
Fuzzing File Systems via
Two-Dimensional Input Space Exploration

Wen Xu Hyungon Moon† Sanidhya Kashyap Po-Ning Tseng Taesoo Kim

Georgia Institute of Technology
†Ulsan National Institute of Science and Technology

Abstract—File systems, a basic building block of an OS, are
too big and too complex to be bug free. Nevertheless, file systems
rely on regular stress-testing tools and formal checkers to find
bugs, which are limited due to the ever-increasing complexity
of both file systems and OSes. Thus, fuzzing, proven to be an
effective and a practical approach, becomes a preferable choice,
as it does not need much knowledge about a target. However,
three main challenges exist in fuzzing file systems: mutating a
large image blob that degrades overall performance, generating
image-dependent file operations, and reproducing found bugs,
which is difficult for existing OS fuzzers.

Hence, we present JANUS, the first feedback-driven fuzzer
that explores the two-dimensional input space of a file system,
i.e., mutating metadata on a large image, while emitting image-
directed file operations. In addition, JANUS relies on a library
OS rather than on traditional VMs for fuzzing, which enables
JANUS to load a fresh copy of the OS, thereby leading to better
reproducibility of bugs. We evaluate JANUS on eight file systems
and found 90 bugs in the upstream Linux kernel, 62 of which have
been acknowledged. Forty-three bugs have been fixed with 32
CVEs assigned. In addition, JANUS achieves higher code coverage
on all the file systems after fuzzing 12 hours, when compared
with the state-of-the-art fuzzer Syzkaller for fuzzing file systems.
JANUS visits 4.19× and 2.01× more code paths in Btrfs and ext4,
respectively. Moreover, JANUS is able to reproduce 88–100% of
the crashes, while Syzkaller fails on all of them.

I. INTRODUCTION

File systems are one of the most basic system services of an
operating system that play an important role in managing the
files of users and tolerating system crashes without losing data
consistency. Currently, most of the conventional file systems,
such as ext4 [8], XFS [64], Btrfs [59], and F2FS [30], run in
the OS kernel. Hence, bugs in file systems cause devastating
errors, such as system reboots, OS deadlock, and unrecoverable
errors of the whole file system image. In addition, they also
pose severe security threats. For instance, attackers exploit
various file system issues by mounting a crafted disk image [28]
or invoking vulnerable file system-specific operations [37]
to achieve code execution or privilege escalation on victim
machines. However, manually eliminating every bug in a file
system that has sheer complexity is a challenge, even for
an expert. For example, the latest implementation of ext4 in
Linux v4.18 comprises 50K lines of code, while that of Btrfs
is nearly 130K LoC. At the same time, many widely used
file systems are still under active development. File system
developers consistently optimize performance [72] and add new
features [11, 29], meanwhile introducing new bugs [26, 27, 40].

To automatically discover these potential bugs, most file
systems in development rely on the known stress-testing frame-
works (xfstests [63], fsck [56, 69], Linux Test Project [62], etc.)
that mostly focus on the regression of file systems with minimal
integrity checks. For example, one of the bugs we found in
ext4 (i.e., CVE-2018-10880) crashes the kernel by moving a
critical extended attribute out of the inode structure. We trigger
this bug by mounting a normal ext4 image formatted with
inline_data, which bypasses integrity checks in both xfstests
and fsck. In addition, some prior works have applied model
checking [73, 74] to find file system bugs, which requires a
deep understanding of both the file system and OS states. This
is now impractical due to the increasing complexity of modern
OSes [2, 35, 68]. On the other hand, most of the verified file
systems [6, 9] are too immature to adopt in practice.

Another approach—fuzzing—is gaining traction. Fuzzing
not only requires minimal knowledge about the target software,
but also is an effective and a practical approach that has found
thousands of vulnerabilities [15, 18, 34, 76]. Hence, fuzzing is a
viable approach to automatically discover bugs in a wide range
of file systems (e.g., 54 in the Linux kernel). However, unlike
other ordinary targets, fuzzing file systems is dependent on two
inputs: a mounted disk image and a sequence of file operations
(i.e., system calls) that are executed on the mounted image.
Existing fuzzers either focus on mutating images as ordinary
binary inputs [21, 48, 57, 61] or generating random sets of
file operation-specific system calls [20, 25, 46]. Unfortunately,
they all fail to efficiently and comprehensively test file systems
because of the following three challenges.

First, a disk image is a large binary blob that is structured
but complicated, and the minimum size can be almost 100×
larger than the maximum preferred size of general fuzzers [76],
which dramatically degrades the fuzzing throughput [21, 57, 61]
due to the heavy I/O involved in mutating images. Another
issue related to blob mutation is that existing fuzzers [20, 48]
mutate only non-zero chunks in an image. This approach is
unsound because these fuzzers do not exploit the properties
of structured data, i.e., file system layout, in which mutating
metadata blocks is more effective than mutating data blocks. In
addition, without any knowledge about the file system layout,
existing fuzzers also fail to fix any metadata checksum after
corrupting metadata blocks. The second challenge is that file
operations are context-aware workloads, i.e., a dependence
exists between an image and the file operations executed on

it. In particular, the real-time status of a mounted file system
determines which file objects a set of system calls can operate
on, and the invocation of a particular system call brings changes
to the object being operated on. Unfortunately, existing system
call fuzzers [20, 25, 46], which independently generate random
system calls with hard-coded file paths, fail to emit meaningful
sequences of file operations, and cover deep code paths of a
file system. The third issue with existing fuzzers is the aspect
of reproducing found bugs. Most of the existing fuzzers that
target OSes [20, 25, 46] or file systems [48] test generated
inputs without reloading a fresh copy of the OS instance or
file system image, i.e., they do not use a non-aging OS and
file system. The reason they do not re-initialize the OS or file
systems is that they rely on VM, QEMU, or user-mode Linux
(UML) [13] instances that take seconds to reload a fresh copy.
To overcome this issue, they reuse these instances, thereby
leading to dirty OS states, which eventually results in unstable
executions and irreproducible bugs.

We address the aforementioned challenges with JANUS, an
evolutionary feedback-driven fuzzer, that effectively explores
the two-dimensional input space of a disk file system. JANUS
addresses the first problem by exploiting the structured data
property in the form of metadata, i.e., it mutates only metadata
blocks of a seed image, thereby drastically pruning the
searching space of the input. Second, we propose the image-
directed syscall fuzzing technique to fuzz file operations, i.e.,
JANUS not only stores generated system calls but also deduces
the runtime status of every file object on the image after these
system calls complete. JANUS then uses the speculated status as
feedback to generate a new set of system calls, thereby emitting
context-aware workloads. During each fuzzing iteration, JANUS
performs image fuzzing with higher priority and then invokes
image-directed syscall fuzzing to fully explore a target file
system. Finally, JANUS solves the reproducibility problem,
which is tightly coupled with the scalability of OS fuzzing as
well as OS aging, by always loading a fresh copy of the OS
to test the file system-related OS functionalities with the help
of a library OS (i.e., Linux Kernel Library [54]), running in
user space.

With JANUS, we fuzzed eight popular file systems in the
upstream Linux kernel (v4.16–v4.18) for four months. Our
evaluation shows that JANUS achieves at most 4.19× more
code coverage than the state-of-the-art OS fuzzer Syzkaller.
Moreover, our choice of using a library OS enables us
to reproduce 88-100% of crashes, while Syzkaller fails to
reproduce any. Until now, we have successfully found 90 bugs,
and developers have already acknowledged 62 of them, 43 of
which have been fixed with 32 CVEs assigned.

This paper makes the following contributions:

• Issues. We identify three prominent issues of existing
file systems fuzzers: (1) fuzzing a large blob image is
inefficient; (2) fuzzers do not exploit the dependence
between a file system image and file operations; (3)
fuzzers use aging OSes and file systems, which results in
irreproducible bugs.

• Approach. We design and implement an evolutionary
file system fuzzer, called JANUS, that efficiently mutates
metadata blocks in a large seed image while generating
image-directed workloads to extensively explore a target
file system. JANUS further leverages a library OS (i.e.,
LKL) other than a VM to test OS functionalities, so as to
provide a clean-slate OS image in a matter of milliseconds.

• Impact. We evaluate JANUS on eight file systems and find
90 bugs in the upstream kernel, 62 and 43 of which have
been acknowledged and patched with 32 CVEs assigned.
Moreover, JANUS outperforms Syzkaller regarding code
coverage on all selected file systems. In particular, JANUS
eventually visits 4.19× and 2.01× more code paths than
Syzkaller when fuzzing Btrfs and ext4, respectively, for
12 hours. Meanwhile, JANUS can reproduce 88-100% of
the found crashes, while Syzkaller fails to reproduce any.

Threat Model. In this work, we assume that an attacker is
privileged to mount a fully crafted disk image on a target
machine and operate files stored on the image to exploit
security bugs in an in-kernel file system. Practical ways exist
for an attacker to achieve this without root privilege, including:
(1) Auto-mounting. Modern OSes automatically mount an
untrusted plugged-in drive if it supports the corresponding file
system, which is exploited by several infamous attacks such
as Stuxnet [28], "evil maid attack" [60], etc.; (2) Unprivileged
mounts. macOS allows a non-root user to mount an Apple disk
image applying various file systems such as HFS, HFS+, APFS,
etc., and a number of bugs are found in these file systems that
lead to memory read restriction bypass and code execution
in the kernel [38, 39, 77]. Linux also allows unprivileged
users to mount any file system with FS_USERNS_MOUNT in a user
namespace [12].

II. BACKGROUND AND MOTIVATION

Commodity OSes usually implement a disk file system as a
kernel module. Users are tasked with mounting the large-size
and formatted image and manage data via file operations. In this
section, we first describe general fuzzing approaches (§II-A)
and existing file system fuzzers (§II-B). Later, we explain why
they all fail to efficiently test file systems. We then summarize
the challenges and potential opportunities in file system fuzzing
(§II-C).

A. A Primer on Fuzzing

Fuzzing is a popular software-testing method that repeatedly
generates new inputs and injects them into a target program to
trigger bugs. It is one of the most effective approaches in prac-
tice to find security bugs in modern software. For example, the
state-of-the-art fuzzer AFL [76] and its variants [4, 5, 15, 51],
have discovered numerous bugs in open-source software. To
effectively explore a target program, recent fuzzers leverage
the past code coverage to later direct the input generation.
Moreover, software such as an OS is the most critical program,
as discovered bugs allow privilege escalation on a target
machine. To fuzz OSes, several frameworks [20, 46, 61] extend

2

super
block

group
descriptors

data block
bitmap

directory
entryi

inode
bitmap

inode
tables

data data extent
nodei

data journal
blocki

data

Fig. 1: The on-disk layout of an ext4 image. The gray blocks shows
metadata in use, which occupies merely 1% of the image size. Some
of them, including extent tree nodes, directory entries, and journal
blocks, are scattered in the image, while others (e.g., superblock,
group descriptors, etc.) are in the beginning.

File system ext4 XFS Btrfs F2FS GFS2 ReiserFS NTFS AFL

Min. size (MB) 2 16 100 38 16 33 1 1

TABLE I: The minimal size of a block device allowed to be formatted
by various file systems with default options along with enabled
journaling or logging. Most of the image sizes exceed the size of a
fuzzing input suggested by AFL (1MB).

feedback-driven fuzzing approaches to trigger kernel bugs by
invoking randomly generated system calls.

B. File System Fuzzing

A disk file system has two-dimensional input space: (1) the
structured file system image format; and (2) file operations that
users invoke to access files stored on a mounted image. Several
file system fuzzing tools use a generic fuzzing infrastructure
to target either images or file operations.

1) Disk Image Fuzzer: A disk image is a large structured
binary blob. The blob has (1) user data and (2) several
management structures, called metadata, that a file system
needs to access, load, recover, and search data or to fulfill
other specific requirements of a file system. Figure 1 presents
the on-disk layout of a typical ext4 image.1 However, the size
of metadata constitutes merely 1% of the image size [1]. On
the other hand, the minimal size of a valid image can be 100
MBs (see Table I), which further increases on enabling certain
features. Three issues occur with an image as a fuzzing input:
(1) Large input size leads to an exponential increase in the
input space exploration. Meanwhile, important metadata are
mutated infrequently. (2) A fuzzer performs frequent read and
write operations on input files. When fuzzing a disk image, it
repeatedly reads during mutation, writes after mutation, and
saves the image if necessary. As a result, the large size of a
disk image slows down essential file operations, leading to
huge performance overhead. (3) Finally, to detect metadata
corruption, several file systems (e.g., XFS v5, GFS2, F2FS, etc.)
introduce checksums to protect on-disk metadata. Hence, the
kernel rejects a corrupt image, with mutated metadata blocks
without correct checksums, during initialization.

Disk image fuzzers [21, 48, 57, 61, 69] enforce a file system
to mount and execute a sequence of file operations on the
mutated disk images to trigger file system-specific bugs. Early
fuzzers [21, 57] ineffectively mutate bytes at random offsets in a
valid image to generate new images or mutate bytes in metadata
blocks only. These approaches incur heavy disk I/O from
loading and saving entire images. Moreover, these blind fuzzing
techniques generate poor-quality images without utilizing past
coverage. To overcome this, most recent fuzzers [20, 48] are

1We have listed its file hierarchy in Figure 9 including files and directories.

driven by code coverage. Moreover, they extract all the non-zero
chunks in a seed image for mutation. This approach touches
most of the metadata blocks and improves fuzzing performance
by decreasing input size. Nevertheless, these non-zero chunks
not only contain non-zero data blocks but also discard the
zero initialized metadata blocks, which results in sub-optimal
file system fuzzing. In addition, as metadata blocks are not
precisely located, this approach fails to fix their checksums.

2) File Operation Fuzzer: Since file systems are part of
the OS, a general approach to fuzz them is to invoke a set
of system calls [20, 25, 46]. Although porting these fuzzers
to target file system operations is straightforward, they fail
to efficiently fuzz file systems for two reasons: First, file
operations modify only file objects (e.g., directories, symbolic
links, etc.) that exist on the image, and a completed operation
affects particular objects. However, existing OS fuzzers do not
consider the dynamic dependence between an image and file
operations, as they blindly generate system calls, that explore
a file system superficially. For example, the state-of-the-art
OS fuzzer, Syzkaller, generates system calls based upon static
grammar rules describing the data types of every argument and
return value for every target system call. Therefore, Syzkaller
is able to generate a single semantically correct system call but
fails to explore the collective behavior of a set of system calls
and the modified file system image. For instance, Syzkaller may
emit multiples of open() calls on a file with its old path that
has been either renamed (rename()) or removed (unlink()).

Second, existing OS fuzzers [20, 61] mostly use virtualized
instances (e.g., KVM, QEMU, etc.) to run a target OS without
reloading a fresh copy of the OS or file system for every testing
input for the sake of performance. Unfortunately, fuzzing with
an aging OS or file systems has two issues: (1) The execution
of an aging OS becomes non-deterministic after processing
numerous system calls. For example, kmalloc() which depends
on prior allocations, behaves differently across runs. Sometimes
a kernel component (e.g., journaling system) quietly fails and
detaches from the OS without triggering any file system crash
during a long-run fuzzing. (2) A bug found by these fuzzers
accumulates the impact of thousands of invoked system calls,
which impedes the generation of a stable proof-of-concept for
developers to reproduce the bug and debug it [19].

3) File System Fuzzer: As mentioned before, most fuzzers
either fuzz a binary input [34, 76] or use a sequence of system
calls to fuzz the OS [20, 25]. However, to fuzz a file system,
we need to mutate two inputs: (1) the binary image (i.e., a file
system image) and (2) the corresponding workload (i.e., a set
of file system specific system calls). Unfortunately, combining
these two existing fuzzing techniques is not straightforward.
Recently, Syzkaller tried to achieve both by mutating non-zero
chunks in an image, while independently generating context-
unaware workloads to test the mutated image, which is still
unsound and ineffective.

C. Challenges of Fuzzing a File System

We summarize a set of challenges of fuzzing file systems
in the Linux kernel, and present our insights in designing

3

JANUS to overcome these challenges. Note that our insights
are applicable to other OSes as well.
Handling large disk images as input. An image fuzzer
should effectively fuzz a complicated, large disk image by (1)
mutating scattered metadata in the image with checksum, and
(2) mitigating frequent disk I/O due to input manipulation.
Unfortunately, current fuzzers fail to address these issues
simultaneously (see §II-B1). An ideal image fuzzer should
target only the metadata, rather than the entire disk image, and
must fix the checksum for any mutated metadata structure.
Missing context-aware workloads. File system-aware work-
loads directly affect the image. In particular, valid file opera-
tions modify file objects on an image (e.g., open() creates a
new file and unlink() removes one link of an existing file) at
runtime. However, existing fuzzers rely on the predefined image
information (i.e., valid file and directory paths on a seed image)
to generate system calls, and thereby fail to comprehensively
test all the accessible file objects in a target file system at
runtime (§II-B2). Therefore, a better approach is to maintain the
runtime status of every file object on an image after performing
past file operations for generating new ones.
Exploring input space in two dimensions. A file system
processes two types of inputs, including disk images and
file operations which are organized in completely different
formats (i.e., binary blob versus sequential operations), but
have an implicit connection between them. To fully explore
a file system, a fuzzer should mutate both of them, which is
not supported by existing fuzzers. Thus, we aim to propose
a hybrid approach that explores both dimensions by fuzzing
image bytes and file operations simultaneously.
Reproducing found crashes. Traditional OS fuzzers use
virtualized instances to test OS functionalities. However, to
avoid the expensive cost of rebooting a VM or reverting a
snapshot, they re-uses an OS or file system instance across
multiple runs, which leads to unstable kernel executions and
irreproducible bugs (see §II-B2). This issue can be overcome
by leveraging a library OS [53, 54] that provides the exact OS
behavior and re-initializes the OS states within milliseconds.

III. DESIGN

A. Overview

JANUS is a feedback-driven fuzzer that mutates the metadata
of a seed image, while generating context-aware file operations
(i.e., system calls) to comprehensively explore a file system. In
general, JANUS adopts the following design choices to resolve
the aforementioned challenges regarding file system fuzzing
(see §II-C). First, JANUS merely stores the metadata extracted
from the seed image as its mutation target, which is critical
for a file system to manage user data. In addition, JANUS
re-calculates every metadata checksum value after mutation.
Since the metadata occupy a small space (1%), the size of
an input test case is much smaller than that of an entire disk
image, which enables high fuzzing throughput. Second, JANUS
does not rely on manually specified information about the
files stored on a seed image, as it becomes stale over time

Image mutator

libOS
executor

Fuzzing engine

Corpus
status

❶
Syscall fuzzer

metadata'

program'

status'

Coverage
bitmap

metadata

program

❷
❸ ❹

❺

➁ ➂

Fig. 2: An overview of JANUS. In each fuzzing iteration, JANUS
loads a test case from its working corpus, which consists of three
parts: the metadata of a seed image, a program containing a list of file
operations, and the speculated image status at runtime after executing
the program (1). Then the fuzzing engine of JANUS mutates the test
case in two directions: (1) The image mutator randomly mutates the
metadata, and the fuzzing engine outputs the mutated metadata along
with the intact program for testing (2), or (2) The syscall fuzzer
mutates existing system calls in the program or appends new ones, and
updates the image status correspondingly as the workload changes
(2). In this case, the fuzzing engine outputs the intact metadata
and the newly generated program. Next, JANUS releases the output
metadata into a full-size image (3) and delivers the image with the
output program (3) to a library OS based executor. The executor
mounts the image and executes the program, whose execution trace is
profiled into a bitmap shared with the fuzzing engine of JANUS (4).
If new code paths are discovered, the output metadata and program,
and the updated image status are packed as a new test case and saved
into the corpus for future mutation (5).

and results in ineffective test case generation. Instead, JANUS
generates new file operations based upon the deduced status
of an image after completing old ones in a workload. Third,
JANUS manages to explore the two-dimensional input space
of a file system by wisely scheduling image fuzzing and file
operation fuzzing. Considering the fact that the original image
determines the initial state of a file system and affects the
executions of the foremost file operations, JANUS makes the
first effort to mutate image bytes. Lastly, JANUS relies on a
library OS to test kernel functions in user space. A library OS
instance runs as a user application, which can be re-launched
with negligible overhead, and thereby helps to increase the
chance of reproducing a found bug.

Figure 2 presents the detailed design of JANUS. A binary
input for JANUS consists of three parts: (1) a binary blob
comprising the metadata blocks of a seed image, (2) a serialized
program (i.e., file system workload) that describes a sequence
of system calls, and (3) the speculated image status after the
program operates the image. In the beginning, JANUS relies
on a file system-specific parser to extract metadata from a
seed image. JANUS also inspects the seed image to retrieve
initial image status and generate starting programs. The original
metadata, along with the image status and the program, are
packed as a test case and are saved into JANUS’S working
corpus. JANUS initiates fuzzing with both the image mutator
and the system call fuzzer by selecting a test case from the
corpus (1) for exploring the two-dimensional input space in
an infinite loop. First, the fuzzing engine invokes the image
mutator to flip the bytes of the metadata blob in several ways

4

1 # Class Janus
2 def generate_corpus(self, image, fstype):
3 self.image_buffer = read_image(image)
4 meta_blocks = self.img_parser.parse_image(image, fstype)
5 meta_buffer = ""
6 for meta_block in meta_blocks:
7 self.meta_blocks[i].offset = meta_block.offset
8 self.meta_blocks[i].size = meta_block.size
9 if meta_block.has_csum:

10 self.meta_blocks[i].csum_offset = meta_block.csum_offset
11 else:
12 self.meta_blocks[i].csum_offset = None
13 meta_buffer += meta_block.buffer
14

15 file_objs = self.inspect_image(image)
16 program = Program()
17 status = Status(file_objs)
18 self.sys_fuzzer.initialize(program, status)
19 for file_obj in file_objs:
20 (new_program, new_status) = \
21 self.sys_fuzzer.generate_syscall(SYS_OPEN, [file_obj])
22 self.add_into_corpus((meta_buffer, new_program, new_status))

Fig. 3: Pseudo-code of how JANUS generates the initial corpus given
a seed image.

and outputs mutated blobs (2). At the same time, the program
in the test case remains unchanged. Later on, the system call
fuzzer enables JANUS to either mutate the argument values of
existing system calls in the program or append new ones to the
program. The system call fuzzer also produces new image status
according to the newly generated program (2). Meanwhile, the
metadata part remains intact. The output metadata is combined
with other unchanged parts (i.e., user data) to produce a full-size
image with all the checksum values re-calculated by JANUS
(3). And the output program is also serialized and saved onto
the disk (3). A user-space system call executor, which relies
on a library OS, launches a new instance to mount the full-size
image and perform the file operations involved in the program
loaded from the disk (4). The runtime path coverage of the
executor is profiled into a bitmap shared with JANUS’s fuzzing
engine. The fuzzing engine inspects the bitmap; on discovering
a new path, JANUS saves the shrunken image, the serialized
program, and the speculated image status into one binary input
for further mutation in successive runs (5). Note that for
each test case, JANUS always launches the image mutator first
for certain rounds and invokes the system call fuzzer if no
interesting test case is discovered.

We first describe how JANUS generates the starting test cases
by parsing a seed image in §III-B. We then present how it
fuzzes image bytes and generates file operations in §III-C and
§III-D, respectively. More important, we describe how JANUS
integrates two core fuzzers in §III-E. Finally, we present our
new library OS-based environment for file system fuzzing in
§III-F.

B. Building Corpus

JANUS relies on its image parser and system call fuzzer
to build its initial corpus upon a seed image (see Figure 3).
The first part of the test cases in the corpus is the essential
metadata blocks of the seed image, which constitutes around
1% of the total size, thereby overcoming the challenges of
fuzzing a disk image, as described in §II-C. Specifically, JANUS

1 # Class ImageMutator
2 def mutate_image(meta_buffer):
3 choice = Random.randint(0, 8)
4 if choice == 0:
5 return flip_bit_at_random_offset(meta_buffer)
6 elif choice == 1:
7 return set_interesting_byte_at_random_offset(meta_buffer)
8 elif choice == 2:
9 return set_interesting_word_at_random_offset(meta_buffer)

10 elif choice == 3:
11 return set_interesting_dword_at_random_offset(meta_buffer)
12 elif choice == 4:
13 return inc_random_byte_at_random_offset(meta_buffer)
14 elif choice == 5:
15 return inc_random_word_at_random_offset(meta_buffer)
16 elif choice == 6:
17 return inc_random_dword_at_random_offset(meta_buffer)
18 else:
19 return set_random_byte_at_random_offset(meta_buffer)

Fig. 4: Pseudo-code of how JANUS randomly mutates metadata blocks.

first maps the entire image into a memory buffer. Then a file
system-specific image parser scans the image and locates all
the on-disk metadata according to the specification of the
applied file system. JANUS re-assembles these metadata into a
shrunken blob for mutation afterward and records their sizes
and in-image offsets. For any metadata structure protected
by checksum, JANUS records the in-metadata offset of the
checksum field recognized by the image parser. Second, the
starting test cases also include the information of every file
and directory on the image that allows JANUS to use that
knowledge for generating context-aware workloads afterward.
In particular, the system call fuzzer probes the seed image and
retrieves the path, type (e.g., normal file, directory, symbolic
link, FIFO file, etc.), and extended attributes of every file object
on it, which are packed into every initial test case. Moreover,
every initial test case involves a starting program that has a
distinct system call generated by the system call fuzzer for
mutation. To enlarge the overall coverage of the corpus, each
randomly generated system call operates a unique file object
(see §III-D for the details of program format and system call
generation). The metadata and the file status of the seed image,
along with a starting program together form an input test case,
which is packed by JANUS and saved into the corpus on the
disk for future fuzzing.

C. Fuzzing Images

JANUS relies on the image mutator to fuzz images. In
particular, the image mutator loads the metadata blocks of
a test case, and applies several common fuzzing strategies [76]
(e.g., bit flipping, arithmetic operation on random bytes, etc.)
to randomly mutate the bytes of the metadata, as described in
Figure 4 (2). Similar to existing fuzzers [75], JANUS prefers a
group of specific integers (i.e., interesting values in Figure 4),
such as -1, 0, INT_MAX, etc., instead of purely random values
to mutate the metadata. In our evaluation, these special values
enable the image mutator to produce more corner cases, which
are not correctly handled by the file system (e.g., bug #1, #6,
#14, #28, #33, etc. in Table VI found by JANUS) and also
more extreme cases that increase the probability of crashing

5

1 # Class Janus
2 def release_image(self, meta_buffer):
3 pos = 0
4 for meta_block in self.meta_blocks:
5 meta_block_buffer = meta_buffer[pos:pos + meta_block.size]
6 if meta_block.csum_offset is not None:
7 self.fix_csum(meta_block_buffer, meta_block.csum_offset)
8 copy_buffer(self.image_buffer[meta_block.offset],
9 meta_block_buffer, meta_block.size)

10 pos += meta_block.size

Fig. 5: Pseudo-code of how JANUS releases the mutated metadata
blocks back to a full-size image for testing.

1 # Class SyscallFuzzer
2 def mutate_syscall(self):
3 new_program = Program(self.program)
4 syscall_index = Random.randint(0, len(self.program.syscalls))
5 syscall = self.program.syscalls[syscall_index]
6 args = [i for i in range(len(syscall.args)) \
7 if not may_effect_status(syscall, i)]
8 arg = Random.choice(args)
9 mutated_arg = self.generate_arg_by_status(syscall, arg)

10 new_program.syscalls[syscall_index].args[arg_index] = mutated_arg
11 return new_program
12

13 def generate_syscall(self, sysno=None, args=[]):
14 new_program = Program(self.program)
15 new_status = Status(self.status)
16 syscall = Syscall()
17 if sysno is None: syscall.sysno = Random.choice(FS_SYSNOS)
18 else: syscall.sysno = sysno
19 for arg in args: syscall.add_arg(arg)
20 for i in range(len(args), SYSCALL_ARG_NUM[syscall.sysno]):
21 syscall.add_arg(self.generate_arg_by_status(syscall, i))
22 new_program.add_syscall(syscall)
23 new_status.update(syscall)
24 return (new_program, new_status)

Fig. 6: Pseudo-code of how JANUS randomly mutates existing system
calls and generate new ones given a program.

the kernel by triggering a specific bug at runtime (e.g., most
of the out-of-bound access bugs discovered by JANUS).

After mutating the entire metadata blob, JANUS copies each
metadata block in the blob back to its corresponding position
inside the memory buffer, which stores the original full-size
image (3). To maintain the sanctity of the image, the image
parser recalculates the checksum value of every metadata block
by following the specific algorithm adopted by the target file
system, and fills the value at the recorded offset of the checksum
field.

D. Fuzzing File Operations

The system call fuzzer enables JANUS to generate image-
directed workloads to effectively explore how a file system
handles various file operations requested by users. First, we
present the structure of a program manipulated by the system
call fuzzer. A program includes a list of ordered system calls
that modifies the mutated image and maintains a variable bank
that stores the variables used by system calls. JANUS describes
each system call as a tuple of the syscall number, argument
values, and a return value. If any argument value or return
value is not a simple constant but a variable, JANUS presents
it as an index pointing to the variable stored in the variable
bank. In addition, the program also includes a list of active
file descriptors that are opened and have not been closed by
the program.

Similar to existing fuzzers (e.g., Syzkaller), the system call
fuzzer generates new programs from an input program in two
ways: (1) Syscall mutation. The system call fuzzer randomly
selects one system call in the program, and generates a list
of new values to replace the old value of a randomly selected
argument; (2) Syscall generation. The system call fuzzer
appends a new system call to the program, whose arguments
have randomly generated values. In particular, JANUS adopts
the same strategies that Syzkaller uses to generate values for the
trivial arguments of a system call. The candidate values of these
arguments are independent of our speculated runtime status.
For any argument that has a clearly defined set of its available
values, JANUS randomly selects values from the set for it.
(e.g., int whence for lseek()). Moreover, JANUS generates
random numbers in a certain range for the arguments of an
integer type (e.g., size_t count for write()). Furthermore, a
number of file operations requires an argument of a pointer
type. Such a pointer normally points to a buffer that is used to
store either user data (e.g., void *buf for write()) or kernel
output (e.g., void *buf for read()). For the former case, the
system call fuzzer declares an array filled with random values
for the argument. A fixed array is always used in the latter
case, since JANUS is not driven by what the kernel outputs at
runtime except for its code coverage.

Nevertheless, for those non-trivial arguments whose proper
values depend on the running context of a file system, JANUS
generates their values based not only on their expected types,
but more important, on our maintained status by following
mainly three rules: (1) If a file descriptor is required, the system
call fuzzer randomly picks an opened file descriptor of proper
type. For instance, write() requires a normal file descriptor,
while getdents() asks for the file descriptor of a directory; (2)
If a path is required, the system call fuzzer randomly selects the
path of an existing file or directory, or a stale file or directory
that is removed by recent operations. For instance, JANUS
provides the path of a normal file or a directory to rename(),
but delivers only that of a valid directory required by rmdir().
If the path is used to create a new file or directory, JANUS may
also randomly generate a brand new path that is located under
an existing directory; (3) If a system call operates the existing
extended attribute of a particular file (e.g., getxattr() and
setxattr()), the system call fuzzer randomly picks a recorded
extended attribute name of the file. The generation strategies
enable JANUS to emit context-aware workloads on fresh file
objects that are free of runtime errors and achieve high code
coverage.

For a newly generated system call, JANUS appends it to
the program and, more important, summarizes the potential
changes to the file system caused by the system call and
updates the speculated status of the image correspondingly.
For instance, open(), mkdir(), link(), or symlink() may
create a new file or directory, while open() also introduces
an active file descriptor; rmdir() or unlink() removes a file
or a directory from the image; rename() updates the path of
a file and setxattr() or removexattr() updates a particular
extended attribute.

6

1 # Class Janus
2 def run_one(self, buffer, program, status):
3 cov, lkl_status = self.lkl_test(self.image_buffer, program)
4 if lkl_status == CRASH:
5 self.save_crash((buffer, program))
6 elif self.has_new_path(cov):
7 self.add_into_corpus((buffer, program, status))
8 return True
9 return False

10

11 def fuzz_one(self):
12 (meta_buffer, program, status) = ctx.pick_from_corpus()
13 found_new = False
14 for _ in range(IMAGE_MUTATE_CYCLES):
15 mutated_buffer = self.img_mutator.mutate_image(meta_buffer)
16 if self.run_one(mutated_buffer, program, status):
17 found_new = True
18 if found_new: return
19 self.release_image(ctx, meta_buffer)
20 self.sys_fuzzer.initialize(program, status)
21 for _ in range(SYSCALL_MUTATE_CYCLES):
22 new_program = self.sys_fuzzer.mutate_syscall()
23 if self.run_one(meta_buffer, new_program, status):
24 found_new = True
25 if found_new: return
26 for _ in range(SYSCALL_GENERATE_CYCLES):
27 (new_program, new_status) = \
28 self.sys_fuzzer.generate_syscall()
29 self.run_one(meta_buffer, new_program, new_status)

Fig. 7: Pseudo-code of one fuzzing iteration in JANUS.

Note that in the current design, JANUS maintains only the
speculated image status after completing the execution of
a program. Therefore, JANUS avoids any mutation on the
existing arguments that result in potential changes to the image
status. For instance, JANUS may mutate fd of a write() in the
program while never touching path of unlink(), since such
a mutation may invalidate the system calls after the mutated
ones (e.g., changing unlink("A") to unlink("B") affect all the
existing file operations afterward on file B in a test case).

E. Exploring Two-Dimensional Input Space

To fuzz both metadata and system calls together, JANUS
schedules its two core fuzzers in order. Figure 7 describes
one fuzzing iteration of JANUS. Specifically, for an input test
case, which contains a shrunken image and a program, JANUS
first launches the image mutator to mutate random bytes on
the shrunken image. If no new code path is discovered with
the unchanged program, JANUS invokes the system call fuzzer
to mutate the argument values of an existing system call in
the program for certain rounds. If still no new code path is
explored, JANUS eventually tries to append new system calls
to the program. Note that rounds in every fuzzing stage are
user defined.

Scheduling image fuzzing and file operation fuzzing in such
an order is effective as follows: (1) The extracted metadata
indicate the initial state of an image, whose impacts on the
executions of file operations gradually decreases when the
image has been operated by several system calls. Hence, JANUS
always tries to mutate metadata first. (2) Introducing new file
operations exponentially increases the mutation space of a
program and may also erase the changes from past operations of
the image. Therefore, JANUS prefers mutating existing system
calls rather than generating new ones.

Component LoC Languange

Fuzzing engine
Image parser (8 file systems) 5,229 C++
Image inspector 141 Python
Program serializer 1,163 C++
Syscall fuzzer 3,137 C++
Other AFL changes 497 C

LKL changes
Shared image buffer 16 C
KASAN 804 C

Instrumentation tool 360 C++
LKL-based executor 851 C++

PoC generator 1,108 C++, Python

TABLE II: Implementation complexity of JANUS, including the
changes to AFL and LKL for file system fuzzing. Since we directly
reuse the existing binary mutation algorithms in AFL for the image
mutator, we omit its code size.

F. Library OS based Kernel Execution Environment

To avoid using an aging OS or file system that results
in unstable executions and irreproducible bugs (see §II-C),
JANUS relies on a library OS based application (i.e., executor)
to fuzz OS functionalities. Specifically, JANUS forks a new
instance of the executor to test every newly generated image and
workload from the fuzzing engine (4). Note that forking a user
application incurs negligible time compared with resetting a
VM instance. Hence, JANUS guarantees a clean-slate kernel for
every test case with low overhead. Moreover, as both fuzzing
engine and executor run in user space on one machine, sharing
input files and coverage bitmap between them is straightforward,
which is challenging for VM-based fuzzers that run the fuzzing
engine outside VM instances. In addition, a library OS instance
requires far less computing resources compared with any type
of VMs. Therefore, we can deploy JANUS instances on a large
scale without severe contention.

IV. IMPLEMENTATION

We implement JANUS as a variant of AFL (version 2.52b).
JANUS adopts the basic infrastructure of AFL, including the
forkserver, coverage bitmap, and test-case scheduling algorithm.
We extend AFL with the the image mutator and the system
call fuzzer. In addition, we implement an image inspector to
build the initial corpus from a seed image and a program
serializer for delivering generated programs between memory
and working corpus. Furthermore, we implement an executor
based on Linux Kernel Library (LKL) to test newly generated
images and workloads. Note that we also modify LKL to
support the kernel address sanitizer (KASAN) [17], which
is widely adopted by OS fuzzers to detect memory errors.
For ease of reproducing bugs in a real environment, we also
implement a Proof-of-Concept (PoC) generator that produces
a full-size image along with a compilable C program from a
serialized test case. Table II presents the lines of code (LoC)

7

of each components of JANUS. In this section, we describe the
implementation details of several main components.
Image parser and image mutator. We implement the image
parser as a dynamic library to locate metadata and identify
checksums on a seed image. Currently, the image parser
supports parsing the disk images of eight widely used file
systems on Linux, including ext4, XFS, Btrfs, F2FS, GFS2,
HFS+, ReiserFS, and VFAT. Our implementation of the image
parser refers to the user-space utilities (e.g., mkfs and fsck) of
those file systems. We also implement the image mutator, which
randomly mutates the bytes of a shrunken image through eight
strategies (see Figure 4). We directly port the implementation
of these mutation strategies from AFL in JANUS.
Image inspector. We implement an image inspector for
JANUS, which iterates files and directories on a seed image,
and records their in-image paths, types, and extended attributes
for building initial test cases (see §III-B).
Program serializer. We describe newly generated programs
and updated status in a serializable format (see Figure 12) and
implement a corresponding program serializer. The serializer
loads them from the disk into the memory for fuzzing and
testing, and saves them from memory onto the disk for
bookkeeping.
System call fuzzer. The system call fuzzer is implemented
as a new extension for AFL, which is invoked by JANUS
when image mutation fails to make progress. The system call
fuzzer receives a deserialized program and the corresponding
status, and outputs new programs and updated status through
system call mutation or system call generation (see §III-D).
Currently, JANUS supports generating and mutating 34 system
calls designed for fundamental file operations (see §F). A
number of system calls related to file operations to a certain
extent but mainly realized at the VFS (virtual file system) layer
(e.g., dup(), splice(), tee(), etc.) are not worth being tested
and are excluded by JANUS.

In our implementation, JANUS basically mutates metadata
in a test case for 256 rounds, which is the default setting for
the havoc stage (i.e., nondeterministic mutation) in AFL. If the
code coverage fails to increase, JANUS tries to mutate existing
system calls for 128 rounds and appends new ones for another
64 rounds. JANUS spends more effort on image mutation due
to its higher priority when exploring the two-dimensional input
space (see §III-E).
LKL-based executor. We build our executor for JANUS upon
Linux Kernel Library (LKL), which is a typical library OS that
exposes kernel interfaces to user-space programs. Figure 11
presents a code example of using LKL system calls to operate
an ext4 image. The official LKL currently works with Linux
kernel v4.16 and we port it to be compatible with recent
versions, including v4.17 and v4.18. To achieve AFL-style path
coverage at runtime, we implement a GCC wrapper to selectively
instrument the source files of a target file system when building
LKL. Furthermore, we implement a user application (i.e., the
executor) linked with LKL as the fuzzing target of JANUS. For
a generated test case, the executor forks a new instance through

the forkserver and invokes LKL system calls to mount an image
mutated by the image mutator and perform a sequence of file
operations generated by the system call fuzzer.

As flushing a full-size image onto the disk every time takes
much time, we introduce a persistent memory buffer shared
between JANUS’s fuzzing engine and the LKL-based executor
to store the image (i.e., ctx.image_buffer in Figure 3). The
LKL’s block device driver underlying a file system is then
modified to access the memory buffer instead of the image file
on the disk when acquiring any image data. Moreover, we apply
the Copy-on-Write (CoW) technique at runtime to guarantee
that besides the mutated blocks, other parts inside the image
buffer never change when the image buffer is operated by the
generated workload. Specifically, when the device driver tends
to flush any byte back to a block on the image at runtime,
the block is duplicated for modification and later accesses
from LKL. In addition, we port the kernel address sanitizer
(KASAN) to LKL, which can effectively detect memory errors
at runtime. KASAN allocates shadow memory at runtime to
record whether each byte of the original memory is safe to
access. Note that KASAN relies on MMU to translate an
address to its corresponding shadow address, which is not
supported by LKL. Hence, we reserve the shadow memory
space and build the mappings from the memory space of LKL
to the shadow memory at LKL’s boot time.

V. EVALUATION

In this section, we evaluate the effectiveness of JANUS in
terms of its ability to find bugs in the latest file systems and
achieve higher code coverage than existing file system fuzzers.
In particular, we answer the following questions:

• Q1: How effective is JANUS in discovering previously
unknown bugs in file systems? (§V-A)

• Q2: How effective is JANUS in exploring (1) the state
of file system images, (2) file operations, and (3) the
two-dimensional input space including images and file
operations? (§V-B, §V-C, §V-D)

• Q3: Is the library OS based executor more effective in
reproducing crashes than traditional VMs? (§V-E)

• Q4: Besides finding new bugs, what else can JANUS
contribute to the file system community? (§V-F)

Experimental Setup. We evaluate JANUS on a 2-socket,
24-core machine running Ubuntu 16.04 with Intel Xeon E5-
2670 processors and 256GB memory. We use JANUS to fuzz
file systems in Linux v4.18-rc1, unless otherwise stated. In
particular, we test eight file systems including ext4, XFS, Btrfs,
F2FS, GFS2, HFS+, ReiserFS, and VFAT. We create a seed image
for each file system that has the on-disk file organization shown
in Figure 9 with most features enabled except ext4 and XFS.
For ext4, we create two seed images: one compatible with
ext2/3 and the other with ext4 features. Similarly, we do the
same for XFS representing XFS v4 and XFS v5, which introduces
on-disk checksums to enforce metadata integrity. In total, we
evaluate 10 seed images. In addition, we compare our results
with Syzkaller (commit ID 9be5aa1), which is the state-of-the-

8

File Systems #Reported #Confirmed #Fixed #Patches #CVEs
ext4 18 16 16 20 13
XFS 17 11 7 9 5
Btrfs 9 9 8 10 5
F2FS 11 11 11 12 8
GFS2 14 0 0 0 0
HFS+ 8 7 1 1 1
ReiserFS 13 8 0 0 0
VFAT 0 0 0 0 0

Total 90 62 43 52 32

TABLE III: An overview of bugs found by JANUS in eight widely-
used file systems in upstream Linux kernels. The column #Reported
shows the number of bugs reported to the Linux kernel community;
#Confirmed presents the number of reported bugs that are previously
unknown and confirmed by kernel developers; #Fixed indicates
the number of bugs that have already been fixed, at least in the
development branch, and #Patches reports the number of git commits
for fixing found bugs; #CVEs lists the number of CVEs assigned for
confirmed bugs.

art OS fuzzer. We run Syzkaller with KVM instances, each of
which has two cores and 2GB of memory.

Note that Syzkaller relies on KCOV to profile code coverage,
while JANUS relies on the method of AFL. For an apples-to-
apples comparison between Syzkaller and JANUS, after fuzzing
12 hours, we mount every image mutated by JANUS, and
execute the corresponding program generated by JANUS on a
KCOV-enabled kernel to get the KCOV-style coverage. (see
Appendix §B for the details of AFL- and KCOV- style code
coverage).

A. Bug Discovery in the Upstream File Systems

We intermittently ran JANUS for four months (i.e., from April
2018 to July 2018) to fuzz the aforementioned file systems
in upstream kernels from v4.16 to v4.18. Over the span of
few days to a week, we ran three instances of JANUS to test
each file system. JANUS found 90 unique bugs that resulted in
kernel panics or deadlocks, which we reported to the Linux
kernel community. We differentiated bugs on the basis of
KASAN reports and call stack traces. Among them, developers
confirmed 62 as previously unknown bugs, including 36 in
ext4, XFS, and Btrfs—the three most widely used file systems
on Linux. So far, developers have already fixed 43 bugs with
52 distinct patches, and also assigned 32 CVEs (see Table III).
Another important finding is that some bugs, (e.g., four bugs
related to log recovery in XFS and six bugs about extended
attributes in HFS+) are not going to be fixed by developers in the
near future, as these bugs require large-scale code refactoring.
In addition, ReiserFS developers will not fix five bugs that
lead to the BUG() condition, as ReiserFS is in maintenance
mode.

Note that there are other notable efforts on finding file system
bugs through fuzzing or manual auditing.

• Syzkaller, the state-of-the-art system call fuzzer that
started to support mutating file system images in March,
2018. Note that Google deployed many more instances
of Syzkaller (i.e., syzbot) than those of JANUS for
continuously fuzzing the upstream kernel. Although syzbot
fuzzes the whole kernel, we found more file system bugs

with JANUS in four months. According to our investigation,
Syzkaller reported only two ext4 bugs, one XFS bug, four
F2FS bugs, and one HFS+ bug during our evaluation period,
among which one of the ext4 bugs, the XFS bug, and the
HFS+ bug were also found by JANUS. JANUS missed one
ext4 bug requiring a 4K block size, which is larger than
that of our seed images. And we started using JANUS to
fuzz F2FS after these four F2FS bugs were fixed.

• Google Project Zero, a team of security researchers
seeking zero-day vulnerabilities who found one ext4 bug
through source review. The bug was also discovered by
JANUS.

• Internal efforts from the file system development com-
munity. XFS developers noticed four XFS bugs found by
JANUS before we reported them. Unfortunately, we were
unable to provide the total number of memory safety
bugs found by developers whose patches cannot easily be
differentiated from the ones for fixing functionalities.

Table VI lists the details of 43 patched bugs that were
previously unknown. The bugs have a wide range of types,
from relatively harmless floating point exceptions to critical
out-of-bound access and heap overflow bugs that can be used
to corrupt critical kernel data and execute arbitrary code with
kernel privileges. Most of the bugs require mounting a corrupted
image followed by particular file operations to trigger, which
are the joint effects from two types of input of a file system
that JANUS manages to explore. In particular, one needs to
invoke three or more system calls to trigger 80% of these bugs,
which indicates the effectiveness of the system call fuzzer.
Moreover, a quarter of the bugs are triggered by mounting only
a corrupted image, which further proves the effectiveness of
JANUS in fuzzing images. As JANUS emphasizes the priority
of mutating image bytes, all the generated test cases contain
the images with error bytes. Therefore, no reported bug only
requires particular file operations without an uncorrupted image
to trigger.
Result. JANUS successfully found 90 bugs in widely-used
and mature file systems in upstream kernels. Among them,
62 bugs have been confirmed as previously unknown. As a
specialized fuzzer for file systems, JANUS helped the Linux
kernel community to discover and patch more file system bugs
than Syzkaller in recent months.

B. Exploring the State Space of Images

We first evaluate how JANUS mutates image bytes to explore
a target file system by comparing it with Syzkaller. Syzkaller
recently supported mounting mutated images by introducing
a wrapper call: syz_mount_image(), which takes mutated non-
zero segments of an image as input, flushes them into a loop
device at corresponding offsets, and eventually invokes mount().
To evaluate the impact of state space of an input image, we
disable the system call fuzzing stage in JANUS and concentrate
only on fuzzing the image. We denote our image fuzzer as
JANUSi. After a mutated image is mounted, we enforce both
our LKL-based executor, used by JANUSi, and the executor
of Syzkaller (called Syzkalleri) running in a KVM instance to

9

perform a fixed sequence of system calls under the mounting
point (see Figure 13) to demonstrate how mutated image bytes
help fuzzers to explore a file system. We evaluate both fuzzers,
with the seed images of eight file systems, described in the
experimental setup, for 12 hours. For each target file system,
we launch one JANUSi instance and one KVM instance for
Syzkalleri.

Figure 8 presents the number of paths both JANUSi and
Syzkalleri visit in selected file systems. After running for
30 minutes, JANUSi always has higher code coverage than
Syzkalleri. JANUSi outperforms Syzkalleri by 1.47–4.17× for
the evaluated file systems. Note that most selected file systems
have relatively complex implementation, which shows the
ability of JANUS mutating important image bytes to discover
deeper code paths. Our approach differs from Syzkalleri, as
Syzkalleri considers only the important parts of an image as
an array of non-zero chunks, that can either miss metadata
blocks or even include inessential data blocks. By contrast,
JANUSi leverages the semantics of an image, namely locating
and mutating metadata blocks only. In addition, both GFS2
and Btrfs have checksum for metadata blocks, which severely
degrades the performance of Syzkalleri. Another interesting
observation is that Syzkalleri does not correctly use the seed
image for XFS because Syzkaller does not support an image
containing more than 4096 non-contiguous non-zero chunks,
which is one of the big limitations of Syzkaller in fuzzing
file systems. Therefore, Syzkalleri has to generate XFS images
from scratch. Since XFS v5 has metadata checksum, Syzkalleri
cannot make any forward progress even after running for 12
hours, as it does not fix the checksum of metadata.
Result. By mutating metadata blocks and fixing checksums,
JANUSi quickly explores more code paths in the selected file
systems than Syzkalleri when fuzzing only images with fixed
file operations. More specifically, JANUSi achieves at most
4.17× more code coverage than Syzkalleri, which shows the
effectiveness of JANUS when fuzzing only images.

C. Exploring File Operations

We now evaluate the effectiveness of only fuzzing file
operations without mutating the file system image, i.e., we
discard the image fuzzing stage. We denote our file operation
fuzzer as JANUSs, which automatically generates nine seed
programs for mutation after inspecting a seed image, each one
containing an open() system call on a file or directory in the
image (see Figure 9). We compare JANUSs with Syzkallers
by fuzzing 27 file system-specific system calls2 and executing
generated programs on a seed image after being mounted. We
hard-code the paths of all available files and directories on a
seed image in the description file for Syzkallers to fill the values
of certain arguments when fuzzing particular system calls. We
run both of these fuzzers on eight file systems for 12 hours.

2 Syzkallers and JANUSs fuzz the following system calls: read(),
write(), open(), lseek(), getdents64(), pread64(), pwrite64(), stat(),
lstat(), rename(), fsync(), fdatasync(), access(), ftruncate(), truncate(),
utimes(), mkdir(), rmdir(), link(), unlink(), symlink(), readlink(),
chmod(), setxattr(), fallocate(), listxattr() and removexattr()

As already mentioned, we launch one JANUSs instance and
one KVM instance for Syzkallers in this experiment. Further,
we re-execute all programs generated by JANUSs to obtain
comparable path coverage in KCOV style.

Figure 8 presents the evaluation result, which shows that
with a wiser fuzzing strategy, JANUSs keeps exploring more
code paths than Syzkallers in the span of 12 hours. In particular,
JANUSs eventually visits 2.24×, 1.27×, and 1.25× more unique
code paths than Syzkallers when fuzzing the three most popular
file systems, XFS v5, Btrfs, and ext4, respectively. Moreover,
JANUSs also outperforms Syzkallers 1.72× and 1.49× on HFS+
and GFS2, respectively. By generating context-aware workloads,
we observe that JANUS is more effective than Syzkallers for
fuzzing file systems. The reason is that Syzkallers is a general
and advanced system call fuzzer, but, unlike JANUSs, Syzkallers
completely fails to exploit the domain knowledge of a file
system to explore its code path effectively.
Result. By generating context-aware workloads, JANUS
explores more code paths than Syzkallers in all eight popular
file systems when only targeting the system calls related to
file operations. In particular, the programs generated by JANUS
manage to visit at most 2.24× more paths. The evaluation
result fully demonstrates the effectiveness of JANUS in terms
of file operation fuzzing.

D. Exploring Two-Dimensional Input Space

To demonstrate the comprehensiveness of JANUS’S fuzzing
by mutating both image bytes and file operations, we run
original JANUS and Syzkaller on the eight aforementioned file
systems with the same seed images for 12 hours. We provide
syz_mount_image() in the description file to make Syzkaller
not only generate system calls but also mutate the bytes in a
seed image while invoking 27 file system-specific system calls
(see §V-C). In this experiment, we simultaneously launch three
instances for both JANUS and Syzkaller for parallel fuzzing.
Moreover, both fuzzers share generated test cases for each
corresponding file systems. Figure 8 (marked Syzkaller and
JANUS) shows the results of this experiment.

We observe that JANUS discovers more code paths than both
JANUSi and JANUSs. Our results illustrate the importance of
fuzzing both images and file operations to comprehensively
explore a file system. More important, JANUS further out-
performs Syzkaller on all tested file systems. In particular,
JANUS achieves at most 4.19×, 4.04×, and 3.11× higher code
coverage than Syzkaller when fuzzing Btrfs, GFS2, and F2FS,
respectively. For ext4, JANUS also hits 2.01× more unique
code paths. The major reason is that Syzkaller prioritizes system
call fuzzing over image fuzzing, while JANUS incorporates
the strategy of blob-directed system call fuzzing. For instance,
while generating a program for fuzzing, Syzkaller does not guar-
antee whether a valid file system is mounted before performing
any file operation, i.e., it completely forgoes the file system
context-awareness to blindly fuzz a file system. We mitigate
this issue by invoking umount() and syz_mount_image() at
the beginning of a program. Nevertheless, Syzkaller is still
not capable of stopping if mounting a mutated image fails. In

10

0.0k

2.0k

4.0k

6.0k

8.0k

10.0k

12.0k

0.0k

2.0k

4.0k

6.0k

8.0k

10.0k

12.0k

0.0k

3.0k

6.0k

9.0k

12.0k

15.0k

0.0k

4.0k

8.0k

12.0k

16.0k

0.0k

4.0k

8.0k

12.0k

16.0k

20.0k

0.0k

1.5k

3.0k

4.5k

6.0k

7.5k

9.0k

0.0k
1.0k
2.0k
3.0k
4.0k
5.0k
6.0k
7.0k

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

0.0k
1.0k
2.0k
3.0k
4.0k
5.0k
6.0k
7.0k
8.0k

0 2 4 6 8 10 12
0.0k
0.3k
0.6k
0.9k
1.2k
1.5k
1.8k
2.1k

0 2 4 6 8 10 12

N
um

be
r

of
co

ve
re

d
pa

th
s

(a) ext4 (ext2/3 compatible)

Syzkalleri

Syzkallers

Syzkaller

(b) ext4

JANUSi

JANUSs

JANUS

N
um

be
r

of
co

ve
re

d
pa

th
s

(c) XFS (v4) (d) XFS (v5)

N
um

be
r

of
co

ve
re

d
pa

th
s

(e) Btrfs (f) F2FS

N
um

be
r

of
co

ve
re

d
pa

th
s

(g) GFS2 (h) HFS+

N
um

be
r

of
co

ve
re

d
pa

th
s

Time (h)

(i) ReiserFS

Time (h)

(f) VFAT

Fig. 8: The overall path coverage of using Syzkaller and JANUS to fuzz eight file system images for 12 hours. The y-axis represents the
number of unique code paths of each file system visited during the fuzzing process. In particular, JANUSi and Syzkalleri only mutate bytes
on a seed image and perform a fixed sequence of system calls on a mutated image and JANUSi outperforms Syzkalleri up to 4.17×. JANUSs
and Syzkallers generate random system calls to be executed on a fixed seed image, in which JANUSs achieves up to 2.24× higher coverage
than Syzkallers. JANUS and Syzkaller fuzz both image bytes and file operations, and JANUS visits at most 4.19× unique paths.

fact, syz_mount_image() can be invoked anywhere and several
times in a program generated by Syzkaller. Unlike Syzkaller,
JANUS fuzzes each image separately with a clean LKL instance.
If mounting a mutated image succeeds, the executor will
execute context-aware workloads afterward and terminate with
umount(). As we mentioned in §V-B, the comparison for XFS
is partially unfair due to the limitation of Syzkaller in handling
dense images. Another advantage of JANUS is that it utilizes
many fewer CPU and memory resources for LKL instances
but still outperforms Syzkaller, which relies on VMs.

Result. JANUS achieves higher code coverage than both
JANUSs and JANUSi, which proves the importance of mutating
both images and operations in file system fuzzing. Moreover,

JANUS outperforms Syzkaller on all eight file systems. In
particular, JANUS outperforms Syzkaller at most 4.19× on
Btrfs, one of the popular file systems that has an extremely
complex design. Our evaluation result shows the effectiveness
of JANUS in fuzzing a file system by exploring its two-
dimensional input space.

E. Reproducing Crashes

To evaluate whether the library OS used by JANUS (i.e.,
LKL) helps to reproduce more found crashes compared to
VMs, for each collected crashing input generated in the final
experiment where both of two types of inputs are mutated (see
§V-D), we first use our PoC generator to parse out the image

11

File System Syzkaller JANUS #Unique

ext4 (com.) 0/7 (0%) 16/16 (100%) 6
ext4 0/3 (0%) 196/196 (100%) 8
XFS v4 0/2517 (0%) 24/24 (100%) 2
XFS v5 0/6 (0%) 67/67 (100%) 2
Btrfs 0/0 (0%) 1793/2054 (88%) 18
F2FS 0/1288 (0%) 2390/2458 (97%) 28
GFS2 0/916 (0%) 1030/1080 (95%) 12
HFS+ 0/8 (0%) 815/815 (100%) 6
ReiserFS 0/2535 (0%) 1800/1800 (100%) 20
VFAT 0/0 (-) 0/0 (-) 0

TABLE IV: The bug reproducibility of Syzkaller and JANUS using
KVM instances and LKL-based executors, respectively. For each X/Y
pair in the table, X indicates the number of crashes triggered by a
fuzzer during our experiment in §V-D, and Y represents the number of
crashes that can be reproduced again with saved crashing inputs. The
column #Unique reports the unique crashes among the ones found
by JANUS in the experiment based on their crashing PC values.

Reboot VM Revert snapshot LKL

14.5s 1.4s 10.7ms

TABLE V: The average time costs of VM-based (i.e., KVM) fuzzer
and JANUS for a non-aging OS and file system. The total time includes
reloading a clean-slate OS and mounting an image.

and a particular sequence of system calls. We then mount
the image and execute system calls under the mounting point
again to see if the kernel crashes. Based on the crashing PC
values, we also count the number of unique crashes among
those reproducible ones. Table IV summarizes the number of
crashes and reproducible ones found by JANUS and Syzkaller.
Note that Syzkaller originally records these numbers in its logs.
Because of the fundamental limitation of using an aging OS, in
which Syzkaller mounts different images and invokes system
calls without initialization, Syzkaller fails to reproduce any of
its found crashes. On the contrary, JANUS can reproduce more
than 95% of crashes found in most file systems, except Btrfs.
Btrfs launches multiple kernel threads completing different
transactions in parallel, which results in non-deterministic
kernel execution. In addition, F2FS and GFS2 also spawns few
worker threads to accomplish particular tasks, such as garbage
collection, logging, etc. Note that, in theory, it is possible
to reproduce 100% of crashes if we can control the thread
scheduling, which is currently outside the scope of this work.

We also estimate the performance overhead of bringing up a
fresh copy of OS (non-aging OS) for a VM-based fuzzer to test
every generated input. More specifically, we evaluate the total
time that a KVM instance (two cores and 2GB memory) spends
on either rebooting VM or reverting an existing snapshot and
testing an input image, and compare it to the corresponding
time that our LKL executor requires. Table V presents the
evaluation result. By simply invoking fork() to launch a new
LKL instance, our LKL-based executor spends negligible time
on setting up a clean OS and a fresh file system compared
with a KVM instance.
Result. LKL, on which JANUS relies, provides a clean-slate
OS that has more stable execution than an OS running in a

VM. This approach results in reproducing most of the crashes.
In particular, JANUS is able to reproduce at least 88% of the
crashes found during a 12-hour fuzzing period. By contrast, a
VM-based fuzzer (i.e., Syzkaller) fails to reproduce any of its
crashes. Moreover, re-initializing OS states in a VM suffers
from unacceptable overhead.

F. Miscellany

Besides finding previously unknown bugs, JANUS contributes
the following notable results to the file system development
community.
Malicious image samples. The development communities of
several file systems including Btrfs, F2FS, etc., have already
added a number of corrupted images generated by JANUS
into their repositories for internal fuzzing and for future
regression testing. Currently, developers consider these images
as representative malicious samples that involve diverse error
bytes in various metadata fields for testing the functionality of
file systems.
General patches for file system hardening. F2FS developers
have not only fixed the bugs reported by us in the kernel
module but also extended corresponding security checks into
the user-space tool (i.e., fsck.f2fs) to help users detect these
image corruptions in advance, i.e., before the Linux kernel
mounts images containing critical error bytes.

VI. DISCUSSION

We have demonstrated that JANUS effectively explores the
code paths and discovers unknown bugs in a disk file system
in the Linux kernel. We now discuss the limitations of JANUS
and our future directions.
Library OS based executor. JANUS relies on LKL to test in-
kernel file systems. In fact, other OS fuzzers can use it to test
other kernel sub-systems, except MMU-dependent components.
For instance, JANUS cannot fuzz the DAX mode of a file
system [31] without modification on LKL. We could also use
user-mode Linux (UML), as done by Oracle’s kernel fuzzer [48].
However, UML suffers from the limitation of its multi-process
design, which complicates the spotting of a kernel crash and
termination of all its processes during each iteration. Therefore,
UML does not support fuzzing the kernel as a user application
well.
Minimal PoC generator. An ideal PoC for developers to
debug crashes consists of an image that only has essential error
bytes and a program with the least file operations. To achieve
this, JANUS currently uses a brute force approach to revert
every mutated byte and also tries to remove every invoked
file operation to check whether the kernel still crashes at the
expected location. Although this approach is sub-optimal, we
can leverage certain file system utilities such as fsck and
debugfs and system call trace distillation techniques [22, 49]
to pinpoint root-causing bytes and system calls. Another
possibility is to apply taint tracking on the kernel.
Fuzzing FUSE drivers. Currently, JANUS does not support
file systems (e.g., NTFS [70], GVfs [67], SSHFS [55], etc.)

12

that rely on FUSE (Filesystem in Userspace) [32]. We can
easily extend the fuzzing engine of JANUS to fuzz such file
systems as long as they store user data in a disk image and
support certain file operations for users to interact with data.
Fuzzing file system utilities. Developers heavily rely on
system utilities (e.g., mkfs, fsck, etc.), to manage file systems.
For instance, Linux automatically launches fsck for recovering
disk data from a sudden system crash. Moreover, users use
fsck to check the consistency of an untrusted disk image before
mounting the disk. Hence, developers desire such utilities to
be bug free. We believe that developers can easily extend the
image mutator of JANUS to generate corrupted images for
fuzzing these tools, thereby improving their robustness. In fact,
we use JANUS to find two unknown bugs in fsck.ext4, and
one has already been fixed.
Extending to fuzz file systems on other OSes. Extending
JANUS for fuzzing in-kernel file systems on other OSes will be
straightforward if the corresponding library OS solution exists.
For instance, Drawbridge [52] enables Windows to efficiently
run in a process. Moreover, we can also integrate the core
fuzzing engine of JANUS with other general kernel fuzzing
frameworks such as kAFL [61] built upon QEMU and KVM
to fuzz file systems used by other commodity OSes such as
Windows and macOS.
Improving other file system testing tools. The goal of JANUS
is to find general security bugs in file systems, contrary to the
goals of other tools, including crash-consistency checkers [6,
73] and semantic correctness checkers [36, 58]. However, these
tools also need sequences of file operations. Hence, JANUS
becomes a one-stop solution on which other tools can rely.

VII. RELATED WORK

Structured input fuzzing. Numerous approaches have been
proposed to fuzz inputs that are highly structured like file
system images. Unlike JANUS, a number of generation fuzzers
([14, 23, 41, 42, 50]) construct syntactically correct inputs
from scratch based on input specifications described through
manual efforts. Furthermore, EXE [7] relies on symbolic
execution to build valid inputs that satisfy deep path constraints.
More advanced approaches such as [3, 16, 24] learn the
input structures from a set of samples. On the other side,
mutation-based fuzzers [4, 5, 10, 15, 18, 34, 76] generate new
inputs by mutating valid samples. The generated inputs have
correct structures with slight errors, and hopefully trigger bugs.
Considering the complexity of a file system image and the
diversity in image format among different file systems, JANUS
adopts mutation-based strategies to fuzz images. Similar to
file system images, many file formats involve checksums for
integrity checks. JANUS specifically fixes metadata checksums
with expertise knowledge. Nevertheless, some checksum-aware
fuzzers [33, 71] identify checksum fields and bypass checksum
checks at runtime through dynamic taint analysis.
OS kernel fuzzers. To find security bugs in OSes, a number
of general kernel fuzzing frameworks [20, 43, 46, 61] and
OS-specific kernel fuzzers [22, 25, 44, 45, 47] have been

proposed. Unlike JANUS, all these fuzzers generate random
system calls based upon predefined grammar rules, which is
ineffective in the context of file system fuzzing. Several recent
OS fuzzers such as IMF [22] and MoonShine [49] focusing
on seed distillation are orthogonal to this work. Nevertheless,
JANUS can start with seed programs of high quality by utilizing
their approaches.
File system semantic correctness checkers. JUXTA [36]
and SibylFS [58] are other types of file system checkers, that
aim to find whether the implementation of a file system exactly
meets the standard (e.g., the POSIX standard, man pages,
etc.) through static analysis and high-level modeling of file
system behaviors. They are orthogonal to JANUS regarding their
purposes and methodologies. Similarly, JANUS can generate
meaningful system calls to find crash consistency bugs [6, 73].
File system abstraction. Several studies [65, 66] propose
general interfaces for file system utilities to access and
manipulate the on-disk metadata of various file systems through
high-level abstraction. By utilizing these interfaces, JANUS
can compress disk images in a more general manner without
implementing an image parser for every target file system.

VIII. CONCLUSION

In this work, we propose JANUS, an evolutionary file system
fuzzer, that explores an in-kernel file system by exploring its
two-dimensional input space (i.e., images and file operations).
Unlike existing file system fuzzers, JANUS efficiently mutates
metadata blocks of input images while emitting context-aware
workloads on an image. Rather than traditional VMs, JANUS
relies on a library OS that supports fast reloading to test
OS functionalities, thereby avoiding unstable executions and
irreproducible bugs. We reported 90 bugs found by JANUS
in the upstream kernel, 43 of which have been fixed with 32
CVEs assigned. JANUS outperforms Syzkaller by exploring at
most 4.19× more code paths when fuzzing popular file systems
for 12 hours and manages to reproduce 88–100% of found
crashes. We will open source our implementation of JANUS,
which has been requested by several file system development
communities due to our notable results. We believe that JANUS
will be one-stop solution for file system testing, as JANUS
can act as a basic infrastructure to design new semantic and
crash-consistency checkers for file systems.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers, and our shepherd,
Thorsten Holz, for their helpful feedback. We also thank all
the file system developers, including Theodore Ts’o, Darrick
J. Wong, Dave Chinner, Eric Sandeen, Chao Yu, Wenruo
Qu and Ernesto A. Fernández for handling our bug reports.
This research was supported, in part, by the NSF award
CNS-1563848, CNS-1704701, CRI-1629851 and CNS-1749711
ONR under grant N000141512162, DARPA TC (No. DARPA
FA8650-15-C-7556), and ETRI IITP/KEIT[B0101-17-0644],
and gifts from Facebook, Mozilla and Intel.

13

REFERENCES

[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A Five-year
Study of File-system Metadata. In Proceedings of the ACM Transactions
on Storage (TOS), 2007.

[2] Apple Inc. macOS High Sierra. https://www.apple.com/macos/high-sierra,
2018.

[3] O. Bastani, R. Sharma, A. Aiken, and P. Liang. Synthesizing program
input grammars. In ACM SIGPLAN Notices, pages 95–110. ACM, 2017.

[4] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox
fuzzing as markov chain. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016.

[5] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed
greybox fuzzing. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[6] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak, and
X. Wang. Specifying and checking file system crash-consistency models.
In Proceedings of the 21st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Atlanta, GA, Apr. 2016.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):10, 2008.

[8] M. Cao, S. Bhattacharya, and T. Ts’o. Ext4: The next generation of
ext2/3 filesystem. In USENIX Linux Storage and Filesystem Workshop,
2007.

[9] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek, E. Kohler, and
N. Zeldovich. Specifying Crash Safety for Storage Systems. In 15th
USENIX Workshop on Hot Topics in Operating Systems (HotOS) (HotOS
XV), Kartause Ittingen, Switzerland, May 2015.

[10] P. Chen and H. Chen. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[11] J. Corbet. Improving ext4: bigalloc, inline data, and metadata checksums.
https://lwn.net/Articles/469805, 2011.

[12] J. Corbet. Filesystem mounts in user namespaces. https://lwn.net/Articles/
652468, 2015.

[13] J. Dike. User-mode Linux. In Annual Linux Showcase Conference, 2001.
[14] I. Fratric. DOM fuzzer. https://github.com/googleprojectzero/domato,

2018.
[15] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. CollAFL:

Path Sensitive Fuzzing. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2018.

[16] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning
for input fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Champaign, IL,
Oct. 2017.

[17] Google. KernelAddressSanitizer, a fast memory error detector for the
Linux kernel. https://github.com/google/kasan, 2016.

[18] Google. OSS-Fuzz - Continuous Fuzzing for Open Source Software.
https://github.com/google/oss-fuzz, 2018.

[19] Google. syzbot. https://syzkaller.appspot.com, 2018.
[20] Google. syzkaller is an unsupervised, coverage-guided kernel fuzzer.

https://github.com/google/syzkaller, 2018.
[21] S. Grubb. fsfuzzer-0.7. http://people.redhat.com/sgrubb/files/fsfuzzer-

0.7.tar.gz, 2009.
[22] H. Han and S. K. Cha. IMF: Inferred Model-based Fuzzer. In Proceedings

of the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, Oct.–Nov. 2017.

[23] R. Hodován, Á. Kiss, and T. Gyimóthy. Grammarinator: a grammar-
based open source fuzzer. In Proceedings of the 9th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection,
and Evaluation, pages 45–48. ACM, 2018.

[24] M. Höschele and A. Zeller. Mining input grammars from dynamic taints.
In Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), Champaign, IL, Oct. 2017.
[25] D. Jones. Linux system call fuzzer. https://github.com/kernelslacker/

trinity, 2018.
[26] Kernel.org Bugzilla. Btrfs bug entries. https://bugzilla.kernel.org/buglist.

cgi?component=btrfs, 2018.
[27] Kernel.org Bugzilla. ext4 bug entries. https://bugzilla.kernel.org/buglist.

cgi?component=ext4, 2018.
[28] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. In Proceedings of

the 32nd IEEE Symposium on Security and Privacy (Oakland), Oakland,
CA, May 2011.

[29] M. Larabel. F2FS File-System Moves Forward With Encryption Sup-
port. https://www.phoronix.com/scan.php?page=news_item&px=F2FS-
Encryption-Support, 2015.

[30] C. Lee, D. Sim, J. Y. Hwang, and S. Cho. F2FS: A New File System
for Flash Storage. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies (FAST), Santa Clara, CA, Feb. 2015.

[31] Linux. Direct Access for files. https://www.kernel.org/doc/
Documentation/filesystems/dax.txt, 2015.

[32] Linux. fuse - Filesystem in Userspace (FUSE) device. http://man7.org/
linux/man-pages/man4/fuse.4.html, 2015.

[33] X. Liu, Q. Wei, Q. Wang, Z. Zhao, and Z. Yin. CAFA: A Checksum-
Aware Fuzzing Assistant Tool for Coverage Improvement. Security and
Communication Networks, 2018, 2018.

[34] LLVM Project. libFuzzer - a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html, 2018.

[35] Microsoft. Windows. https://www.microsoft.com/en-us/windows, 2018.
[36] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking

semantic correctness: The case of finding file system bugs. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP),
Monterey, CA, Oct. 2015.

[37] MITRE Corporation. CVE-2009-1235. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1235, 2009.

[38] MITRE Corporation. CVE-2017-13830. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-13830, 2017.

[39] MITRE Corporation. CVE-2017-6990. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-6990, 2017.

[40] MITRE Corporation. F2FS CVE entries. http://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=f2fs, 2018.

[41] Mozilla Corporation. MozPeach. https://github.com/MozillaSecurity/
peach, 2017.

[42] Mozilla Corporation. JavaScript engine fuzzers. https://github.com/
MozillaSecurity/funfuzz, 2018.

[43] MWR Labs. Cross Platform Kernel Fuzzer Framework. https://github.
com/mwrlabs/KernelFuzzer, 2016.

[44] MWR Labs. macOS Kernel Fuzzer. https://github.com/mwrlabs/
OSXFuzz, 2017.

[45] NCC Group. System call fuzzing of OpenBSD amd64 using TriforceAFL.
https://github.com/nccgroup/TriforceOpenBSDFuzzer, 2016.

[46] NCC Group. AFL/QEMU fuzzing with full-system emulation. https:
//github.com/nccgroup/TriforceAFL, 2017.

[47] NCC Group. A linux system call fuzzer using TriforceAFL. https:
//github.com/nccgroup/TriforceLinuxSyscallFuzzer, 2017.

[48] V. Nossum and Q. Casasnovas. Filesystem Fuzzing with American Fuzzy
Lop. In Vault Linux Storage and Filesystems Conference, 2016.

[49] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimizing OS Fuzzer Seed
Selection with Trace Distillation. In Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2018.

[50] Peach Tech. Peach Fuzzer. https://sourceforge.net/projects/peachfuzz,
2016.

[51] H. Peng, Y. Shoshitaishvili, and M. Payer. T-Fuzz: fuzzing by program
transformation. In Proceedings of the 39th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2018.

[52] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library os from the top down. In ACM SIGPLAN Notices,
2011.

14

https://www.apple.com/macos/high-sierra
https://lwn.net/Articles/469805
https://lwn.net/Articles/652468
https://lwn.net/Articles/652468
https://github.com/googleprojectzero/domato
https://github.com/google/kasan
https://github.com/google/oss-fuzz
https://syzkaller.appspot.com
https://github.com/google/syzkaller
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://bugzilla.kernel.org/buglist.cgi?component=btrfs
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://www.phoronix.com/scan.php?page=news_item&px=F2FS-Encryption-Support
https://www.phoronix.com/scan.php?page=news_item&px=F2FS-Encryption-Support
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
http://man7.org/linux/man-pages/man4/fuse.4.html
http://man7.org/linux/man-pages/man4/fuse.4.html
https://llvm.org/docs/LibFuzzer.html
https://www.microsoft.com/en-us/windows
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1235
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13830
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13830
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6990
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6990
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=f2fs
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=f2fs
https://github.com/MozillaSecurity/peach
https://github.com/MozillaSecurity/peach
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/KernelFuzzer
https://github.com/mwrlabs/OSXFuzz
https://github.com/mwrlabs/OSXFuzz
https://github.com/nccgroup/TriforceOpenBSDFuzzer
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://sourceforge.net/projects/peachfuzz

[53] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library OS from the top down. In ACM SIGPLAN Notices.
ACM, 2011.

[54] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The Linux kernel library.
In Proceedings of the 9th Roedunet International Conference (RoEduNet).
IEEE, 2010.

[55] N. Rath and M. Szeredi. A network filesystem client to connect to SSH
servers. https://github.com/libfuse/sshfs, 2018.

[56] Red Hat Inc. Utilities for managing the XFS filesystem. https://git.kernel.
org/pub/scm/fs/xfs/xfsprogs-dev.git, 2018.

[57] Ribose Inc. FuzzBSD, a filesystem image fuzzing script to test BSD
kernels. https://github.com/riboseinc/fuzzbsd, 2017.

[58] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell. SibylFS: formal specification and oracle-based testing for
POSIX and real-world file systems. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[59] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-tree filesystem.
In Proceedings of the ACM Transactions on Storage (TOS), 2013.

[60] B. Schneier. "Evil Maid" Attacks on Encrypted Hard Drives. https:
//www.schneier.com/blog/archives/2009/10/evil_maid_attac.html, 2009.

[61] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In Proceedings
of the 26th USENIX Security Symposium (Security), Vancouver, BC,
Canada, Aug. 2017.

[62] SGI, OSDL and Bull. Linux Test Project. https://github.com/linux-test-
project/ltp, 2018.

[63] Silicon Graphics Inc. (SGI). (x)fstests is a filesystem testing suite.
https://github.com/kdave/xfstests, 2018.

[64] Silicon Graphics Inc. (SGI) and Red Hat Inc. XFS. http://xfs.org, 2018.
[65] K. Sun, D. Fryer, J. Chu, M. Lakier, A. D. Brown, and A. Goel. Spiffy:

enabling file-system aware storage applications. In Proceedings of the
16th USENIX Conference on File and Storage Technologies (FAST),
Oakland, CA, Feb. 2018.

[66] K. Sun, M. Lakier, A. D. Brown, and A. Goel. Breaking Apart the
VFS for Managing File Systems. In Proceedings of the 10th USENIX
Workshop on Hot Topics in Storage and File Systems, Boston, MA, July
2018.

[67] The GNOME Project. GVfs. https://wiki.gnome.org/Projects/gvfs, 2018.
[68] L. Torvalds. Linux kernel source tree. https://github.com/torvalds/linux,

2018.
[69] T. Ts’o. Ext2/3/4 file system utilities. https://github.com/tytso/e2fsprogs,

2018.
[70] Tuxera. NTFS-3G. https://www.tuxera.com/community/open-source-ntfs-

3g, 2017.
[71] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A checksum-aware

directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 31th IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2010.

[72] M. Xie and L. Zefan. Performance improvement of btrfs. LinuxCon
Japan, 2011.

[73] J. Yang, C. Sar, and D. Engler. Explode: a lightweight, general system
for finding serious storage system errors. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, Nov. 2006.

[74] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. In Proceedings of the ACM Transactions
on Computer Systems (TOCS), 2006.

[75] M. Zalewski. american fuzzy lop (2.52b) - config.h. https://github.com/
mirrorer/afl/blob/master/config.h, 2017.

[76] M. Zalewski. american fuzzy lop (2.52b). http://lcamtuf.coredump.cx/afl,
2018.

[77] Zero Day Initiative. CVE-2018-4268. https://www.zerodayinitiative.com/
advisories/ZDI-18-602, 2018.

APPENDIX

A. Seed Image

1 ./ # root
2 ./foo # folder
3 ./foo/bar # folder
4 ./foo/bar/acl # file protected by ACL
5 ./foo/bar/baz # normal file
6 ./foo/bar/fifo # FIFO file
7 ./foo/bar/hln # hardlink to baz
8 ./foo/bar/sln # softlink to baz
9 ./foo/bar/xattr # file with an extended attribute

Fig. 9: The hierarchy of a seed image tested by JANUS in the
evaluation.

Figure 9 presents the organization of files and directories stored on a seed
image in our evaluation.

B. Coverage Profiling: AFL versus KCOV

1 /* AFL */
2 cur_location = <COMPILE_TIME_RANDOM_NUMBER>;
3 bitmap[cur_location ^ prev_location]++;
4 prev_location = cur_location >> 1;
5

6 /* Syzkaller */
7 uint32_t pc = cover_data[i];
8 uint32_t sig = pc ^ prev;
9 prev = hash(pc);

Fig. 10: The code injected by AFL and the code used by Syzkaller
to profile runtime path coverage.

AFL and KCOV used to support Syzkaller apply two different approaches to
instrument a fuzzing target and reserve runtime path coverage in two different
formats. In particular, AFL labels every basic block with a random number,
and at each branch, the code shown in Figure 10 is instrumented. Each byte
set in the bitmap can be considered as a hit on a particular code path.

KCOV relies on the -fsanitize-coverage=trace-pc flag of GCC (>= 6.0)
to inject code at every basic block which emits the current PC value into
a buffer mapped in user space. After the execution for a mutated input is
completed, Syzkaller uses every two consequent PC values to calculate out a
hash value to represent a particular code path (see Figure 10).

Note that Syzkaller uses the lowest 32 bits of a PC value to label the
corresponding basic block, which has lower randomness compared to pseudo
random numbers generated by AFL and thereby results in more collisions that
degrade the fuzzing performance.

C. An LKL Example
Figure 11 provides a simple example of leveraging LKL in an user

application to operate an ext4 image.

D. Serialization Format
JANUS serializes a generate program along with the speculated image status

into a binary file by following the format described in Figure 12.

E. A Testing Program for Image Fuzzing
Figure 13 presents a fixed sequence of system calls to be performed on

any mutated image when evaluating the effectiveness of JANUS and Syzkaller
in image fuzzing.

F. Supported System Calls
In our implementation, JANUS supports generating and mutating the follow-

ing 34 system calls: read(), write(), open(), seek(), mmap(), getdents64(),
pread64(), pwrite64(), stat(), lstat(), rename(), fsync(), fdatasync(),
syncfs(), sendfile(), access(), ftruncate(), truncate(), fstat(), statfs(),
fstatfs(), utimes(), mkdir(), rmdir(), link(), unlink(), symlink(),
readlink(), chmod(), fchmod(), setxattr(), fallocate(), listxattr(), and
removexattr().

G. File system bugs found by JANUS
Table VI lists the patched bugs found by JANUS in five widely used file

systems that were previously unknown.

15

https://github.com/libfuse/sshfs
https://git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git
https://git.kernel.org/pub/scm/fs/xfs/xfsprogs-dev.git
https://github.com/riboseinc/fuzzbsd
https://www.schneier.com/blog/archives/2009/10/evil_maid_attac.html
https://www.schneier.com/blog/archives/2009/10/evil_maid_attac.html
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://github.com/kdave/xfstests
http://xfs.org
https://wiki.gnome.org/Projects/gvfs
https://github.com/torvalds/linux
https://github.com/tytso/e2fsprogs
https://www.tuxera.com/community/open-source-ntfs-3g
https://www.tuxera.com/community/open-source-ntfs-3g
https://github.com/mirrorer/afl/blob/master/config.h
https://github.com/mirrorer/afl/blob/master/config.h
http://lcamtuf.coredump.cx/afl
https://www.zerodayinitiative.com/advisories/ZDI-18-602
https://www.zerodayinitiative.com/advisories/ZDI-18-602

File system CVE File Function Type Conditions
1

ext4

CVE-2018-1092 fs/ext4/inode.c ext4_iget Use-after-free I
2 CVE-2018-1093 fs/ext4/balloc.c ext4_valid_block_bitmap Out-of-bounds access I+S
3 CVE-2018-1094 fs/ext4/super.c ext4_fill_super Null pointer dereference I+S
4 CVE-2018-1095 fs/ext4/xattr.c ext4_xattr_check_entries Out-of-bounds access I+S
5 CVE-2018-10840 fs/ext4/xattr.c ext4_xattr_set_entry Heap overflow I+S
6 CVE-2018-10876 fs/ext4/extents.c ext4_ext_remove_space Use-after-free I+S
7 CVE-2018-10877 fs/ext4/extents.c ext4_ext_drop_refs Out-of-bounds access I+S
8 CVE-2018-10878 fs/ext4/balloc.c ext4_init_block_bitmap Out-of-bounds access I+S
9 CVE-2018-10879 fs/ext4/xattr.c ext4_xattr_set_entry Use-after-free I+S
10 CVE-2018-10880 fs/ext4/inline.c ext4_update_inline_data Out-of-bounds access I+S
11 CVE-2018-10881 fs/ext4/ext4.h ext4_get_group_info Uninitialized memory I+S
12 CVE-2018-10882 fs/jbd2/transaction.c start_this_handle BUG() I+S
13 CVE-2018-10883 fs/jbd2/transaction.c jbd2_journal_dirty_metadata BUG() I+S
14 - fs/ext4/xattr.c ext4_xattr_set_entry Heap overflow I+S
15 - fs/ext4/namei.c ext4_rename Use-after-free I+S
16 - fs/ext4/inline.c empty_inline_dir Divide by zero I+S

17

XFS

CVE-2018-13093 fs/xfs/xfs_icache.c xfs_iget_cache_hit Use-after-free I+S
18 CVE-2018-10322 fs/xfs/xfs_inode.c xfs_ilock_attr_map_shared Null pointer dereference I+S
19 CVE-2018-10323 fs/xfs/libxfs/xfs_bmap.c xfs_bmapi_write Null pointer dereference I+S
20 CVE-2018-13094 fs/xfs/xfs_trans_buf.c xfs_trans_binval Null pointer dereference I+S
21 CVE-2018-13095 fs/xfs/libxfs/xfs_bmap.c xfs_bmap_extents_to_btree Out-of-bounds access I+S
22 - fs/xfs/libxfs/xfs_alloc.c xfs_alloc_get_freelist Null pointer dereference I+S
23 - fs/xfs/libxfs/xfs_dir2.c xfs_dir_isempty Null pointer dereference I+S

24

Btrfs

CVE-2018-14609 fs/btrfs/relocation.c __del_reloc_root Null pointer dereference I
25 CVE-2018-14610 fs/btrfs/extent_io.c write_extent_buffer Out-of-bounds access I+S
26 CVE-2018-14611 fs/btrfs/free-space-cache.c try_merge_free_space Use-after-free I
27 CVE-2018-14612 fs/btrfs/ctree.c btrfs_root_node Null pointer dereference I
28 CVE-2018-14613 fs/btrfs/free-space-cache.c io_ctl_map_page Null pointer dereference I+S
29 - fs/btrfs/volumes.c btrfs_free_dev_extent BUG() I+S
30 - fs/btrfs/locking.c btrfs_tree_lock Deadlock I
31 - fs/btrfs/volumes.c read_one_chunk BUG() I

32

F2FS

CVE-2018-13096 fs/f2fs/segment.c build_sit_info Heap overflow I
33 CVE-2018-13097 fs/f2fs/segment.h utilization Divide by zero I
34 CVE-2018-13098 fs/f2fs/inode.c f2fs_iget Out-of-bounds access I+S
35 - fs/f2fs/segment.h verify_block_addr BUG() I+S
36 CVE-2018-13099 fs/f2fs/segment.c update_sit_entry Use-after-free I+S
37 CVE-2018-13100 fs/f2fs/segment.c reset_curseg Divide by zero I
38 - fs/inode.c clear_inode BUG() I
39 - fs/f2fs/node.c f2fs_truncate_inode_blocks BUG() I+S
40 CVE-2018-14614 fs/f2fs/segment.c __remove_dirty_segment Out-of-bounds access I
41 CVE-2018-14615 fs/f2fs/inline.c f2fs_truncate_inline_inode Heap overflow I+S
42 CVE-2018-14616 fs/crypto/crypto.c fscrypt_do_page_crypto Null pointer dereference I+S

43 HFS+ CVE-2018-14617 fs/hfsplus/dir.c hfsplus_lookup Null pointer dereference I+S

TABLE VI: The list of previously unknown bugs in widely used file systems found by JANUS that have already been fixed in Linux kernel
v4.16, v4.17, and v4.18. We are still waiting for CVE assignment for several confirmed bugs. For security concerns, we exclude other 19
found bugs that developers have not fixed. The rightmost column, Conditions, indicates what components of JANUS contribute to discovering
the bugs. I means that triggering the bug only requires mounting a mutated image. I+S represents that the bug is triggered by mounting a
mutated image and also invoking specific system calls.

16

1 int mount_and_read(char *fsimg_path) {
2 struct lkl_disk disk;
3 char mpoint[32], buffer[1024];
4 unsigned int disk_id;
5 char *file;
6 int fd;
7 disk.fd = open(fsimg_path, O_RDWR);
8 disk.ops = NULL;
9 disk_id = lkl_disk_add(&disk);

10 lkl_start_kernel(&lkl_host_ops, "mem=128M");
11 lkl_mount_dev(disk_id, 0, "ext4", 0,
12 "errors=remount-ro", mpoint, sizeof(mpoint));
13 asprintf(&file, "%s/file", mpoint);
14 fd = lkl_sys_open(file, LKL_O_RDONLY, 0666);
15 if (fd >= 0) {
16 lkl_sys_read(fd, buf, 1024);
17 lkl_sys_close(fd);
18 }
19 lkl_umount_dev(disk_id, cla.part, 0, 1000);
20 lkl_disk_remove(disk);
21 lkl_sys_halt();
22 }

Fig. 11: A function example that mounts an ext4 image and reads a
file stored on the image through LKL APIs.

1 message Variable {
2 required int32 index; // variable index
3 required int32 size; // variable size
4 required bool is_pointer; // if the variable is a pointer
5 // the buffer data pointed to by a pointer
6 required bytes buffer;
7 // the file object type of an active file descriptor
8 // for normal variables, it is -1
9 required int32 type;

10 }
11

12 message Variables {
13 repeated Variable variables;
14 }
15

16 message Arg {
17 // if the argument is a variable
18 required bool is_var;
19 // an immediate value or
20 // the index of the corresponding variable
21 required int64 value;
22 }
23

24 message Syscall {
25 required int32 nr; // syscall number
26 repeated Arg args;
27 // the index of the variable that
28 // stores the return value of the syscall
29 // if necessary (e.g., fd returned from open());
30 // by default it is -1
31 required int64 ret_index;
32 }
33

34 message FileObject {
35 required string path; // relative path
36 // the file object type (FILE, DIR, SYMLINK, etc.)
37 required int32 type;
38 // the names of all the extended attributes
39 repeated string xattr_names;
40 }
41

42 message Program {
43 repeated Syscall syscalls;
44 }
45

46 message Status {
47 repeated FileObject fobjs;
48 }

Fig. 12: The format of a serialized program and speculated image
status described in protocol buffer language.

1 void activity(const char *mountpoint)
2 {
3 DIR *dir = opendir(mountpoint);
4 if (dir) {
5 readdir(dir);
6 closedir(dir);
7 }
8 static int buf[8192];
9 memset(buf, 0, sizeof(buf));

10 int fd = open(foo_bar_baz, O_RDONLY);
11 if (fd != -1) {
12 void *mem = mmap(NULL, 4096, PROT_READ,
13 MAP_PRIVATE | MAP_POPULATE, fd, 0);
14 munmap(mem, 4096);
15 read(fd, buf, 11);
16 read(fd, buf, sizeof(buf));
17 close(fd);
18 }
19 fd = open(foo_bar_baz, O_RDWR | O_TRUNC, 0777);
20 if (fd != -1) {
21 write(fd, buf, 517);
22 write(fd, buf, sizeof(buf));
23 fdatasync(fd);
24 fsync(fd);
25

26 lseek(fd, 0, SEEK_SET);
27 read(fd, buf, sizeof(buf));
28 lseek(fd, 1234, SEEK_SET);
29 read(fd, buf, 517);
30 close(fd);
31 }
32 fd = open(foo_bar_baz, O_RDWR | O_TRUNC, 0777);
33 if (fd != -1) {
34 lseek(fd, 1024 - 33, SEEK_SET);
35 write(fd, buf, sizeof(buf));
36 lseek(fd, 1024 * 1024 + 67, SEEK_SET);
37 write(fd, buf, sizeof(buf));
38 lseek(fd, 1024 * 1024 * 1024 - 113, SEEK_SET);
39 write(fd, buf, sizeof(buf));
40 lseek(fd, 0, SEEK_SET);
41 write(fd, buf, sizeof(buf));
42 fallocate(fd, 0, 0, 123871237);
43 fallocate(fd, 0, -13123, 123);
44 fallocate(fd, 0, 234234, -45897);
45 fallocate(fd, FALLOC_FL_KEEP_SIZE |
46 FALLOC_FL_PUNCH_HOLE, 0, 4243261);
47 fallocate(fd, FALLOC_FL_KEEP_SIZE |
48 FALLOC_FL_PUNCH_HOLE, -95713, 38447);
49 fallocate(fd, FALLOC_FL_KEEP_SIZE |
50 FALLOC_FL_PUNCH_HOLE, 18237, -9173);
51 close(fd);
52 }
53 rename(foo_bar_baz, foo_baz);
54 struct stat stbuf;
55 memset(&stbuf, 0, sizeof(stbuf));
56 stat(foo_baz, &stbuf);
57 chmod(foo_baz, 0000);
58 chmod(foo_baz, 1777);
59 chmod(foo_baz, 3777);
60 chmod(foo_baz, 7777);
61 chown(foo_baz, 0, 0);
62 chown(foo_baz, 1, 1);
63 unlink(foo_bar_baz);
64 unlink(foo_baz);
65 mknod(foo_baz, 0777, makedev(0, 0));
66 char buf2[113];
67 memset(buf2, 0, sizeof(buf2));
68 listxattr(xattr, buf2, sizeof(buf2));
69 removexattr(xattr, "user.mime_type");
70 setxattr(xattr, "user.md5", buf2, sizeof(buf2), XATTR_CREATE);
71 setxattr(xattr, "user.md5", buf2, sizeof(buf2), XATTR_REPLACE);
72 readlink(sln, buf2, sizeof(buf2));
73 }

Fig. 13: The fixed file operations used for evaluating how effectively
JANUS and Syzkaller fuzz images.

17

	Introduction
	Background and Motivation
	A Primer on Fuzzing
	File System Fuzzing
	Disk Image Fuzzer
	File Operation Fuzzer
	File System Fuzzer

	Challenges of Fuzzing a File System

	Design
	Overview
	Building Corpus
	Fuzzing Images
	Fuzzing File Operations
	Exploring Two-Dimensional Input Space
	Library OS based Kernel Execution Environment

	Implementation
	Evaluation
	Bug Discovery in the Upstream File Systems
	Exploring the State Space of Images
	Exploring File Operations
	Exploring Two-Dimensional Input Space
	Reproducing Crashes
	Miscellany

	Discussion
	Related work
	Conclusion
	Acknowledgment
	Appendix
	Seed Image
	Coverage Profiling: AFL versus KCOV
	An LKL Example
	Serialization Format
	A Testing Program for Image Fuzzing
	Supported System Calls
	File system bugs found by Janus

