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Abstract
VMware ESXi is an enterprise-class, bare-metal hypervisor
dedicated to providing the state-of-the-art private-cloud in-
frastructures. Accordingly, the design and implementation of
ESXi is of our community’s interest, yet lacking a thorough
evaluation of its security internals. In this paper, we give a
comprehensive analysis of the guest-to-host attack surfaces
of ESXi and its recent security mitigation (i.e., the vSphere
sandbox). In particular, we introduce an effective and reliable
approach to chain multiple vulnerabilities for exploitation
and demonstrate our approach by leveraging two new bugs
(i.e., uninitialized stack usages), namely, CVE-2018-6981 and
CVE-2018-6982. Our exploit chain is the first public demon-
stration of a virtual machine escape against VMware ESXi.

1 Introduction

Cloud computing has become the most popular choice for
today’s online services. The foundation that enables cloud
computing is virtualization technology, effectively allowing
economy of scale. Some examples include QEMU-KVM,
Xen, Hyper-V , and VMware Families, which are the basic
building blocks of most public and private cloud infrastruc-
tures.

Unfortunately, its large and complicated code base of vir-
tual machines inevitably includes software vulnerabilities
such as memory corruptions. Moreover, unlike other software
bugs, the bugs in virtualization infrastructures could lead to
a break-in of the security boundary between guest and host;
thus, the security of the entire cloud environment of the cloud
provider might be subverted.

These unique propositions of cloud infrastructures make
them an attractive target for attackers, but our communities
lack, an in-depth analysis and evaluation of their security. Re-
search communities have made several attempts to do this:
one example that received considerable attention is a secu-
rity bug of QEMU-KVM, called VENOM (known as CVE-
2015-3456 [8]), which attempted to exploit a bug in a virtual,

emulated floppy drive. Other vulnerabilities such as CVE-
2015-5165 and CVE-2015-7504 have been disclosed and
exploited in public PoC demonstrations [17]. However, most
of them, as far as we know, rely on strict preconditions (e.g.,
supporting a decade-old floppy driver by the cloud provider),
which fail to demonstrate exploitation under the default con-
figuration of the underlying virtualization infrastructures. Ad-
mittedly, there have been a few public demonstrations against
VMware Workstation in the Pwn2Own contest, but their ap-
proaches and details of exploitation have not been disclosed
to the public.

The situation for enterprise-class, commercial hypervi-
sors, such as VMware ESXi or Hyper-V , is even worse: they
are much more attractive targets to attackers, but their inter-
nals still remain opaque to the security communities. Such
security-by-obscurity approaches taken by commercial type-
1 hypervisor require that many practical challenges be ad-
dressed. First, the complex internal design and machinery to
implement a type-1 hypervisors is not trivial to understand
in depth. Second, hypervisors are intensively protected by
custom in-house protection schemes, limiting the capability
for dynamic analysis. Lastly, non-trivial reverse engineering
skills and efforts are required to understand and even navigate
system binaries without proper source codes and symbols.

In this paper, we share the lessons learned from our in-
depth, security analysis of ESXi. We first introduce the attack
surfaces of ESXi by systematically evaluating attack scenarios.
Second, we provide an exhaustive analysis of two previously
unknown vulnerabilities we found in ESXi. Last, by leverag-
ing these vulnerabilities, we elaborate a new exploit technique
to bypass the deployed mitigation, the vSphere sandbox in
ESXi. The constructed exploit is reliable and persistent; it dy-
namically adopts the version of ESXi and survives across the
system reboot, causing persistent damage to cloud providers.

Overall, this paper makes the following contributions:

1. A systematic review of attack surfaces, mitigations, and
vSphere sandbox of VMware ESXi.

2. An in-depth demonstration and analysis of the vulner-
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Figure 1: The architecture of VMware ESXi [5]. VMKernel, a
POSIX-like OS, is designed to multiplex the virtual machines and
provides some core fundamentals such as resource scheduling, I/O
stacks, file system (VMFS), and drivers. The guest machines can com-
municate with the host through hypercall, which includes normal
hypercalls such as VM-Exit and special hypercalls such as backdoor
and VMCI. The term "user world" refers to a process running in the
VMkernel. A significant user world is "VMX," a Ring-3 process, be-
cause it contains RPC handlers and virtual hardwares. (Note that
the VMX process and some other process sandboxed by the vSphere
sandbox.) The virtual machine monitor (VMM) is a process that
provides the execution environment for guest virtual machines.

abilities used in the first virtual machine escape of
VMware ESXi.

3. State-of-the-art and reusable exploitation techniques for
manipulating memory layout, constructing an arbitrary-
address-write primitive, and achieving persistent ex-
ploitation in VMware ESXi.

Threat Model. In this research, we assume that an adver-
sary can execute arbitrary codes in the user space and kernel
space on the guest OS.

2 Background

2.1 The Architecture of the ESXi

As Figure 1 illustrates, VMware ESXi integrates its operating
system (OS) called VMkernel, providing the functionalities
of resource scheduling, I/O stacks, network stacks, storage
stacks, and device drivers, and all processes are running on
top of it. VMkernel also implements a simple in-memory
file system to hold staged patches, configurations, and system
logs.

To communicate with the hypervisor, the guest taps into
the VMM through VM-Exit in most circumstances. Notably,
VMware also introduced another hypercall mechanism called
backdoor. Interestingly, although it is named "backdoor," it
is merely a communication channel between the guest and the
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Figure 2: The backdoor remote procedure call. Under default I/O
privilege level, a Ring-3 program should not be able to issue I/O
operations. As a result, the int or out instruction should cause
the Ring-3 process to fault and crash. However, in this scene, the
hypervisor captures the fault and handles it, supporting the backdoor
RPC mechanism.

hypervisor. Also, it has been widely applied to VMware prod-
ucts, e.g., some functionalities in open-vm-tools [18] such
as drag-and-drop, copy-and-paste are implemented on top of
the backdoor mechanism. As Figure 2 illustrates, the guest
machine that runs in Ring-3 of a protected-mode OS executes
the in or out instruction with a specific port, which raises a
corresponding exception. Normally, this results in the crash
of the process. However, in a VMware virtual machine, the
hypervisor captures the exception and dispatches it to a proper
handler on the host OS. Therefore, there are no exceptions
in the end. Compared to normal hypercall, which usually re-
quires the CPL⩽ IOPL, some backdoor requests can be issued
from Ring-3 directly. Consequently, a channel for the commu-
nication between guest and host can be established. For one
example, as Figure 3 delineates, backdoor can be leveraged
to send data from the guest to the host. By putting required
parameters into specific registers, like a simple function call,
a process running in the protected mode can invoke the RPC
directly. In the sample, we first create a new "RPCI" channel
and retrieve the channel number. Then, we can send data
to the host through this channel. Based on this mechanism,
some high-level and complicated protocols could be devel-
oped. Furthermore, in this paper, we also use this feature
to reliably manipulate the memory layout. The details are
discussed in §3.

2.2 Virtual Machine Escape
VM escape is a process of breaking out of a virtual machine
from a guest OS, so the guest VM can launch an arbitrary
execution with the privilege of the host operating system [21].
Specifically, ESXi completely isolates the guest operating sys-
tems from each other by leveraging hardware virtualization
technologies, such as Intel VT or AMD-V. Any privileged
instructions from the guest operating systems will be captured



1 ; Creating a new channel
2 asm(
3 "movl $0x564d5868,%%eax\n\t" ; magic bytes: ’VMXh’
4 "movl $0xc9435052,%%ebx\n\t" ; magic bytes for RPCI
5 "movl $0x1e,%%ecx\n\t" ; MESSAGE_TYPE_OPEN
6 "movl $0x5658,%%edx\n\t" ; special I/O port
7 "out %%eax,%%dx\n\t"
8 "movl %%edx, %%eax\n\t" ; ret channel number (EDX(HI))
9 "movl %%ecx, %%ebx\n\t" ; success or failure

10 ...
11 );
12

13 ; Sending data through a specific channel
14 asm(
15 "movl %0, %%edx\n\t" ; channel number (EDX(HI))
16 "movl $0x41414141,%%ebx\n\t" ; 4 bytes to be sent
17 "movl $0x564d5868,%%eax\n\t" ; magic bytes: ’VMXh’
18 "movl $0x0002001e,%%ecx\n\t" ; MESSAGE_TYPE_SEND
19 "movw $0x5658,%%dx\n\t" ; special I/O port
20 "out %%eax,%%dx\n\t"
21 "movl %%ecx, %%eax" ; success or failure
22 ...
23 );

Figure 3: By using "RPCI," a sort of backdoor-based mechanism,
guest machines can communicate with the host OS. By reading or
writing a special I/O port (0x5658/ 0x5659), a process running in
Ring-3 can invoke the RPC directly.

and sanitized by the hypervisor. In normal circumstances, the
guest cannot execute codes or affect security-critical behav-
iors such as system configuration, and network connections
of other guests or the host. By exploiting the vulnerabilities
in the ESXi, the adversaries can cross the security boundary
between the guest and the host, to execute arbitrary codes on
the host operating system (i.e., virtual machine escape in the
ESXi).

2.3 Security Analysis of the ESXi

Attack Surfaces. The virtualization layer is the most signifi-
cant part of the lifetime of the guest operating system. Any
interaction between the guest OS and the hypervisor is a po-
tential attack vector that could be exploited by adversaries.
Generally, the guest can communicate with the host of ESXi
in several ways:

1. VMKernel and Core Virtualization Infrastructures:
There are some fundamentals such as VM-Exit handlers,
memory management, and memory virtualization infras-
tructures offered by the hypervisor running in the kernel
space. An adversary who attacks the hypervisor success-
fully could take over the kernel of the host operating
system directly.

2. Virtual Hardware: To support the I/O virtualization,
VMware designed a batch of virtual harware and de-
vices. Most of them are integrated into the VMX process
of ESXi [3, 15]. The guest OS can communicate with
the virtual hardware through port I/O (PIO) or memory-
mapped I/O (MMIO). Table 1 shows some significant
virtual hardware integrated in VMware ESXi. Most of

Interface Category Privilege

SVGA2D Virtual Graphic ROOT
SVGA3D Virtual Graphic ROOT
e1000 Virtual Ethernet ROOT
e1000e Virtual Ethernet ROOT
VMXNET3 Virtual Ethernet ROOT
xHCI Virtual USB ROOT
uHCI Virtual USB ROOT
aHCI Virtual SATA ROOT
Lsilogic Virtual SCSI ROOT
Printer Virtual COM Device ROOT

Table 1: The virtual hardware has been demonstrated to affect the
interaction of guest-to-host. The privilege field indicates the require-
ment to open the device in the guest OS.

them require that the root privilege be opened in the
guest operating system.

3. RPC Channels: VMware developed some RPC proto-
cols such as backdoor and VMware Virtual Machine
Communication Interface (VMCI) to accelerate the com-
munication between the guest OS and the host OS. It has
been applied in VMware’s virtual machines for decades,
because it does not rely on hardware virtualization ex-
tensions. Thus, it also results in some virtual machine
escape attack surfaces. Some RPC handlers exist in the
VMX process. By exploiting the bugs in these handlers,
adversaries can escape from the guest OS.

Common Mitigations. The host maintains a POSIX-like
operating system, and some Linux-like security mitigations
are integrated into the host.

1. ASLR: Address Space Layout Randomization
(ASLR) [20] was introduced to mitigate the exploitation
of memory corruption vulnerabilities. In ESXi, the
addresses encompassing the program, stack, heap, and
libraries of the user space binaries are randomized. In
the ESXi’s VMX process, which contains most of the
virtual hardware, some hardware such as the network
card runs in Ring-3. Therefore, an attacker who wants
to attack virtual hardware or other Ring-3 services in
ESXi first has to leak code pointers (i.e., information
leakage) to further hijack the control flow of ESXi.

2. NX/ DEP: This option is referred to as Data Execution
Prevention (DEP) or No-Execute (NX). It works with
the processor to help prevent buffer overflow attacks by
blocking code execution from memory that is marked as
non-executable [11]. In ESXi, when the process is trying
to execute shellcodes on stack, heap, or data segments,
it will crash.

3. Compact VMX: Compared with VMware Workstation,
the type-2 hypervisor developed by VMware, ESXi’s



1 # Rules applicable for all VMs
2

3 -s genericSys grant
4 -s ioctlSys grant
5 -s vsiReadSys grant
6 ...
7

8 -c unix_socket_create grant
9 -c unix_stream_socket_bind grant

10 -c unix_dgram_socket_bind grant
11 ...
12

13 -p inet_socket_bind all grant
14 -p inet_socket_connect loopback grant
15 -p inet_socket_connect nonloopback grant
16 ...
17

18 -d tpm2emuObj tpm2emuDom file_exec grant
19

20 -r /var/run rw
21 -r /var/lock rw
22 ...

Figure 4: A sample rule for global VMs. It grants what system calls
a VMX process is allowed to call, what network connections a VMX
process is allowed to establish, and what directories a VMX process is
allowed to read or write.

VMX program has fewer source codes, because VMware
moved the data package operations into the VMkernel,
enhancing the efficiency of ESXi. Meanwhile, it narrows
the attack surfaces of VMX.

Sandboxing. Since vSphere 6.5, VMware ESXi has intro-
duced a mandatory access control (MAC), similar to Ubuntu’s
AppArmor, to enforce the security policy of guest VMs.
(VMware vSphere is a commercial name for the whole
VMware Suite, and ESXi is the hypervisor server of vSphere.)
The sandbox maintains some pre-defined policies that con-
tain some white lists of allowed syscalls, sockets, and file
permissions in the file system (VMFS). The main functional-
ity of sandboxing is offered by VMKernel, dividing the tar-
get into several different restricted domains (app, ioFilter,
pluginFramework, globalVM, plugin, tpm2emu). After the
specific virtual machine starts, Its behaviors are limited. It
ensures the safety and security of VMs by running them in an
operational sandbox with strict controls regarding hypervisor
capabilities available to them [6]. Even if the adversaries
have escaped from the guest operating system, they are still
restricted by the vSphere sandbox; thus, it qualifies the impact
of virtual machine escape attacks.

Figure 4 shows a sample rule for global virtual ma-
chines. For instance, if an adversary exploits a vulnerabil-
ity in virtual hardware that is integrated in the VMX process
of VMware Workstation, the adversary can spawn a shell or
reverse shell on the host OS, finishing the VM escape. How-
ever, in ESXi, even if an adversary gets an arbitrary shell-
code execution primitive by exploiting vulnerabilities in the
VMX process, it cannot invoke any sensitive syscalls such as
execve or establish a remote shell through sockets. There-
fore, it makes the VM escape more difficult. The sandbox
of ESXi is a rule-based sandbox, and each virtual machine

1 void __usercall vmxnet3_reg_cmd(vmxnet3_class *a1,
2 __int64 read_or_write, _DWORD *data, __int64 a4, __int64 a5)
3 {
4 ...
5 case 4: // VMXNET3_CMD_UPDATE_MAC_FILTERS
6 if ( a1->field_1A20 ) {
7 ⋆ dma_memory_create(a1->driver_shared_addr + 8, 0x2B0ui64, 1,
8 ⋆ a1->state->field_B8, &page);
9 vmxnet3_cmd_update_mac_filters(v6, &page, a5);

10 ⋆ destruct_page_struct(&page);
11 sub_14017CB30(v6);
12 }
13 break;
14 ...
15 }
16

17 char __fastcall dma_memory_create(unsigned __int64 addr, unsigned
18 __int64 size, int a3, int a4, page_struct *page)
19 {
20 unsigned __int64 v5;
21

22 v5 = *(qword_140DAA810 + 12160);
23 // check the addr
24 ⋆ if ( addr > v5 || !size || size > v5 - addr + 1 )
25 ⋆ return 0;
26 set_page_struct(addr, size, a3, a4, page);
27 return 1;
28 }

Figure 5: dma_memory_create() is responsible for creating a page
struct used to read/write memory between guest and host. Inside
the function, it checks the addr passed by users. If it is invalid, the
function will return directly. However, it does not check whether the
allocation is successful; thus, an uninitialized stack variable could
be used in destruct_page_struct().

runs in its own sandbox. However, it already has prede-
fined rules; the users of ESXi do not need to configure it
by themselves. The rules dictate what the VMX process run-
ning the virtual machine is allowed to do or access, e.g., the
VMX process has no access to some sensitive files such as
/etc/passwd, and the VMX process cannot run scripts or ini-
tial network connections on the host. Meanwhile, the sandbox
restricts what system calls a VMX process allowed to call; thus,
some sensitive system calls such as execve, execl are re-
stricted. The complete rules of the sandbox can be found in
/etc/vmware/secpolicy/domains/ on the host. By au-
diting the sandbox profiles, we can get some plausible attack
surfaces of the sandboxing in ESXi.

3 VM Escape: Our Approach

Overview. There are two uninitialized usages in vmxnet3
virtual ethernet card and a logical issue in the sandbox policy.
CVE-2018-6982 is used for code pointer leak, and CVE-2018-
6981 for arbitrary pointer free. Our technique is to chain both
for an arbitrary write and, ultimately control-flow hijacking.
Next, we bypass the vSphere sandbox and achieve virtual
machine escape.



3.1 Vulnerabilities
The vmxnet3 adapter is the recommended network adapter
to use as default in VMware ESXi because it offers the best
throughput of all the adapter options. As such, it’s likely in
use on most virtual machines. In this section, we introduce
two memory corruption bugs leveraged in our exploitation
chain.
CVE-2018-6981. This bug is caused by an uninitialized use
of stack memory in the vmxnet3 virtual ethernet card. As
Figure 5 shows, there is an interface (vmxnet3_reg_cmd())
that can execute commands in the MMIO memory of vmxnet3.
In the command VMXNET3_CMD_UPDATE_MAC_FILTERS, the
dma_memeory_create() function creates a page structure
used to read/write memory between guest and host. The
destruct_page_struct() is responsible for releasing the
memory of the page structure.

According to Figure 5, the page structure is allocated
and initialized in the function set_page_struct(). At
the beginning of the function, the dma_memeory_create()
function checks the validity of the physical address given
by the guest. Unfortunately, if the guest provides an
invalid physical address, the function will return im-
mediately. However, after the dma_memeory_create(),
the VMXNET3_CMD_UPDATE_MAC_FILTERS handler fails to
check whether the allocation of the page structure is
successful, resulting in an uninitialized use in the
destruct_page_struct() function.

Technically, this bug can also be turned into an informa-
tion leakage bug. However, to improve the stability of the
exploitation, we decided to chain a dependent information
leakage bug into the exploitation.
CVE-2018-6982. This bug is also caused by an uninitial-
ized stack variable in the memory of ESXi, and we uti-
lized it to independently retrieve memory address informa-
tion from the host. There is another command handler in
vmxnet3_reg_cmd() called vmxnet3_cmd_get_coalesce().

Figure 6 depicts the core logic of it. The get_args() func-
tion is used to retrieve some data from a memory region of the
VMX process. The sanity_check() function qulifies that the
v19must satisfy v19⩽ 16. Also, the write_back_to_guest()
function will write 16 bytes of data into the guest context. Un-
fortunately, only 8 bytes of them (v20) are initialized.

3.2 Exploitation
A significant challenge of exploiting uninitialized use bugs
is how to control the uninitialized variable. In this section,
we illustrate the entire process of turning the uninitialized use
bug to arbitrary code execution and how we overcome the
challenges.
1) Arbitrary address free primitive. As Figure 7 delineated,
first, we leak some addresses to break ASLR through the in-
formation leakage bug. Next, in destruct_page_struct()

1 bool __fastcall vmxnet3_cmd_get_coalesce(__int64 a1, char a2)
2 {
3 v17 = 0;
4 v26 = __readfsqword(0x28u);
5 qmemcpy(&v25, (const void *)(*(_QWORD *)(a1 + 208) + 272LL),
6 0x100uLL);
7 if ( !(unsigned __int8)get_args(a1, &v18)
8 || (_DWORD)v18 != 1 //v18 is controllable
9 || !HIDWORD(v18)

10 || !v19
11 ⋆ || HIDWORD(v18) != 16 // constrait; but v18 is controllable
12 || !(unsigned __int8)sanity_check(v19, 16LL) ) {
13 return 0;
14 }
15 if ( !a2 ) { //a2: always zero
16 v14 = *(_QWORD *)(a1 + 208);
17 ⋆ v20 = 0xFA000000003LL;
18

19 // first 8-byte of v20 is initialized, but 16-byte is read
20 // (HIDWORD(v18) == 16)
21 ⋆ write_back_to_guest(v19, &v20, HIDWORD(v18), 0, *(_DWORD *)
22 ⋆ (v14 + 184));
23 return 1;
24 }
25 ...
26 }

Figure 6: A code snippet of vmxnet3_cmd_get_coalesce(). The
get_args() function reads a memory region of the VMX process.
Ultimately, v18, v19 are controllable. The second parameter
write_back_to_guest indicates the source buffer, and the third one
indicates the size.

function (Figure 8), the function frees a field of the unini-
tialized stack memory. Hence, after filling a pointer into
the uninitialized memory, an arbitrary-address-free primitive
could be constructed.

2) Arbitrary address write primitive. As Figure 11 illus-
trates, the metadata of Backdoor-RPC channel exists in the
data segment. Therefore, we use this feature to construct an
arbitrary-address-write primitive. First, we opened several
Backdoor-RPC channels; thus, some metadata structures of
the channel in the data segment will be activated. Second,
we fake a glibc fast-bin chunk on it to do the House of Spirit
Attack.

Specifically, after leaking the address of the data segment,
we calculated the addresses of the metadata for the backdoor,
and put them into the uninitialized stack memory using the
function handle_port_io(). For example, in Figure 9, when
the size of the data is less than 0x8000, it will put all of the
data into the stack. Next, we use the arbitrary-address-free
primitive to free the fake fast-bin chunk.
House of Spirit Attack. Because ESXi uses a variant of glibc
to maintain Ring-3’s heap, we decide to fake a fast-bin chunk
on the global metadata of Backdoor-RPC channels, i.e., House
of Spirit Attack of glibc [1,13,22]. However, glibc has several
integrity checks to mitigate memory corruption attacks. To
bypass it, we need to construct the fake chunk and pick the
size properly.

After investigating, as Figure 10 illustrates, we determine
some constraints in the free() function of glibc that need to
be satisfied:



1. retrieve some
information
in .data seg as
fingerprints to
construct the exp
dynamically

stack
Info X
Info Y
…

uninitialized addr
…

2. trigger the uninitialized
stack memory read

3. using the leaked
info to calculate
the addr of .data
segment

4. open several RPC channels
and fake fast chunk

state channel 1
metadata

(on .data seg)

channel N
metadata

(on .data seg)

channel N+1
metadata

(on .data seg)

handle_port_io()

…
…
…

fake chunk addr
…

stack

5. put the address
of the fake fast
chunk (on .data)
into stack

6. free the fake chunk
using the arbitrary
address free primitive

prev size
size
FD

…
BK

fake chunk
prev size
size
FD

…

BK

prev size
size
FD

…
BK

7.fastbin of heap

8. reallocate the fake
chunk with the
operations on other
RPC channels

9. use the fake
chunk to corrupt
next chunk’s
data pointer

10. arbitrary address write

.got hijacking

11. overwrite
qsort’s .got.plt address
into stack pivot gadget

…

mmap RWX memory

jump to shellcodes

13. ROP chain on stack

…

15.arbitrary code execution

12. stack pivot

…
create time
data len

state
…

create time
data len

state
…

create time
data len

…

…

14. shellcodes

Figure 7: Exploiting the vulnerabilities and getting arbitrary shellcode execution privilege

1 void __fastcall destruct_page_struct(page_struct *a1)
2 {
3 int v1; // eax
4 page_struct *v2; // rbx
5 unsigned int v3; // edi
6 __int64 v4; // rbp
7 __int64 v5; // rsi
8 __int64 v6; // r12
9 __int64 v7; // rax

10

11 v1 = a1->ready;
12 v2 = a1;
13 if ( v1 == 1 )
14 {...}
15 else
16 {
17 v3 = 0;
18 if ( v1 )
19 {
20 v4 = 0i64;
21 v5 = 0i64;
22 do
23 {
24 ...
25 }
26 while ( v3 < v2->ready );
27 }
28 free(v2->field_18); // free the pointer on stack
29 }
30 }

Figure 8: A code snippet of destruct_page_struct(). We use it to
free arbitrary addresses.

1. The ISMMAP bit of the fake chunk is 0.

2. The fake chunk’s address is aligned.

3. The size of the fake chunk is 32 bytes to 128 bytes and
aligned.

1 void __usercall handle_port_io(__int64 a1, __int64 a2, __int64 a3)
2 { ...
3 char *v11; // rsi
4 ...
5 __int64 v35; // [rsp+A0h] [rbp-8038h]
6 __int64 v36; // [rsp+80B0h] [rbp-28h]
7

8 v3 = *(a1 + 4);
9 v4 = *(a1 + 13);

10 read_or_write = *(a1 + 48);
11 ...
12 if ( *(a1 + 60) && (v10 = *(a1 + 52) << 12, v10 > 0x8000) )
13 v11 = malloc_heap_memory(v10); // copy the data into heap
14 else
15 v11 = &v35;
16 if ( read_or_write & 1 )
17 { if ( *(v8 + 60) )
18 { ...
19 v15 = v11;
20 do
21 { ...
22 memcpy(v15, v18, v17); // copy the data into stack
23 ...

Figure 9: A code snippet of handle_port_io(). We use it to spray
the stack.

4. For the next chunk’s size θ: 2 ∗ SIZE_SZ ⩽ θ ⩽ av →
system_mem.

5. The first chunk in the fast-bin is not the fake chunk.

Then, we reallocate the fake chunk by leveraging other
Backdoor-RPC channel operations, i.e., when a new channel
is opened, the channel allocates a new buffer with a control-
lable length that pointed by the data field in the metadata of
the channel. This is a flexible and reusable trick to manipulate
the heap of ESXi. Finally, we overwrite the next data pointer



1 void public_fRE(Void_t* mem)
2 {
3 mstate ar_ptr;
4 mchunkptr p;
5 ...
6 p = mem2chunk(mem);
7 if (chunk_is_mmapped(p)) // check mmap bit
8 {
9 munmap_chunk(p);

10 return;
11 }
12 ...
13 ar_ptr = arena_for_chunk(p);
14 ...
15 _int_free(ar_ptr, mem);
16 }
17

18 void _int_free(mstate av, Void_t* mem)
19 {
20 mchunkptr p;
21 INTERNAL_SIZE_T size;
22 mfastbinptr* fb;
23 ...
24 p = mem2chunk(mem);
25 size = chunksize(p);
26 ...
27

28 // check current size
29 if ((unsigned long)(size) <= (unsigned long)(av->max_fast))
30 {
31 // check next chunk
32 if (chunk_at_offset(p, size)->size <= 2 * SIZE_SZ
33 || __builtin_expect(chunksize(chunk_at_offset(p, size))
34 >= av->system_mem, 0))
35

36 {
37 errstr = "free(): invalid next size (fast)";
38 goto errout;
39 }
40 ...
41 fb = &(av->fastbins[fastbin_index(size)]);
42 ...
43

44 p->fd = *fb;
45 *fb = p;
46 }
47 }

Figure 10: To fake a fast-bin chunk successfully, we need to bypass
some constraints in glibc.

of the next channel and an arbitrary-address-write primitive
can be constructed.
3) Code execution. To execute codes on the context of the
host, we use the arbitrary-address-write primitive to corrupt
the stack. First of all, we corrupt the global offset table and
overwrite the qsort function into a stack pivot gadget. Next, a
ROP chain will be put into the stack. Meanwhile, the control
flow will be forwarded to the ROP chain on the pivoted stack.
In particular, the ROP chain will invoke mmap syscall and
enable the privilege to execute arbitrary shellcodes.

3.3 Circumventing the vSphere Sandbox

The logical bug in the sandbox policy. By scrutinizing the
policies of the sandbox, we determine that there are some
loopholes inside it. The sandbox grants the VMX process
to read and write the /var/run directory of VMFS, and an
internet server (inetd) configuration database exists in the
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Figure 11: Arbitrary Address Write. By faking a fast-bin chunk
on the metadata of Backdoor-RPC channels, we can reallocate the
fake through Backdoor-RPC operations. After reallocating, we can
overwrite the next channel’s metadata to corrupt arbitrary addresses.

/var/run/inetd.conf.

In this way, we can bind a shell on a specific port by
overwriting the inetd.conf file. Note that files existing in
the /var/run/* are not persistent and copied from the backup
firmware in the /bootbank/* directory after rebooting.

Forcing the process to restart. To activate the config-
uration and spawn a shell, we need to force the inetd process
to restart. However, we cannot simply restart the entire OS,
because the inetd.conf file is not persistent. Files in the
VMFS are copied from the bootbank after the host OS restart.
Fortunately, there is a watchdog can help us to restart some
processes. As a result, we use the kill() system call to
terminate the inetd process. After that, the watchdog restarts
the process, and a bind shell spawns.

3.4 Reliability

Compatibility. To improve the compatibility of our exploita-
tion, we use some fingerprints retrieved from the host OS to
manipulate the exploitation dynamically. As Figure 7 indi-
cates, we first utilize the information leakage bug to retrieve
some memory of .data segment, using it to determine the
version of the running ESXi.

Next, we can dynamically construct some crucial payloads
(e.g., shellcodes, address of fake chunk, etc.) in terms of the
current version.

Persistency. As depicted in §3.3, after the host OS restarted,
the entire VMFS is overwritten again, i.e., files in VMFS are
overwritten by the backup firmware stored in /bootbank. In
light of this, after getting the root privilege, we can overwrite
the files under the /bootbank directory to achieve persistent
exploitation.



4 Implementation

The exploit has been implemented in a kernel module with
450 LoC. The shellcodes embedded in the kernel module
will spawn a bind shell on a specific port and a reverse shell
connecting to our remote server. To launch the escape, we
merely need to insert the module into the kernel of the guest
OS.

Notably, all of the bugs depicted above have been reported
to the vendor and patched appropriately. Now the exploit-
chain only affect the instances of VMware ESXi whose ver-
sion is earlier than 6.7.0 with build number 10764712.

5 Evaluation

To examine the stability and compatibility of our exploit. We
evaluate it on ESXi 6.7 with different versions.

Experimental Setup. We run the exploit on ESXi with
different versions. The guest OS is Ubuntu 16.04.3 LTS,
with 2 cores, and 4GB memory. The host machine has an
i9-7980XE processor with a 64GB physical memory. For
each guest OS, we run the exploit 30 times.

Results. Table 2 shows the results. The exploit chain
has been demonstrated to affect ESXi 6.7, and ESXi 6.5.
Also, the exploit can effectively adapt to the targeted
environment. In particular, the maximum success rate of our
proposed exploit chain is 93.33%.

6 Discussion

Evaluation results show that the success rate of our exploit
is not 100%. In this section, we try to determine the reasons.
By scrutinizing the memory status, we found two significant
factors that qualified the success rate of the exploit.
1) Manipulating the uninitialized variables. In light of the
fact that the arbitrary-address-free primitive requires valid
addresses, we have to make sure the targeted address is le-
gitimate before triggering the logic of free. However, the
normal actions and executions in ESXi may pollute the stack,
resulting in the “free" operation not going as expected.
2) The stability of heap. After releasing the targeted fake
memory chunk, we need to reallocate it immediately. How-
ever, if ESXi allocates it before we do, the process will crash
suddenly.

7 Related work

Virtual Machine Escape. Chaitin Security Research Lab
has demonstrated an exploit of VMware Workstation with a

Version Build number V? S? Success Adaptable

ESXi 6.7 10764712 Y Y 93.3% Y
ESXi 6.7 10302608 Y Y 86.7% Y
ESXi 6.7 10176752 Y Y 90.0% Y
ESXi 6.7 9484548 Y Y 86.7% Y
ESXi 6.7 9214924 Y Y 93.3% Y
ESXi 6.7 8941472 Y Y 90.0% Y
ESXi 6.5 <10719125 Y Y N/A N
ESXi 6.0 Any N N N/A N/A

V: Vulnerable or not, S: Sandboxed or not

Table 2: The results of the evaluation. The adaptable field indicates
whether the exploit can adapt to the environment automatically. Ac-
tually, the exploitation chain can also work on ESXi 6.5, but we have
not adapted those versions. Furthermore, the reason the success rate
is not 100% is that the stack could be polluted by the ESXi itself,
resulting in the arbitrary address free primitive fails.

single vulnerability in Backdoor-RPC [4]. However, in their
tests, the stability is qualified by the Low Fragment Heap of
the Windows 10 operating system, and the maximum success
rate is 80%. Keen Security Lab has also demonstrated an
exploit for VMware Workstation by using an information
leakage bug in Backdoor-RPC and a memory corruption bug
in xHCI [9]. For type-1 hypervisors, CVE-2015-7835 [2] has
been demonstrated to achieve a virtual machine escape of the
Xen hypervisor. Furthermore, Jordan Rabet has proposed an
in-depth analysis of a successful virtual machine escape of
Hyper-V [12].

Exploitation of Uninitialized Use. The leading part
of the exploitation of uninitialized use is to control the
uninitialized variables and turn them into other types
vulnerabilities. Halvar Flake proposed an approach to
determine all the paths that could be overlapped in the
same stack frame [7]. Also, Kangjie Lu et al. proposed an
automated approach using targeted stack spraying to facilitate
the uninitialized uses of the kernel [10].

Mitigations for VM Escape. BitVisor [14] tried to en-
force the security of I/O devices by minimizing the code size
of hypervisors by allowing most of the I/O accesses from
the guest OS to pass through the hypervisor. NoHype [16]
presented a strategy to eliminate the hypervisor attack surface
by enabling the guest VMs to run natively on the underlying
hardware while maintaining the ability to run multiple VMs
concurrently. Hypersafe [19] proposed an approach to
apply the Control-Flow-Integrity to mitigate virtual machine
escape attacks. Cloudvisor [23] introduced an approach
that enforces the separation of resource management from
security protection in the virtualization layer.



8 Conclusion

VMware ESXi is one of the most state-of-the-art enterprise
class hypervisors. However, there has been no systematic
security analysis or successful virtual machine escape until
this research. We give a systematic overview of the archi-
tecture, attack surfaces, and exploitation approaches of ESXi.
Furthermore, we proposed a flexible and reuseable strategy
that leverages the backdoor RPC to manipulate the memory
layouts. Our exploitation chain contains three vulnerabilities.
Evaluation results show that it is reliable (90% success rate
on average).
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