
RAZOR: A Framework for Post-deployment Software Debloating

Chenxiong Qian∗, Hong Hu∗, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, Wenke Lee

Georgia Institute of Technology

Abstract
Commodity software typically includes a large number of

functionalities for a broad user population. However, each
individual user usually only needs a small subset of all sup-
ported functionalities. The bloated code not only hinders
optimal execution, but also leads to a larger attack surface. Re-
cent works have explored program debloating as an emerging
solution to this problem. Unfortunately, these works require
program source code, limiting their real-world deployability.

In this paper, we propose a practical debloating framework,
RAZOR, that performs code reduction for deployed binaries.
Based on users’ specifications, our tool customizes the binary
to generate a functional program with minimal code size.
Instead of only supporting given test cases, RAZOR takes
several control-flow heuristics to infer complementary code
that is necessary to support user-expected functionalities. We
evaluated RAZOR on commonly used benchmarks and real-
world applications, including the web browser FireFox and
the close-sourced PDF reader FoxitReader. The result shows
that RAZOR is able to reduce over 70% of the code from the
bloated binary. It produces functional programs and does
not introduce any security issues. RAZOR is thus a practical
framework for debloating real-world programs.

1 Introduction
“Entities are not to be multiplied without necessity.”

— Occam’s Razor
As commodity software is designed to support more features
and platforms to meet various users’ needs, its size tends to
increase in an uncontrolled manner [16, 39]. However, each
end-user usually just requires a small subset of these features,
rendering the software bloated. The bloated code not only
leads to a waste of memory, but also opens up unnecessary at-
tack vectors. Indeed, many serious vulnerabilities are rooted
in the features that most users never use [31, 35]. There-
fore, security researchers are beginning to explore software
debloating as an emerging solution to this problem.

∗The two lead authors contributed equally to this work.

Unfortunately, most initial works on software debloating
rely on the availability of program source code [40, 15, 44],
which is problematic in real-world use. First, most users do
not have access to the source code, and even if they do, it
is challenging for them to rebuild the software, diminishing
the intended benefits of software bloating. Moreover, users
may use the same software in drastically different ways, and
thus the unnecessary features to be removed will accordingly
vary from user to user. Therefore, to obtain the most bene-
fits, the debloating process should take place after software
deployment and should be tailored for each individual user.

Making such a post-deployment approach beneficial and
usable to end-users creates two challenges: 1) how to allow
end-users, who have little knowledge of software internals,
to express which features are needed and which should be
removed and 2) how to modify the software binary to remove
the unnecessary features while keeping the needed ones.

To address the first challenge, we can ask end-users to
provide a set of sample inputs to demonstrate how they will
use the software, as in the CHISEL work [15]. Unfortunately,
programs debloated by this approach only support given in-
puts, presenting a rather unusable notion of debloating: if the
debloated software only needs to support an apriori, fixed set
of inputs, the debloating process is as simple as synthesizing
a map from the input to the observed output. However, from
our experiments, we find that even processing the same input
multiple times will result in different execution paths (due to
some randomization factors). Therefore, the naive approach
will not work even under simplistic scenarios.

In order to practically debloat programs based on user-
supplied inputs, we must identify the code that is necessary
to completely support required functionalities but is not exe-
cuted when processing the sample inputs, called related-code.
Unfortunately, related-code identification is difficult. In par-
ticular, it is challenging for end-users (even developers) to
provide an input corpus that exercises all necessary code that
implements a feature. Furthermore, if the user provides some
description of all possible inputs (e.g., patterns), it is still hard
to identify all reachable code for those inputs. Thus, we be-

lieve that any debloating mechanism in the post-deployment
setting will be based on best-effort heuristics. The heuristics
should help identify the related-code as much as possible,
and meanwhile include minimal functionally unrelated code.
Note that techniques like dead code elimination [23, 22] and
delta debugging [49, 42] do not apply to this problem be-
cause they only focus on either removing static dead code or
preserving the program’s behavior on a few specific inputs.

We design four heuristics that infer related-code based
on the assumption that code paths with more significant di-
vergence represent less related functionalities. Specifically,
given one executed path p, we aim to find a different path q
such that 1) q has no different instructions, or 2) q does not
invoke new functions, or 3) q does not require extra library
functions, or 4) q does not rely on library functions with dif-
ferent functionalities. Then, we believe q has functionalities
similar to p and treat all code in q as related-code. From 1) to
4), the heuristic includes more and more code in the debloated
binary. For a given program, we will gradually increase the
heuristic level until the generated program is stable. In fact,
our evaluation shows that even the most aggressive heuristic
introduces only a small increase of the final code size.

Once all the related-code is identified, we develop a binary-
rewriting platform to remove unnecessary code and gener-
ate a debloated program. Thanks to the nature of program
debloating, our platform does not face the symbolization
problem from general binary-rewriting tools [51, 53, 52, 5].
Specifically, a general binary-rewriting tool has to preserve all
program functionalities, which is difficult without a reliable
disassembling technique and a complete control-flow graph
(CFG) [2]. For debloating, we preserve only the functionali-
ties related to the sample inputs, where the disassembling and
CFG are available by observing the program execution.

We designed the RAZOR framework to realize the post-
deployment debloating. The framework contains three com-
ponents: Tracer monitors the program execution with the
given sample inputs to record all executed code; PathFinder
utilizes our heuristics to infer more related-code from the ex-
ecuted ones; Generator generates a new binary based on the
output of Tracer and PathFinder. In the RAZOR framework,
we implemented three tracers (two based on dynamic binary
instrumentation and one based on a hardware tracing feature),
four path finding heuristics, and one binary generator.

To understand the efficacy of RAZOR on post-deployment
debloating, we evaluated it on three sets of benchmarks: all
SPEC CPU2006 benchmarks, 10 coreutils programs used
in previous work, and two real-world large programs, the
web browser Firefox and the closed-sourced PDF parser
FoxitReader. In our evaluation, we performed tracing and
debloating based on one set of training inputs and tested the
debloated program using a different set of functionally similar
inputs. Our results show that RAZOR can effectively reduce
70-80% of the original code. At the same time, it introduces
only 1.7% overhead to the new binary. We compared RA-

ZOR with CHISEL on debloating 10 coreutils programs and
found that CHISEL achieves a slightly better debloating result
(smaller code size), but it fails several programs on given test
cases. Further, CHISEL introduces exploitable vulnerabilities
to the debloated program, such as buffer overflows resulting
from the removed boundary checks. RAZOR does not intro-
duce any security issues. We also analyzed the related-code
identified by our path finder and found that different heuristics
effectively improve the program robustness.

In summary, we make the following contributions:

• New approach. We proposed a practical post-
deployment debloating framework that works on pro-
gram binaries. Besides given test inputs, our system
supports more inputs of the required functionalities.

• Open source. We designed RAZOR as an end-to-end
system to produce a minimal functional executable. We
implemented our system on an x86-64 Linux system and
will open source RAZOR at https://github.com/
cxreet/razor.

• Practical and ready-to-use. We evaluated RAZOR on
real-world programs such as Firefox and FoxitReader
and showed that these programs can be significantly
debloated, resulting in better security.

2 Problem

2.1 Motivating Example
Figure 1a shows a bloated program, which is designed to
parse image files in different formats. Based on the user-
provided options (line 4 and 6), the program invokes func-
tion parsePNG to parse PNG images (line 5) or invokes func-
tion parseJPEG to handle JPEG images (line 7). In function
parsePNG, the code first allocates memory to hold the image
content and saves the memory address in img (line 10). Then
it makes sure img is aligned to 16-bytes with the macro ALIGN
(line 11 and 12). Finally, it invokes function readToMem to
load the image content from file into memory for further
processing. Function parseJPEG has a structure similar to
parsePNG, so we skip its details.

Although the program in Figure 1a merely supports two im-
age formats, it is still bloated if the user only uses it to process
PNG files. For example, screenshots on iPhone devices are
always in PNG format [27]. In this case, the code is bloated
with the unnecessary JPEG parser, which may contain security
bugs [18]. Attackers can force it to process malformed JPEG
images to trigger the bug and launch remote code execution.
In real-world software ecosystem, we can easily find docu-
ment readers (e.g., Preview on MacOS) that support obsolete
formats (e.g., PCX, Sun Raster, TGA). We can debloat these
programs to reduce their code sizes and attack surfaces.

https://github.com/cxreet/razor
https://github.com/cxreet/razor

1 #define MAX_SIZE 0xffff
2 #define ALIGN(v,a) (((v+a-1)/a)*a)
3 void imageParser(char *options, char *file_name) {
4 if (!strcmp(options, "PNG"))
5 parsePNG(file_name);
6 else if (!strcmp(options, "JPEG"))
7 parseJPEG(file_name);
8 }
9 void parsePNG(char *file_name) {

10 char * img = (char *)malloc(MAX_SIZE + 16);
11 if ((img % 16) != 0)
12 img = ALIGN(img, 16);
13 readToMem(img, file_name);
14 }
15 void parseJPEG(char *file_name) { ... }

(a) A bloated image parser.

imageParser

return

6

F

T

4

F

T

parsePNG

10

F

T

11

12

13

7

parseJPEG

5

return

(b) Original control-flow graph.

imageParser

return

5

T

4

parsePNG

10

F

T

11

12

13

return

(c) Debloated control-flow graph

Figure 1: Debloating an image parser. (a) shows the code of the bloated image parser, where the program invokes different functions to handle
PNG or JPEG files based on the options. The control-flow graphs before and after debloating are shown in (b) and (c).

2.2 Program Debloating

In this paper, we develop techniques to remove user-
specified unnecessary functionalities from bloated pro-
grams. Given a program P that has a set of functionali-
ties F = {F0,F1,F2, ...} and a user specification of necessary
functionalities Fu = {Fi,Fj,Fk, ...}, our goal is to generate a
new program P′ that only retains functionalities in Fu and
gracefully refuses requests of other functionalities in F −Fu.

The program in Figure 1a has two high-level functionalities:
parsing PNG images and parsing JPEG images, while the user
specification only requires the first functionality. In this case,
the goal of debloating is to generate minimal code that only
supports parsing PNG files while exiting gracefully if the given
images are in other formats. From the simple code we can
easily tell that code in the yellow background (i.e., line 6, 7
and 15) is not necessary, so we remove such code in a safe
manner: function parseJPEG will be simply removed; for line
6 and 7, we should replace the code with fault-handling code
to prompt warnings and exit gracefully.

In this paper, we focus on reducing functionalities from
software binaries. Specifically, the program P is given as
a binary, while the source code like Figure 1a is not avail-
able. Instead, we construct the control-flow graph (CFG)
from the executable and use it to guide the binary debloat-
ing. Figure 1b and Figure 1c show CFGs of the bloated
binary and the debloated one, respectively. Black arrows
represent intra-procedural jumps, while dotted arrows stand
for inter-procedural calls and returns. Originally, function
imageParser can execute lines 6 and 7 and invoke function
parseJPEG. In the debloated binary, these lines and functions
are not reachable, and the CFG is simplified to Figure 1c.
For the vulnerability in the removed code, the new binary
prevents attackers from triggering them in the first place.

2.3 Challenges and Solutions

From the previous example, we can find the gap between
the user specification and the code removed: users specify

that the functionality of parsing PNG files is necessary (i.e.,
others are unnecessary), while we finally remove line 6, line
7, and function parseJPEG. However, mapping high-level
functionalities to low-level code manually is challenging,
especially for large programs. Specifically, this leads to two
general challenges of program debloating:

C1. How to express unnecessary functionalities;

C2. How to map functionalities to program code.

One possible solution is to rely on end-users to provide a set of
test cases for each necessary/unnecessary functionality so we
can inspect the program execution to learn the related program
code. Our problem can be rephrased as follows: given the
program binary Pb and a set of test cases T = {ti, t j, tk, ...},
where each test case ti triggers some functionalities of Pb,
we will create a minimal program P′b that supports and only
supports functionalities triggered by the test cases in T .

Test cases help us address challenges C1 and C2. However,
it is impossible to provide test cases that cover all related-code
of the required functionalities. In this case, some related-code
will not be triggered. If we simply remove all never-executed
code, the program functionality will be broken. For example,
the code at lines 11 and 12 of Figure 1a will make sure the
pointer img is aligned to 16. Based on the concrete execution
context, the return value of malloc (at line 10) may or may not
satisfy the alignment requirement. If the execution just passes
the check at line 11, the simple method will delete line 12 for
the minimal code size. However, if the later execution expects
an aligned img, the program will show unexpected behavior
or even crash. Our evaluation in §5.2 shows that simply
removing all non-executed code introduces many bugs, even
exploitable ones, to the debloated program. Therefore, a test-
case-based debloating system faces the following challenge.

C3. How to find more related-code from limited test cases.

To address challenge C3, we propose control-flow-based
heuristics to infer more related-code that is necessary to sup-
port the required functionalities but was missed during our

bloated
binary

Tracer

test
cases execution

traces

Dynamorio

Intel PIN

Intel PT

Path Finder Generator

debloated
binary

CFG

decode

CFG'

Heuristic A

Heuristic B

... fault handler

instrumenter

assembler

Figure 2: Overview of RAZOR. It takes in the bloated program binary and a set of test cases and produces a minimal, functional binary.
Tracer collects the program execution traces with given test cases and converts them into a control-flow graph (CFG). PathFinder utilizes
control-flow-based heuristics to expand the CFG to include more related-code. Based on the new CFG, Generator generates the debloated
binary.

inspection. Suppose the test cases in T only trigger the exe-
cution of instructions in I = {i0, i1, i2, ...}, our heuristic will
automatically infer more code that is related to the function-
alities covered by T . Specifically, we identify a super set
I ′ = I ∪{ix, iy, iz, ...} and keep all instructions in I ′ while
removing others to minimize the code size. When debloat-
ing the code in Figure 1a, the execution of given test cases
does not cover line 12. However, with our heuristics, we
will include this line in the debloated program. The evalu-
ation in §5.3 shows that our heuristic is effective in finding
related-code paths and introduces only a small increase in
code size.

3 System Design

Figure 2 shows an overview of our post-deployment debloat-
ing system, RAZOR. Given a bloated binary and a set of test
cases that trigger required functionalities, RAZOR removes
unnecessary code and generates a debloated binary that sup-
ports all required features with minimal code size. To achieve
this goal, RAZOR first runs the binary with the given test cases
and uses Tracer to collect execution traces (§3.1). Then, it
decodes the traces to construct the program’s CFG, which
contains only the executed instructions. In order to support
more inputs of the same functionalities, PathFinder expands
the CFG based on our control-flow heuristics (§3.2). The
expanded CFG contains non-executed instructions that are
necessary for completing the required functionalities. In the
end, with the expanded CFG, Generator rewrites the origi-
nal binary to produce a minimal version that only supports
required functionalities (§3.3).

3.1 Execution Trace Collection

Tracer executes the bloated program with given test cases
and records the control-flow information in three categories:
(1) executed instructions, including their memory addresses
and raw bytes; (2) the taken or non-taken of conditional
branches, like je that jumps if equal; (3) concrete targets
of indirect jumps and calls, like jmpq *%rax that jumps to the
address indicated by register %rax. Our Tracer records the
raw bytes of executed instructions to handle dynamically gen-

[0x4004e3: true]
[0x4004ee: false]
[0x400614: true & false]

[0x400677: 0x4005e6#18,0x4005f6#6]

...

...

Executed Blocks

[0x4005c0,0x4005f2]

[0x400596,0x4005ae]

...

Conditional Branches

Indirect Calls/Jumps

Figure 3: A snippet of the collected trace. It includes the range of
each executed basic block, the taken/non-taken of each condition
branch, and the concrete target of indirect jumps/calls. We also
record the frequency of each indirect jump/call target (after #).

erated/modified code. However, instruction-level recording
is inefficient and meanwhile most real-world programs only
contain static code. Therefore, Tracer starts with basic block-
level recording that only logs the address of each executed
basic block. During the execution, it detects any dynamic
code behavior, like both writable and executable memory re-
gion (e.g., just-in-time compilation [13]), or overlapped basic
blocks (e.g., legitimate code reuse [26]), and switches to the
instruction-level recording to avoid missing instructions. A
conditional branch may get executed multiple times and fi-
nally covers one or both targets (i.e., the fall-through target
and the jump target). For indirect jump/call instructions, we
log all executed targets and count their frequencies.

Figure 3 shows a piece of collected trace. It contains two
executed basic blocks, one at address 0x4005c0 and another
at 0x400596. The trace also contains three conditional branch
instructions: the one at 0x4004e3 only takes the true target;
the one at 0x4004ee only takes the false target; the one at
0x400614 takes both targets. One indirect call instruction at
0x400677 jumps to target 0x4005e6 for 18 times and jumps to
target 0x4005f6 for six times. As the program only has static
code, Tracer does not include the instruction raw bytes.

We find that it is worthwhile to use multiple tools to collect
the execution trace. First, no mechanism can record the trace
completely and efficiently. Software-based instrumentation
can faithfully log all information but introduces significant
overhead [7, 25, 6]. Hardware-based logging can record ef-
ficiently [20] but requires particular hardware and may not
guarantee the completeness (e.g., data loss in Intel PT [17]).
Second, program executions under different tracing environ-

ments will show divergent paths. For example, Dynamorio
always expands the file name to its absolute path, leading to
different executed code in some programs (e.g., vim). There-
fore, we provide three different implementations (details in
§4.1) with different software and hardware mechanisms. End-
users can choose the best one for their requirement or even
merge traces from multiple tools for better code coverage.
CFG construction. With the collected execution traces,
RAZOR disassembles the bloated binary and constructs the
partial control-flow graph (CFG) in a reliable way. Different
from previous works that identify function boundaries with
heuristics [52, 51, 3, 4, 45], RAZOR obtains the accurate
information of instruction address and function boundary
from the execution trace. For example, we can find some of
all possible targets of indirect jumps and calls.

Starting from such reliable information, we are able to
identify more code instructions [47]. For conditional branch
instructions, both targets are known to us. Even if one target is
not executed, we can still reliably disassemble it. For indirect
jumps, we can identify potential jump tables with specific
code patterns [53]. For example, jmpq *0x4e65a0(,%rdx,8)
indicates a jump table starting from address 0x4e65a0. By
identifying more instructions, we are able to include them in
the binary if our heuristic treats them as related-code.

3.2 Heuristic-based Path Inference
Considering the challenge of generating test cases to cover all
code, we believe no perfect method can completely identify
all missed related-code. As the first work trying to mitigate
the problem, we adopt the best-effort heuristic approach to
include more related-code. Next, we present these heuristics
one by one, from the conservative one (including less code)
to the aggressive one (including more code):

(1) Zero-code heuristic (zCode). This heuristic adds new
edges (i.e., jumps between basic blocks) into the CFG. For
conditional branch instructions that only have one target
taken (the fall-through target or the jump target), PathFinder
checks whether the non-taken target is already in the CFG
(i.e., reached through other blocks). If so, PathFinder per-
mits the jump from this instruction to the non-taken target.
This heuristic does not add any new instructions and thus will
not affect the code reduction.

Figure 4 shows an example of related-code identifica-
tion with heuristics, with the original CFG on the left
and the expanded CFG on the right. The code is de-
signed to calculate log(sqrt(absl(max(rax,rbx,rcx)))).
Dashed branches and blocks are not executed during trac-
ing, while others are executed. The original execution path is
L1→L2→L3→L5→L7→L9. Blocks L4, L6, L8, and the branch
L1→L3 are missed in the original CFG. With the zCode heuris-
tic, PathFinder adds branch L1→L3 into the new CFG, as L3
is the non-taken branch of the conditional jump jge L3 in L1
and it is already reached from L2 in the current CFG.

L2:
 mov %rbx,%rax
 jmp L3

F

T

L1:
 cmp %rbx,%rax
 jge L3

L3:
 cmp %rcx,%rax
 jge L5

L4:
 mov %rcx,%rax
 jmp L5

L6:
 mov %rax,%rdi
 call L_absl
 jmp L7

F

T

L5:
 test %rax,%rax
 jns L7

F

T

L7:
 test %rax,%rax
 jle L9

L8:
 mov %rax,%rdi
 call sqrt@plt
 jmp L9

F

T

L9:
 mov %rax,%rdi
 call log@plt

L9:
 mov %rax,%rdi
 call log@plt

L2:
 mov %rbx,%rax
 jmp L3

F

T

L1:
 cmp %rbx,%rax
 jge L3

L3:
 cmp %rcx,%rax
 jge L5

L4:
 mov %rcx,%rax
 jmp L5

L6:
 mov %rax,%rdi
 call L_absl
 jmp L7

F

T

L5:
 test %rax,%rax
 jns L7

F

T

L7:
 test %rax,%rax
 jle L9

L8:
 mov %rax,%rdi
 call sqrt@plt
 jmp L9

F

T

zCode
zCall
zLib
zFunc

Figure 4: Identifying related-code with different heuristics. Dashed
branches and blocks are not executed and thus are excluded from
the left CFG, while others are executed.

(2) Zero-call heuristic (zCall). This heuristic includes
alternative execution paths that do not trigger any function
call. With this heuristic, PathFinder starts from the non-
taken target of some conditional branches and follows the
control-flow information to find new paths that finally merge
with the executed ones. If such a new path does not include
any call instructions, PathFinder includes all its instructions
to the CFG. When PathFinder walks through non-executed
instructions, we do not have the accurate information for
stable disassembling or CFG construction. Instead, we rely
on existing mechanisms [53, 3] to perform binary analysis.
When applying the zCall heuristic on the example in Figure 4,
PathFinder further includes block L4, and path L3→L4→L5,
as this new path merges with the original one at L5 and does
not contain any call instruction.

(3) Zero-libcall heuristic (zLib). This heuristic is similar
to zCall, except that PathFinder includes the alternative paths
more aggressively. The new path may have call instructions
that invoke functions within the same binary or external func-
tions that have been executed. However, zLib does not allow
calls to non-executed external functions. In Figure 4, with this
heuristic, PathFinder adds block L6 and path L5→L6→L7 to
the CFG, as that path does not have any call to non-executed
external functions.

(4) Zero-functionality heuristic (zFunc). This heuristic
further allows including non-executed external functions as
long as they do not trigger new high-level functionalities. To
correlate library functions with functionalities, we check their

Algorithm 1: Path-finding algorithm.
Input: CFG - the input CFG; libcall_groups - the library call groups.
Output: CFG′ - the expanded CFG
CFG′ ← CFG
/* iterate over each conditional branch */

1 for cnd_br ∈ CFG:
2 nbb = get_non_taken_branch(cnd_br)
3 if nbb == NULL: continue
4 if heuristic >= zCode and nbb ∈ CFG:
5 CFG′ = CFG′ ∪ {cnd_br→nbb}
6 paths = get_alternative_paths(CFG′, nbb)
7 for p ∈ paths:
8 include = false
9 if heuristic == zCall: include = !has_call(p)

10 elif heuristic == zLib: include = !has_new_libcall(p)
11 elif heuristic == zFunc:
12 include = !has_new_func(CFG′, p, libcall_groups)
13 if include:
14 CFG′ = CFG′ ∪ p

descriptions and group them manually. For libc functions,
we classify the ones that fall into the same subsection in [32]
to the same group. For example, log and sqrt are in the
subsection Exponentiation and Logarithms, and thus we
believe they have similar functionalities. With this heuristic,
PathFinder includes block L8 and path L7→L8→L9, as sqrt
has a functionality similar to the executed function log.

Algorithm 1 shows the steps that PathFinder uses to find
related-code that completes functionalities. For each con-
ditional branch in the input CFG (line 1), the algorithm in-
vokes the function get_non_taken_branch to get the non-
taken branch (line 2). If both branches have been taken,
the algorithm proceeds to the next conditional branch (line
3). Otherwise, PathFinder starts to add code depending on
the given heuristic (line 4 to 14). If the non-taken branch
is reachable in the current CFG (line 4), zCode enables the
new branch in the output CFG (line 5). If the heuristic is
more aggressive than zCode, PathFinder first gets all alter-
native paths that start from the non-taken branch and finally
merges with some executed code (line 6). Then, it iterates
over all paths (line 7) and calls corresponding checking func-
tions (i.e., has_call, has_new_libcall, and has_new_func)
to check whether or not the path should be included (line 9 to
12). In the end, PathFinder adds the path to the output CFG
if it satisfies the condition (line 14).

3.3 Debloated Binary Synthesization
With the original bloated binary and the expanded CFG,
Generator synthesizes the debloated binary that exclusively
supports required functionalities. First, it disassembles the
original binary following the expanded CFG and generates a
pseudo-assembly file that contains all necessary instructions.
Second, Generator modifies the pseudo-assembly to create
a valid assembly file. These modifications symbolize basic
blocks, concretize indirect calls/jumps, and insert fault han-

0x0:
 jne 0x4 ;true
0x2:
 jne 0x6 ;false
0x4:
 jz 0xb ;both
0x6:
 call 0x40
0xb:
 call *%rax ;0x70,0x80

L_0x0:
 jne L_0x4
 jmp cond_fail
L_0x2:
 jne cond_fail
L_0x4:
 jz L_0xb
L_0x6:
 call L_0x40
L_0xb:
 cmp %rax, 0x70
 jne L_i1
 call L_0x70
L_i1:
 cmp %rax, 0x80
 jne ic_fail
 call L_0x80

Figure 5: Synthesize debloated assembly file. Each basic block is
assigned a unique label; indirect calls are expanded with compar-
isons and direct calls; fault handling code is inserted.

dling code. Third, it compiles the assembly file into an object
file that contains machine code of the necessary instructions.
Fourth, Generator copies the machine code from the object
file into a new code section of the original binary. Fifth,
Generator modifies the new code section to fix all references
to the original code and data. Finally, Generator sets the
original code section non-executable to reduce the code size.
We leave the original code section inside the debloated pro-
gram to support the potential read from it (e.g., jump tables
in code section for implementing switch [11]). We discuss
this design choice in §6.

3.3.1 Basic Block Symbolization

We assign a unique label to each basic block and replace all
its references with the label. Specifically, we create the label
L_addr for the basic block at address addr. Then, we scan all
direct jump and call instructions and replace their concrete
target addresses with corresponding labels. In this way, the
assembler will generate correct machine code regardless of
how we manipulate the assembly file. Figure 5 shows an
assembly file before and after the update, illustrating the
effect of basic block symbolization. Before the update, all call
and jump instructions use absolute addresses, like jne 0x6 in
basic block 0x0. After the symbolization, the basic block at
0x6 is assigned the label L_0x6, while instruction jne 0x6 is
replaced with jne L_0x6. Similarly, instruction call 0x40 in
block 0x06 is replaced with call L_0x40. One special case
is the conditional branch jne 0x6 in basic block 0x2. In the
extended CFG, it only takes the fall-through branch, which
means that jumping to block 0x6 should not be allowed in the
debloated binary. Therefore, instead of replacing 0x6 with
symbol L_0x6, we redirect the execution to the fault handling
code cond_fail (will discuss in §3.3.3). Note that basic
block symbolization only updates explicit use of basic block
addresses, i.e., as direct call/jump targets. We handle the
implicit address use, like saving function address into memory
for indirect call, with the indirect call/jump concretization.

3.3.2 Indirect Call/Jump Concretization

Indirect call/jump instructions use implicit targets that are
loaded from memory or calculated at runtime. We have to
make sure all possible targets point to the new code section.
For the sake of simplicity, we use the term indirect call to
cover both indirect calls and indirect jumps.

With the execution traces, Generator is able to handle
indirect calls in two ways. The first method is to locate con-
stants from the original binary that are used as code addresses
and replace them with the corresponding new addresses, as
in [52, 51]. However, this method requires a heavy trac-
ing process that records all execution context and a time-
consuming data-flow analysis. Therefore, it is impractical
for large programs. The second method is to perform the
address translation before each indirect call, as in [53]. In
particular, we create a map from the original code addresses
to the new ones. Before each indirect call, we map the old
code address to the new one and transfer the control-flow to
the new address.

Our Generator takes a method similar to the second one,
but with different translations for targets within the same
module (named local targets) and targets outside the module
(named global targets). For local targets, we define a con-
crete policy for each indirect call instruction. Specifically,
we replace the original call with a set of compare-and-call
instructions, one for each local target that is executed by
this instruction at tracing. Then, we call the new address
of the matched old addresses. Global targets have different
addresses in multiple runs because of the address space lay-
out randomization (ASLR). We use a per-module translation
table to solve this problem. Different from previous work
that creates a translation table for all potential targets in the
module [53], our translation table contains only targets that
are ever invoked by other modules. At runtime, if the tar-
get address is outside the current module, we use a global
translation function to find the correct module and look up its
translation table to get the correct new address to invoke.

Figure 5 gives an example of indirect call concretization.
In the execution trace, instruction call *%rax in block 0xb
transfers control to function at 0x70 and 0x80. Our concretiza-
tion inserts two cmp instructions, one to compare with the
address 0x70 and another to compare with 0x80. For any suc-
cessful comparison, Generator inserts a direct call to transfer
the control-flow to the corresponding new address.

Security benefit. Our design achieves a stronger security
benefit on control-flow protection over previous methods. For
example, the previous work binCFI [53] uses a map to con-
tain all valid code addresses, regardless of which instruction
calls them. Thus, any indirect call instruction can reach all
possible targets, making the protection vulnerable to existing
bypasses [12, 43, 9]. Our design is functionally equivalent to
creating one map for each indirect call, which contains both
the targets obtained from the trace and the targets inferred by

our PathFinder. For inter-module indirect calls, we limit the
targets to a small set that is ever invoked by external modules.
In this way, attackers who try to change the control flow will
have fewer choices, and the debloated binary will be immune
to even advanced attacks.
Frequency-based optimization. Depending on the number
of executed targets, we may insert many compare-and-call
instructions that will slow the program execution. For ex-
ample, one indirect call instruction in perlbench benchmark
of SPEC CPU2006 has at least 132 targets, and each target
is invoked millions of times. To reduce the overhead, we
rank all targets with their execution frequencies and compare
the address with high-frequent targets first. The targets in-
ferred from heuristics have a frequency of zero. With this
optimization, we can reduce the overhead significantly.

3.3.3 Fault Handling

Running a debloated binary may reach removed code or dis-
abled branches for various reasons, such as a user’s temporal
requirement for extra functionalities or malicious attempts
to run unnecessary code. We redirect any such attempt to a
fault handler that exits the execution and dumps the call stack.
Specifically, for conditional jump instructions with only one
target taken, we intercept the branch to the non-taken target to
hook any attempt of the invalid jump. Similarly, for indirect
call instructions, if no allowed target matches the runtime
target, we redirect the execution to the fault handler.

Figure 5 includes examples of hooking failed conditional
jumps and indirect calls. For instruction jne 0x4 in block
0x0, we insert jmp cond_fail to redirect the branch to the
fall-through target to the fault handler cond_fail. Similarly,
we update instruction jne 0x6 with jne cond_fail to pre-
vent jumping to the non-executed target. For conditional
branch jz 0xb which has both targets taken, we do not in-
sert any code. For instruction call *%rax, we insert code
jne ic_fail in the case that all allowed targets are different
from the real-time one.

4 Implementation

We implement a prototype of RAZOR with 1,085 lines of C
code, 514 lines of C++ code, and 4,034 lines of python code,
as shown in Table 1. The prototype currently supports x86-64
ELF binaries. Our design is platform-agnostic and we plan
to support other binary formats from different architectures.
We tried our system on system libraries (e.g., libc.so, libm.so)
and report our findings in §6.

4.1 Tracer Implementations
As we discussed in §3.1, each tracing method has different
benefits and limitations, such as the tracing efficiency and
completeness. We provide three different implementations of

0%
20%
40%
60%
80%

100%
pe

rlb
en

ch
bz

ip
2

gc
c

bw
av

es
ga

m
es

s
m

cf
m

ilc
ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M
le

sli
e3

d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sje

ng
G

em
sF

D
TD

lib
qu

an
tu

m
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
w

rf
sp

hi
nx

3
xa

la
nc

bm
k

AV
ER

AG
E

Razor

(a) SPEC CPU2006

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(b) CHISEL benchmarks

Figure 6: Code size reduction on two benchmarks. We use RAZOR to debloat both SPEC CPU2006 benchmarks and CHISEL benchmarks
without any path finding and achieve 68.19% and 78.8% code reduction. CHISEL removes 83.4% code from CHISEL benchmarks.

Component Tracer PathFinder Generator Total

C 1,085 0 0 1,085
C++ 514 0 0 514
Python 218 743 3,073 4,034

Table 1: Implementation of different RAZOR components.

Tracer in RAZOR so that users can choose the best one for
their purpose. In our evaluation, we use software-based in-
strumentation to collect complete traces for simple programs,
and use a hardware-based method to efficiently get trace from
large programs.

Tracing with software instrumentation. We use the dy-
namic instrumentation tools Dynamorio [7] and Pin [25] to
monitor the execution of the bloated program. Both tools
provide instrumentation interfaces at function level, basic
block level, and instruction level. We implement three instru-
mentation passes to collect control-flow information. First, at
the beginning of each basic block we record its start address;
second, for each conditional jump instruction, we insert two
pieces of code between the instruction and its two targets
to log the taken information; third, before each indirect call
and jump instruction, we record the concrete target for each
invocation. At runtime, we remove the basic block instruction
immediately after its first execution to avoid unnecessary over-
head. Similarly, we remove the instrumentation of conditional
branches once that branch has been taken. However, we keep
the instrumentation of indirect call and jump instructions, as
we do not know the complete set of targets.

Tracing with hardware feature. Considering the overhead
of software instrumentation, we provide an efficient Tracer
built on Intel Processor Trace (Intel PT) [20]. Intel PT
records the change of flow information in a highly compressed
manner: the TNT packet describes whether one conditional
branch is taken or non-taken; the TIP packet records the tar-
get of indirect branches, like indirect call and return. As
Intel PT directly writes the trace to physical memory with-
out touching the page table or memory cache, it achieves the
most efficient tracing. Our Tracer decodes the traces from
Intel PT to get necessary control-flow information. We can
use other hardware features available on different platforms
to implement efficient Tracer, like branch trace store (BTS)

on Intel CPUs or program flow trace (PTM) on ARM CPUs.

4.2 Update ELF Exception Handler

ELF binaries generated by gcc and clang adopt the table-
based exception handling [46] to provide stack unwind and
exception handler information. Specifically, ELF keeps a
table in the .eh_frame_hdr section, one entry per function.
Each entry indicates the location of a frame description en-
try (FDE) in the .eh_frame section, which further specifies
the location of the language-specific data area (LSDA). The
LSDA region in the .gcc_except_table section contains the
concrete address of exception handlers, called landingpad.

We have to replace the old value of all landingpads in
.gcc_except_table with the new ones. However, the chal-
lenge is that the value in .gcc_except_table is encoded in
the LEB128 format – a variable-length encoding that may
have different lengths for different values. Since we update
the old address with a different one, the encoding of the
new address may take more bytes and thus cannot be put
into the original location. To solve this problem, we update
the section layout of the binary to create more space for the
new address. Specifically, we shrink the table inside the
.eh_frame_hdr section to exclude entries of non-executed
functions. Recall that the given test cases only trigger part of
the functionalities, and the non-executed functions will not
be included in the debloated binary. Then we shift .eh_frame
and .gcc_except_table sections to get more space for our
update of landingpad values.

5 Evaluation

In this section, we perform extensive evaluation in order to
understand RAZOR regarding the following aspects:
• Code reduction. How much code can RAZOR reduce

from the original bloated binary? (§5.1)
• Functionality. Does the debloated binary support the

functionalities in given test cases? (§5.2) How effective
is PathFinder in finding complementary code? (§5.3)
• Security. Does RAZOR reduce the attack surface of the

debloated binaries? (§5.4)

0%
20%
40%
60%
80%

100%
bz

ip
2

ch
ow

n
da

te
gr

ep
gz

ip
m

kd
ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(a) basic blocks

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(b) instructions

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(c) ROP gadgets

Figure 7: Reduction of basic blocks, instructions, and ROP gadgets, debloated by RAZOR and CHISEL from CHISEL benchmarks.

• Performance. How much overhead does RAZOR intro-
duce into the debloated binary? (§5.5)
• Practicality. Does RAZOR work on commonly used

software in the real world? (§5.6)
Experiment setup. We set up three sets of benchmarks to
evaluate RAZOR: 29 SPEC CPU2006 benchmarks, including
12 C programs, seven C++ programs, and 10 Fortran pro-
grams; 10 coreutils programs used in the CHISEL paper1 [15];
the web browser Firefox and the close-source PDF reader
FoxitReader. We use the software-based tracing tools that
rely on Dynamorio and Pin to collect the execution traces
of SPEC and CHISEL benchmarks, to get accurate results;
for the complicated programs Firefox and FoxitReader, we
use the hardware-based tracing tool (relying on Intel PT) to
guarantee the execution speed to avoid abnormal behaviors.
We ran all the experiments on a 64-bit Ubuntu 16.04 system
equipped with Intel Core i7-6700K CPU (with eight 4.0GHz
cores) and 32 GB RAM.

5.1 Code Reduction

We applied RAZOR on SPEC CPU2006 benchmarks and
CHISEL benchmarks to measure the code size reduction. For
SPEC benchmarks, we treated the train dataset as the user-
given test cases. For CHISEL benchmarks we obtained test
cases from the paper’s authors. We did not apply any heuris-
tics of path finding for this evaluation. As RAZOR works
on binaries, we cannot measure the reduction of source code
lines. Instead, we compare the size of the executable mem-
ory region before and after the debloating, specifically, the
program segments with the executable permission. Figure 6a
shows the code reduction of SPEC benchmarks debloated
by RAZOR. Figure 6b shows the code reduction of CHISEL
benchmarks, debloated by CHISEL and RAZOR.

On average, RAZOR achieves 68.19% code reduction for
SPEC benchmarks and 78.8% code reduction for CHISEL
benchmarks. Especially for dealII, hmmer, gamess, and tar,
RAZOR removes more than 90% of the original code. For
bwaves, zeusmp, and GemsFDTD, RAZOR achieves less than
30% code reduction. We investigated these exceptions and
found that these programs are relatively small and the train

1We appreciate the help of CHISEL authors for sharing the source code
and their benchmarks.

datasets already trigger most of the code.
Meanwhile, CHISEL achieves 83.4% code reduction on

CHISEL benchmarks. For seven programs, CHISEL reduces
more code than RAZOR, while RAZOR achieves higher code
reduction than CHISEL for the other three programs. CHISEL
tends to remove more code as long as the execution result
remains the same. For example, variable initialization code
always gets executed at the function beginning. CHISEL will
remove it if the variable is not used in the execution, while
RAZOR will keep it in the debloated binary. Although CHISEL
performs slightly better than RAZOR on code reduction, we
find that the debloated binaries from CHISEL suffer from
robustness issues (§5.2) and security issues (§5.4).
Other reduction metrics. We also measured RAZOR’s ef-
fectiveness on reducing basic blocks (Figure 7a) and instruc-
tions (Figure 7b) from CHISEL benchmarks and compared
these results with those achieved by CHISEL. On average,
RAZOR removes 53.1% of basic blocks and 63.3% of in-
structions from the original programs, while CHISEL reduces
66.0% of basic blocks and 88.5% of instructions from the
same set of programs. This result is consistent with the code
size reduction, where RAZOR reduces less code, as it can
neither remove any executed-but-unnecessary blocks or in-
structions, nor utilize compiler to aggressively optimize the
debloated code.

5.2 Functionality Validation

We ran the debloated binaries in CHISEL benchmarks against
given test cases to understand their robustness. For each
benchmark, we compiled the original source code to get the
original binary and compiled the debloated source code from
CHISEL to get the CHISEL binary. Then, we used RAZOR to
debloat the original binary with given test cases, generating
the RAZOR binary. Next, we ran the original binary, the
CHISEL binary, and the RAZOR binary again with the test
cases. We examine the execution results to see whether the
required functionalities are retained in the debloated binaries.

Table 2 shows the validation result. RAZOR binaries pro-
duce the same results as those from the original binaries for
all test cases of all programs (the last column), showing the
robustness of the debloated binaries. Surprisingly, CHISEL
binaries only pass the tests of three programs (i.e., chown,

Program Version # of Failed by Chisel Failed
Tests W I C M by Razor

bzip2 1.0.5 6 2 – 2 – – (zLib)
chown 8.2 14 – – – – – (zFunc)
date 8.21 50 5 – 3 – – (zLib)
grep 2.19 26 – – – 6 – (zLib)
gzip 1.2.4 5 – 1 – – – (zLib)
mkdir 5.2.1 13 – – – 1 – (zLib)
rm 8.4 4 2 – – – – (zFunc)
sort 8.16 112 – – – – – (zCall)
tar 1.14 26 3 – – 4 – (zCall)
uniq 8.16 16 – – – – – (zCall)

Table 2: Failed test cases by RAZOR binaries and CHISEL binaries.
CHISEL failed some tests with different reasons: Wrong operations,
Infinite loop, Crashes, and Missing output. For RAZOR binaries, we
show the heuristic that makes the program pass all tests.

sort, and uniq) and trigger some unexpected behaviors for
the other seven programs. Considering that CHISEL verifies
the functionality of the debloating binary, such a low pass-
ing rate is confusing. We checked these failed cases and
the verification process of CHISEL and found four common
issues.

Wrong operation. The debloated program performs unex-
pected operations. For examples, bzip2 should decompress
the given file when the test case specifies the -d option. How-
ever, the binary debloated by CHISEL always decompresses
the file regardless of what option is used. We suspect that
CHISEL only uses one test case of decompression to debloat
the program and thus removes the code that parses command
line options.

Infinite loop. CHISEL may remove loop condition checks,
leading to infinite loops. For example, gzip fails one test case
because it falls into a loop in which CHISEL drops the condi-
tion check. We believe the reason is that the test case used by
CHISEL only iterates the loop one time. The verification step
of CHISEL should identify this problem. However, we found
that the verification script adopts a small timeout (e.g., 0.1s)
and treats any timeout as a successful verification. Therefore,
it cannot detect any infinite loops.

Crashes. The debloated binary crashes during execution.
For example, date crashes three test cases because CHISEL
removes the check on whether the parameters of strcmp are
NULL. bzip2 crashes three test cases for the same reason.

Missed output. CHISEL removes code for printing out on
stdout and stderr, leading to missed results. For example,
grep fails six test cases, as the binary does not print out any
result even through it successfully finds matched strings. We
find that in the verification script of CHISEL, all output of
the debloated binaries is redirected to the /dev/null device.
Therefore, it cannot detect any missing or inconsistent output.

40
30
20
10

0%
20%
40%
60%
80%

100%

bzip
2

ch
ow

n
date grep gzip

mkdir rm sort tar uniq
AVG

cr
as

h
#

<—
>

re
du

ct
io

n
ra

te

none
zCode

zCall
zLib

zFunc

Figure 8: Path finding on CHISEL benchmarks with different heuris-
tics. The top part is the code reduction, while the bottom part is the
number of crashes. ‘none’ means no heuristic is used.

5.3 Effectiveness of Path Finding

We use two sets of experiments to evaluate the effectiveness
of PathFinder on finding the related-code of required func-
tionalities. First, we use RAZOR to debloat programs with
different heuristics, from the empty heuristic to the most ag-
gressive zFunc heuristic, aiming to find the least aggressive
heuristic for each program. Second, we perform N-fold cross
validation to understand the robustness of our heuristic. In
this subsection, we focus on the first experiment and leave
the N-fold cross validation in §5.6.1.

We tested RAZOR on CHISEL benchmarks as follows: (1)
design training inputs and testing inputs that cover the same
set of functionalities; (2) trace programs with the training
inputs and debloat them with none, zCode, zCall, zLib, and
zFunc heuristics; (3) run debloated binaries on testing in-
puts and record the failed cases. The setting of evaluating
PathFinder is given in Table 7 of Appendix A. We use the
same options for training inputs and testing inputs to make
sure that the debloated binaries are tested for the same func-
tionalities as those triggered by the training inputs. The dif-
ference is the concrete value for each option or the file to
process. For example, when creating folders with mkdir, we
use various parameters of the option -m for different file mode
sets. For program bzip2 and gzip, we use different files for
training and testing.

Figure 8 presents our evaluation result, including the code
reduction (the top half) and the number of failed test cases
(the bottom half) under different heuristics. We can see that
debloating with a more aggressive heuristic leads to more
successful executions. All binaries generated without any
heuristic fail on some testing inputs. grep fails on all 38 test-
ing inputs, while chown and rm fail more than half of all tests.
The zCode heuristic helps mitigate the crash problem, like
making grep work on 19 test cases. However, all generated
binaries still fail some inputs. The zCall heuristic further
improves the debloating quality. For program sort, tar, and
uniq, it avoids all previous crashes. With the zLib heuristic,
only two programs (i.e., chown and rm) still have a small num-
ber of failures. In the end, debloating with the zFunc heuristic

1 int fillbuf(...) { ...
2 if (minsize <= maxsize_off)
3 if (...) ...
4 newalloc = newsize+ ...;
5 }

Figure 9: A crash case reduced
by applying zCode heuristic.

1 int fts_safe_changedir(..,){
2 if (dir) {
3 tmp=strcmp(dir,".."); ...
4 } ...
5 }

Figure 10: A crash case reduced
by applying zFunc heuristic.

1 int compare(line *a,line *b) {
2 alen = a->length - 1UL;
3 blen = b->length - 1UL;
4 if (alen == 0UL) {
5 diff = -(blen != 0UL);
6 } else {
7 if (blen == 0UL) {
8 diff = 1;
9 } else { ... }

10 }}

Figure 11: A crash case reduced
by applying zCall heuristic.

1 int main(...) { ...
2 fail = make_dir(..);
3 if (!fail) {
4 if (!create_parents) {
5 if (!dir_created) {
6 tmp_7=gettext("error");
7 error(0,17,tmp_7,tmp_6);
8 fail = 1;
9 ...

10 }}}}

Figure 12: A crash case reduced
by applying zLib heuristic.

reduces all crashes in all programs.
Interestingly, although aggressive heuristics introduce more

code to the debloated binary (shown in the top of Figure 8),
they do not significantly decrease the code reduction. Without
any heuristic, the average code reduction rate of 10 programs
is 78.7%. The number is reduced by −0,4%, 3.8%, 8.8%,
and 12.6% when applying zCode, zCall, zLib, and zFunc
heuristics, respectively. Therefore, even with the most aggres-
sive zFunc heuristic, the code reduction does not decrease
heavily. At the same time, all crashes are resolved, showing
the benefits of applying heuristics. Note that the zCode heuris-
tic slightly increases the code reduction over the no heuristic
case, as it enables more branches of conditional jumps, which
in turn reduces the instrumentation of failed branches.

We investigated the failed cases mitigated by different
heuristics and show some case studies as follows:
(1) The zCode heuristic enables the non-taken branch for
executed conditional jumps. Figure 9 shows part of the func-
tion fillbuf of program grep that fails if we do not use the
zCode heuristic. The training inputs always trigger the true
branch of the condition at line 2 and jump to line 3, which
in turn reach line 4. However, in the execution of testing
inputs, the conditional at line 2 takes the false branch (i.e.,
minsize > maxsize_off) and triggers the jump from line 2
to line 4. This branch is not allowed from execution traces.
The zCode heuristic enables this branch, as line 4 has been
reached in the previous execution.
(2) The zCall heuristic includes alternative paths that do not
trigger any call instructions. Figure 11 shows an example
where the zCall heuristic helps include necessary code in the
debloated binary. Function compare in program sort uses
a sequence of comparisons to find whether two text lines
are different. Since the training inputs have no empty lines,
the condition at line 4 and line 7 always fails. However, the
testing inputs contain empty lines, which makes these two
conditional jumps take the true branches. The zCode heuris-

Program CVE Orig Chisel Razor

bzip2-1.0.5

CVE-2010-0405 ✓
CVE-2011-4089* ✗
CVE-2008-1372 ✗ ✔
CVE-2005-1260 ✗ ✔

chown-8.2 CVE-2017-18018* ✓ ✘ ✘
date-8.21 CVE-2014-9471* ✓ ✘

grep-2.19 CVE-2015-1345* ✓ ✘ ✘
CVE-2012-5667 ✗ ✔

gzip-1.2.4
CVE-2005-1228* ✓ ✘ ✘
CVE-2009-2624 ✓
CVE-2010-0001 ✓ ✘ ✘

mkdir-5.2.1 CVE-2005-1039* ✓
rm-8.4 CVE-2015-1865* ✓
sort-8.16 CVE-2013-0221* ✗
tar-1.14 CVE-2016-6321* ✓ ✘
uniq-8.16 CVE-2013-0222* ✗

Table 3: Vulnerabilities before and after debloating by RAZOR and
CHISEL. ✓ means the binary is vulnerable to the CVE, while ✗

mean it is not vulnerable. CVEs with ∗ are evaluated in [15].

tic adds lines 5 and 8 and related branches to the debloated
program, which effectively avoids this crash.
(3) The zLib heuristic allows extra calls to native functions
or library functions if they have been used in traces. It helps
avoid a crash in program mkdir when we use the debloated
binary to change the file mode of an existing directory. Fig-
ure 12 shows the related code, which crashes because of the
missing code from line 6 to line 9. Since mkdir does not
allow changing the file mode of an existing directory, the
code first invokes function gettext to get the error message
and then calls library function error to report the error. The
zLib heuristic includes this path in the binary because both
gettext and error are invoked by some training inputs.
(4) The zFunc heuristic includes alternative paths that invoke
similar library functions. Figure 10 shows the code that causes
rm to fail without this heuristic. When rm deletes a folder that
contains both files and folders, it triggers the code at line 3 to
check whether it is traversing to the parent directory. Since the
training inputs never call strcmp, the debloated binary fails
even with the zLib heuristic. However, the training inputs
ever invoke function strncmp, which has the functionality
similar to strcmp (i.e., string comparison). Therefore, the
zFunc heuristic adds this code in the debloated binary.

The results show that PathFinder effectively identifies
related-code that completes the functionalities triggered by
training inputs. It enhances the robustness of the debloated
binaries while retaining the effectiveness of code reduction.

5.4 Security Benefits

We count the number of reduced bugs to evaluate the se-
curity benefit of our debloating. For each program in the
CHISEL benchmark, we collected all its historical vulnera-

bilities, including the ones shown in the current version and
the ones only in earlier versions. For the former bugs, we
check whether the buggy code has been removed by the de-
bloating process. If so, the debloating process helps avoid
related attacks. For the latter bugs, we figure out whether
their patches are retained in the debloated binary. If not, the
debloated process makes the program vulnerable again. Ta-
ble 3 shows our evaluation result, including 16 CVEs related
to CHISEL benchmarks. 13 bugs are shown in the current
version, and 10 of them are evaluated in [15] (followed by *).
Three bugs only exist in older versions (i.e., CVE-2010-0405,
CVE-2009-2624, and CVE-2010-0001).

RAZOR successfully removes four CVEs from the original
binaries and does not introduce any new bugs. Specifically,
CVE-2017-18018 in chown, CVE-2015-1345 in grep, CVE-
2005-1228 and CVE-2010-0001 in gzip are removed in the
debloated binaries. Six vulnerabilities from bzip, date, gzip,
mkdir, rm, and tar remain, as the test cases execute related
vulnerable code. Another six vulnerabilities are not caused by
the binary itself. For example, CVE-2011-4089 is caused by
the race condition of the bash script bzexe, not by the bzip2
binary. Therefore, RAZOR will not disable such bugs.

With a more aggressive code removal policy, CHISEL dis-
ables two more CVEs than RAZOR, but unfortunately brings
three old bugs to the debloated binaries. Specifically, CHISEL
removes the vulnerable code of CVE-2014-9471 from date
and the code of CVE-2016-6321 from tar. Meanwhile, it re-
moves the patches of CVE-2008-1372 and CVE-2005-1260 in
bzip2, and CVE-2012-5667 in grep, rendering the debloated
binaries vulnerable to these already-fixed bugs.

Compared to CHISEL, RAZOR removes the bloated code
in a conservative way. Although such strategy may hinder
removing more bugs, but it also helps avoid new bugs in the
debloated binary. This result is consistent with our findings
in §5.2, where CHISEL achieves higher code reduction but
fails some expected functionalities.

Reduction of ROP gadgets. We also measured the reduc-
tion of ROP gadgets. Once the attacker is able to divert the
control-flow, the number of reusable ROP gadgets indicate
the vulnerability of the program to control-flow hijacking
attacks. Figure 7c show that RAZOR reduces 61.9% ROP gad-
gets, while CHISEL reduces 85.1% ROP gadgets. Although
RAZOR achieves less ROP gadget reduction, this result is
expected. In the design of RAZOR, we intentionally pay more
attention on preventing forward-edge control-flow attacks,
where attackers corrupt function pointers, instead of return
addresses, to diver the control-flow. As shadow stack tech-
nique are getting deployed in compilers [24] and even hard-
ware [19], our technique of indirect call/jump concretization
(§3.3.2) complements existing practical return-protections to
achieve complete control-flow integrity.

-2%

0%

2%

4%

6%

8%

pe
rlb

en
ch

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
hm

m
er

sj
en

g
G

em
sF

D
TD

lib
qu

an
tu

m
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
w

rf
sp

hi
nx

3
xa

la
nc

bm
k

AV
ER

A
G

E

16% Razor

Figure 13: Performance overhead by RAZOR on SPEC CPU R⃝2006
benchmarks. The average overhead is 1.7%.

5.5 Performance Overhead

Efficient Debloating. On average, RAZOR takes 1.78
seconds to debloat CHISEL benchmarks, 8.51 seconds for de-
bloating Firefox, and 50.42 seconds to debloat FoxitReader
As a comparison, CHISEL has to spend one to 11 hours to
debloat the relatively small CHISEL benchmarks. Therefore,
RAZOR is a practical debloating tool.
Runtime Overhead. We measured the performance over-
head introduced by RAZOR to SPEC benchmarks and show
the result in Figure 13. On average, RAZOR introduces 1.70%
overhead to debloated programs, indicating its efficiency for
real-world deployment. The highest overhead occurs on the
debloated perlbench binary, which slows the execution by
16%. We inspected the debloated programs and confirmed
that the indirect call concretization is the main source of the
performance overhead. With the indirect call concretization,
one indirect call instruction is replaced by several comparison
and direct calls. For perlbench, some indirect call instruc-
tions have more than 100 targets. Correspondingly, RAZOR
introduces a large number of if-else there, leading to a high
performance overhead. We deployed the frequency-based
optimization and reduced the overhead from over 100% to the
current 16%. We plan to use binary search to replace current
one-by-one matching in order to further reduce the overhead.

5.6 Debloating Real-world Programs
To evaluate the practicality, we used RAZOR to debloat
two widely used software programs – the web browser
Firefox and the closed-sourced PDF reader FoxitReader.
For Firefox, we ran RAZOR to load the top 50 Alexa web-
sites [28]. We randomly picked 25 websites as the training
inputs and used the other 25 websites as the testing inputs.
For FoxitReader, we ran RAZOR to open and scroll 55 dif-
ferent PDF files that contain tables, figures, and JavaScript
code. We randomly picked 15 of them as the training inputs
and used the other 40 files as the testing inputs.
Code reduction and functionality. Table 4 shows the code
reduction rate and the number of failed cases of debloated
binaries with different path-finding heuristics. Both Firefox

Heuristic FireFox FoxitReader
crash-sites reduction crash-PDFs reduction

none 13 67.6% 39 89.8%
zCode 13 68.0% 10 89.9%
zCall 2 63.1% 5 89.4%
zLib 0 60.1% 0 87.0%
zFunc 0 60.0% 0 87.0%

Table 4: Debloating Firefox and FoxitReader with RAZOR, to-
gether with diffferent path-finding heuristics.

and FoxitReader require at least the zLib heuristic to obtain
crash-free binaries, with 60.1% and 87.0% code reduction,
respectively. Without heuristics, Firefox fails on 13 out of
25 websites and FoxitReader fails on 39 out of 40 PDF files.
The zCode heuristic helps reduce FoxitReader crashes to 10
PDF files and increases the code reduction by avoiding fault-
handling instrumentation. The zLib and the zFunc heuristic
eliminate all crashes. Compared with the non-heuristic de-
bloating, the zLib heuristic only decreases the code reduc-
tion rate by 7.5% for Firefox and by 2.8% for FoxitReader.
Therefore, it is worth using this heuristic to generate robust
binaries.

Performance overhead. We ran the debloated Firefox
(with zLib) on several benchmarks and found that RAZOR
introduces −2.1%, 1.6%, 0%, and 2.1% overhead to Octane
[33], SunSpider [34], Dromaeo-JS [30], and Dromaeo-DOM
[29] benchmarks. For FoxitReader, we did not find any
standard benchmark to test the performance. Instead, we used
the debloated binaries to open and scroll the testing PDF files
and did not find any noticeable slowdown.

Application – per-site browser isolation. As one applica-
tion of browser debloating, we can create minimal versions
that support particular websites, effectively achieving per-site
isolation [38, 21, 48] . For example, the bank can provide its
clients a minimal browser that only supports functionalities
required by its website while exposing the least attack surface.
To measure the benefit of the per-site browser, we applied RA-
ZOR on three sets of popular and security-sensitive websites:
banking websites, websites for electronic commerce, and so-
cial media websites. Table 6 shows the debloating result, the
used path-finding heuristic and the security benefits over the
general debloating in Table 4. As we can see, the banking
websites can benefit with at least 5.0% code reduction for
the per-site minimal browser. The E-commerce websites will
have around 3.0% extra code reduction, a little less because of
its high requirement on user interactions. Surprisingly, social
media websites can benefit by up to 8.5% extra code reduc-
tion and at least 4.2% when supporting all three websites. We
believe the minimal web browser through binary debloating
is a practical solution for improving web security.

Train/Test ID #Failed Reduction failed websites

20/30

T10 1 59.3% wordpress.com
T11 0 59.3%
T12 1 59.3% wordpress.com
T13 1 59.3% twitch.tv
T14 1 59.3% wordpress.com
T15 1 59.5% wordpress.com
T16 2 59.5% twitch.tv, wordpress.com
T17 1 59.3% twitch.tv
T18 1 59.3% twitch.tv
T19 2 59.6% wordpress.com, twitch.tv

25/25

T00 0 59.3%
T01 2 59.1% wordpress.com, twitch.tv
T02 2 59.3% wordpress.com, twitch.tv
T03 2 59.1% wordpress.com, twitch.tv
T04 0 59.2%
T05 1 59.1% aliexpress.com
T06 0 59.2%
T07 0 59.1%
T08 2 59.3% wordpress.com, twitch.tv
T09 0 59.1%

Table 5: N-fold validation of zLib heuristic on Firefox. First, we
randomly split Alexa’s Top 50 websites into five groups, and select
two groups (20 websites) as the training set and others (30 websites)
as the test set for 10 times. Second, we randomly split the 50 website
into 10 groups, and select five groups (25 websites) as the training
set, and others (25 websites) as the test set for 10 times.

5.6.1 N-fold Cross Validation of Heuristics

To further evaluate the effectiveness of our heuristics, we
conducted N-fold cross validation on Firefox with the zLib
heuristic, as it is the least aggressive heuristic that renders
Firefox crash-free.We performed two sets of evaluations and
show the result in Table 5. First, we randomly split Alexa’s
Top 50 websites into five groups, 10 websites per group.
We picked two groups (20 websites) for training and used
the remaining 30 websites for testing. We performed this
evaluation 10 times. The result in the table shows that during
one test with ID T11, the debloated Firefox successfully
loads and renders 30 testing websites. The debloated Firefox
fails two websites (6.7%) seven times and fails one website
(3.3%) two times. Second, we randomly split Alexa’s Top
50 websites into 10 groups, five websites per group. We
randomly picked five groups (25 websites) for training and
used the others (25 websites) for testing. We performed this
evaluation 10 times. The result shows that, in five times, the
debloated Firefox loads and successfully renders the tested
25 websites. The debloated Firefox fails one (4%) website
one time and fails two websites (8%) four times. The code
size reduction is consistently round 60%. These results show
that our heuristics are effective for inferring non-executed
code with similar functionalities of training inputs. Among all
the tests, only three websites trigger additional code and the
program gracefully exits with warning information. We plan
to check these websites to understand the failure reasons.

We also manually checked what code of Firefox

Type Site Reduction Heuristic Benefits

Banking

bankofamerica.com 69.4% zCall +6.3%
chase.com 69.6% zCall +6.5%
wellsfargo.com 68.8% zCall +5.7%
all-3 68.1% zCall +5.0%

E-commerce

amazon.com 71.4% none +3.8%
ebay.com 70.7% none +3.1%
ikea.com 70.6% none +3.0%
all-3 70.4% none +2.8%

Social Media

facebook.com 70.8% zCall +7.7%
instagram.com 71.6% zCall +8.5%
twitter.com 74.0% none +6.4%
all-3 71.8% none +4.2%

Table 6: Per-site browser debloating

was removed. We find that code related to features
such as record/replay, integer/string conversion, compres-
sion/decompression are removed.

6 Discussions

Best-effort path inference. Mapping high-level functionali-
ties to low-level code is known to be challenging, especially
when source code is unavailable. RAZOR empirically adopts
control-flow-based heuristics to infer more related-code with
its best effort. We understand that such a heuristic cannot
guarantee the completeness or soundness of the path infer-
ence, and the debloated binary may miss necessary code (i.e.,
code for handling different environment variables) or include
unnecessary ones (like some initialization code). However,
we noticed that the heuristic-based method has been widely
used in binary analysis and rewriting [53, 52]. With the exe-
cution trace, RAZOR is able to mitigate some limitations of
these works, such as finding indirect call targets. Further, the
evaluation result demonstrates that our control-flow-based
heuristics are practically effective.
CFI and debloating. Control-flow integrity (CFI) enforces
that each indirect control-flow transfer (i.e., indirect call/jump
and return) goes to legitimate targets [1]. It prevents malicious
behaviors that are unexpected by program developers. In con-
trast, software debloating removes benign-but-unnecessary
code based on users’ requirements. For example, if function
A is designed to be a legitimate target of an indirect call i,
CFI will allow the transfer from i to A. However, if the user
does not need the functionality in A, software debloating will
disable the transfer and completely remove the function code.
In fact, CFI and debloating are complementary to each other.
On the one hand, debloating achieves a coarse-grained CFI
where an attacker can only divert the control-flow to remain-
ing code. It also simplifies the analysis required by some CFI
works [50, 37] because of a smaller code base. On the other
hand, existing CFI works provide fundamental platforms for
enforcing debloating. For example, RAZOR makes use of
several binary analysis techniques developed in binCFI [53]

for optimization.

Library debloating. We tried to use RAZOR to debloat sys-
tem libraries for each program. Our tool works well on some
libraries (e.g., libm.so and libgcc.so), but fails on others.
For example, the debloated libc.so triggers a different exe-
cution path even if we aggressively include more related-code
with the zFunc heuristic. After inspecting the failure cases on
libc.so, we found that its execution path is very sensitive to
the change of the execution environment. One reason is that
libc.so contains a lot of highly optimized code for memory
or string operations (e.g., memcmp), which, based on the argu-
ment value, choose the most efficient implementation. For
example, function strncmp implements 16 different subrou-
tines to process strings with different alignments. Another
reason is that it performs different executions according to
the process status. For example, for each memory allocation,
malloc searches a set of cached chunks and picks up the first
available one. Inputs with different sizes may cause malloc
to walk through a complete non-executed path. From such a
preliminary result, we plan to develop library-specific heuris-
tics to handle environment-sensitive executions. For example,
we can perform debloating on the function level instead of
the current basic block level. We also plan to explore existing
library debloating solutions that work on source code [40]
and port them into binaries if necessary.

Removing original code. The current design of RAZOR
keeps the original code section inside the debloated program
and changes its permission to read-only to reduce the attack
surface. This design simplifies the handling of potential data
inside the code section, which the program may read for
special purposes. For example, LLVM will emit jump tables
in the code section to support efficient switch statements [11],
and the indirect jump instruction will obtain its targets by
reading the table. To further reduce the program size and
memory usage, we can completely remove the original code
section as follows: 1) during the execution tracing, we set
the original code section to execute-only [11] so that any
read from the code section will trigger the exception and
can be logged by Tracer; 2) we perform backward data-flow
analysis to identify the source of the data pointer used for each
logged memory access; 3) during the binary synthesization,
we relocate the data from the original code section to a new
data section and update the new code to visit the new location.
In this way, we are able to handle the challenging problem of
data relocation during binary rewriting. In fact, we performed
a study to understand the prevalence of these problems and
found that for all the programs tested in the paper, none of
them ever reads any data from the code section, given the
test cases we used. In these cases, we can simply remove the
original code section to minimize the file size and memory
footprint.

Future work. We will release the source code of RAZOR.
We plan to extend the platform to support binaries in more

formats and architectures, including shared libraries, 32-bit
binaries, Windows PE programs, MacOS March-O programs,
and ARM binaries. At the same time, we will design more
security-related heuristics to make RAZOR support various
real-world situations.

7 Related Work

Library debloating. Program libraries are designed to
support a large number of functionalities for different users.
Library debloating customizes the general code base for each
program and leads to significant code reduction. Mulliner
et al. propose CodeFreeze to remove the unnecessary func-
tionalities from Windows shared libraries [36]. They start
from per-library control-flow analysis to identify the code
dependency of each exported function. Then they check the
program binary to find all required library functions. By
stitching program required functions and per-library CFG,
they rewrite the library to remove unreachable code region.
Similarly, Quach et al. [40] present library debloating through
piece-wise compilation and loading. Instead of customizing
the library for each program, they split the large library into
small groups based on the control-flow dependency. At run-
time, they use a customized loader to rewrite the library code
to remove unnecessary functions. Jiang et al. [23, 22] pro-
pose to remove dead code from Android Apps, Java Runtime
Environment, and SDKs. Our system is different from library
debloating in two ways. First, previous work performs the
binary rewriting at the beginning of each process, leading
to performance overhead for each execution, while RAZOR
generates the debloated binary through static binary rewrit-
ing, which is only performed once and used forever. Second,
library debloating utilizes static analysis to find the unused
code and has to conservatively keep all potentially useful
code. In contrast, our system relies on a dynamic execution
trace to locate the code that is executed during tracing or
inferred with our heuristic and removes all others.
Delta debugging. Delta debugging is proposed to minimize
bug-triggering inputs. For example, Regehr et al. [42] pro-
pose C-Reduce to generate a smaller test cases efficiently. Sun
et al. [49] present Perses, which exploits formal syntax to
generate smaller and functionally equivalent program in a
timely manner. Recently, Heo et al. [15] proposed CHISEL
to use reinforcement learning for further speeding up the
delta debugging process. However, the programs generated
by delta debugging only support given test cases, while real-
world software usually has an infinite number of test cases for
certain functionalities. Instead, RAZOR takes control-flow-
based heuristics to infer more related-code that is necessary
to complete the required functionalities.
Source code debloating. Several recent works use pro-
gram analysis to debloat programs. Bu et al. [8] propose a
bloat-ware design paradigm that analyzes Java source code to
optimize object allocations to avoid memory usage bloating

at runtime. Sharif et al. [44] propose Trimmer, which prop-
agates a user-provided configuration to program code and
utilizes the compiler optimization to reduce code size. These
systems, as well as [42, 49, 15], rely on the complicated anal-
ysis of program source code, which is not always available
for deployed programs. In contrast, RAZOR only requires
program binaries, making it more practical for deployment.
Container Debloating. Containers are becoming more pop-
ular, and their code base is bloated. Guo et al. [14] proposed
a method to monitor the program execution to identify neces-
sary resources and create a minimal container for the traced
program. Rastogi et al. [41] developed Cimplifier, which
uses dynamic analysis to collect resource usages for different
programs and partitions the original container into a set of
smaller ones based on user-defined policies. The resulting
containers only have resources to run one or more executable
programs. The design of RAZOR is also applicable for de-
bloating containers or other systems. For example, Intel PT
supports tracing operating systems.
Hardware Debloating. Nowadays, hardware devices are
also bloated. For example, general-purpose processors are
overly designed for specific applications, such as implanta-
bles, wearables, and IoT devices. Cherupalli et al. propose an
approach that automatically removes unused gates from the
design of a general-purpose processor to generate a bespoke
processor for a specific application [10]. On average, the
approach can reduce the area by 62% and the power by 50%
from the general processor. Currently, software debloating
and hardware debloating are performed separately. An in-
teresting direction is to consider both hardware devices and
software programs to find more debloating space.

8 Conclusion

In this paper, we presented RAZOR, a framework for prac-
tical software debloating on program binaries. It utilizes a
set of test cases and control-flow-based heuristics to collect
necessary code to support user-expected functionalities. The
debloated binary has a reduced attack surface, improved se-
curity guarantee, robust functionality, and efficient execution.
Our evaluation shows that RAZOR is a practical framework
for debloating real-world programs.

Acknowledgment

We thank the anonymous reviewers, and our shepherd,
Michael Bailey, for their helpful feedback. This research
was supported in part by the DARPA Transparent Computing
program under contract DARPA-15-15-TC-FP006, by the
ONR under grants N00014-17-1-2895, N00014-15-1-2162
and N00014-18-1-2662. Any opinions, findings, conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of DARPA
and ONR.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, 2005.

[2] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia
Slowinska, and Herbert Bos. An In-Depth Analysis
of Disassembly on Full-Scale x86/x64 Binaries. In
Proceedings of the 25th USENIX Security Symposium
(USENIX), 2016.

[3] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-Agnostic Function Detection in Binaries. In
Proceedings of the 2nd IEEE European Symposium on
Security and Privacy, 2017.

[4] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. BYTEWEIGHT: Learning
to Recognize Functions in Binary Code. In Proceedings
of the 23rd USENIX Conference on Security Symposium,
2014.

[5] Erick Bauman, Zhiqiang Lin, and Kevin Hamlen. Su-
perset Disassembly: Statically Rewriting x86 Binaries
Without Heuristics. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium,
2018.

[6] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the 2005 USENIX Annual
Technical Conference, 2005.

[7] Derek Bruening and Saman Amarasinghe. Efficient,
Transparent, and Comprehensive Runtime Code Manip-
ulation. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Com-
puter Science, 2004.

[8] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J.
Carey. A Bloat-aware Design for Big Data Applications.
In Proceedings of the 2013 International Symposium on
Memory Management, 2013.

[9] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen,
Michael Franz, Stefan Brunthaler, and Mathias Payer.
Control-Flow Integrity: Precision, Security, and Perfor-
mance. ACM Comput. Surv., 2017.

[10] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh
Kumar, and John Sartori. Bespoke Processors for Ap-
plications with Ultra-low Area and Power Constraints.
In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, 2017.

[11] Stephen Crane, Christopher Liebchen, Andrei Homescu,
Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan
Brunthaler, and Michael Franz. Readactor: Practical
Code Randomization Resilient to Memory Disclosure.
In Proceedings of the 36th IEEE Symposium on Security
and Privacy, 2015.

[12] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out of Control: Overcoming
Control-Flow Integrity. In Proceedings of the 35th IEEE
Symposium on Security and Privacy, 2014.

[13] Google. V8 JavaScript Engine. https://chromium.
googlesource.com/v8/v8.git.

[14] Philip J. Guo and Dawson Engler. CDE: Using System
Call Interposition to Automatically Create Portable Soft-
ware Packages. In Proceedings of the 2011 USENIX
Annual Technical Conference, 2011.

[15] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and
Mayur Naik. Effective Program Debloating via Rein-
forcement Learning. In Proceedings of the 25th ACM
SIGSAC Conference on Computer and Communications
Security, 2018.

[16] Gerard J. Holzmann. Code Inflation. IEEE Software,
32(2), Mar 2015.

[17] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon
Pak Ho Chung, William R. Harris, Taesoo Kim, and
Wenke Lee. Enforcing Unique Code Target Property for
Control-Flow Integrity. In Proceedings of the 25th ACM
Conference on Computer and Communications Security,
2018.

[18] ImageTragick. ImageMagick Is On Fire: CVE-2016-
3714. https://imagetragick.com/.

[19] Intel. Control-Flow Enforcement Technology Pre-
view. https://software.intel.com/sites/
default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf.

[20] Intel Corporation. Intel R⃝ 64 and IA-32 Architectures
Software Developer’s Manual, volume 3 (3A, 3B, 3C &
3D): System Programming Guide. November 2018.

[21] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen,
Prateek Saxena, and Zhenkai Liang. The Web/Local
Boundary Is Fuzzy: A Security Study of Chrome’s
Process-based Sandboxing. In Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2016.

[22] Y. Jiang, D. Wu, and P. Liu. JRed: Program Customiza-
tion and Bloatware Mitigation Based on Static Analysis.
In 2016 IEEE 40th Annual Computer Software and Ap-
plications Conference, 2016.

https://chromium.googlesource.com/v8/v8.git
https://chromium.googlesource.com/v8/v8.git
https://imagetragick.com/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

[23] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and
Dinghao Wu. RedDroid: Android Application Redun-
dancy Customization Based on Static Analysis. In Pro-
ceedings of the 29th IEEE International Symposium on
Software Reliability Engineering, 2018.

[24] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-
Pointer Integrity. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation, 2014.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing Customized Program Analysis Tools with Dynamic
Instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, 2005.

[26] Haoyu Ma, Kangjie Lu, Xinjie Ma, Haining Zhang,
Chunfu Jia, and Debin Gao. Software Watermarking
Using Return-Oriented Programming. In Proceedings
of the 10th ACM Symposium on Information, Computer
and Communications Security, 2015.

[27] John Martellaro. Why Your iPhone Uses PNG
for Screen Shots and JPG for Photos. https:
//www.macobserver.com/tmo/article/why-
your-iphone-uses-png-for-screen-shots-
and-jpg-for-photos.

[28] The Top 500 Sites on the Web. https://www.alexa.
com/topsites.

[29] Dromaeo-DOM. http://dromaeo.com/?dom.

[30] Dromaeo-JS. http://dromaeo.com/?dromaeo.

[31] The Heartbleed Bug. http://heartbleed.com/.

[32] Function and Macro Index. https://www.gnu.org/
software/libc/manual/html_node/Function-
Index.html.

[33] Octane. https://chromium.github.io/octane.

[34] SunSpider. https://webkit.org/perf/
sunspider-1.0.2/sunspider-1.0.2/driver.
html.

[35] CVE-2014-0038: Privilege Escalation in
X32 ABI. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0038, 2014.

[36] Collin Mulliner and Matthias Neugschwandtner. Break-
ing Payloads with Runtime Code Stripping and Image
Freezing. In Black Hat USA Briefings (Black Hat USA),
Las Vegas, NV, August 2015.

[37] Ben Niu and Gang Tan. Per-Input Control-Flow In-
tegrity. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security,
2015.

[38] The Chromium Projects. Site Isolation.
https://www.chromium.org/Home/chromium-
security/site-isolation.

[39] Anh Quach, Rukayat Erinfolami, David Demicco, and
Aravind Prakash. A Multi-OS Cross-Layer Study of
Bloating in User Programs, Kernel and Managed Exe-
cution Environments. In Proceedings of the 2017 Work-
shop on Forming an Ecosystem Around Software Trans-
formation, 2017.

[40] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
Software through Piece-Wise Compilation and Loading.
In Proceedings of the 27th USENIX Security Symposium,
2018.

[41] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli,
Somesh Jha, and Patrick McDaniel. Cimplifier: Auto-
matically Debloating Containers. In Proceedings of the
11th Joint Meeting on Foundations of Software Engi-
neering, 2017.

[42] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case Reduc-
tion for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2012.

[43] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit Object-oriented Programming: On the Diffi-
culty of Preventing Code Reuse Attacks in C++ Appli-
cations. In Proceedings of the 36th IEEE Symposium on
Security and Privacy, 2015.

[44] Hashim Sharif, Muhammad Abubakar, Ashish Gehani,
and Fareed Zaffar. TRIMMER: Application Specializa-
tion for Code Debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering, 2018.

[45] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing Functions in Binaries with Neural Net-
works. In Proceedings of the 24th USENIX Conference
on Security Symposium, 2015.

[46] Igor Skochinsky. Compiler Internals: Excep-
tions and RTTI. http://www.hexblog.com/wp-
content/uploads/2012/06/Recon-2012-
Skochinsky-Compiler-Internals.pdf, 2012.

https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.alexa.com/topsites
https://www.alexa.com/topsites
http://dromaeo.com/?dom
http://dromaeo.com/?dromaeo
http://heartbleed.com/
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://chromium.github.io/octane
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf

[47] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-In-Time Code Reuse: On the Effective-
ness of Fine-Grained Address Space Layout Random-
ization. In Proceedings of the 34th IEEE Symposium on
Security and Privacy, 2013.

[48] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most
Websites Don’t Need to Vibrate: A Cost-Benefit Ap-
proach to Improving Browser Security. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[49] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu,
and Zhendong Su. Perses: Syntax-guided Program
Reduction. In Proceedings of the 40th International
Conference on Software Engineering, 2018.

[50] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano,
and Geoff Pike. Enforcing Forward-edge Control-Flow
Integrity in GCC & LLVM. In Proceedings of the 23rd
USENIX Security Symposium, 2014.

[51] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi,
Aravind Machiry, John Grosen, Paul Grosen, Christo-
pher Kruegel, and Giovanni Vigna. Ramblr: Making
Reassembly Great Again. In Proceedings of the 24th
Annual Network and Distributed System Security Sym-
posium, 2017.

[52] Shuai Wang, Pei Wang, and Dinghao Wu. Reassem-
bleable Disassembling. In Proceedings of the 24th
USENIX Conference on Security Symposium, 2015.

[53] Mingwei Zhang and R. Sekar. Control Flow Integrity
for COTS Binaries. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

Appendix

A Settings for Evaluating PathFinder

Program Training
Set Size

Testing
Set Size Options

bzip2 10 30 -c
chown 6 17 -h, -R
date 22 33 –date, -d, –rfc-3339, -utc
grep 19 38 -a, -n, -o, -v, -i, -w, -x
gzip 10 30 -c
mkdir 12 24 -m, -p
rm 10 20 -f, -r
sort 12 28 -r, -s, -u, -z
tar 10 30 -c, -f
uniq 24 40 -c, -d, -f, -i, -s, -u, -w

Table 7: Settings for evaluating PathFinder on the CHISEL bench-
marks. We use the training set to debloat the binary, and run the
generated code with the testing set. The last column is the options
we pass to the binaries during training and testing.

	Introduction
	Problem
	Motivating Example
	Program Debloating
	Challenges and Solutions

	System Design
	Execution Trace Collection
	Heuristic-based Path Inference
	Debloated Binary Synthesization
	Basic Block Symbolization
	Indirect Call/Jump Concretization
	Fault Handling

	Implementation
	[0.5]Tracer Implementations
	Update ELF Exception Handler

	Evaluation
	Code Reduction
	Functionality Validation
	Effectiveness of Path Finding
	Security Benefits
	Performance Overhead
	Debloating Real-world Programs
	N-fold Cross Validation of Heuristics

	Discussions
	Related Work
	Conclusion
	Settings for Evaluating PathFinder

