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Rise of the multicore machines
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Data-intensive applications performance

Hardware limitation: frequency stagnated
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Machines have multiples of processors (multi-socket)

CPU trends 



Multicore machines → “The free lunch is over”

Operating systems Cloud services Data processing systems Databases

Today’s de facto standard:
Concurrent applications that scale with increasing cores

Synchronization primitives
Basic building block for designing applications
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Synchronization primitives

Provide some form of consistency required by applications

Determine the ordering/scheduling of concurrent events
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Synchronization required at several places



Future hardware will exacerbate scalability
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Challenge: Maintain application scalability

SSD

100-1000s of CPUs

Single core

Many-core

10x ~ 1000x 



How can we minimize the overhead
of synchronization primitives for large
multicore machines?
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Efficiently schedule events by leveraging HW/SW
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Thesis contributions

• Discrepancy between lock design and use

• Approach:  Decouple lock design from lock policy via 
shuffling mechanism

Decouple lock 
policy from 

design
HW / SW

policy

design

SOSP’19

• Double scheduling in a virtualized environment

• Introduce various types of preemption problems

• Approach: Expose semantic information across layers

VM double
scheduling

Hypervisor

VM

OS

VM

ATC’18

• Timestamping is costly on large multicore machines

• Cache contention due to atomic instructions

• Approach: Use per-core invariant hardware clock

Hardware 
timestamping

Eurosys’18
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Thesis contributions

• Discrepancy between lock design and use

• Approach:  Decouple lock design from lock policy via 
shuffling mechanism

• Double scheduling in a virtualized environment

• Introduce various types of preemption problems
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Example: Email service
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file_create(…) {
spin_lock(superblock);
…
spin_unlock(superblock);

}

rename_file(…) {
write_lock(global_rename_lock);
…
write_unlock(global_rename_lock);

}

# threads

Degrading performance

due to inefficient locksM
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File system
process_create(…) {
mm_lock(process->lock);
…
mm_unlock(process->lock);

}

processs_schedule(…) {
spin_lock(run_queue->lock);
…
spin_unlock(run_queue->lock);

}

Scheduler

Process intensive and stresses memory subsystem, file system and scheduler



• Provide mutual exclusion among tasks
• Guard shared resource

• Mutex, readers-writer lock, spinlock
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Synchronization primitive: Locks

Lock protects the access to 
the data structure

Threads want to modify the 
data structure

Threads wait for their turn by 
either spinning or sleeping
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Locks: MOST WIDELY used primitive

20

40

60

80

100

120

140

160

180

200

2002 2019

# 
lo

ck
 A

P
I(

) 
ca

lls
 (

x1
0

0
0

) 

More locks are in use to improve OS scalability

4X

Linux kernel



19

Locks are used in a complicated manner

A system call can acquire up to 12 locks (average of 4)
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Issue with current lock designs

Backoff lock
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Design specific locks for hardware and software requirements 

Used in practice Best performance
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Issue with current lock designs

Generic Focus on simple lock, more applicability

Forgo hardware characteristic Worsening throughput with more cores

Hardware specific design High throughput for high thread count

Use extra memory Suitable for pre-allocated data

Locks in practice:

Locks in research:

Design specific locks for hardware and software requirements 

HW/SW policies are statically tied together



Scalable and practical locking algorithms

Incorporating HW/SW 
policies dynamically
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Two trends driving locks’ innovation

Evolving

hardware

Applications

requirement
25



In high thread count

In single thread

In oversubscription

Minimize lock contentions

No penalty when not contended

Avoid bookkeeping overhead

1) High throughput

Memory footprint Scales to millions of locks

2) Minimal lock size

Two dimensions of lock design / goals
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In high thread count

In single thread

In oversubscription

Minimize lock contentions

No penalty when not contended

Avoid bookkeeping overhead

1) High throughput

Memory footprint Scales to millions of locks
(e.g., file inode)

2) Minimal lock size

Application: Multi-threaded to utilize cores to improve performance

Lock: Minimize lock contention while maintaining high throughput

Two dimensions of lock design / goals

27



In high thread count

In single thread

In oversubscription

Minimize lock contentions

No penalty when not contended

Avoid bookkeeping overhead

1) High throughput

Memory footprint Scales to millions of locks

2) Minimal lock size

Application: Use threads utilize cores to improve performance
Locks: Minimize lock contention while maintaining high throughput

Application: Single thread to do an operation; fine-grained locking

Lock: Minimal or almost no lock/unlock overhead

Two dimensions of lock design / goals
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In high thread count

In single thread

In oversubscription

Minimize lock contentions

No penalty when not contended

Avoid bookkeeping overhead

1) High throughput

Memory footprint Scales to millions of locks

2) Minimal lock size
Application: More threads than cores; common scenario; eg. I/O wait

Lock: Minimize scheduler overhead while waking or parking threads

Two dimensions of lock design / goals
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In high thread count

In single thread

In oversubscription

Minimize lock contentions

No penalty when not contended

Avoid bookkeeping overhead

1) High throughput

Application: Locks are embedded in data structures; eg. file inodes

Lock: Can stress memory allocator or data structure alignment

Memory footprint Scales to millions of locks

2) Minimal lock size

Two dimensions of lock design / goals

30
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> 1 socket

Stock

Oversubscribed

Benchmark: Each thread creates a file, a serial operation, in a shared directory1

Setup: 192-core/8-socket machine

Locks performance: Throughput

1 socket
● Throughput collapses after one socket
Due to non-uniform memory access (NUMA)

311. Understanding Manycore Scalability of File Systems [ATC’16]



O
p

er
at

io
n

s 
/ 

se
co

n
d

# threads

Stock

● Throughput collapses after one socket
Due to non-uniform memory access (NUMA)

● NUMA also affects oversubscription

Benchmark: Each thread creates a file, a serial operation, in a shared directory1

Setup: 192-core/8-socket machine

Locks performance: Throughput

Prevent throughput collapse after one socket
34

Oversubscribed1 socket > 1 socket

1. Understanding Manycore Scalability of File Systems [ATC’16]



● Goal: high throughput at high thread count

● Making locks NUMA-aware:

○ Use extra memory to improve throughput

○ Two level locks: per-socket and the global

● Avoid NUMA overhead

→ Pass global lock within the same socket

Socket-2Socket-1

Global lock

Socket lock

Existing research efforts: Hierarchical locks

35



● Problems:

○ Require extra memory allocation

○ Do not care about single thread throughput

● Example: CST2

○ Allocates socket structure on first access

○ Handles oversubscription (# threads > # CPUS)

2. Scalable NUMA-aware Blocking Synchronization Primitives [ATC’17]

Existing research efforts: Hierarchical locks

Socket-2Socket-1

Global lock

Socket lock

36
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● Maintains throughput:
Beyond one socket (high thread count)
In oversubscribed case (384 threads)

● Poor single thread throughput
Multiple atomic instructions

Benchmark: Each thread creates a file, a serial operation, in a shared directory

Setup: 192-core/8-socket machine

Stock CST

Locks performance: Throughput

37

Oversubscribed1 socket > 1 socket
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● Maintains throughput:

Stock CST

Beyond one socket (high thread count)
In oversubscribed case (384 threads)

● Poor single thread throughput
Multiple atomic instructions

Benchmark: Each thread creates a file, a serial operation, in a shared directory

Setup: 192-core/8-socket machine

Locks performance: Throughput

Non-contended case → single thread matters
38

Oversubscribed1 socket > 1 socket



● CST has large memory footprint
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8

Benchmark: Each thread creates a file, a serial operation, in a shared directory

Allocate socket structure and global lock

Worst case: ~1 GB footprint out of 32 GB 
application’s memory

Stock CST

Locks performance: Memory footprint
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● CST has large memory footprint

Stock CST
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# threads

1
8

Benchmark: Each thread creates a file, a serial operation, in a shared directory

Allocate socket structure and global lock

Worst case: ~1 GB footprint out of 32 GB 
application’s memory

8
2
0

Hierarchical lock

→ All per-socket locks are pre-allocated for 
the hierarchical lock

Locks performance: Memory footprint

Lock’s memory footprint affects its adoption
40



1) NUMA-aware lock without extra memory

2) High throughput in both low/high thread count

Two goals in our new lock design

41



Observations:

→ Hierarchical locks avoid NUMA by passing the lock within a socket

→ Queue-based locks already maintain a list of waiters

Key idea: Sort waiters on the fly

42



43

t1

A waiting queue

Socket ID (e.g, socket 0)

shuffler:

Socket ID

tail

waiter’s qnode:

Head

Sort waiters on the fly using socket ID
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Another waiter is in a different socket

shuffler:

Socket ID

tail

waiter’s qnode:

t1 t2

Socket 3Socket 0

Sort waiters on the fly using socket ID
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More waiters join

shuffler:

Socket ID

tail

waiter’s qnode:

t1 t2 t3 t4

Socket 3Socket 0 Socket 3Socket 0

Sort waiters on the fly using socket ID
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Shuffler (t1) sorts based on socket ID

shuffler:

Socket ID

tail

waiter’s qnode:

t1 t2 t3 t4

Sort waiters on the fly using socket ID



A waiter (shuffler ) reorders the queue of waiters

● A waiter, otherwise spinning (i.e,. wasting), amortises the cost of lock ops

1) By reordering (e.g., lock orders)

2) By modifying waiters’ states (e.g., waking-up/sleeping)

→ Shuffler computes NUMA-ness on the fly without using any additional memory

t1 t2 t3 t4

Shuffling: Design methodology

47



A shuffler can modify the queue or a waiter’s state
with a defined function/policy!

Blocking lock: wake up a nearby sleeping waiter

RWlock: Group writers together

Incorporate shuffling in lock design

Shuffling is generic!

48



SHFLLOCKS

Minimal footprint locks
that handle any thread contention

49



TAS (4B)
(test-and-set lock)

Queue tail (8B)
(waiters list)

● Decouples the lock holder and waiters

○ Lock holder holds the TAS lock

○ Waiters join the queue

Unlock the TAS lock (reset the TAS word to 0)unlock():

Try acquiring the TAS lock first; join the queue on failurelock():

SHFLLOCKS

50



TAS (4B)
(test-and-set lock)

Queue tail (8B)
(waiters list)

TAS maintains single thread performance

● Waiters use shuffling to improve application throughput

○ NUMA-awareness, efficient wake up strategy

○ Utilizing Idle/CPU wasting waiters

★ Shuffling is off the critical path most of the time

● Maintain long-term fairness:

○ Bound the number of shuffling rounds

SHFLLOCKS

51
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SHFLLOCKS: Family of lock algorithms

NUMA-aware spinlock

NUMA-aware blocking lock

NUMA-aware writer preferred readers-writer lock



t0 (socket 0): lock()

unlocked

locked

t0

shuffler:

Socket ID

tail

waiter’s qnode:

Multiple threads join the queue

t0: unlock()

Shuffling in progress

NUMA-aware SHFLLOCK in action
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t0 (socket 0): lock() t0

t0

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t0

t1 t2 t3 t4

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t0

t1 t2 t3 t4

t1 starts the shuffling process

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

t1 groups t3

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t0

t1 t3 t2 t4

t3 now becomes the shuffler

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t0

t1 t3 t2 t4

t3 now becomes the shuffler

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t1 t3 t2 t4

t1 acquires the lock via CAS

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

62



t1

t1 t3 t2 t4

t1 notifies t3 as a new queue head

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t1

t1 t3 t2 t4

t1

t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

t0: unlock()

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action
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t1

t1 t3 t2 t4

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:

Shuffling invariants for correctness

65

→ Only one waiter is a shuffler at a time
→ Shuffling starts from the head of the queue
→ Shuffler can pass the shuffling role to any of its successor
→ After passing the shuffling role, the waiter only spins
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SHFLLOCKS: Family of lock algorithms

NUMA-aware spinlock

NUMA-aware blocking lock

NUMA-aware writer preferred readers-writer lock



TAS (4B)
(test-and-set lock)

Queue tail (8B)
(waiters list)

• Extension of NUMA-aware spinlock

• Handles core oversubscription

• Shuffler wakes up sleeping waiter besides reordering

• No extra data structure required for parking

NUMA-aware blocking SHFLLOCK

67



• Spinning and parked waiters are in one list

• Prior locks maintain a separate parking list

• Shuffler ensures:

• NUMA-awareness by reordering queue

• Shuffled waiters are always spinning

68

Single parking list

★ Lock size remains intact

★ Shuffler ensures NUMA-awareness in both under- and over-

subscribed case



• Always pass the lock to a spinning waiter

• Shuffler ensures by waking up shuffled waiters

• Steal the global TAS lock

• Waiters only park if more than one tasks are running on a CPU 

(system load)

69

Minimal scheduler intervention

★ Scheduler is mostly off the critical path

★ Guarantees forward progress of the system
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t0

t1 t2 t3 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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unlocked

locked

t0

t1 t2 t3 t4

shuffler:

Socket ID

tail

waiter’s qnode:

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Z Z Scheduled out spinning

Shuffling in progress

Z Z Z Z Z Z

NUMA-aware blocking SHFLLOCK in action



72

t0

t1 t2 t3 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

Z Z Z Z Z Z
t1 starts the shuffling process

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

Z Z Z Z Z Z
t1 groups t3

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

Z Z Z Z Z Z
t1 wakes up t3

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

Z Z Z Z
t1 wakes up t3

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

Z Z Z Z
t3 now becomes the shuffler

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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t0

t1 t3 t2 t4

t0 (socket 0): lock()

Multiple threads join the queue

Threads go to sleep

Shuffling in progress

Z Z Z Z
t3 now becomes the shuffler

unlocked

locked
shuffler:

Socket ID

tail

waiter’s qnode:
Z Z Scheduled out spinning

NUMA-aware blocking SHFLLOCK in action
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Memory footprint
Lock API

Handling threads contention

Low Medium High Lock size Context

NUMA
aware

Locks
Over

subscribe

mutex NO 40 BBad

Malthusian NO 24 B O(N*T) ModifiedGood*

CST Yes 32 + 512 BGood

SHFLLOCK Yes 12 BGood

- Extension of non-blocking locks

- T → Number of threads; N → number of locks

- Lock API modified → lock/unlock(L, ctx)

Current blocking locks
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SHFLLOCKS: Family of lock algorithms

NUMA-aware spinlock

NUMA-aware blocking lock

NUMA-aware writer preferred readers-writer lock



TAS (4B)
(test-and-set lock)

Queue tail (8B)
(waiters list)

• Extension of blocking lock

• Centralized counter encodes readers and writer

• Waiting readers and writer enqueued in one waiting list

Readers-writer SHFLLOCK

80

Count (4/8B)
(readers indicator)



● SHFLLOCK performance:

○ Does shuffling maintains application’s throughput?

○ What is the overall memory footprint?

Setup: 192-core/8-socket machine

Analysis of SHFLLOCK

81



Benchmark: Each thread creates a file, a serial operation, in a shared directory
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# threads

Stock CST

● SHFLLOCKS maintain performance:

SHFLLOCK

Locks performance: Throughput

82

Oversubscribed1 socket > 1 socket



Benchmark: Each thread creates a file, a serial operation, in a shared directory

● SHFLLOCKS maintain performance:

● Beyond one socket
○ NUMA-aware shuffling

Locks performance: Throughput

Stock CST SHFLLOCK
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# threads
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Oversubscribed1 socket > 1 socket



Benchmark: Each thread creates a file, a serial operation, in a shared directory

● SHFLLOCKS maintain performance:

● Beyond one socket
○ NUMA-aware shuffling

● Core oversubscription
○ NUMA-aware + wakeup shuffling

Locks performance: Throughput

Stock CST SHFLLOCK
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Oversubscribed1 socket > 1 socket
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# threads
● Single thread

○ TAS acquire and release

Locks performance: Throughput

Stock CST SHFLLOCK

Benchmark: Each thread creates a file, a serial operation, in a shared directory

● SHFLLOCKS maintain performance:

● Beyond one socket
○ NUMA-aware shuffling

● Core oversubscription
○ NUMA-aware + wakeup shuffling
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Oversubscribed1 socket > 1 socket



Benchmark: Each thread creates a file, a serial operation, in a shared directory

Stock CST

1
4
0

# threads

SHFLLOCK

1
1

1
8

● SHFLLOCK has least memory footprint

Reason: No extra auxiliary data structure

➢ Stock: parking list structure + extra lock

➢ CST: per-socket structure
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Locks performance: Memory footprint
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# threads

RWLocks performance: Throughput

Stock CST SHFLLOCK

Benchmark: Each thread enumerates files in a shared directory: read-only workload

● SHFLLOCK is better than Stock:

Few atomic instructions on the critical 
path

87

Oversubscribed1 socket > 1 socket
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# threads

RWLocks performance: Throughput

Stock CST SHFLLOCK

Benchmark: Each thread enumerates files in a shared directory: read-only workload

● SHFLLOCK is better than Stock:

Few atomic instructions on the critical 
path
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Oversubscribed1 socket > 1 socket

● CST is better than SHFLLOCK:

CST uses per-socket counters than a 
centralized counter
→Minimizes coherence traffic
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Process intensive and stresses memory subsystem, file system and scheduler



● Lock holder splits the queue:

○ NUMA-awareness: Compact NUMA-aware lock (CNA)

○ Blocking lock: Malthusian lock

● Shuffling can support other policies:

○ Non-inclusive cache (Skylake architecture)

○ Multi-level NUMA hierarchy (SGI machines)

○ Priority inheritance or boosting

Discussion

90



● Current lock designs:

○ Do not maintain best throughput with varying threads

○ Have high memory footprint

● Shuffling: Dynamically reorder the list or modify waiter’s state

○ NUMA-awareness, waking up waiters

● SHFLLOCKS: Shuffling-based family of lock algorithms

○ Best throughput with no extra memory overhead

○ Utilize wasted CPU waiters to amortize lock operations

91

SHFLLOCK: Conclusion
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Thank you!

● Designing scalable synchronization mechanisms is critical

● This thesis:

○ Lock algorithms that decouple lock design from hardware and software policy

○ A constant ordering primitive that scales to 100s-1000s of CPUs

○ Adding semantic information to task schedulers to minimize double scheduling

Minimizing scheduling overhead of concurrent events that leverage both 
hardware and software efficiently

Conclusion

93


