

preemption problem by removing the wake-up overhead from the lock-holder critical path,

a well-known issue for queue-based locks [66, 141, 142].

5.2.2 SHFLLOCKS Design

We now present a family of SHFLLOCK protocols, both non-blocking (§5.2.2) and blocking

(§5.2.2). We further augment our blocking lock with a read indicator to design a blocking

readers-writer lock (§5.2.2). We first enumerate a set of design decisions and later focus on

the design of these locks.

Lock state decoupling. Unlike the MCS protocol, we decouple the lock acquisition state

from the waiter queue. We achieve decoupling by introducing two levels of locks: a TAS lock

for handling non-contended cases and a queue-based lock to handle moderate contention at

the socket level. This approach is similar to the Linux spinlock and has several foundational

benefits for building practical and scalable locks: a) SHFLLOCKS remove the complexity of
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node allocation and tracking for the waiters queue because a queue node is only maintained

within the acquire phase. This contrasts with conventional MCS/CNA locks, which maintain

the node until the release phase. This prevents the lock-holder from reusing the node

for a nested acquisition; b) SHFLLOCKS use waiters for shuffling, moving work from the

critical path to threads that are waiting; c) SHFLLOCKS provide a fast trylock method with

a single atomic compare-and-swap instruction; and d) SHFLLOCKS mitigate the lock-waiter

preemption problem through two mechanisms. First, the shuffler wakes up the next thread

to acquire the lock proactively (§5.2.1). Second, SHFLLOCKS allow lock stealing using the

internal TAS lock.

Scheduling-aware parking strategy. For a blocking synchronization primitive, the most

important question is how to efficiently pass the lock or wake up a waiter, while maintaining

an on-par performance in both the under- and over-subscribed cases. For the scalable

parking/wake-up decision, we remove costly scheduler operations (i.e., wake-up) from the

common, critical path and employ a distributed parking decision while considering the load

on a system. We discuss three key ideas to address the problem of 1) whom to pass the

lock to, 2) when to park oneself, and 3) how to take the parking decisions for blocking

synchronization primitives.

1 Passing lock to an active spinning waiter. In queue-based locks (e.g., MCS, K42, and

CLH), the successor of a lock holder always acquires the lock, which guarantees complete

fairness, but, unfortunately, causes severe performance degradation in an over-subscribed

system, as this invariant stresses the scheduler to always issue a call to wake up the parked

waiter. To mitigate this issue, we introduce lock stealing, in which waiters that are about to

join the queue, can steal the lock in the absence of the lock holder. In addition, the shuffler

also tries to wake up sleeping threads to keep a set of actively spinning waiters.

2 Scheduling-aware spinning. Most of the proposed hierarchical locks [63, 68, 64] are

non-blocking in nature. Hence, they do not consider the amount of time a waiter should spin

before parking itself out. Thus, in an over-loaded system, waiting threads and a lock holder
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will contend with each other, which deters the system progress. Instead, in SHFLLOCK,

waiting threads park themselves as soon as their time quota is about to cease. To check

the quota, we rely on the scheduler and its APIs for this information. Specifically in the

Linux kernel, the scheduler exposes need_resched() to know whether the task should run,

and preemption APIs (preempt_disable() / preempt_enable()) to explicitly disable or

enable the task preemption. These APIs work with both preemptive and non-preemptive

kernels. Limiting the duration of spinning up to the time quota proposed by the scheduler

has several advantages: 1) It guarantees the forward progress of the system in an over-loaded

system by allowing the current lock holder to do useful work while mitigating its preemption.

2) It allows other tasks to do some useful work rather than wasting the CPU cycles. 3) By

only spinning for the specified duration, the primitive respects the fair scheduling decision

of the scheduler.

3 Scheduling-aware parking. The current blocking synchronization primitives [89, 90]

do not efficiently account for the system load; thus, they naively park waiters even in under-

loaded scenarios. Hence, a naive use of the spin-then-park approach results in scheduler

intervention, as the waiters park themselves as soon as their time quota ceases, and the

lock holder has to do an extra operation of waking them up, which severely degrades the

performance of the system in an under-loaded scenario [77]. Also, previous research [143]

has shown that estimating system load is critical to the spin-then-park approach because it

not only removes the scheduler interaction from the parking phase, but also improves the

latency of the lock/unlock phase.

We gauge the system load by peeking at the number of running tasks on a CPU (i.e.,

the length of scheduling run queue for a CPU). Checking the number of running tasks

is almost free because a modern OS kernel, including Linux, has a per-CPU scheduler

queue, which already maintains an up-to-date per-CPU active task information. On the other

hand, maintaining system-wide, central information, like the approach used by Johnson et

al. [143], is costly because the cost of collecting the total number of active tasks increases

80



glock
tail

(a) (b)

(c)

(d)

(e)

(f )

t1

t1

t1

t1 t2

t2

t2

t3 t4

t4 t3
(assorted qnodes on the same socket)

: shuffer

: ready qnode (leader)
: locked/unlocked 
: socket
: assorted qnodes 

(qnode-qlast)

(g )
t3

t0

t0

t0

t0

t0

t4

qnode

(4B+4B+8B, per-thread, on stack)

lock

(4B+8B, per-lock)

status

socket

tail

: walking qnodes

t5

t5

t5

lock byte

no_stealing
byte

Figure 5.1: SHFLLOCKNB example. The lock structure consists of a state (glock) and the queue
tail. The first byte of glock is the lock/unlock state, while the second byte denotes whether stealing
is allowed. We encode multiple information in the qnode structure. (a) Initially, there is no lock
holder. (b) t0 successfully acquires the lock via CAS and enters the critical section. (c) t1, of socket 1,
executes SWAP on the lock’s tail after the CAS failure on TAS. (d) Similarly, t2 from socket 1, also joins
the queue. (e) Now, there are five waiters (t1–t5) waiting for the lock. t1 is the very first waiter, so it
becomes the shuffler and traverses the queue to find waiters from the same socket. t1 then moves t4
(same socket) after t2. (f) After the traversal, t1 selects t4 as the next shuffler. (g) t4 acquires the
lock after t1 and t2 have executed their critical sections. At this point, t3 becomes the shuffler.

with increasing core count, which may not catch the load imbalance due to the new incoming

tasks or the rescheduling of periodic tasks.

Non-Blocking Version: SHFLLOCKNB

SHFLLOCKNB uses a TAS and MCS combination, and maintains queue nodes on the

stack [140, 139, 66]. However, we do extra bookkeeping for the shuffling process by

extending the thread’s qnode structure with socket ID, shuffler status, and batch count (to

limit batching too many waiters from the same socket, which might cause starvation or break

long-term fairness). Figure 5.1 shows the lock structure and the qnode structure. Our current

design of the shuffling phase enforces the following four invariants for implementing any

policy: 1) The successor of the lock holder, if it exists, always keeps its position intact in the
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queue. 2) Only one waiter can be an active shuffler, as shuffling is single threaded. 3) Only

the head of the queue can start the shuffling process. 4) A shuffler may pass the shuffling

role to one of its successors.

Figure 5.1 presents a running example of our lock algorithm. (a) A thread first tries

to acquire the TAS lock; (b) it enters the critical section on success; otherwise, it joins the

waiting queue ((c)–(e)). Now, the very next lock waiter, i.e., t1, becomes the shuffler and

groups waiters belonging to the same socket, e.g., t4 (Figure 5.1 (e)). Once a shuffler iterates

the whole waiting queue, it selects the last moved waiter as the next shuffler to start the

process: t1 selects t4 (f). The shuffler keeps retrying to find a waiter from the same socket

and leaves the shuffling phase after finding a successor from the local socket (f) or becoming

the lock holder (g). The passing of a shuffler status, within a socket, lasts until the batching

quota is exceeded.

Listing 5.1 presents the pseudo-code of our non-blocking version. The lock structure is

12 bytes (Figure 5.1): 4 bytes for the lock state (glock), and 8 bytes for the MCS tail. The

algorithm works as follows: A thread T first tries to steal the TAS lock (line 6). On failure, T

initiates the MCS protocol by first initializing a queue-node (qnode) on the stack, and then

adding itself to the waiting queue by atomically swapping the tail with the qnode’s address

(line 11–13). After joining the queue, T waits until it is at the head of the queue. To do that,

T checks for its predecessor. If T is the first one in the queue, it disables lock stealing by

setting the second byte to 1 to avoid TAS lock contention and waiter starvation (line 17). On

the other hand, if waiters are present, T starts to spin locally until it becomes the leader in

the waiting queue, i.e., until its qnode’s status changes from S_WAITING to S_READY (line 47).

Here, T also checks for the is_shuffler status. If the value is set, then T becomes the

shuffler and enters the shuffling phase (line 51), which we explain later.

On reaching the head of the queue, T checks whether it can be a shuffler to group its

successors based on the socket ID, meanwhile trying to acquire the TAS lock via the CAS
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1 S_WAITING = 0 # Waiting on the node status
2 S_READY = 1 # The waiter is at the head of the queue
3

4 def spin_lock(lock):
5 # Try to steal/acquire the lock if there is no lock holder
6 if lock.glock == UNLOCK && CAS(&lock.glock, UNLOCK, LOCKED):
7 return
8

9 # Did not get the node, time to join the queue; initialize node states
10 qnode = init_qnode(status=S_WAITING, batch=0,
11 is_shuffler=False, next=None, skt=numa_id())
12

13 qprev = SWAP(&lock.tail, &qnode) # Atomically adding to the queue tail
14 if qprev is not None: # There are waiters ahead
15 spin_until_very_next_waiter(lock, qprev, &qnode)
16 else: # Disable stealing to maintain the FIFO property
17 SWAP(&lock.no_stealing, True) # no_stealing is the second byte of glock
18

19 # qnode is at the head of the queue; time to get the TAS lock
20 while True:
21 # Only the very first qnode of the queue becomes the shuffler (line 16)
22 # or the one whose socket ID is different from the predecessor
23 if qnode.batch == 0 or qnode.is_shuffler:
24 shuffle_waiters(lock, &qnode, True)
25 # Wait until the lock holder exits the critical section
26 while lock.glock_first_byte == LOCKED:
27 continue
28 # Try to atomically get the lock
29 if CAS(&lock.glock_first_byte, UNLOCK, LOCKED):
30 break
31

32 # MCS unlock phase is moved here
33 qnext = qnode.next
34 if qnext is None: # qnode is the last one / next pointer is being updated
35 if CAS(&lock.tail, &qnode, None): # Last one in the queue, reset the tail
36 CAS(&lock.no_stealing, True, False) # Try resetting, else someone joined
37 return
38 while qnode.next is None: # Failed on the CAS, wait for the next waiter
39 continue
40 qnext = qnode.next
41 # Notify the very next waiter
42 qnext.status = S_READY
43

44 def spin_until_very_next_waiter(lock, qprev, qcurr):
45 qprev.next = qcurr
46 while True:
47 if qcurr.status == S_READY: # Be ready to hold the lock
48 return
49 # One of the previous shufflers assigned qcurr as a shuffler
50 if qcurr.is_shuffler:
51 shuffle_waiters(lock, qcurr, False)
52

53 def spin_unlock(lock):
54 lock.glock_first_byte = UNLOCK # no_stealing is not overwritten
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55 MAX_SHUFFLES = 1024
56

57 # A shuffler traverses the queue of waiters (single threaded)
58 # and shuffles the queue by bringing the same socket qnodes together
59 def shuffle_waiters(lock, qnode, vnext_waiter):
60 qlast = qnode # Keeps track of shuffled nodes
61 # Used for queue traversal
62 qprev = qnode
63 qcurr = qnext = None
64 # batch → batching within a socket
65 batch = qnode.batch
66 if batch == 0:
67 qnode.batch = ++batch
68 # Shuffler is decided at the end, so clear the value
69 qnode.is_shuffler = False
70 # No more batching to avoid starvation
71 if batch >= MAX_SHUFFLES:
72 return
73

74 while True: # Walking the linked list in sequence
75 qcurr = qprev.next
76 if qcurr is None:
77 break
78 if qcurr == lock.tail: # Do not shuffle if at the end
79 break
80

81 # NUMA-awareness policy: Group by socket ID
82 if qcurr.skt == qnode.skt: # Found one waiting on the same socket
83 if qprev.skt == qnode.skt: # No shuffling required
84 qcurr.batch = ++batch
85 qlast = qprev = qcurr
86

87 else: # Other socket waiters exist between qcurr and qlast
88 qnext = qcurr.next
89 if qnext is None:
90 break
91 # Move qcurr after qlast and point qprev.next to qnext
92 qcurr.batch = ++batch
93 qprev.next = qnext
94 qcurr.next = qlast.next
95 qlast.next = qcurr
96 qlast = qcurr # Update qlast to point to qcurr now
97 else: # Move on to the next qnode
98 qprev = qcurr
99

100 # Exit → 1) If the very next waiter can acquire the lock
101 # 2) A waiter is at the head of the waiting queue
102 if (vnext_waiter is True and lock.glock_first_byte == UNLOCK) or
103 (vnext_waiter is False and qnode.status == S_READY):
104 break
105

106 qlast.is_shuffler = True

Listing 5.1: Pseudo-code of the non-blocking version of SHFLLOCKS and the shuffling mechanism.

84



operation (lines 20–30). Note that only the head of the queue can start the shuffling process

if the qnode’s batch is set to 0. Otherwise, T can only shuffle waiters if the is_shuffler

status is set to 1, which might be set by a previous shuffler.

The moment T becomes the lock holder, i.e., T acquires the TAS lock, it follows the

MCS unlock protocol (lines 33–40). T checks for the next successor (qnode.next). If the

successor is present, T updates the successor’s qnode status to S_READY. Otherwise, it tries

to reset the queue’s tail and enables lock stealing, which enables a new thread to get the lock

via TAS if the queue is empty. The unlock phase is a conventional TAS unlock in which the

first byte is reset to 0 (line 54).

Shuffling. Our shuffling algorithm moves a waiter’s qnode from an arbitrary position to the

end of the shuffled nodes in the waiting queue. Based on the specified policy, i.e., socket-

ID-based grouping, the shuffler (S) either updates the batch count or further manipulates

the next pointer of waiting qnodes (line 82–98). We consider S as the first shuffled node.

The algorithm is as follows: S first resets its is_shuffler to 0 and checks its quota of the

maximum allowed shufflings to avoid starvation for remote socket waiters (line 69–71).

Similar to CNA, we can also use a random generator to mitigate starvation. Now, S iterates

over qnodes in the queue while keeping track of the last shuffled qnode (qlast). While

traversing, S always marks the nodes that belong to its socket by increasing the batch count.

It only does pointer manipulations when there are waiters between the last shuffled node and

the node belonging to S’s socket (lines 87–96). Finally, S always exits the shuffling phase if

either the TAS lock is unlocked or S becomes the head of the queue (line 102–103). Before

exiting the shuffling phase, S assigns the next shuffler: the last marked node (line 106). S

can stop traversing the queue for two more reasons: 1) if successors are absent (line 76, 89),

as S wants to avoid the locking delay because it might soon acquire the lock; 2) if S reaches

the queue tail, as there might be waiters joining at the end of the tail, which it cannot move

(line 78).

Optimization. Our shuffling algorithm has unnecessary pointer chasing when a newly
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Figure 5.2: A running example of how a shuffler shuffles waiters with the same socket ID and wakes
them up. (a) t0 is the lock holder; t1 is the shuffler and is traversing the queue. t2 is sleeping, but t1
wakes it up. (b) t2 becomes active, while t1 continues shuffling and reaches t4, t1 first moves t4
after t2, and wakes up t4 to mitigate the wakeup latency. (c) When t0 releases the lock, t1 acquires
it; t2 and t4 are actively spinning for their turn; t4 is the shuffler.

selected shuffler, assigned by the previous S, has to traverse the queue. We avoid this issue

by further encoding extra information about the qnode where S stopped traversal in the next

shuffler’s qnode structure. This leads to traversing mostly from the near end of the tail,

thereby better utilizing the time of waiters.

Blocking Version: SHFLLOCKB

We augment SHFLLOCKNB to incorporate an effective parking/wakeup policy. Our lock

algorithm departs from the scalable queue-based blocking designs as we do not have a

separate parking list [66, 122, 144]. This allows us to save up to 16–20 bytes per lock

compared to existing separate parking list-based locks. We maintain both the active and

passive waiters in the same queue, and utilize the TAS lock for lock stealing and shuffling to

efficiently wake up parked waiters off the critical path. SHFLLOCKB avoids the lock-waiter

preemption by allowing the TAS lock to be unfair in the fast path [66, 140] as well as keeping

the head of the waiting queue active, i.e., not scheduled out. In addition, we modify the MCS

protocol to support waiter parking and wakeup. We further extend our shuffling protocol

to wake up the nearby sleeping waiters while shuffling the queue for NUMA-awareness in
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1 + S_PARKED = 2 # Parked state (used by lock waiter for sleeping)
2 + S_SPINNING = 3 # Spinning state (used by shuffler for waking up)
3 def mutex_lock(lock):
4 ...
5 # Notify the very next waiter
6 - qnext.status = S_READY
7 + # Atomically SWAP the qnode status
8 + prev_status = SWAP(&qnext.status, S_READY)
9 + if node_pstate == S_PARKED: # Required for avoiding lost wakeup

10 + wake_up_task(qnext.task) # Explicitly wake up the very next waiter
11

12 def spin_until_very_next_waiter(lock, qprev, qcurr):
13 ...
14 if curr.status == S_READY:
15 return
16 + if task_timed_out(qcurr.task): # Running quota is up! Give up
17 + park_waiter(qcurr) # Will try to park myself
18

19 def shuffle_waiters(lock, qnode, next_flag):
20 ...
21 if batch >= MAX_SHUFFLINGS:
22 return
23 + SWAP(&qnode.status, S_SPINNING) # Don't sleep, will soon acquire the lock
24

25 while True:
26 ...
27 # NUMA-awareness and wakeup policy
28 if qcurr.skt == qnode.skt:
29 if qprev.skt == qnode.skt: # No shuffling required
30 + update_node_state(qcurr) # Disable sleeping
31 qnode.batch = ++batch
32 qlast = qcurr
33 qprev = qcurr
34

35 else:
36 + update_node_state(qcurr) # Disable sleeping
37 qnode.batch = ++batch
38 qprev.next = qnext
39

40 + def update_node_state(qnode):
41 + # If the task is waiting, then make it spinning
42 + if CAS(&qnode.status, S_WAITING, S_SPINNING):
43 + return
44 + # If the task is sleeping, then wake it up for spinning
45 + if CAS(&qnode.status, S_PARKED, S_SPINNING):
46 + wake_up_task(qnode.task) # Wakeup task (off the critical path)
47 +
48 + def park_waiter(qnode):
49 + # Park it when the task is waiting
50 + if CAS(&qnode.status, S_WAITING, S_PARKED):
51 + park_task(qnode.task)

Listing 5.2: The extra modification required to convert our non-blocking version of SHFLLOCK to a
blocking one.
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1 def mutex_lock(lock):
2 ...
3 + qnext = qnode.next # Try to get the successor before acquiring TAS
4 + if qnext is not None:
5 + if SWAP(&qnext.status, S_SPINING) == S_PARKED:
6 + wake_up_task(qnext.task)
7

8 # qnode is at the head of the queue; time to get the TAS lock
9 while True:

10 ...

Listing 5.3: An optimization for avoiding a waiter wakeup issue in the critical path with an extra
state update before the TAS lock.

both under- and over-subscribed cases (Figure 5.2). To support efficient parking/wakeup,

we extend our non-blocking version with two more states: 1) parked (S_PARKED), in which a

waiter is scheduled out for handling core over-subscription and 2) spinning (S_SPINNING),

in which a shuffled waiter is always spinning for mitigating the convoy effect.

Listing 5.2 shows the modifications on top of SHFLLOCKNB . While spinning locally on

its status, a waiter T checks if the time quota is up (line 16). In that case, T tries to atomically

change its qnode status from S_WAITING to S_PARKED (line 50). On success, T parks itself

out (line 51); otherwise, T goes back to spinning. In the shuffling phase, a shuffler S also

wakes up the shuffled sleeping waiters (lines 30, 36). Note that this is a best effort strategy,

in which an S first tries to atomically CAS the qnode’s status from S_WAITING to S_SPINNING,

hoping that the waiter is still waiting locally; if the operation fails, then S does another

explicit CAS from S_PARKED to S_SPINNING and wakes up the sleeping waiter if successful

(line 46). The last notable change to the algorithm is notifying the head of the queue. There

is a possibility that the very next waiter might be sleeping. We atomically swap the qnext’s

state to S_READY (line 8) and wake up the waiter at the head of the queue if the return value

of the atomic SWAP operation is S_PARKED (line 10).

Optimizations. Our first optimization is to enable lock stealing by not setting the second

byte when the queue begins. The reason is that waking up a waiter ranges from 1µs–10ms,

which adds overhead in the acquire phase. The second optimization regards the waiter
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wakeup. Our current design leads to waking up the queue head inside the critical section,

even though it is rare (see §4.4). As shown in Listing 5.3, we explicitly set the successor

status to S_SPINNING and wake it up if parked. This approach further removes the rare

occurrence of the waiter preemption problem at the cost of an extra atomic operation, which

is acceptable, as the atomic operation is only between two qnodes. It is not a part of the

critical section, as other joining threads can steal the lock (TAS) to ensure the forward

progress of the system.

Readers-Writer Blocking SHFLLOCK

Linux uses a readers-writer spinlock [145], which combines a readers indicator with a queue-

based lock. This lock queues waiting readers and writers to avoid cache-line contention

and bouncing. We use a similar design on top of our blocking SHFLLOCK. Thus, our

readers-writer lock inherently becomes a blocking lock, and at most only one reader or a

writer can spin to acquire, while others spin locally. Our lock design provides only long-term

fairness due to the NUMA-awareness of the SHFLLOCK. This is acceptable because even

the Linux’s rwsem is writer-preferred to enhance throughput over fairness [76, 75], similar

to prior work [68]. Note that the shuffler only moves writers in the wait queue because all

the contiguous readers can enter the critical section together, irrespective of NUMA socket.

Details. We augment a SHFLLOCK, henceforth called wlock, with a read/write counter,

which encodes: a readers count (Rcount), a writer waiting bit (WWb) indicating if a writer is

waiting to acquire the lock, and a writer byte (WB), indicating if a writer is currently holding

the lock. A writer enters the critical section on successfully setting WB from 0 to 1; otherwise,

it enqueues itself to acquire the underlying blocking lock (wlock). After acquiring the wlock,

the writer sets the waiting bit (WWb) to 1 to prohibit new readers from entering the critical

section and waits for existing readers to leave. Once readers leave, the writer atomically

resets WWb to 0 and sets WB to 1, releases wlock, and then enters the critical section. In the

writer unlock phase, a writer resets WB to 0. A reader first atomically increments Rcount and
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enters the critical section if both WB and WWb are 0. If non-zero, the reader first decreases

Rcount and starts acquiring wlock. Once it holds wlock, it first increments the Rcount to

prevent writers from entering the critical section and waits for the existing writer to exit.

When WB is 0, the reader enters the critical section after releasing wlock. In the unlock phase,

a reader atomically decreases Rcount.

5.3 Implementation

We implement all SHFLLOCKS in the Linux kernel v4.19-rc4 and entirely replace mutex

and rwsem with ours. Our replacement results in adding 459 and 557 lines of code (LoC) for

mutex and rwsem, respectively. We add our shuffling phase to the qspinlock in 150 LoC,

without increasing the lock size. We have also tested SHFLLOCKS with locktorture.

5.4 Evaluation

We evaluate SHFLLOCKS by answering three questions:

Q1. How do SHFLLOCKS, implemented in the kernel, impact micro-benchmarks (§5.4.1)

and real applications (§5.4.2)?

Q2. How does each design decision affect SHFLLOCKS performance and how fair are

SHFLLOCKS (§5.4.3)?

Q3. How do userspace SHFLLOCKS impact applications’ performance and memory foot-

print? (§5.4.4)

Evaluation setup. We use micro-benchmarks that stress a single lock [77, 146], and three

workloads that heavily stress several kernel subsystems [108, 147]. We also use a hash-

table nano-benchmark [148] to break down the performance characteristics of SHFLLOCKS.

Table 5.2 lists all the evaluated locks and the selection criteria. We evaluate on an 8-socket,

192-core machine with Intel Xeon E7-8890 v4 (hyperthreading disabled). We use tmpfs to

minimize file system overhead.
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Table 5.2: Locks evaluated in both the kernel space and the userspace. In the kernel space, we
replace all locks with SHFLLOCKS. We use LD_PRELOAD to replace all the mutex-based locks in the
userspace.

Kernel space

Locks Replaced Selection criteria

SHFLLOCKS All –
CNA [136] qspinlock Compact NUMA-aware lock (NB)
CST [66] mmap_sem / i_rwsem / † Hierarchical + dynamic allocation (B)
Cohort [63] s_vfs_rename_mutex † Hierarchical + static allocation (NB)

Userspace

Locks Selection criteria

MCS [59] Queue-based lock (NB)
HMCS [64] Representative cohort lock (NB)
CNA [136] Compact version of NUMA-aware MCS (NB)
MCSTP [149] Preemption adaptive MCS for over-subscription (NB)
pthread Stock version used by everyone (B)
Mutexee [150] Optimized version of pthread (B)
Malthusian [144] Culls extra thread deterministically (B)
B: Blocking; NB: Non-blocking † Both CST and Cohort replace all three locks.

5.4.1 SHFLLOCK Performance Comparison

We evaluate the performance of all SHFLLOCKS using a set of micro-benchmarks [77, 146].

Each micro-benchmark instantiates a set of threads and pins them to cores. These threads

contend on a single lock while performing specific tasks (Table 5.3) for 30 seconds. We pin

two threads on each core in the over-subscribed scenario for blocking locks.

Non-blocking SHFLLOCK. Figure 5.3 shows that both CNA and SHFLLOCK outperform

the Linux version (Stock) by 2.8× and 2× on MWRL and lock1, respectively, while main-

taining the same throughput under lower contention, e.g., within a single socket. Similar

to SHFLLOCK, CNA maintains NUMA-awareness by using the lock holder to physically

split the waiting queue into two, one for local threads and the other for remote threads.

Meanwhile, SHFLLOCK uses lock waiters to shuffle waiters around, mostly off the critical

path. Like SHFLLOCK, CNA also uses the waiting queue and re-structures this queue to
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Table 5.3: Lock usage in various micro-benchmarks [77, 146].

Lock type Workload Lock: Usage

Non-blocking MWRL [77] rename seqlock: Rename files within a directory
lock1 [146] files_struct.file_lock: fd allocation / fcntl

Blocking MWRM [77] sb->s_vfs_rename_mutex: Rename a file across directory

RW blocking MWCM [77] inode->i_rwsem: Create files in the directory (writer)
MRDM [77] inode->i_rwsem: Enumerate files in the directory (readers)
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Figure 5.3: Impact of non-blocking locks on the scalability of micro-benchmarks [77, 146]. Refer
to Table 5.3 for lock usage. Here, Stock refers to the default spinlock.
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optimize the next thread to acquire the lock. However, CNA physically partitions this queue

into a queue of local NUMA threads and one of remote NUMA threads. This operation

results in extending the critical section while acquiring the lock, but at a low amortized

cost (O(1)). In contrast, SHFLLOCK generalizes the queue re-structuring by maintaining a

single physical queue and using the shuffling operation to prioritize local NUMA threads.

Moreover, SHFLLOCK performs this operation off the critical path.

Blocking SHFLLOCK. We compare SHFLLOCK with Linux mutex and rwsem (Stock),

Cohort non-blocking lock, and CST lock (Table 5.2). We test these locks in both under-

and over-subscribed cases, i.e., up to 384 threads by pinning two threads on a core in

a round-robin manner. Figure 5.4 (a) shows the results for the MWRM benchmark, which

renames files across directories. MWRM first pre-allocates a set of empty files in per-thread

directories; then, each thread moves a file from its directory to a shared directory, which

stresses the super-block’s mutex (Table 5.3). SHFLLOCK maintains the best throughput in

both under- and over-subscribed scenarios and is 1.8× faster than both CST and Stock. The

stock suffers from cache-line bouncing at high core count but maintains the throughput

in the over-subscribed case. Cohort is a non-blocking lock, which performs well up to the

total number of cores (192 threads), but significantly degrades MWRM’s throughput in the

over-subscribed case (384 threads), as waiters waste CPU cycles. CST does not scale because

it dynamically allocates its socket structure before each critical section, which results in

excessive allocations with elongated critical section length. In contrast, Cohort pre-allocates

its socket structure, and does not extend the critical section.

Readers-Writer Blocking SHFLLOCK. Figure 5.4 (b) shows the impact of SHFLLOCK

when stressing the writer lock of rwsem. We use the MWCM benchmark, in which each worker

creates 4KB files in a shared directory to stress inode allocation. We observe that SHFLLOCK

maintains the best throughput at all core counts, due to its ability to better adapt to the

workload. For example, SHFLLOCK is 1.8–2× faster than hierarchical locks within a socket

and 1.5× faster than Stock at 192 threads. Cohort can only scale up to four cores (almost
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55% slower than SHFLLOCK) because memory allocation becomes an issue as the inode

size increases by 3.4×. Meanwhile, CST avoids this scenario, as it only allocates the memory

for one socket initially, but its performance only scales to reach that of SHFLLOCK after 2

NUMA nodes.

Figure 5.4 (c) shows the impact of SHFLLOCK when stressing the readers side of the

rwsem. We use MRDM, in which each thread enumerates files in a directory. We also include a

recently proposed approach, called BRAVO [151], that tries to mitigate the centralized reader

overhead by using a global readers table. We observe that both hierarchical locks are faster

than SHFLLOCK and rwsem because of their per-socket readers indicator, which localizes the

contention within a socket. SHFLLOCK is still faster than stock rwsem by 1.2–1.5× because

the stock version suffers from the spurious sleeping of waiters, which results in extra cache-

line contention on the reader indicator, thereby impacting the throughput. We also observe

that the BRAVO approach improves the throughput for both Stock and SHFLLOCK up to 2.3×

compared to Cohort and CST locks at 192 threads. However, due to the extra cache-line

contention in the stock version, SHFLLOCK-BRAVO still outperforms Stock-BRAVO by 1.6×

at 384 threads.

5.4.2 Improving Application Performance

We evaluate three applications that extensively stress various subsystems of the Linux kernel.

Figure 5.5 reports the throughput of applications and the memory used by locks, which are

mostly blocking and are present in several data structures such as inodes, task structures,

and memory mappings. Table 5.2 shows the locks modified for the evaluation. Note that

CNA only modifies the spinlock, but does not affect the size of blocking locks.
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AFL [147], a fuzzer, is an embarrassingly parallel workload that heavily uses fork() to

execute test cases and scan directories created by the fuzzing instances. AFL suffers from

the following overheads: process forking, repeatedly creating and unlinking files in a private

directory, and scanning other instances’ directories [152]. In addition, AFL suffers from the

gettimeofday() syscall, as each instance issues this syscall to log information. Figure 5.5

(a) shows AFL throughput and memory usage with various locks. We observe that all

the existing versions of NUMA-aware locks improve throughput compared with the stock

version. For instance, CNA decreases the qspinlock overhead due to process forking and

gettimeofday() from 48% to 32%. Meanwhile, both CST and Cohort locks improve the

file system performance, as these locks scale as well as SHFLLOCKS. However, their large

memory footprint starts stressing the memory allocator at higher core count, as the bottleneck

completely shifts to process forking (30%). Finally, SHFLLOCKS improve performance

on two fronts: they improve throughput by 1.2–1.6× while reducing the lock overhead by

35.4–95.8% at 192 threads. The significant overhead now comes from the gettimeofday()

syscall, as perf shows almost 20% of CPU cycles.

Exim [108] is a process-intensive workload that forks a new process for every connection.

Each connection then forks twice to handle messages and file system operations [77],

which heavily over-subscribe the system. Exim creates about 3× copies for each message

and heavily stresses the kernel in three subsystems: memory management, file systems,

and network connections. On average, about 50% of the time is spent in the process

forking/exiting and interrupts. Figure 5.5 (b) shows Exim throughput and memory usage

with various locks. Both SHFLLOCKS and CNA improve throughput as they decrease the

CPU idle time by 50% compared with CST, Cohort, and Stock while improving the useful

work by ≈2%. The improvement is a result of a decrease in lock contention by 10% (relative

to Stock) in the cleaning up of reverse mappings [153]. The throughput of the CST and Cohort

locks decreases because these locks stress the memory allocator (see §5.1), as the benchmark

generates about 8M files in 20 secs. In summary, SHFLLOCKS improve the throughput
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by 1.5× compared with hierarchical locks as well as decrease the memory footprint by

40.8–92.9% among all existing versions.

Metis is an in-memory map-reduce framework, representing a page-fault-intensive workload

that stresses a single lock in the kernel: the reader side of the mmap_sem. Figure 5.5 (c)

shows that both Cohort and CST locks outperform all the centralized counter-based locks

because of localizing the contention within a socket but at the cost of ≈80× extra memory.

However, our readers-writer blocking lock is still faster than Stock because the stock version

also encodes the sleeping waiters in its count indicator, as it has almost 3.4× higher atomic

instructions compared with SHFLLOCK when measured with perf [154]. This workload

also shows the efficiency of our under-subscribed scenario. Compared to rwsem, that has

33% more idle time due to its naive parking strategy, SHFLLOCK’s readers do not park

themselves. This results in less idle time (1.2%) and higher throughput (2.4×) than the

original rwsem.

Summary. Figure 5.5 shows the impact of scheduling interaction, the overhead of

memory allocation with respect to locks in both under- and over-subscribed cases, with

varying contention levels. Our holistic design of SHFLLOCKS accommodates NUMA-

awareness at high core count and shows that memory overhead (whether dynamic or static)

heavily influences the scalability of applications. Compared to all locks, SHFLLOCKS

reduce the memory footprint overhead up to 98.8% and 35.4% when compared with the

hierarchical locks, CNA2 3 and Stock, respectively. The reduction stems from blocking locks,

as SHFLLOCKS are 12/20 bytes in comparison to 40 bytes for CNA and Stock and ≈1.5KB

for hierarchical locks.
2CNA only modifies spinlock, but does not affect the size of blocking locks.
3CNA only modifies spinlock, which does not affect the size of the blocking locks (same as the Stock

version).
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5.4.3 Performance Breakdown

We now do an in-depth analysis of SHFLLOCKS using a hash-table benchmark in the

kernel [148]. A global lock guards the hash table. For SHFLLOCKNB and SHFLLOCKB , we

use 1% writes, and for SHFLLOCKRW (readers-writer blocking lock), we generate 1% and

50% writes on the hash table. Figure 5.6 shows the results as well as the factor analysis of

SHFLLOCKS.

Non-blocking SHFLLOCKNB. Figure 5.6 shows (a) throughput and (b) fairness. We

calculate the fairness factor described by Dice et al. [136], in which we sort the number

of operations performed by each thread, and divide the sum of the second half of threads’

operations (sorted in increasing order) by the total number of operations. Thus, the resulting

fairness factor is a number between 0.5 and 1, with a strictly fair lock yielding a factor of 0.5

and an unfair lock yielding a factor close to 1. We observe that both CNA and SHFLLOCK are

the best performing, while the performance of Cohort locks is affected because of bloating

of the critical section in the case of one socket. Although NUMA-aware locks impact the

fairness of locks, they still maintain long-term fairness, as the fairness factor is close to 0.5.

Figure 5.6 (e) shows the improvement at 192 threads due to the various optimizations in

SHFLLOCKS. Here, Base represents no shuffling, which behaves as the NUMA-oblivious

spinlock. +Shuffler represents a version of SHFLLOCKS where only the very first waiter

shuffles, but doesn’t pass the role to other threads. This version improves the throughput by

16% over Base. +Shufflers represents the algorithm we describe in Listing 5.1, in which a

shuffler passes the role to any waiter in the local socket. This approach results in almost a

10% improvement over +Shuffler. Finally, the +qlast optimization avoids the unnecessary

pointer chasing done by the shuffler to determine where to insert a rellocated qnode by

saving the last qnode of the threads with the same socket ID. This optimization improves

throughput by 30% .

Blocking SHFLLOCKB. Figure 5.6 shows (c) throughput, and (d) the fairness factor
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Figure 5.6: Impact on throughput and long-term fairness of non-blocking and blocking locks on the
hash-table benchmark. For blocking locks, we over-subscribe the system by 4×. We also include
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in the critical path for SHFLLOCKB . Later, we show the impact on throughput with centralized
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100



for SHFLLOCKB. We see that SHFLLOCK maintains the best throughput even up to 4×

over-subscription because it aggressively steals the lock in the over-subscribed case. Our

lock stealing is inherently NUMA-aware because most of the remote waiters join the queue;

meanwhile, the local active waiters only steal the lock if the very-next waiter (shuffler) is

busy waking up its successor. We further confirm this result by only allowing the stealing

from the local NUMA-socket, which shows the same throughput, as shown by SHFLLOCK

(NUMA) in the figure. Meanwhile, even in the under-subscribed scenario, we observe that

the fairness factor reaches up to 0.6 because of lock stealing but does not starve waiters

(d). Besides, the shuffler proactively wakes up threads that will acquire the lock soon,

which completely removes the waking-up overhead from the critical path, even in the

over-subscribed scenario (refer to Figure 5.6 (f)).

Blocking SHFLLOCKRW . Figure 5.6 ((g) and (h)) show that the SHFLLOCKRW has higher

throughput than the stock version by 8.1× and 3.7× for 1% and 50% writes, respectively.

This happens because the stock version is very inefficient, as most of the threads are blocked,

resulting in idling of the CPU (99%). Meanwhile, SHFLLOCKRW maintains consistent

performance regardless of the contention on the lock, even further batching readers together

at a higher count to maintain good throughput. One point to note is that in the case of

over-subscription, SHFLLOCKRW aggressively batches readers and writers, which slightly

improves the throughput.

5.4.4 Performance With Userspace SHFLLOCK

We now evaluate SHFLLOCKS on three benchmarks: LevelDB for high contention, Stream-

cluster for the trylock interface, and Dedup for memory allocation [155]. We integrate

both SHFLLOCK and CNA into LiTL [156] for evaluation.4 We use a set of blocking

and non-blocking locks that have the best performance for the selected workloads (refer

to Table 5.2).
4Similar to pthread, we use futex() system call to implement SHFLLOCKB . The waiter spins for a

constant duration and then parks itself.
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Figure 5.7: Total throughput of LevelDB benchmark and the streamcluster benchmark with various
blocking and non-blocking locks. We further over-subscribe the cores for levelDB (b) to test the
impact of blocking locks with 4× the number of cores.

LevelDB is an open-source key-value store [157]. We use the readrandom benchmark that

contends on the global database lock. Figure 5.7 (a) and (b) show the throughput with non-

blocking and blocking locks, respectively, with up to 4× over-subscription for the blocking
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ones after running for 60 seconds. We keep pthread as a reference for the comparison. We

find that SHFLLOCK is almost as fast as the existing NUMA-aware locks with increasing

core count and is 2.4× faster than MCS locks with 192 threads. We also observe that

pthread only scales up to eight threads because it starts parking threads. The throughput

of blocking locks is better than non-blocking ones because fewer threads are contending

on locks. SHFLLOCKB outperforms others by 1.7–3.8× at 192 threads. Moreover, we see

that SHFLLOCK maintains almost the same throughput even at 768 threads, and achieves

1.6–12.5× higher throughput. This happens for two reasons: efficient waking up of waiters

and aggressive lock stealing, as there are still active waiters that acquire the lock.

Streamcluster is a data mining workload [137], which uses a custom barrier implemen-

tation to synchronize threads between the different phases of the application. The barrier

implementation uses a mix of trylock and lock operations, as well as condition variables,

which amount to almost 30% of the execution time [155]. Figure 5.7 (c) shows the execution

time of streamcluster. Guerraoui et al. pointed out that the contention-hardened trylock

interface results in better execution of this workload, which we observe for HMCS as well

as for MCSTP (slightly better than MCS and CNA). However, we find that SHFLLOCKS has

almost similar execution time as that of HMCS and is 1.3–4.4× faster than other locks. This

happens because of our main design choice: decoupling the lock state from the waiting

queue. Even though CNA is NUMA-aware, its performance is similar to MCS because the

lock state and the queue tail are coupled. On further analysis, we find that queue-based

locks, such as HMCS, CNA, and MCS, spend 4× extra time (failed and succeeded trylock

time) and 15× excessive trylock operations than SHFLLOCK, which improves SHFLLOCK’s

throughout over MCS and CNA. Despite HMCS spends extra time in the trylock operation,

it spends 4× less time in the lock operation than SHFLLOCK because waiters statically

partition the list, which results in the most efficient NUMA-aware lock. In summary, tail

and state decoupling provides a window of opportunity that allows the trylock operation to

succeed.
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Dedup: represents an enterprise storage workload [137], which allocates up to 266K locks

throughout its lifetime and heavily stresses the memory allocator as well as creates almost

3× the number of threads for several application phases. Figure 5.8 shows (a) the number

of jobs per hour and (b) the ratio of the overall memory allocated during the application’s

lifetime with respect to pthread. We observe that the benchmark is not scalable after 48

cores (2 sockets) because of huge over-subscription and memory allocation. Both versions of
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SHFLLOCKS have the same scalability as that of a light lock, as pthread, and the blocking

version is even 5% faster at 48 cores by avoiding the lock-waiter preemption.

SHFLLOCK adds no memory overhead over pthread, but other queue-based lock add

the overhead of per-thread queue nodes allocated on the heap. While these locks could

theoretically allocate queue nodes on the stack, it would require application-wide changes to

the Dedup code and pthread API; SHFLLOCK’s queue node design is easier to deploy. In

addition, the hierarchical locks also allocate per-socket structures. This leads to more than

90% of the time being spent in memory allocations. For instance, the ratio of extra memory

allocation is 58–87× higher for existing queue-based locks.

5.5 Chapter Summary

Locks are still the preferred style of synchronization. However, a considerable discrepancy

exists in practice and design. We classify such issues into four dominating factors that

impact the performance and scalability of lock algorithms and find that none of the locks

meets all the required criteria. To that end, we propose a new technique, called shuffling, that

enables the decoupling of lock design from policy enforcement, such as NUMA-awareness

or parking/wakeup strategies. Moreover, these policies are enforced entirely off the critical

path by the waiters. We then propose a family of locking protocols, called SHFLLOCKS,

that respects all of the factors and shows that we can indeed achieve performance without

additional memory overheads.
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CHAPTER 6

RELATED WORK

6.1 Ordering in Concurrency Control Algorithms

We first discuss the importance of timestamping with respect to prior research and briefly

peruse invariant clocks provided by today’s hardware.

Logical clocks. Logical timestamping, or a software clock, is a prime primitive for most

concurrency mechanisms in the domain of concurrent programming [39, 33, 47, 50, 158,

159, 42, 110] or database transactions [5, 34, 3, 101, 100]. To achieve ordering, these

applications rely on atomic instructions, such as fetch_and_add [47, 33, 160, 110] or

compare_and_swap [1]. For example, software transactional memory (STM) [96] is an active

area of research in which almost every new design [110, 160] is dependent on time-based

approaches [1, 2] that use global clocks for simplifying the validation step while committing

a transaction. As mentioned before, a global clock incurs cache-line contention; thus, prior

studies try to mitigate this contention by applying various forms of heuristics [50, 158] or

slowly increasing timers [161], or having access to a synchronized hardware clock [42].

Unfortunately, these approaches introduce false aborts (heuristics) or are limited to specific

hardware (synchronized clocks). The use of Ordo is inspired by prior studies that either

used synchronized clocks [161] or relied on specific property to achieve causal ordering

on a specific architecture such as Intel X86 [42]. However, Ordo assumes that it has access

to only invariant timestamp counters with an uncertainty window, and we expose a set of

methods for the user to handle that uncertainty regardless of the architecture. Similar to STM,

RLU [33] is a lightweight synchronization mechanism that is an alternative to RCU [162].

It also employs a global clock that serializes writers and readers, and uses a defer-based

approach to mitigate contention. We show that even with its defer-based approach, RLU
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suffers from the contention of the software clock, which we address with the Ordo primitive.

Databases rely on timestamping for concurrency control [101, 5, 3, 4, 163] to ensure a

serializable execution schedule. Among concurrency control mechanisms, the optimistic

approach is popular in practice [5, 101]. Yu et al. [100] evaluated the performance of

various major concurrency control mechanisms and emphasized that timestamp-based

concurrency control mechanisms such as optimistic concurrency control (OCC) and multi-

version concurrency control mechanisms (MVCC) suffer from timestamp allocation with

increasing core count. Thus, various OCC-based systems have explored alternatives. For

example, Silo [5] adopted a coarse-grain timestamping and a lightweight OCC for transaction

coordination within an epoch. The lightweight OCC is a conservative form of the original

OCC protocol. Even though it achieves scalability, it does not scale in highly contentious

workloads [164] due to its limited concurrency control. On the other hand, MVCC protocols

still rely on logical clocks for timestamp allocation and suffer scalability collapse even in a

read-only workload [100, 34].

Physical timestamping. With the pervasiveness of multicore machines, physical

timestamp-based algorithms are gaining more traction. For example, Oplog, an update-heavy

data structure library, removes contention from a global data structure by maintaining a

per-core log that appends operations in a temporal order [6]. Similarly, Dodds et al. [43]

proposed a concurrent stack that scales efficiently with the RDTSC counter. Likewise, quies-

cence mechanisms have shown that clock-based reclamation [40] eschews the overhead of

the epoch-based reclamation scheme. In addition, Recbulc [165] used core-local hardware

timestamps to reduce the recording overhead of synchronization events and determine global

ordering among them. They used a statistical approach to determine the skew between

clocks, which is around 10 cycles for their machine. Another dimension in which some

of the prior works have focused is expediting record/replay [166] with the assumption of

clocks are already synchronized. Unfortunately, besides Recbulc, the primary concern

with these algorithms, is their assumption of access to synchronized clocks, which is not
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true with any available hardware. On the contrary, all clocks have constant skew and are

monotonically increasing at a constant rate, which our Ordo primitive leverages to provide a

globally synchronized clock on modern commodity hardware. Thus, with the help of our

API, Ordo acts as a drop-in replacement for these algorithms. The only tweak that these

algorithms require is to carefully handle the case of uncertainty that is present because of

these invariant clocks. The idea proposed by Recbulc is not applicable in our scenario, as

it still provides a statistical guarantee, which we want to avoid for designing concurrent

algorithms that want to have the property of linearizability or serializability. Moreover, our

approach ensures the correct use of these clocks with the help of one-way latency.

6.2 Double Scheduling in VMs

The double scheduling phenomenon is a recurring problem in the domain of virtualization,

which seriously impacts the performance of a VM. There have been comprehensive research

efforts to mitigate this problem.

Synchronization primitives in VMs. Uhlig et al. [84] demonstrated the spinlock synchro-

nization issue in a virtualized environment, which he addressed with synchronous hints to the

hypervisor, and was later replaced by para-virtual hooks for the spinlock [83] for notifying

the hypervisor to block the vCPU after it has exhausted its busy wait threshold. Meanwhile,

other problems such as LWP [131], the BWW problem [120, 16], and RCU readers preemption

problems were found. Gleaner [120] that addressed the BWW problem implemented a user

space solution to handle tasks among a varying number of vCPUs, by manipulating tasks’

processor affinity in the user space, which is difficult to maintain at runtime as it must

accurately track each task launch and deletion.

From the hardware perspective, processor manufacturers added an execution control

to the VMCS structure—Pause Loop Exiting (PLE) [167]– that notifies the hypervisor of

the waiter via VM exit. PLE partially solves the LHP problem but can also result in false

positives. Ahn et al. [168] proposed a solution on the basis of a smaller time slice to resolve
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both interrupt handling and LHP-LWP problems. They proposed an LLC-based architectural

solution to resolve the large overhead. This approach will result in a huge overhead for VMs

with a high core count, and degradation might remain consistent.

Taebe et al. [86] addressed the LHP/LWP issue by exposing the time window from the

hypervisor to the guest OS, which leverages this information that enables a waiter to

either spin or join the waiting queue. However, their solution is not applicable to CFS [82]

scheduler of Linux as it does not expose the scheduling window information. Their solution

is orthogonal to our approach as we want the hypervisor to take a decision than the VM.

Waiman Long [87] designed and implemented qspinlock that inherently overcomes the

problem of LWP by exploiting the property of the TAS lock in the queue-based lock. It works

by allowing the other waiters to steal the lock before joining the queue without disrupting the

waiters’ queue. However, qspinlock is still prone to LHP. Meanwhile, by annotating various

locks as eCS, we confirm these problems, and further identify new sets of problems such as

RP and ICP, and provide a simple solution to address the double scheduling phenomenon.

Partial handling of scheduling overhead in VMs. There have been several studies on vir-

tualization overhead because of the software-hardware redirection [17, 16] and co-scheduling

issues [116, 117, 118, 169]. For example, VMware relies on relaxed co-scheduling [116]

to mitigate double scheduling problem, in which vCPUs are scheduled in batches and the

stragglers are synchronized within a predefined threshold. Besides this, other works have

proposed balanced vCPU scheduling [117] or even IPI based demand scheduling [118]. How-

ever, these co-scheduling approaches suffer from CPU fragmentation. On the contrary, our

approach neither introduces any CPU fragmentation nor it needs to synchronize the global

scheduling information for all the vCPU of a VM because each vCPU is locally penalized by

the hypervisor rather than synchronizing them among other vCPUs.

Song et al. [115] proposed the idea of dynamically adjusting vCPUs according to available

CPU resources, while allowing guest OS to schedule its tasks. They used the approach of

vCPU ballooning, which avoided the problem of double scheduling and was later extended
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by Cheng et al. [121] by designing a lightweight hotplug vCPU mechanism. Although their

approach is effective in case of small VMs, it is complementary to our approach and may

not scale effectively for large SMP VMs because of the overhead of migrating tasks from

one vCPU to another as well as the frequent rescheduling of the targeted vCPUs. eCS, on the

other hand, does not suffer from any explicit IPI and migration-specific tasks, as it only adds

an overhead of a simple memory operations for a scheduling decision.

6.3 Locking Primitives

We classify prior research directions into three categories: NUMA-aware locks, runtime

contention management, and timeout-based locks.

NUMA-aware locks. NUMA-aware locks address the limitation of NUMA-oblivious

locks [59] by amortizing the cost of accessing the remote memory. Most of the locks are

hierarchical in nature such that they maintain multiple levels of lock [63, 64, 60, 156, 61]

in the form of a tree. Inspired by prior hierarchical locks [60, 61], Cohort locks [63, 64]

generalized the design of any two types of locks in a hierarchical fashion for two-level

NUMA machines and later extended them for the read-write locks [68]. However, neither of

them addresses the memory utilization issue nor supports blocking synchronization, which

leads to sub-optimal performance when multiple instances of locks are used or when the

system is overloaded. Besides Cohort locks, another category of locking mechanism is based

on combining [170, 171] and the remote core execution approach [172] in which a thread

executes several critical sections without any synchronization. Although it outperforms

Cohort locks [172], the mechanism requires application modification, which is not practical

for applications with a large code base.

Contention management. The interaction between lock contention and thread scheduling

determines application scalability, which is an important criterion to decide whether to spin

or park a thread in an under- or over-subscribed scenario. Johnson et al. [143] addressed

this problem by separating contention management and scheduling in the user space. They
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use admission control to handle the number of spinning threads by running a system-wide

daemon that globally measures the load on the system. Similar approaches have been used

by runtimes [173] and task placement strategies inside the kernel without considering the

lock subsystem [174]. Along these lines, the Malthusian lock [144], a NUMA-oblivious

lock, handles thread over-subscription by randomly moving a waiter from an active list to a

passive list (concurrency culling), which is inspired by Johnson et al.

Timeout-based locks. Locks with timeout capability address the problem of tolerating

preemption of the threads, aborting transactions in databases or even meeting the deadline in

real-time systems by abandoning their attempt to acquire the lock. Scott et al. implemented

a timeout based locks [175, 142] that either modify the queue and status maintained by the

lock or explicitly allocated memory for each lock acquisition. These locks are inefficient

in terms of space complexity as well as do not address the cache line bouncing problem of

NUMA machines. Moreover, the memory management will become a critical bottleneck for

these locks with increasing core count. Cohort locks [63] also present two timeout capable

locks but they implement variant of CLH lock [142], which still suffers from explicit memory

management.
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CHAPTER 7

REFLECTIONS

This chapter first discusses the limitations of proposed approaches. Later, we discuss some

of the future works that this thesis opens up.

7.1 Limitations

We discuss the limitations of our approaches with respect to hardware timestamping, task

scheduling, and dynamic lock algorithms.

7.1.1 Ordering in Concurrency with Ordo

The most important issue with these hardware clocks is the instruction ordering that varies

with architectures. For example, in the case of Intel architectures, we avoided instruction

reordering by relying on the RDTSCP instruction followed by an atomic instruction to assign

the timestamp. We do a similar operation for the ARM architecture as well. Another important

problem with the timestamp counters is that they will overflow after crossing the 64-bit

boundary in the case of Intel, AMD, and Sparc and the 55-bit boundary for ARM. Even though

it will take years for the counters to overflow, the algorithms should also handle this scenario

like existing approaches [47].

Additionally, we assume that existing hardware clocks have constant skew and do not

suffer from clock drift. However, this issue has been known to occur in various older

machines [176]. On the contrary, we have not seen such an issue on any of our machines.

Moreover, in a private communication, an Intel developer stated that current generations of

Intel processors do not suffer from clock drift as the hardware tries to synchronize it. On

the contrary, Oplog [6] empirically found that the clocks are synchronized. Since hardware

vendors do not provide any such guarantee, our calculation is of the ORDO_BOUNDARY relaxes
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the notion of synchronized clocks, while only assumes that they have constant skew. In

addition, we believe that our algorithm (Figure 3.1) is applicable to machines with asym-

metric architectures, such as AMD Bulldozer [177]. However, we could not evaluate the

scalability of algorithms and the range of the ORDO_BOUNDARY because of the unavailability

of the machine, but we believe that algorithms should still be scalable enough, as they have

other bottlenecks besides timestamping.

Another important issue is further decreasing the uncertainty period. We can try to

decrease this window by comparing time on the basis of thread ID, as we can expose a

pairwise clock table to algorithms. However, we avoided such a method for three reasons.

First, maintaining a pairwise clock table will incur memory overhead and the application

has to load the whole table in the memory for reading. Second, application developers

may have to resort to thread pinning so that threads do not move while comparing or

doing an operation, as thread migration can break the assumptions of algorithms. Finally,

the value of ORDO_BOUNDARY is large enough to work on multisocket machines. Moreover,

ORDO_BOUNDARY overcomes the problem of thread migration because the cost of thread

migration varies from 1–200 µs, which does not affect the correctness of existing algorithms,

as the time obtained after thread migration is already greater than the ORDO_BOUNDARY (refer

to Table 3.1). However, Ordo is not a panacea to solving the timestamping issue. For

instance, the timestamped stack [43] is oblivious to weak forms of clock synchronization

that have stutter.

7.1.2 Enlightened Critical Sections

Our eCS approach addresses the problem of preemptions and BWW in both under- and over-

committed scenarios by annotating all synchronization primitives and mechanisms in the

kernel space. However, besides these primitives, kernel developers have to manually annotate

a critical section if they want to avoid the preemptions while introducing their own primitives.

One approach could be that the hypervisor can read the instruction pointer (IP) to figure
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out an eCS, but the guest OS must provide a guest OS symbol table to resolve the IP. In

addition, the current design of eCS only targets the kernel space of a guest OS, and it is still

agnostic of the user space critical sections such as pthread locks. Hence, we would like

to extend our approach to the user space critical sections to further avoid the preemption

problem, as we believe that eCS is a natural fit for multi-level scheduling. However, we need

to communicate the scheduling hint down to the lowest layer effectively, which requires

designing of the eCS composability extensions.

Our annotation approach does not open any security vulnerability because our approach

is based on the para-virtualized VM, and it is similar to other approaches that share the

information with the hypervisor [91, 123]. By using our virtualized scheduling-aware

spinning approach (eSCHDSPIN), we partially mitigate the BWW problem. However, our

Hypervisor → VM methods expose scheduling information of the pCPU, but they only

tell if a pCPU is overloaded or a vCPU is preempted. In addition, a VM cannot misuse

this information as it will be later penalized by the hypervisor. There is also very slight

possibility of priority inversion problem with our extra schedule approach. However, the

window of that hypervisor-granted extra schedule is too small to incur priority inversion and

performance, unlike co-scheduling approaches [117, 116] in which the scheduling window

is in the order of several milliseconds.

7.1.3 Shuffling-based Lock Algorithms

Shuffling enables designing dynamic lock algorithms that can incorporate policies on the

fly. This approach departs from the conventional static approach, such as hierarchical locks.

However, this dynamic policy can be ineffective if shuffler is faster than waiters joining the

queue. For example, in the case of NUMA-aware locks, shuffling can be ineffective, if the

waiters are joining the queue after the completion of the shuffling phase. In this scenario,

the SHFLLOCKS will behave as a NUMA-oblivious algorithm. We can partially mitigate

this issue at the expense of regularly shuffling, i.e., a shuffler can only stop the shuffling
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process on finding a node that adheres to the specified policy.

7.2 Future Work

We now outline a set of research directions that this dissertation opens up.

Ordering: More hardware support. Ordo enables applications or systems software to cor-

rectly use invariant hardware timestamps. However, the uncertainty window can

play a huge part for large multicore machines that span beyond thousands of cores.

Moreover, Ordo only dominates after crossing the socket boundary. Hence, it is

possible to further reduce the uncertainty window if processor vendors can provide

some bound on the cost of cache-line access, which will allow us to use existing

clock synchronization protocols with confidence, thereby decreasing the uncertainty

window to overcome aborts occurring in concurrency algorithms.

Ordering: Algorithmic use cases. Ordo is definitely beneficial to various applications,

such as databases [178] and log mechanisms in file systems [38]. For instance, Ordo

has already found its usefulness in designing a multi-version support for RLU [179]

and its durable version [180].

Ordering: Rack-scale algorithms. Another direction is designing algorithms for upcom-

ing rack-scale architectures. In this scenario, we can devise a two-level timestamping

primitive algorithms can use Ordo inside a machine to be multicore friendly, while

using existing synchronization protocols for consistency guarantees.

Scheduling: Efficient n-level scheduling. Cloud providers allow users to execute server-

less functions [181, 182, 183] that may be running their own runtimes (e.g., go,

haskell, erlang) inside VMs. This type of execution introduces multiple layers of

schedulers that are stacked on top of each other. Thus, using eCS along with scheduler

activations [184] can efficiently bridge the semantic gap across schedulers.
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Locks: Software defined synchronization. Our shuffling mechanisms opens new oppor-

tunities to implement different policies based on the hardware behavior or the require-

ments of the application. For instance, until now every lock is statically compiled

and is used for the entire application life cycle. This is common in the case of the

OS. Thanks to the shuffling mechanism, which decouples the policy from design, we

can dynamically inject various policies to change the application behavior during its

life cycle. For example, we can prioritize 1) stragglers in parallel algorithms, 2) set

of system calls to improve application performance, and 3) background tasks [185].

Moreover, we can modify the locking policy based on the hardware requirements,

such as non-inclusive cache [135] or a multi-level NUMA-hierarchy [186].

Locks: Verifying and synthesizing locks. Shuffling opens up the opportunity to verify

complex lock algorithms. Because of its decoupling approach, we can leverage

existing work [187] to separately verify the shuffling mechanism, which is part of the

already verified MCS lock algorithm. In addition, we can synthesize or even sketch

various types of locking protocols, as specified by the lock developer.
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CHAPTER 8

CONCLUSION

Synchronization primitives are fundamental to the design of applications. Today’s appli-

cations heavily rely on these primitives to not only improve their performance but also for

correctness. Moreover, these primitives have been evolving over the past two decades to not

only adopt the hardware changes for better performance but also cater to the software require-

ments. Unfortunately, most of the proposed primitives either fail to scale efficiently when

hardware changes or require a complete redesign for software. This dissertation focuses on

the scalability bottlenecks of synchronization primitives on large multicore machines. We

propose several new practical synchronization primitives by utilizing either hardware or the

domain knowledge of the application to improve the performance of applications.

First, we propose a new ordering primitive, called Ordo, that overcomes the scalability

bottleneck of costly atomic instructions that do not scale on large multicore and multisocket

machines. Ordo provides an illusion of a globally synchronized hardware clock with some

uncertainty in a machine. Ordo leverages the hardware-provided invariant per-core clocks

that increase at a constant frequency in a machine. This thesis then proposes a set of

simple methods, which timestamp-based concurrency control algorithms can directly use.

We show their effectiveness by applying them to five algorithms, using either physical or

logical timestamp. With Ordo, we remove the overhead of atomic instructions and scale

these algorithms across several architectures by at most an order of magnitude. Ordo is a

fundamental ordering primitive that has a fixed cost regardless of the number of cores in a

machine.

Second, this thesis evaluates the issue of various preemption problems that occurs

because of synchronization primitives, as multiples of software layers are stacked together.

Upon further evaluation, we find that the preemption problems are merely symptoms of a
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significant problem—the double scheduling problem— in which the guest OS schedules

processes on virtual CPUs, and the hypervisor schedules virtual CPUs on physical CPUs.

This thesis presents a single shot solution that addresses all preemption problems arising

from synchronization primitives, as well as other OS services, such as interrupt contexts

processing. We use one key insight: if a certain key component of a guest OS is allowed

to proceed further, the guest OS will make forward progress. We identify these critical

components as synchronization mechanisms, such as spinlocks, mutex, rwsem, RCU, and

even interrupt context. We annotate these sections with our lightweight methods and call

them enlightened critical sections (eCS). Our methods expose whether a VM is executing a

critical section, which the hypervisor uses to provide an extra schedule at the scheduling

boundary, allowing the guest OS to progress forward.

Finally, we focus on the design of lock algorithms: the most preferred style of syn-

chronization that almost every application uses. We study the discrepancy that exists in

practice and design, which we classify into four factors that impact the performance and

scalability of the lock algorithm. Moreover, none of the existing lock algorithms do meet all

four factors. Hence, this thesis proposes a new technique, called shuffling, which decouples

lock design from policy enforcement. Such policies are NUMA-awareness, parking/wakeup

strategies, reader or writer preference in readers-writer lock design. We propose a family of

locking algorithms, called SHFLLOCKS, where waiters enforce these policies, mostly off

the critical path. SHFLLOCKS are the first family of lock algorithms that respect all four

factors, utilize waiters without using additional memory, and achieve the best performance.
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