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SUMMARY

Large-scale internet services, such as Facebook or Google, are using clusters of many

servers for problems such as search, machine learning, and social networks. However,

while it may be possible to apply the tools used at this scale to smaller, more common

problems as well, this dissertation presents approaches to large-scale data processing on

only a single machine. This approach has obvious cost benefits and lowers the barrier

of entrance to large-scale data processing. This dissertation approaches this problem by

redesigning applications to enable trillion-scale graph processing on a single machine while

also enabling the processing of evolving, billion-scale graphs.

First, this dissertation presents a new out-of-core graph processing engine, called

MOSAIC, for executing graph algorithms on trillion-scale datasets on a single machine.

MOSAIC makes use of many-core processors and fast I/O devices coupled with a novel

graph encoding scheme to allow processing of graphs of up to one trillion edges on a single

machine. MOSAIC also employs a locality-preserving, space-filling curve to allow for high

compression and high locality when storing graphs and executing algorithms.

Second, while MOSAIC addresses the setting of processing static graph, this dissertation

presents CYTOM, a new engine for processing billion-scale evolving graphs based on

insights about achieving high compression and locality while improving load-balancing

when processing a graph that changes rapidly. CYTOM introduces a novel programming

model that takes advantage of its subgraph-centric approach coupled with the setting of

evolving graphs. This is an important enabling step for emerging workloads when processing

graphs that change over time. CYTOM’s programming model allows algorithm developers

to quickly react to graph updates, discarding uninteresting ones while focusing on updates

that, in fact, change the algorithmic result.
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CHAPTER 1

INTRODUCTION

Processing ever-larger datasets has become a common theme in recent years and is commonly

deployed on large cluster across hundreds of machines. Frameworks such as Spark [1]

and Hadoop [2] are widely used to process large, tera-scale datasets and solve non-trivial

algorithmic problems. A subdomain of this data processing area is graph processing which

has recently been demonstrated to scale to a scale of one trillion edges [3, 4, 5] by companies

and academia alike. Graphs and their processing are the basic building blocks to solve

various problems ranging from data mining, machine learning, scientific computing to

social networks and the world wide web. In this dissertation, we explore approaches to

allow scaling graph processing to the trillion-scale using only a single machine. This is an

important stepping stone to scale up datasets and algorithms which use graph processing as

an underlying layer. We also want to highlight the contributions made by this dissertation in

an ever-more connected world: In a future with autonomous, connected vehicles, processing

the evolving road graph and calculating shortest routes given changing congestion levels

is a fitting scenario for the systems presented in this dissertation, given that this setting

is inherently bound to the processing power of a single, on-board machine. Additionally,

while we demonstrate the contributions for processing both static and evolving graphs

using a single machine, we also discuss our contributions on applications for the distributed

counterparts of graph processing systems as well.

However, to achieve trillion-scale processing of static graphs and billion-scale processing

of evolving graphs, we argue that key system design challenges have to be addressed.

These challenges include the size of the data set, load-balancing, fault tolerance, and

support for graph algorithms. To address these challenges, this dissertation presents two

approaches, MOSAIC and CYTOM, to allow scaling of big-data applications on a single
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system design for processing billion-scale evolving graphs with CYTOM.

machine, Figure 1.1 gives an overview of the applicability of these techniques.

We first focus at a design-level optimization that improves processing of trillion-scale,

static graphs using a novel subgraph-centric encoding of the graph which is built into a

system called MOSAIC. This encoding lends itself well to compressing the size of the dataset

as well as load-balancing the processing of these subgraphs. Both properties are essential

when scaling to the trillion-scale on just a single machine, with constrained memory and

a limited number of CPUs as compared to distributed systems. MOSAIC can also take

advantage of a heterogeneous hardware setup with fast I/O devices and massively-parallel,

many-core coprocessors.

On the other hand, we introduce CYTOM, a system to scale the processing of evolving

or streaming graphs to the billion-scale, supporting more than hundred million updates per

second on a single machine. CYTOM is built around a subgraph-centric encoding, similar

to MOSAIC, however optimizes on MOSAIC’s encoding by eliminating the need for meta

data to be stored alongside tiles as well as allowing dynamic updates of its subgraphs

compared to MOSAIC’s immutable subgraph structure. CYTOM also proposes a set of APIs

specifically tailored at the setting of evolving graphs to take advantage of the dynamic

nature of updates, allowing the algorithm developer to cut down on unnecessary work when

handling uninteresting updates that would not result in a change of the algorithmic result.
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We will next discuss the specific problems addressed by both the design-level approaches

as well as the OS-level approaches in detail.

1.1 Statement of Problem

• Graph abstraction for compression and performance: Graph datasets are contin-

uously growing and have recently crossed the trillion edge threshold for a number

of popular services (e.g., Facebook). To allow storing larger graphs, compression

of the graph data is an important feature but is usually associated with a runtime

penalty when executing algorithms due to the computation needed to decompress data.

To address this problem, MOSAIC [6] presents a simple scheme to allow for both

compression as well as high computation performance by focusing on subgraphs. In

addition, we demonstrate with CYTOM that a subgraph-centric approach can not only

yield benefits in the setting of processing static graphs but is also applicable in the

setting of processing evolving graphs that change over time. In fact, CYTOM proposes

an encoding scheme that improves on the one presented by MOSAIC by removing the

need for metadata to map subgraphs to the global pendants. This is of importance in

the case of evolving graphs as the requirements call for lowered overhead of graph

manipulations as well as efficiency for algorithmic processing.

• Graph processing architecture to incorporate many-core processors: Modern

servers can be equipped with accelerators such as GPGPUs or Intel Xeon Phis to

allow applications’ to accelerate critical computation tasks. However, leveraging these

devices for processing large, tera-scale graphs is not easily done as these devices

commonly posses only a small amount of memory and are incapable of storing

terabytes of data directly on the accelerator. MOSAIC approaches this problem using

its abstraction of subgraphs, allowing the accelerator to focus on a small, independent

subsection of the graph instead of processing the whole graph at once.
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• Scaling single-machine graph processing to a trillion edges: Trillion-scale graph

processing has been demonstrated using distributed systems of dozens to hundreds

of servers. MOSAIC, on the other hand, presents an approach to allow processing of

trillion-scale graphs on a single machine by employing its scheme of independent

subgraphs, coupling it with many-core processors as well as fast I/O devices.

• Allowing graphs to change while continuously running algorithms: Real-world

graphs change over time, but many current graph processing systems focus on optimiz-

ing the graph layout using expensive pre-processing steps which render the insertion

of new data into the graph prohibitively expensive. To overcome these challenges,

we propose CYTOM, a graph processing engine for evolving graphs which can ingest

new graph data while keeping a graph computation up-to-date.

1.2 Thesis statement

Thesis statement: Large-scale big data analytics is possible on a single machine using

systems and design-level abstractions on commodity and heterogeneous single machines.

Scaling computations on a single machine is important in an era of increasingly large

datasets. To tackle this scalability challenge, this dissertation presents systems- and design-

level abstractions for big data analytics and graph analytics in particular, to improve both

their performance as well as enabling analytics on tera-scale datasets. Furthermore, this

dissertation presents novel programming models for processing static and dynamically

evolving graphs.

1.3 Contribution

First, this dissertation presents a new out-of-core graph processing engine, called MOSAIC,

for executing graph algorithms on trillion-scale datasets on a single machine (§3). MOSAIC

makes use of a heterogeneous machine setup coupled with a novel graph encoding scheme
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to allow processing of graphs of up to one trillion edges on a single machine. MOSAIC

also employs a locality-preserving space-filling curve to allow for high compression and

high locality when storing graphs and executing algorithms. We demonstrate that MOSAIC

can scale to a trillion edges on a single machine and can, in addition, outperform other,

state-of-the-art engines due to its efficient encoding scheme and its hybrid execution model.

Second, this dissertation presents CYTOM (see §4), a new engine for processing evolving

graphs, based on insights about achieving high compression and locality while also providing

load-balancing. In addition, CYTOM incorporates a novel API designed for processing

evolving graphs which allows to keep updates localized into a subgraph in many cases.

Additionally, CYTOM proposes a set of APIs specifically tailored at the case of processing

evolving graphs: These APIs allow the algorithm developer to specify important updates

while skipping uninteresting updates which would not result in a change of the algorithmic

result. This allows significant speedups for the algorithmic processing of evolving graphs.

Furthermore, CYTOM is shown to be versatile enough to extend to other scenarios in

the space of graph processing as well, namely approximate processing and asynchronous

processing. Both modes are of importance in the space of evolving graphs due to the ability

to react more quickly to graph changes while resulting in acceptable algorithmic results. We

evaluate CYTOM and observe that it can optimize both throughput of graph updates as well

as latency for obtaining new algorithmic results while outperforming other, state-of-the-art

systems.
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CHAPTER 2

RELATED WORK

In this chapter, we introduce the current state-of-the-art approaches for both the case of

processing static graphs as well as approaches to process graphs evolving over time before

providing a background on the kind of hardware architecture that both MOSAIC and CYTOM

are built around.

2.1 Storing and Processing Static Graphs

In this section, we explore different storage mechanisms and their trade-offs as well as the

algorithmic interface available for algorithm developers. The field of graph processing has

seen efforts in a number of different directions, ranging from engines on single machines

in-memory [7, 8, 9, 10, 11, 12, 13] to out-of-core engines [14, 15, 16, 17, 18, 19, 20] to

clusters [21, 22, 23, 24, 25, 5, 4, 26, 27, 28, 29, 1, 30, 31, 32, 33], each addressing unique

optimization goals and constraints.

2.1.1 Storing Static Graphs

Storing and processing static graphs has been extensively studied and optimized. As such,

the storage mechanism of the compressed sparse rows (CSR) or compressed sparse columns

(CSC) [34] are commonly used to reduce the overhead of storing the graph as either a

raw edge list format (all edges are simply concatenated) or an adjacency list that requires

extensive pointer-based traversals. Figure 2.1 gives an example of an edge list compared

to a CSR encoding on a simple graph, demonstrating the benefits achievable (up to 44.5%

storage reduction) using the CSR encoding. MOSAIC employs a CSR-style encoding at its

core for its subgraphs while CYTOM employs a mix of edge lists and a CSR variant due to

the differences in requirements for processing evolving graphs.
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2.1.2 Processing Static Graphs

Additionally, many of the recent engines for processing static graphs rely on a simple, yet

effective processing model pioneered by Pregel [28] which is based on a vertex-centric

abstraction. This abstraction allows algorithm developers to adopt their algorithm in a vertex-

centric fashion with each vertex having a (limited) amount of local storage and the ability to

communicate with its neighboring vertices via its in- and outgoing edges. PowerGraph [23]

extends this model to the gather-apply-scatter (GAS) abstraction but retains the vertex-

centric aspect while allowing for more efficient scheduling when processing large real-world,

power-law skewed graphs. MOSAIC and CYTOM introduce an adoption of this familiar,

yet powerful programming model to the settings of heterogeneous computing as well as an

extension to processing evolving graphs.

We discuss, in more detail, how MOSAIC compares to other, state-of-the-art engines in

a multitude of setups ranging from single machines to clusters to accelerators.

Single machine vs. clusters. Out-of-core graph processing on a single machine was

presented by GraphChi [14] and X-Stream [15] in a scale of a few billion edges. Grid-

Graph [18] and FlashGraph [19] are both single-machine engines that are most similar in

spirit to MOSAIC in terms of internal data structure and faster storage, but MOSAIC is by far
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faster (i.e., better locality and smaller amount of disk I/O) and more scalable (i.e., beyond a

tera-scale graph) due to its novel internal data structure and the use of coprocessors.

Graph analytics at the trillion-edge scale has been demonstrated by Chaos [5] (out-

of-core), GraM [4] (in-memory engine, RDMA), and Giraph [3] using over 200 servers.

MOSAIC outperforms Chaos by a significant margin for trillion-edge processing, while also

demonstrating the possibility of trillion-edge processing on a single machine.

In comparison to G-Store [20], which aims at compressing undirected graphs with up

to a trillion edges, MOSAIC is able to significantly reduce the size and increase the cache

locality of directed graphs.

Using accelerators. A handful of researchers have tried using accelerators, especially

GPGPUs [35, 36, 37, 38, 39, 40, 41, 42, 43], for graph processing due to their massive

parallelism. In practice, however, these engines have to deal with the problem of overheads

for large data exchanges between the host and one or a group of GPGPUs to achieve better

absolute performance. MOSAIC solves this problem by tunneling P2P DMA between Xeon

Phi and NVMes, which is the dominant data exchange path in out-of-core graph analytics.

In comparison to GTS [43], an out-of-core GPGPU graph engine, MOSAIC achieves better

scalability in larger datasets due to its strategy of using local graphs, while the strategy for

scalability (Strategy-S) in GTS is bound by the performance of a single GPGPU.

2.2 Reacting to Changes in Evolving Graphs

Processing graphs which change over time has been explored using, at a high-level, two

different approaches: Systems that are optimized for processing static graphs but support

large, batched updates, and systems that are optimized for handling evolving graphs and are

able to handle small updates at the expense of less-optimized data structures and sub-optimal

performance. We will examine the trade-offs involved in either of these options, especially

in terms of data structures and optimizations which can be used.
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2.2.1 Computations on Static Graphs

A common approach is to augment graph processing on static graphs with the ability to

handle evolving graphs, e.g., GraphChi [14] or X-Stream [15, 44]. In these cases, graph

updates are batched into large (e.g., millions of updates) batches to amortize overheads

from optimizing the internal data structures (e.g., pre-processing through sorting edges,

etc.). Commonly, an optimized graph representation called the compressed-sparse rows

(CSR) representation [34] is used in these systems, which is a very suitable data structure

optimized for high locality and minimized storage space. This data structure, however, can

not be easily expanded when updates to the edges are necessary and require overflow areas

to expand, as demonstrated in LLAMA [45]. While there are systems, such as X-Stream [15,

44], which do not rely on preprocessing the data set, crucially, all these systems lack the

ability to continue processing from a previous snapshot of the algorithmic result and rather

rely on re-execution of the algorithm, missing out on opportunities for speeding up the

convergence of the algorithms.

2.2.2 Handling Evolving Graphs

Specialized systems, such as STINGER [46], GraphIn [47], or GRAPHONE [48], handling

evolving or streaming graphs are fundamentally designed to be able to handle small batches

of updates, up to even a single edge, by applying a different trade off in terms of data

structures and algorithmic processing than their static counterparts. We first introduce the

data structures possible for evolving graphs before discussing their use in other state-of-the-

art systems and their benefits and drawbacks in the specific setting of processing evolving

graphs (over the previously introduced use case of static graph processing).

Data structures. A simple, yet useful data structure is the adjacency matrix, as shown

in Figure 2.2. While this is an appropriate data structure for dense graphs with a great

compression ratio (1 bit for every possible edge), real-world graphs are sparse and skewed,

rendering the adjacency matrix an unsuitable representation for billion-scale, real-world
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evolving graphs.

Another option is adjacency lists, as shown in Figure 2.3. Adjacency lists are well-suited

for processing evolving graphs due to their ability of adding new graph data on the fly

(potentially with the use of atomics in the presence of multiple threads inserting data at the

same time). However, the storage of edges of the graph in separate memory locations, as

is customary in linked lists, yields a large overhead for traversals and leads to low locality

when traversing an adjacency list-based graph.

The storage form of compressed sparse rows (CSR), as shown in Figure 2.4 (and

previously introduced in the context of storing static graph snapshots) improves on the
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Figure 2.4: An illustration of the storage form of compressed sparse rows (CSR). Its benefits are
good locality and low storage overhead, however, at the cost of inefficient update support with either
complicated overflow areas [45] or expensive array shifts.
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Table 2.1: Comparison of popular data structures and their applicability on real-world, evolving
graphs using 64-bit vertex identifiers. We develop edge listCYTOM as the key data structure used in
CYTOM’s cells.

Representation Sparse graphs Updates Traversal Storage

Adjacency matrix - ✓ ✓ 1 bit (all edges)
Adjacency lists ✓ ✓ - 8 bytes
CSR ✓ - ✓ 8 bytes
Edge list ✓ ✓ ✓ 16 bytes

CYTOM ✓ ✓ ✓ 4 bytes

adjacency lists by providing for locality and contiguity when storing the edges of the graph,

however, at the cost of poor support for graph updates as either complicated overflow areas

have to be used (e.g., in LLAMA [45]) or an expensive array shift operation has to be

employed on every graph update.

Finally, edge lists, as shown in Figure 2.5, have good support for both traversals and

updates, however, incur a large memory overhead due to the inability to compress the graph

data.

Discussion. Table 2.1 summarizes the existing data structures for evolving graphs and

introduces CYTOM’s optimized edge list representation. Instead of relying on the optimized

CSR representation, systems for processing evolving graphs, as introduced, commonly

employ either simple adjacency lists or an edge list representation. As shown, either of these

allow simple insertions (usually through the use of atomics for synchronization purposes)

into their respective graph representation, allowing for a lowered latency when inserting

new edges due to the missing preprocessing step. However, this practice also lowers the

maximum performance achievable with these systems due to, e.g., traversal overheads

(adjacency list) or the unsorted nature of the dataset (edge list).
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Compared to these systems, CYTOM proposes a subgraph-centric representation of the

graph, coupled with an API tailored to take advantage of this by cutting off computation

on uninteresting updates at the subgraph level (using the edgeChanged API, §4.3.1). Ad-

ditionally, CYTOM enables a lossless, zero-cost compression of the dataset using shorter,

local identifiers within each subgraph, approximating the storage benefits of the CSR data

structure.

In comparison to other systems targeting the case of evolving graphs [49, 50, 51, 52, 30,

53, 54], CYTOM uniquely incorporates all features outlined in Table 4.1 while outperforming

comparative systems by at least 1.5. For example, CYTOM outperforms STINGER [46] by

at least 60× and GRAPHONE by a factor of 1.5× due to its efficient design and specific

extension tailored towards processing evolving graphs.

Additionally, a number of systems, including GraphIn [47], Kickstarter [55], and Graph-

Bolt [56] explicitly optimize for the case of edge deletions. In comparison, CYTOM’s edge

deletion optimizations are simpler in nature but still effective while the optimizations of

these systems could also be applied to CYTOM for an even larger gain in performance.

2.3 Hardware Trends

MOSAIC and CYTOM both run on machines that incorporate a number of hardware trends

such as large amounts of memory, CPUs on multiple sockets, and novel storage and com-

puting devices centered around the PCIe bus. We design both projects to take advantage of

commodity machines (i.e., two-socket server machines with a few hundred GB of memory)

while MOSAIC in particular extends this to a setting of high-performance computing while

still being able to extract superior performance on a commodity machine.

Non-uniform memory access (NUMA). Modern architectures for high-performance

servers commonly include multiple processors as well as memory on separate sockets,

connected by a high-bandwidth on-chip interconnect (e.g., Intel QuickPath Interconnect

(QPI) [57]). In such an architecture, the cost of accessing memory on a remote socket is
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potentially much higher than the local memory, thus coining the term non-uniform memory

access (NUMA) while a single socket is sometimes referred to as a domain. MOSAIC

optimizes for such a NUMA architecture with its striped partitioning to enable balanced

accesses to multiple NUMA domains while CYTOM designs its fundamental mechanism to

be easily extended to the setting of NUMA machines.

Non-volatile memory express (NVMe). NVMe is the interface specification [58] to allow

high-bandwidth, low-latency access to SSD devices connected to the PCIe bus, we refer to

these SSD devices as NVMes. These devices allow much improved throughput and higher

IOPS than conventional SSDs on the SATA interface and currently reach up to 5 GB/s

and 850K IOPS (Intel DC P3608 [59]). MOSAIC makes extensive use of these devices by

exploiting their ability to directly copy data from the NVMe to e.g., a coprocessor, as well

as serving hundreds of requests at the same time.

Intel Xeon Phi. The Xeon Phi is a massively parallel coprocessor by Intel [60]. This

coprocessor has (in the first generation, Knights Corner) up to 61 cores with 4 hardware

threads each and a 512-bit single instruction, multiple data (SIMD) unit per core. Each core

runs at around 1 GHz (1.24 GHz for the Xeon Phi 7120A, used in MOSAIC). Each core

has access to a shared L2 cache of 512 KB per core (e.g., 30.5 MB for 61 cores). MOSAIC

uses the Xeon Phi for massively parallel operations and optimizes for the small amount

of L2 cache by keeping the vertex state per subgraph bounded to this small amount of

cache (512 KB per core). Furthermore, MOSAIC uses the many-core aspect to launch many

subgraph-centric computations in parallel.
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CHAPTER 3

SCALING GRAPH PROCESSING TO A TRILLION EDGES ON A SINGLE

MACHINE WITH MOSAIC

We first present an approach to scale processing static graph of up to a trillion edges on a

single machine by designing a new engine, MOSAIC, to take advantage of heterogeneous

hardware setups while taking advantage of the characteristics of the underlying data.

In detail, MOSAIC presents the following approach: It presents an out-of-core graph

processing engine, designed for many-core processors and fast I/O devices. In addition,

MOSAIC takes advantage of a locality-preserving design and re-designs the execution

pipeline to take advantage of a large number of cores offered by its many-core coprocessor.

We will present the fundamental design decisions for MOSAIC and show that these decisions

enable it to scale to a graph of one trillion edges on a single machine.

3.1 Introduction

Graphs are the basic building blocks to solve various problems ranging from data mining,

machine learning, scientific computing to social networks and the world wide web. However,

with the advent of Big Data, the sheer increase in size of the datasets [3] poses fundamental

challenges to existing graph processing engines. To tackle this issue, researchers are focusing

on distributed graph processing engines like GraM [4], Chaos [5] and, Giraph [3] to process

unprecedented, large graphs.

To achieve scalability with an increasing number of computing nodes, the distributed

systems typically require very fast interconnects to cluster dozens or even hundreds of

machines (e.g., 56 Gb Infiniband in GraM [4] and 40 GbE in Chaos [5]). This distributed

approach, however, requires a costly investment of a large number of performant servers and

their interconnects. More fundamentally though distributed engines have to overcome the
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Table 3.1: Landscape of current approaches in graph processing engines, using numbers from
published papers for judging their intended scale and performance. Each approach has a unique
set of goals (e.g., dataset scalability) and purposes (e.g., a single machine or clusters). In MOSAIC,
we aim to achieve the cost effectiveness and ease-of-use provided by a single machine approach,
while at the same time providing comparable performance and scalability to clusters by utilizing
modern hardware developments, such as faster storage devices (e.g., NVMe) and massively parallel
coprocessors (e.g., Xeon Phi).

Single machine [14, 15, 10, 11] GPGPU [38, 62, 43] MOSAIC Clusters [4, 5, 24, 63]

Data storage In-memory Out-of-core In-memory Out-of-core Out-of-core In-memory Out-of-core

Intended scale (#edges) 1–4 B 5–200 B 0.1–4 B 4–64 B 1 T 5–1000 B > 1 T
Performance (#edges/s) 1–2 B 20–100 M 1–7 B 0.4 B 1–3 B 1–7 B 70 M
Performance bottleneck CPU/Memory CPU/Disk PCIe NVMe NVMe Network Disk/Network
Scalability bottleneck Memory size Disk size Memory size Disk size Disk size Memory size Disk size

Optimization goals NUMA-aware I/O Massive PCIe Locality across Load balancing &
memory access bandwidth parallelism bandwidth host and coprocessors Network bandwidth

Cost Medium Low Low Low Low High Medium

straggler problem [5] and fault tolerance [22, 61] due to the imbalanced workloads on slug-

gish, faulty machines. These challenges often result in complex designs of graph processing

engines that incur non-negligible performance overhead (e.g., two-phase protocol [5] or

distributed locking [21]).

Another promising approach are single machine graph processing engines which are

cost effective while lowering the entrance barrier for large-scale graphs processing. Similar

to distributed engines, the design for a single machine either focuses on scaling out the

capacity, via secondary storage–so-called out-of-core graph analytics [14, 18, 15, 19, 17,

43], or on scaling up the processing performance, by exploiting memory locality of high-

end machines termed in-memory graph analytics [11, 10, 9]. Unfortunately, the design

principles of out-of-core and in-memory engines for a single machine are hardly compatible

in terms of performance and capacity, as both have contradicting optimization goals toward

scalability and performance due to their use of differently constrained hardware resources

(see Table 3.1).

To achieve the best of both worlds, in terms of capacity and performance, we divide

the components of a graph processing engine explicitly for scale-up and scale-out goals.

Specifically, we assign concentrated, memory-intensive operations (i.e., vertex-centric

operations on a global graph) to fast host processors (scale-up) and offload the compute and

I/O intensive components (i.e., edge-centric operations on local graphs) to coprocessors
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(scale-out).

Following this principle, we implemented MOSAIC, a graph processing engine that

enables graph analytics on one trillion edges in a single machine. It shows superior per-

formance compared to current single-machine, out-of-core processing engines on smaller

graphs and shows even comparable performance on larger graphs, outperforming a dis-

tributed disk-based engine [5] by 9.2×, while only being 8.8× slower than a distributed

in-memory one [4] on a trillion-edge dataset. MOSAIC exploits various recent technical

developments, encompassing new devices on the PCIe bus. On one hand, MOSAIC relies

on accelerators, such as Xeon Phis, to speed up the edge processing. On the other hand,

MOSAIC exploits a set of NVMe devices that allow terabytes of storage with up to 10×

throughput than SSDs.

We would like to emphasize that existing out-of-core engines cannot directly improve

their performance without a serious redesign. For example, GraphChi [14] improves the

performance only by 2–3% when switched from SSDs to NVMe devices or even RAM

disks. This is a similar observation made by other researchers [19, 18].

Furthermore, both single node and distributed engines have the inherent problem of

handling large datasets (>8TB for 1 trillion edges), low locality and load-balancing issues

due to skewed graph structures. To tackle these, we propose a new data structure, Hilbert-

ordered tiles, an independent processing unit of batched edges (i.e., local graphs) that

allows scalable, large-scale graph processing with high locality and good compression,

yielding a simple load-balancing scheme. This data structure enables the following benefits:

for coprocessors, it enables 1) better cache locality during edge-centric operations and 2)

I/O concurrency through prefetching; for host processors, it allows for 1) sequential disk

accesses that are small enough to circumvent load-balancing issues and 2) cache locality

during vertex-centric operations.

In this chapter, we make the following contributions:

• We present a trillion-scale graph engine on a single, heterogeneous machine, called
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MOSAIC, using a set of NVMes and Xeon Phis. For example, MOSAIC outperforms

other state-of-the-art out-of-core engines by 3.2–58.6× for smaller datasets up to 4

billion edges. Furthermore, MOSAIC runs an iteration of the Pagerank algorithm with

one trillion edges in 21 minutes (compared to 3.8 hours for Chaos [5]) using a single

machine.

• We design a new data structure, Hilbert-ordered tiles, for locality, load balancing, and

compression, that yields a compact representation of the graph, saving up to 68.8%

on real-world datasets.

• We propose a hybrid computation and execution model that efficiently executes

both vertex-centric operations (on host processors) and edge-centric operations (on

coprocessors) in a scalable fashion. We implemented seven graph algorithms on this

model, and evaluated them on two different single machine configurations.

3.2 Trillion Edge Challenges

With the inception of the internet, large-scale graphs comprising web graphs or social

networks have become common. For example, Facebook recently reported their largest

social graph comprises 1.4 billion vertices and 1 trillion edges. To process such graphs, they

ran a distributed graph processing engine, Giraph [3], on 200 machines. But, with MOSAIC,

we are able to process large graphs, even proportional to Facebook’s graph, on a single

machine. However, there is a set of nontrivial challenges that we have to overcome to enable

this scale of efficient graph analytics on a single machine:

Locality. One fundamental challenge of graph processing is achieving locality as real world

graphs are highly skewed, often following a powerlaw distribution [64]. Using a traditional,

vertex-centric approach yields a natural API for graph algorithms. But, achieving locality

can be difficult as, traditionally, the vertex-centric approach uses an index to locate outgoing

edges. Though accesses to the index itself are sequential, the indirection through the index
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results in many random accesses to the vertices connected via the outgoing edges [32, 40,

65].

To mitigate random accesses to the edges, an edge-centric approach streams through the

edges with perfect locality [15]. But, this representation still incurs low locality on vertex

sets.

To overcome the issue of non-local vertex accesses, the edges can be traversed in an

order that preserves vertex locality using, for example, the Hilbert order in COST [66] using

delta encoding. However, the construction of the compressed Hilbert-ordered edges requires

one global sorting step and a decompression phase during runtime.

MOSAIC takes input from all three strategies and mainly adopts the idea of using

the Hilbert order to preserve locality between batches of local graphs, the tiles (see sec-

tions §3.3.1, §3.3.2).

Load balancing. The skewness of real-world graphs presents another challenge to load

balancing. Optimal graph partitioning is an NP-complete problem [67], so in practice,

a traditional hash-based partitioning has been used [28], but it still requires dynamic,

proactive load-balancing schemes like work stealing [5]. MOSAIC is designed to balance

workloads with a simple and independent scheme, balancing the workload between and

within accelerators (see §3.4.5).

I/O bandwidth. The input data size for current large-scale graphs typically reaches

multiple terabytes in a conventional format. For example, GraM [4] used 9 TB to store 1.2 T

edges in the CSR format. Storing this amount of data on a single machine, considering the

I/O bandwidth needed by graph processing engines, is made possible with large SSDs or

NVMe devices.

Thanks to PCIe-attached NVMe devices, we can now drive nearly a million IOPS per

device with high bandwidth (e.g., 2.5 GB/sec, Intel SSD 750 [68]). Now, the practical

challenge is to exhaust this available bandwidth, a design goal of MOSAIC. MOSAIC uses a

set of NVMe devices and accelerates I/O using coprocessors (see §3.3.3).
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3.3 The MOSAIC Engine

Overview. We adopt the “think-like-a-vertex” abstraction that allows for the implemen-

tation of most popular algorithms for graph processing. It uses the edges of a graph to

transport intermediate updates from a source vertex to a target vertex during the execution

of graph algorithms. Each vertex is identified by a 32-bit or 64-bit integer based on the

scale of the graph and has associated meta information (e.g., in and out degree) as well

as algorithm-dependent states (e.g., a current and a next value per vertex in the Pagerank

algorithm).

MOSAIC extends this abstraction to a heterogeneous architecture, enabling tera-scale

graph analytics on a single machine. In particular, it uses multiple coprocessors (i.e., Xeon

Phis) to perform computation-heavy edge processing as well as I/O operations from NVMe

devices by exploiting the large number of cores provided by each coprocessor. At the same

time, MOSAIC dedicates host processors with faster single-core performance to synchronous

tasks: vertex-centric operations (e.g., reduce) and orchestration of all components on each

iteration of the graph algorithms; Figure 3.3 gives an overview of the interaction of the

components of MOSAIC.

In this section, we first introduce the core data structure, called tiles (§3.3.1), and their

ordering scheme for locality (§3.3.2), and explain each component of MOSAIC in detail

(§3.3.3).

3.3.1 Tile: Local Graph Processing Unit

In MOSAIC, a graph is broken down into disjoint sets of edges, called tiles, each of which

represents a subgraph of the graph. Figure 3.1 gives an example of the construction of

the tiles and their corresponding meta structures. The advantage of the tile abstraction

is two-fold: 1) each tile is an independent unit of edge processing—thus the name local

graph—which does not require a global, shared state during execution, and 2) tiles can be

19



1
2
3
4
5
6
7
8
9

10
11
12

1   2   3   4   5   6   7   8   9  10  11 12

Global adjacency 
matrix

Source 
vertex

(global)

Target vertex (global)

➋

➏
➐

➑

➊

➎

➍
①

②

③

④

(   ,1)
(   ,2)

(   ,5)
(   ,4)

①
②

③
④

Tile-1

meta

①

②

③

④

(   ,4)
(   ,6)

(   ,5)
(   ,3)

①
②

③
④

meta

Tile-2

Partition

Tile

(local)

(local)

➊
➋

➌
➍

➎

➏

➐

➑

①

➊
(   ,1)①

: local vertex id
: local → global id
: local edge store order

(Imax = 4)

(S = 3)

(I2)

(I1)

(T1)

(T2)

➒

➒

➌
P11 P12 P14P13

P21 P22 P24P23

P31 P32
P34P33

P41 P42 P44P43

Figure 3.1: The Hilbert-ordered tiling and the data format of a tile in MOSAIC. There are two tiles
(blue and red regions) illustrated by following the order of the Hilbert curve (arrow). Internally, each
tile encodes a local graph using local, short vertex identifiers. The meta index Ij translates between
the local and global vertex identifiers. For example, edge 2 , linking vertex 1 to 5, is sorted into tile
T1, locally mapping the vertices 1 to 1 and 5 to 3 .

structured to have an inherent locality for memory writes by sorting local edges according

to their target vertex. Tiles can be evenly distributed to each coprocessor through simple

round-robin scheduling, enabling a simple first-level load-balancing scheme. Furthermore,

all tiles can be enumerated by following the Hilbert order for better locality (§3.3.2).

Inside a tile, the number of unique vertices is bounded by Imax, which allows the

usage of local identifiers ranging from 0 to Imax (i.e., mapping from 4-8 bytes to 2 bytes

with Imax = 216). MOSAIC maintains per-tile meta index structures to map a local vertex

identifier of the subgraph (2 bytes) to its global identifier in the original graph (4-8 bytes).

This yields a compact representation and is favorable to fit into the last level cache (LLC),

for example with floats the vertex states per tile amount to 216 ∗ 4 bytes = 256KB. This

easily fits into the LLC of the Xeon Phi (512 KB per core). Note that, even with the number

of unique vertices in a tile being fixed, the number of edges per tile varies, resulting in

varying tile sizes. The static load balancing scheme is able to achieve a mostly balanced
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workload among multiple coprocessors (see Figure 3.9, < 2.3% of imbalance).

Data format. More concretely, the format of a tile is shown in Figure 3.2 and comprises

the following two elements:

• The index of each tile, stored as meta data. The index is an array that maps a local

vertex identifier (the index of the array) to the global vertex identifier, which translates

to 4 or 8 bytes, depending on the size of a graph.

• The set of edges, sorted by target vertices (tagged with weights for weighted graphs).

The edges are stored either as an edge list or in a compressed sparse rows (CSR)

representation, using 2 bytes per vertex identifier. MOSAIC switches between either

representation based on which results in a smaller overall tile size. The CSR repre-

sentation is chosen if the number of target vertices is larger than twice the number of

edges. This amortizes storing the offset in the CSR representation.

Locality. Two dimensions of locality are maintained inside a tile; 1) sequential accesses

to the edges in a local graph and 2) write locality enabled by storing edges in sorted order

according to their target vertices. In other words, linearly enumerating the edges in a tile is

favorable to prefetching memory while updating the vertex state array (i.e., an intermediate

computation result) in the order of the target vertex enables memory and cache locality due

to repeated target vertices in a tile. For example, in Figure 3.1, the local vertex 4 in tile T2

is the target of all three consecutive edges 7 , 8 , and 9 .

Conversion. To populate the tile structure, we take a stream of partitions as an input, and

statically divide the adjacency matrix representation of the global graph (Figure 3.1) into

partitions of size S × S, where S = 216.

We consume partitions following the Hilbert order (§3.3.2) and add as many edges as

possible into a tile until its index structure reaches the maximum capacity (Imax) to fully

utilize the vertex identifier (i.e., 2 bytes) in a local graph.

An example of this conversion is given in Figure 3.1, using the parameters Imax = 4

21



①

②

③

④

➎

➏

➐

➑
➒

(     , 2)
(     , 3)

#tgt

④
④

②
④

src tgt src (tgt,#tgt)

2B

2B

2B

2B 2B
sorted by

Index Edges
local

①
②
③
④

①

②

③
①

③

②
②

④

①

②

③
①

③

➎
➏
➐
➑
➒

compressed

global

4
6
5
3

Figure 3.2: An overview of the on-disk data structure of MOSAIC, with both index and edge data
structures, shown for tile T2 (see Figure 3.1). The effectiveness of compressing the target-vertex
array is shown, reducing the number of bytes by 20% in this simple example.

and S = 3: After adding edges 1 through 4 (following the Hilbert order of partitions:

P11, P12, P22, . . . ), there are no other edges which could be added to the existing four edges

without overflowing the local vertex identifiers. Thus, tile T1 is completed and tile T2

gets constructed with the edges 5 through 9 , continuing to follow the Hilbert order of

partitions. This conversion scheme is an embarrassingly parallel task, implementable by a

simple sharding of the edge set for a parallel conversion. It uses one streaming step over all

partitions in the Hilbert order and constructs the localized CSR representations.

Compared to other, popular representations, the overhead is low. Like the CSR repre-

sentation, the Hilbert-ordered tiles also require only one streaming step of the edge set. In

comparison to Hilbert-ordered edges [66], the Hilbert-ordered tiles save a global sorting

step, only arrange the tiles, not the edges, into the global Hilbert order.

3.3.2 Hilbert-ordered Tiling

Although a tile has inherent locality in processing edges on coprocessors, another dimension

of locality can also be achieved by traversing them in a certain order, known as the Hilbert

order [66, 69]. In particular, this can be achieved by traversing the partitions (Pi,j) in the

order defined by the Hilbert curve during the conversion. The host processors can preserve

the locality of the global vertex array across sequences of tiles.

Hilbert curve. The aforementioned locality is a well-known property of the Hilbert curve,
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a continuous fractal space-filling curve that translates a pair of coordinates (i, j) (a partition

id) to a scalar value d (the partition order), and vice versa. This operation preserves partial

locality between neighboring scalar values (i.e., d), as they share parts of the respective

coordinate sets. In MOSAIC, this allows close tiles in the Hilbert order (not limited to

immediate neighbors) to share parts of their vertex sets.

Locality. MOSAIC processes multiple tiles in parallel on coprocessors: MOSAIC runs

the edge processing on four Xeon Phis, each of which has 61 cores; thus 244 processing

instances are running in parallel, interleaving neighboring tiles among each other following

the Hilbert order of tiles. Due to this scale of concurrent accesses to tiles, the host processors

are able to exploit the locality of the shared vertex states associated with the tiles currently

being processed, keeping large parts of these states in the cache. For example, vertex 4

in Figure 3.1 is the common source vertex of three edges (i.e., 3 , 5 , and 7 ) in T1 and T2,

allowing locality between the subsequent accesses.

I/O prefetching. Traversing tiles in the Hilbert order is not only beneficial to the locality

on the host, but also effective for prefetching tiles on coprocessors. While processing a

tile, we can prefetch neighboring tiles from NVMe devices to memory by following the

Hilbert-order in the background, which allows coprocessors to immediately start the tile

processing as soon as the next vertex state array arrives.

3.3.3 System Components

From the perspective of components, MOSAIC is subdivided according to its scale-up and

scale-out characteristics, as introduced in Figure 3.3. Components designed for scaling out

are instantiated per Xeon Phi, allowing linear scaling when adding more pairs of Xeon Phis

and NVMes. These components include the local fetcher (LF , fetches vertex information

from the global array as input for the graph algorithm), the edge processor (EP , applies

an algorithm-specific function per edge), and local reducer (LR, receives the vertex output

from the edge processor to accumulate onto the global state). A global component, the
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Figure 3.3: MOSAIC’s components and the data flow between them. The components are split into
scale-out for Xeon Phi (local fetcher (LF), local reducer (LR) and edge processor (EP)) and scale-up
for host (global reducer (GR)). The edge processor runs on a Xeon Phi, operating on local graphs
while host components operate on the global graph. The vertex state is available as both a read-only
current state as well as a write-only next state.

global reducer (GR), is designed to take input from all local reducers to orchestrate the

accumulation of vertex values in a lock-free, NUMA-aware manner.

Local fetcher (LF). Orchestrates the data flows of graph processing; given a tile, it uses

the prefetched meta data (i.e., index) to retrieve the current vertex states from the vertex

array on the host processor, and then feeds them to the edge processor on the coprocessor.

Edge processor (EP). The edge processor executes a function on each edge, specific to

the graph algorithm being executed. Each edge processor runs on a core on a coprocessor

and independently processes batches of tiles (streaming). Specifically, it prefetches the

tiles directly from NVMe without any global coordination by following the Hilbert-order.

It receives its input from the local fetcher and uses the vertex states along with the edges

stored in the tiles to execute the graph algorithm on each edge in the tile. It sends an array
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of updated target vertex states back to the local reducer running on the host processor after

processing the edges in a tile.

Local reducer (LR). Once the edge processor completes the local processing, the local

reducer receives the computed responses from the coprocessors, aggregates them for batch

processing, and then sends them back to global reducers for updating the vertex states for

the next iteration. This design allows for large NUMA transfers to the global reducers

running on each NUMA socket and avoids locks for accessing the global vertex state.

Global reducer (GR). Each global reducer is assigned a partition of the global vertex

state and receives its input from the local reducer to update the global vertex state with

the intermediate data generated by the graph algorithm on a local graph (i.e., tiles). As

modern systems have multiple NUMA domains, MOSAIC assigns disjoint regions of the

global vertex state array to dedicated cores running on each NUMA socket, allowing for

large, concurrent NUMA transfers in accessing the global memory.

Striped partitioning. Unlike typical partitioning techniques, which assign a contiguous

array of state data to a single NUMA domain, MOSAIC conducts striped partitioning,

assigning “stripes” of vertices, interleaving the NUMA domains (as seen in Figure 3.3).

This scheme exploits an inherent parallelism available in modern architectures (i.e., multiple

sockets). Without the striped partitioning, a single core has to handle a burst of requests

induced by the Hilbert-ordered tiles in a short execution window due to the inherent locality

in the vertex states accessed.

In addition, the dedicated global reducers, which combine the local results with the

global vertex array, can avoid global locking or atomic operations during the reduce opera-

tions, as each core has exclusive access to its set of vertex states.

At the end of a superstep, after processing all edges, MOSAIC swaps the current and

next arrays.

25



// On edge processor (co-processor)
// Edge e = (Vertex src, Vertex tgt)
def Pull(Vertex src, Vertex tgt):
    return src.val / src.out_degree
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// On edge processor/global reducers (both)
def Reduce(Vertex v1, Vertex v2):
    return v1.val + v2.val

// On global reducers (host)
def Apply(Vertex v):
    v.val = (1 - α) + α × v.val
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Figure 3.4: The Pagerank implementation on MOSAIC. Pull() operates on edges, returning the
impact of the source vertex, Reduce() accumulates both local and global impacts, while Apply()
applies the damping factor α to the vertices on each iteration.

3.4 The MOSAIC Execution Model

MOSAIC adopts the popular “think-like-a-vertex” programming model [28, 21], but slightly

modifies it to fully exploit the massive parallelism provided by modern heterogeneous

hardware. In the big picture, coprocessors perform edge processing on local graphs by

using numerous, yet slower cores, while host processors reduce the computation result to

their global vertex states by using few, yet faster cores. To exploit such parallelism, two

key properties are required in MOSAIC’s programming abstraction, namely commutativity

and associativity [28, 24, 70]. This allows MOSAIC to schedule computation and reduce

operations in any order.

Running example. In this section, we explain our approach by using the Pagerank

algorithm (see Figure 3.4), which ranks vertices according to their impact to the overall

graph, as a running example.

3.4.1 Programming Abstraction

MOSAIC provides an API similar to the popular Gather-Apply-Scatter (GAS) model [23,

21, 28]. The GAS model is extended as the Pull-Reduce-Apply (PRA) model, introducing a
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reduce operation to accommodate the heterogeneous architecture MOSAIC is running on.

The fundamental APIs of the PRA model in MOSAIC for writing graph algorithms are as

follows:

• Pull(e): For every edge (u, v) (along with a weight in case of a weighted graph),

Pull(e) computes the result of the edge e by applying an algorithm-specific function

on the value of the source vertex u and the related data such as in- or out-degrees. For

Pagerank, we first pull the impact of a source vertex (the state value divided by its

out-degree) and then gather this result for the state of the target vertex by adding to

the previous state.

• Reduce(v1, v2): Given two values for the same vertex, Reduce() combines both results

into a single output. This function is invoked by edge processors on coprocessors as

well as global reducers on the host. It operates on the new value for the next iteration

rather than the current value being used as an input to Pull(e). For Pagerank, the

reduce function simply adds both values, aggregating the impact on both vertices.

• Apply(v): After reducing all local updates to the global array, Apply() runs on each

vertex state in the array, essentially allowing the graph algorithm to perform non-

associative operations. The global reducers on the host run this function at the end

of each iteration. For Pagerank, this step normalizes (a factor α) the vertex state (the

sum of all impacts on incoming vertices).

Figure 3.5 illustrates an execution using these APIs on two tiles and a global vertex array.

When processing tiles in parallel, the result might overlap, but the tiles themselves can be

processed independently of each other.

Generality. Our programming abstraction is general enough to express the most common

graph algorithms, equivalent to the popular GAS abstraction. We implemented seven

different algorithms as an example, ranging from graph traversal algorithms (Bread-First

Search, Weakly Connected Components, Single-Source Shortest Path) to graph analytic
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Figure 3.5: The execution model of MOSAIC: it runs Pull() on local graphs while Reduce() is being
employed to merge vertex states, for both the local as well as the global graphs.

algorithms (Pagerank, Bayesian Belief Propagation, Approximate Triangle Counting, Sparse

Matrix-Vector Multiplication).

3.4.2 Hybrid Computation Model

The PRA model of MOSAIC is geared towards enabling a hybrid computation model: edge-

centric operations (i.e., Pull()) are performed on coprocessors and vertex-centric operations

(i.e., Apply()) on host processors. Aggregating intermediate results is done on both entities

(i.e., Reduce()). This separation caters to the strengths of the specific entities: While host

processors have faster single-core performance with larger caches, the number of cores is

small. Thus, it is suitable for the operations with considerably more cycles for execution

(i.e., synchronous operations such as Apply()). On the contrary, the coprocessor has a larger

number of cores, albeit with smaller caches and a lower clock speed, rendering it appropriate

for massively parallel computation (i.e., processing edges). Our current implementation

follows a synchronous update of the vertex states, but it would be straightforward to adopt

an asynchronous update model with no changes in the current programming abstraction.

Edge-centric operations. In this hybrid computation model, coprocessors carry out the

edge-centric operations; each core processes one tile at a time by executing Pull() on each
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edge, locally accumulating the results by using Reduce() to reduce the amount of data to be

sent over PCIe, and sending the result back to global reducer on the host processor.

Vertex-centric operations. In MOSAIC, operations for vertices are executed on the host

processor. MOSAIC updates the global vertex array via Reduce(), merging local and global

vertex states. At the end of each iteration, Apply() allows the execution of non-associative

operations to the global vertex array.

3.4.3 Streaming Model

In MOSAIC, by following the predetermined Hilbert-order in accessing graph data (i.e., tile

as a unit), each component can achieve both sequential I/O by streaming tiles and meta

data to proper coprocessors and host processors, as well as concurrent I/O by prefetching

the neighboring tiles on the Hilbert curve. This streaming process is implemented using

a message-passing abstraction for all communications between components without any

explicit global coordination in MOSAIC.

3.4.4 Selective Scheduling

When graph algorithms require only part of the vertex set in each iteration (e.g., BFS), one

effective optimization is to avoid the computation for vertices that are not activated. For

MOSAIC, we avoid prefetching and processing of the tiles without active source vertices,

reducing the total I/O amount. This leads to faster computation in general while still

maintaining the opportunity for prefetching tiles.

3.4.5 Load Balancing

MOSAIC employs load balancing on two levels: 1) between Xeon Phis, 2) between threads

on the same Xeon Phi. The first level is a static scheme balancing the number of tiles

between all Xeon Phis. This macro-level scheme results in mostly equal partitions even

though individual tiles may not all be equally sized. For example, even in our largest
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real-world dataset (hyperlink14), tiles are distributed to four Xeon Phis in balance (30.7–

31.43 GB, see Figure 3.9).

On a second level, MOSAIC employs a dynamic load-balancing scheme between all

edge processors on a Xeon Phi. Unfortunately, tiles are not equally sized (see Figure 3.9),

resulting in varying processing times per tile. As MOSAIC prefetches and receives input

from the host on the Xeon Phi into a circular buffer, one straggler in processing a tile might

block all other edge processors. To avoid this, multiple cores are assigned to tiles with many

edges. Each core is assigned a disjoint set of edges in a tile, to enable parallel processing

without interactions between cores. Each core creates a separate output for the host to reduce

onto the global array.

To decide the number of edge processors per tile, MOSAIC computes the number

of partitions, optPartitions, per tile such that blocking does not occur. Intuitively, the

processing time of any individual tile always has to be smaller than the processing time of

all other tiles in the buffer to avoid head-of-line blocking. To determine the optimal number

of partitions, MOSAIC uses a worst-case assumption that all other tiles in the buffer are

minimally sized (i.e., contain 216 edges). The resulting formula then simply depends on the

processing rate ( edges
second

).

Specifically, MOSAIC uses the following calculation to determine optPartitions: Using

the number of buffers countbuffers, the number of workers countworkers and the rate at which

edges can be processed both for small tiles ratemin as well as for large tiles ratemax, the

following formula determines optPartitions:

bestSplit =

minEdges
ratemin

∗ countbuffers
countworkers

∗ ratemax

optPartitions =

⌈
countEdges

bestSplit

⌉

The rate of processing is the only variable to be sampled at runtime, all other variables are

constants.
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3.4.6 Fault Tolerance

To handle fault tolerance, distributed systems typically use a synchronization protocol (e.g.,

two-phase commits) for consistent checkpointing of global states among multiple compute

nodes. In MOSAIC, due to its single-machine design, handling fault tolerance is as simple

as checkpointing the intermediate state data (i.e., vertex array). Further, the read-only vertex

array for the current iteration can be written to disk parallel to the graph processing; it only

requires a barrier on each superstep. Recovery is also trivial; processing can resume with

the last checkpoint of the vertex array.

3.5 Implementation

We implemented MOSAIC in C++ in 16,855 lines of code. To efficiently fetch graph data on

NVMe from Xeon Phi, we extended the 9p file system [71] and the NVMe device driver for

direct data transfer between the NVMe and the Xeon Phi without host intervention. Once

DMA channels are set up between NVMe and Xeon Phi’s physical memory through the

extended 9p commands, actual tile data transfer is performed by the DMA engines of the

NVMe. To achieve higher throughput, MOSAIC batches the tile reading process and aligns

the starting block address to 128KB in order to fully exploit NVMe’s internal parallelism.

In addition, for efficient messaging between the host and the Xeon Phi, MOSAIC switches

between PIO and DMA modes depending on the message size. The messaging mechanism

is exposed as a ring buffer for variable sized elements. Due to the longer setup time of

the DMA mechanism, MOSAIC only uses DMA operations for requests larger than 32 KB.

Also, to use the faster DMA engine of the host1 and avoid costly remote memory accesses

from the Xeon Phi, MOSAIC allocates memory for communication on the Xeon Phi side.

1Based on our measurements, a host-initiated DMA operation is nearly 2 times faster than a Xeon Phi-
initiated one.
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Table 3.2: Graph algorithms implemented on MOSAIC: associative and commutative operations
used for the reducing phase, and their runtime complexity per iteration. E is the set of edges, V the
set of vertices while E⋆ denotes the active edges that MOSAIC saves with selective scheduling. In
BP, m denotes the number of possible states in a node.

Algorithm Lines of code Reduce-
operator

Complexity
Runtime I/O Memory

PR 86 + O(E) O(2V )
BFS 102 min O(E⋆) O(2V )
WCC 88 min O(E⋆) O(2V )
SpMV 95 + O(E) O(2V )
TC 194 min, + O(2E) O(8V )
SSSP 91 min O(E⋆) O(2V )
BP 193 ×, + O(2mE) O(8mV )

3.6 Graph Algorithms

We implement seven popular graph algorithms by using MOSAIC’s programming model.

Table 3.2 summarizes the algorithmic complexity (e.g., runtime I/O and memory overheads)

of each algorithm.

Pagerank (PR) approximates the impact of a single vertex on the graph. MOSAIC uses

a synchronous, push-based approach [11, 15].

Breadth-first search (BFS) calculates the minimal edge-hop distance from a source to

all other vertices in the graph.

Weakly connected components (WCC) finds subsets of vertices connected by a di-

rected path by iteratively propagating the connected components to its neighbors.

Sparse matrix-vector multiplication (SpMV) calculates the product of the sparse edge

matrix with a dense vector of values per vertex.

Approximate triangle counting (TC) approximates the number of triangles in an

unweighted graph. We extend the semi-streaming algorithm proposed by Becchetti et

al. [72].

Single source shortest path (SSSP) operates on weighted graphs to find the shortest

path between a single source and all other vertices. It uses a parallel version of the Bellman-

Ford algorithm [73].
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Table 3.3: Two machine configurations represent both a consumer-grade gaming PC (vortex), and a
workstation (ramjet, a main target for tera-scale graph processing).

Type Game PC Workstation
Nickname (vortex) (ramjet)

Model E5-2699 v3 E5-2670 v3
CPU 2.30 GHz 2.30 GHz
# Core 18 × 1 12 × 2
RAM 64 GB 768 GB
LLC 45 MB× 1 30 MB× 2
PCIe v3 (48L, 8 GT/s) v3 (48L, 8 GT/s)
NVMe 1 6
Xeon Phi 1 4

Bayesian belief propagation (BP) operates on a weighted graph and propagates proba-

bilities at each vertex to its neighbors along the weighted edges [74].

3.7 Evaluation

We evaluate MOSAIC by addressing the following questions:

• Performance: How does MOSAIC perform with real-world and synthetic datasets,

including a trillion-edge graph, compared to other graph processing engines? (§3.7.2,

§3.7.3)

• Design decisions: What is the performance impact of each design decision made by

MOSAIC, including the Hilbert-ordered tiles, selective-scheduling, fault-tolerance and

the two-level load balancing scheme? (§3.7.4)

• Scalability: Does MOSAIC scale linearly with the increasing number of Xeon Phis

and NVMes, and does each algorithm fully exploit the parallelism provided by Xeon

Phis and the fast I/O provided by NVMes? (Figure 3.7.5)

3.7.1 Experiment Setup

To avoid optimizing MOSAIC for specific machine configurations or datasets, we validated

it on two different classes of machines—a gaming PC and a workstation, using six different
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real-world and synthetic datasets, including a synthetic trillion-edge graph following the

distribution of Facebook’s social graph.

Machines. Table 3.3 shows the specifications of the two different machines, namely vortex

(a gaming PC) and ramjet (a workstation). To show the cost benefits of our approach, we

demonstrate graph analytics on 64 B edges (hyperlink14) on a gaming PC. To process one

trillion edges, we use ramjet with four Xeon Phis and six NVMes.

Datasets. We synthesized graphs using the R-MAT generator [75], following the same

configuration used by the graph500 benchmark.2 The trillion-edge graph is synthesized

using 232 vertices and 1 T edges, following Facebook’s reported graph distribution [3]. We

also use two types of real-world datasets, social networks (twitter [76]) and web graphs

(uk2007-05 [77, 78], and hyperlink14 [79]). These datasets contain a range of 1.5–64.4 B

edges and 41.6–1,724.6 M vertices (35–37× ratio), with raw data of 10.9–480.0 GB (see

Table 3.4). We convert each dataset to generate the tile structure, resulting in conversion

times of 2 to 4 minutes for small datasets (up to 30 GB). Larger datasets finish in about 51

minutes (hyperlink14, 480 GB, 21 M edges/s) or about 30 hours for the trillion-edge graph

(8,000 GB). In comparison, GridGraph takes 1 to 2 minutes to convert the smaller datasets

into its internal representation. Furthermore, MOSAIC yields a more compact representation,

e.g., MOSAIC fits the twitter graph into 7.7 GB, while GridGraph’s conversion is more than

4.3× larger at 33.6 GB.

Methodology. We compare MOSAIC to a number of different systems, running on a diverse

set of architectures. Primarily, we compare MOSAIC with GraphChi [14], X-Stream [15] and

GridGraph [18] as these systems focus on a single-machine environment using secondary

storage. We run these systems on ramjet using all 6 NVMe in a RAID-0 setup, enabling

these systems to take advantage of the faster storage hardware. Additionally, we use the

published results of other graph engines, allowing a high-level comparison to MOSAIC, from

2 Default parameters are a = 0.57, b = 0.19, c = 0.19, https://graph500.org/?page_id=12#
sec-3_2
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Table 3.4: The graph datasets used for MOSAIC’s evaluation. The data size of MOSAIC represents
the size of complete, self-contained information of each graph dataset, including tiles and meta-data
generated in the conversion step. The ⋆ mark indicates synthetic datasets. Each dataset can be
efficiently encoded with 29.4–68.8 % of its original size due to MOSAIC tile structure.

Graph #vertices #edges Raw data MOSAIC

Data size (reduction, bytes/edge) Prep. time
⋆rmat24 16.8M 0.3B 2.0GB 1.1GB (-45.0%, 4.4) 2 m 10 s
twitter 41.6M 1.5B 10.9GB 7.7GB (-29.4%, 5.6) 2 m 24 s

⋆rmat27 134.2M 2.1B 16.0GB 11.1GB (-30.6%, 5.5) 3 m 31 s
uk2007-05 105.8M 3.7B 27.9GB 8.7GB (-68.8%, 2.5) 4 m 12 s
hyperlink14 1,724.6M 64.4B 480.0GB 152.4GB (-68.3%, 2.5) 50 m 55 s

⋆rmat-trillion 4,294.9M 1,000.0B 8,000.0GB 4,816.7GB (-39.8%, 5.2) 30 h 32 m

a diverset set of architectures for graph engines: For single machines, we show the results for

in-memory processing, with Polymer [11] and Ligra [10], and GPGPU, with TOTEM [62]

and GTS [43]. Furthermore, we show the results for distributed systems, using the results

for Chaos [5], on a 32-node cluster, as an out-of-core system, as well as GraphX [24] as an

in-memory system. Furthermore, we include a special, pagerank-only in-memory system by

McSherry et al [63] to serve as an estimation of a lower bound on processing time. Both

GraphX and McSherry’s system were run on the same 16-node cluster with a 10G network

link [63].

With respect to datasets, we run other out-of-core engines for a single machine on the

four smaller datasets (rmat24, twitter, rmat27, uk2007-05). We run both the Pagerank (PR)

as well as the Weakly Connected Components (WCC) algorithm on the out-of core engines.

These algorithms represent two different classes of graph algorithms: PR is an iterative

algorithm, where in the initial dozens of iterations almost all vertices are active while WCC

is a traversal algorithm with many vertices becoming inactive after the first few iterations.

This allows a comparison on how well the processing system can handle both a balanced as

well as an imbalanced number of active vertices.

I/O performance. Our ring buffer serves as a primitive transport interface for all commu-

nications. It can achieve 1.2 millions IOPS with 64 byte messages and 4 GB/sec throughput

with larger messages between a Xeon Phi and a host (see Figure 3.6). We measure the
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Figure 3.6: 1 Throughput and 2 IOPS of our ring buffer for various size messages between a Xeon
Phi and its host, and 3 the throughput of random read operations on a file in an NVMe.

throughput of random read operations when reading from a single file on an NVMe in

four configurations: (a) a host application directly accesses the NVMe, showing the best

performance, 2.5 GB/sec; (b) the Xeon Phi initiates the file operations and the data from the

NVMe is directly delivered to the Xeon Phi using P2P DMA, 2.5 GB/sec. For comparison,

we also evaluated two more scenarios: (c) the Xeon Phi initiates file operations, while

the host delivers the data to the Xeon Phi through NFS; and (d) using virtio over PCIe,

resulting in 10× slower performance.

3.7.2 Overall Performance

We ran seven graph algorithms (Table 3.2) on six different datasets (Table 3.4) with two

different classes of single machines (Table 3.3). Table 3.5 shows our experimental results.

In summary, MOSAIC shows 686–2,978 M edges/sec processing capability depending on

datasets, which is even comparable to other in-memory engines (e.g., 695–1,390 M edges/sec

in Polymer [11]) and distributed engines (e.g., 2,770–6,335 M edges/sec for McSherry et

al.’s Pagerank-only in-memory cluster system [63]).

An example of the aggregated I/O throughput of MOSAIC with 6 NVMes is shown in

Figure 3.7, with the hyperlink14 graph and the SpMV algorithm. The maximum throughput

reaches up to 15 GB/sec, close to the maximum possible throughput per NVMe, highlighting

MOSAIC’s ability to saturate the available NVMe throughput.

Trillion-edge processing. MOSAIC on ramjet can perform out-of-core processing over
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Figure 3.7: Aggregated I/O throughput for SpMV on the hyperlink14 graph for the first five iterations.
The drop in throughput marks the end of an iterations while the maximum throughput of MOSAIC

reaches up to 15 GB/sec.
Table 3.5: The execution time for running graph algorithms on MOSAIC with real and synthetic
(marked ⋆) datasets. We report the seconds per iteration for iterative algorithms (‡: PR, SpMV, TC,
BP), while reporting the total time taken for traversal algorithms (†: BFS, WCC, SSSP). TC and BP
need more than 64 GB of RAM for the hyperlink14 graph and thus do not run on vortex. We omit
results for rmat-trillion on SSSP and BP as a weighted dataset of rmat-trillion would exceed 8 TB
which currently cannot be stored in our hardware setup.

Graph #edges (ratio) PR‡ BFS† WCC† SpMV‡ TC‡ SSSP† BP‡

⋆rmat24 0.3B (1×) 0.31 s 3.52 s 3.92 s 0.30 s 1.46 s 11.71 s 0.47 s
twitter 1.5B (5×) 1.87 s 11.20 s 18.58 s 1.66 s 9.42 s 54.06 s 5.34 s

⋆rmat27 2.1B (8×) 3.06 s 17.02 s 22.18 s 2.74 s 16.52 s 101.95 s 8.42 s
uk2007-05 3.7B (14×) 1.76 s 1.56 s 5.34 s 1.49 s 4.31 s 2.05 s 4.57 s
hyperlink14 64.4B (240×) 21.62 s 6.55 s 708.12 s 19.28 s 68.03 s 8.68 s 70.67 s

⋆rmat-trillion 1,000.0B (3,726×) 1246.59 s 3941.50 s 7369.39 s 1210.67 s 5660.35 s - -

a trillion-edge graph. We run all non-weighted algorithms (PR, BFS, WCC, SpMV, TC)

on this graph but exclude weighted algorithms due to storage space constraints of our

experimental setup for the weighted dataset (>8 TB). The results show that MOSAIC can

perform one iteration of Pagerank in 1,246 seconds (20.8 minutes), outperforming Chaos [5]

by a factor of 9.2×.

3.7.3 Comparison With Other Systems

We compare MOSAIC with five different types of graph processing engines:

• Single machine, out-of-core: These systems include GraphChi [14], X-Stream [15],

and GridGraph [18] and are close in nature to MOSAIC.

• Single machine, in-memory: Operating on a high-end server with lots of memory, we

include Polymer [11] and Ligra [10].

• Single machine, GPGPU: As an upper bound on the computing power on a single
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Table 3.6: The execution time for one iteration of Pagerank on out-of-core, in-memory engines and
GPGPU systems running either on a single machine or on distributed systems (subscript indicates
number of nodes). Note the results for other out-of-core engines (indicated by †) are conducted using
six NVMes in a RAID 0 on ramjet. We take the numbers for the GPGPU (from [43]), in-memory
systems and the distributed systems from the respective publications as an overview of different
architectural choices. We include a specialized in-memory, cluster Pagerank system developed by
McSherry et al. [63] as an upper bound comparison for in-memory, distributed processing and show
the GraphX numbers on the same system for comparison. MOSAIC runs on ramjet with Xeon Phis
and NVMes. MOSAIC outperforms the state-of-the-art out-of-core engines by 3.2–58.6× while
showing comparable performance to GPGPU, in-memory and out-of-core distributed systems.

Single machine Distributed systems
Dataset Out-of-core In-memory GPGPU Out-of-core In-memory

MOSAIC GraphChi † X-Stream † GridGraph † Polymer Ligra TOTEM GTS Chaos32 GraphX16 McSherry16
rmat24 0.31 s 14.86 s (47.9×) 4.36 s (14.1×) 1.12 s (3.6×) 0.37 s 0.25 s - - - - -
twitter 1.87 s 65.81 s (35.2×) 19.57 s (10.5×) 5.99 s (3.2×) 1.06 s 2.91 s 0.56 s 0.72 s - 12.2 s 0.53 s
rmat27 3.06 s 100.02 s (32.7×) 27.57 s (9.0×) 8.38 s (2.7×) 1.93 s 6.13 s 1.09 s 1.42 s 28.44 s -
uk2007-05 1.76 s 103.18 s (58.6×) 52.39 s (29.8×) 14.84 s (8.4×) - - 0.85 s 1.24 s - 8.30 s 0.59 s
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Figure 3.8: I/O throughput of out-of-core graph engines for 25 seconds of the Pagerank algorithm
and the uk2007-05 dataset using a single NVMe on ramjet. The iteration boundaries are marked,
neither GraphChi nor X-Stream finish the first iteration. GraphChi does not exploit the faster
storage medium. X-Stream shows high throughput but reads 3.8× more per iteration than MOSAIC.
GridGraph suffers from the total amount of data transfer and does not fully exploit the medium.
MOSAIC with a single Xeon Phi and NVMe can drive 2.5 GB/s throughput.

machine, we include TOTEM [62] and GTS [43], running in the in-memory mode on

two GPGPUs.

• Distributed, out-of-core: To scale to very large graphs, up to a trillion edges, Chaos [5]

proposes a distributed, out-of-core disk-based system using 32 nodes.

• Distributed, in-memory: As an upper bound on the distributed computing power, we

include GraphX [24] running on 16 nodes as well as a specialized, Pagerank-only

system running on 16 nodes by McSherry et al [63].
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We replicate the experiments for single machine, out-of-core engines by ourselves on

ramjet with 6 NVMes in a RAID 0, but take experimental results for all other types of graph

engines directly from the authors [43, 11, 10, 24, 5, 63], as we lack appropriate infrastructure

for these systems.

The results of this comparison with Pagerank are shown in Table 3.6. We split our

discussion of the comparison into the different types of graph engines mentioned:

Single machine, out-of-core. MOSAIC outperforms other out-of-core systems by far, up

to 58.6× for GraphChi, 29.8× for X-Stream, and 8.4× for GridGraph, although they are

all running on ramjet with six NVMes in a RAID 0. Figure 3.8 shows the I/O behavior

of the other engines compared to MOSAIC over 25 seconds of Pagerank. MOSAIC finishes

5 iterations while both X-Stream and GraphChi do not finish any iteration in the same

timeframe. GridGraph finishes one iteration and shows less throughput than MOSAIC even

though its input data is 4.3× larger. Furthermore, compared to the other engines, MOSAIC’s

tiling structure not only reduces the total amount of I/O required for computation, but is also

favorable to hardware caches; it results in a 33.30% cache miss rate on the host, 2.34% on

the Xeon Phi, which is distinctively smaller than that of the other engines (41.92–80.25%),

as shown in Table 3.7.

Compared with other out-of-core graph engines running the WCC algorithm to comple-

tion, MOSAIC shows up to 801× speedup while maintaining a minimum speedup of 1.4×

on small graphs, as shown in Table 3.8. MOSAIC achieves this speedup due to its efficient

selective scheduling scheme, saving I/O as well as computation, while the edge-centric

model in X-Stream is unable to take advantage of the low number of active edges. GraphChi

shows poor I/O throughput and is unable to skip I/O of inactive edges in a fine-grained

manner. MOSAIC outperforms GridGraph due to reduced I/O and better cache locality.

Single machine, in-memory. MOSAIC shows performance close to other in-memory

systems, only being slower by at most 1.8× than the fastest in-memory system, Polymer,

while outperforming Ligra by up to 2×. Compared to these systems, MOSAIC is able to
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Table 3.7: Cache misses, IPC and I/O usages for out-of-core engines and MOSAIC for Pagerank on
uk2007-05, running in ramjet with one NVMe. The Hilbert-ordered tiling in MOSAIC results in
better cache footprint and small I/O amount.

Graph LLC IPC CPU I/O I/O
Engine miss usage bandwidth amount

GraphChi 80.25% 0.28 2.10% 114.0 MB/s 16.03 GB
X-Stream 55.93% 0.91 40.6% 1,657.9 MB/s 46.98 GB
GridGraph 41.92% 1.16 45.08% 1,354.8 MB/s 55.32 GB

MOSAIC Host 33.30% 1.21 21.28%
2,027.3 MB/s 1.92 GB

MOSAIC Phi 2.34% 0.29 44.94% 10.17 GB

Table 3.8: The execution time for WCC until completion on single machine out-of-core engines.
GraphChi, X-Stream and GridGraph use six NVMes in a RAID 0 on ramjet. MOSAIC outperforms
the state-of-the-art out-of-core engines by 1.4×–801×.

Dataset Single machine

MOSAIC GraphChi X-Stream GridGraph

rmat24 3.92 s 172.079 s (43.9×) 26.91 s (6.9×) 5.65 s (1.4×)
twitter 18.58 s 1,134.12 s (61.0×) 436.34 s (23.5×) 46.19 s (2.5×)
rmat27 22.18 s 1,396.6 s (63.0×) 274.33 s (12.4×) 62.97 s (2.8×)
uk2007-05 5.34 s 4,012.48 s (751.4×) 4,277.60 s (801.0×) 71.13 s (13.3×)

scale to much bigger graph sizes due to its design as an out-of-core engine, but it can still

show comparable performance.

Single machine, GPGPU. Compared to GPGPU systems, MOSAIC is slower by a factor

of up to 3.3× compared against TOTEM, an in-memory system. In comparison, MOSAIC is

able to scale to much larger graphs due to its out-of-core design. Compared to GTS in the

in-memory mode, MOSAIC is 2.6×–1.4× slower. However, when running in an out-of-core

mode, MOSAIC can achieve up to 2.9 B edges per second (hyperlink14), while GTS achieves

less than 0.4 B edges per second as an artifact of its strategy for scalability being bound to

the performance of a single GPGPU.

Distributed system, out-of-core. Compared with Chaos, an out-of-core distributed engine,

MOSAIC shows a 9.3× speedup on the rmat27 dataset. Furthermore, MOSAIC outperforms

Chaos by a factor of 9.2× on a trillion-edge graph. Chaos is bottlenecked by network

bandwidth to the disks, while MOSAIC 1) reduces the necessary bandwidth due to its

compact tile structure and 2) uses a faster interconnect, the internal PCIe bus.
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Distributed system, in-memory. MOSAIC shows competitive performance to in-memory

distributed systems, only being outperformed by up to 3.5× by a specialized cluster im-

plementation of Pagerank [63] while outperforming GraphX by 4.7×–6.5×. Even though

these systems might show better performance than MOSAIC, their distributed design is very

costly compared to the single machine approach of MOSAIC. Furthermore, although these

systems can theoretically support larger graphs – beyond a trillion edges – we believe there

is an apparent challenge in overcoming the network bottleneck in bandwidth and speed to

demonstrate this scale of graph processing in practice.

Impact of Preprocessing. We compare the impact of MOSAIC’s preprocessing against

other out-of-core single machine systems. GridGraph preprocesses the twitter graph in

48.6 s and the uk2007-05 graph in 2 m 14.7 s, thus MOSAIC outperforms GridGraph after 20

iterations of Pagerank for twitter and 8 iterations for the uk2007-05 graph. X-Stream does

not have an explicit preprocessing phase, but is much slower per iteration than MOSAIC, thus

MOSAIC is able to outperform it after 8 (twitter) and 5 (uk2007-05) iterations. This demon-

strates that MOSAIC’s optimizations are effective and show a quick return on investment,

even though at the cost of a more sophisticated preprocessing step.

3.7.4 Evaluating Design Decisions

We perform experiments to show how our design decisions impact MOSAIC’s performance.

Hilbert-ordered Tiling

Tile encoding. MOSAIC’s compact data format is key to reducing I/O during graph

processing. The use of short (2 bytes), tile-local identifiers and the CSR representation

of the local graph in a tile saves disk storage by 30.6–45.0% in synthetic datasets (4.4–

5.5 byte/edge) and 29.4–68.8% in real-world datasets (2.5–5.6 byte/edge).

In quantity, it saves us 327 GB (-68.3%) in our largest real-world dataset (hyperlink14)

and over 3,184 GB (-39.8%) in a trillion-edge graph (rmat-trillion) (see Table 3.4), signifi-

41



Table 3.9: Performance of different traversal strategies on Mosaic using the twitter graph. MOSAIC

achieves a similar locality than the column first strategy which is focused on perfect writeback
locality while providing better performance due to less tiles and better compression. MOSAIC shows
up to 81.8% better cache locality on the host than either of the traversal strategies.

Traversal #tiles Pagerank BFS WCC

miss time miss time miss time

Hilbert 8,720 33.30% 1.87 s 25.99% 11.20 s 26.12% 18.58 s
Row First 7,924 58.87% 1.97 s 46.33% 13.60 s 47.49% 19.03 s
Column First 10,006 34.38% 2.92 s 45.53% 18.78 s 45.83% 32.45 s
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Figure 3.9: The tile size distribution and the total amount tiles allocated for each Xeon Phis for
real-world datasets. The average tile size is 1.2 MB for hyperlink14, 1.9 MB for uk2007-05 and
1.1 MB for the twitter dataset. The tiles are evenly distributed among Xeon Phis.

cantly reducing the I/O required at runtime.

Hilbert-ordering. MOSAIC achieves cache locality by following the Hilbert-order to

traverse tiles. The impact of this order is being evaluated using different strategies to

construct the input for MOSAIC. In particular, two more strategies are being evaluated:

Row First and Column First. These strategies are named after the mechanism in which the

adjacency matrix is being traversed, with the rows being the source and the columns being

the target vertex sets. The Row First strategy obtains perfect locality in the source vertex

set while not catering to the locality in the target set. The Column First strategy, similar to

the strategy used in GridGraph, obtains perfect locality in the target vertex set while not

catering to locality in the source set. The results with respect to locality and execution times

are shown in Table 3.9. These results show that the Hilbert-ordered tiles obtain the best

locality of all three strategies, with up to 81.8% better cache locality on the host, reducing

the execution time by 2.4%-74.7%.

Static load balancing. The size of tiles varies although the number of unique vertices is

fixed. The static load balancing is able to keep the data sizes between all Xeon Phis similar.
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Table 3.10: The effects of choosing different split points for tiles on the uk2007-05 graph. The
optimal number of partitions, optPartitions, is calculated dynamically as described in §3.4.5 and
improves the total running time by up to 5.8× by preventing starvation.

partitions PR BFS WCC SpMV TC

1 4.41 s 1.54 s 31.05 s 2.65 s 8.01 s
optPartitions 1.76 s 1.56 s 5.34 s 1.49 s 4.31 s
optPartitions ∗ 10 2.74 s 1.58 s 5.35 s 2.19 s 15.65 s

In hyperlink14, 65% of the tiles are sized between 120 KB and 1 MB, with the largest tile

being about 150 MB. However, this inequality of tile sizes does not result in issues with

any imbalanced workloads between Xeon Phis. In MOSAIC, the tiles get distributed in a

round-robin fashion to the multiple Xeon Phis, resulting in even distribution (e.g., less than

3% in hyperlink14) among Xeon Phis (see Figure 3.9).

Dynamic load balancing. The dynamic load-balancing mechanism for MOSAIC allows

tiles to be split to avoid a head-of-line blocking situation to occur. The calculated number of

tile partitions is optPartitions. Table 3.10 details the impact of an improperly chosen tile

split point using the uk2007-05 graph. Disabling the dynamic load balancing increases the

running time by up to 2.5× (Pagerank) and 5.8× (WCC). Similarly, dynamic load balancing

with too many partitions (optPartitions ∗ 10) results in degraded performance as well due

to increased overhead from processing more partial results. Too many partitions result in

overheads of 57% (Pagerank) and up to 3.6× (TC).

Global Reducer

MOSAIC uses global reducers (see §3.3.3) to 1) enable NUMA-aware memory accesses

on host processors, yet fully exploit parallelism, and 2) avoid global synchronization in

updating the global vertex array for reduce operations.

Striped partitioning. The impact of striped partitioning is significant: with two global

reducers on ramjet (one per NUMA domain) with twitter, it increases the end-to-end

performance by 32.6% compared to a usual partitioning.

Avoiding locks. The dedicated global reducers update the vertex values in a lock-free
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Figure 3.10: The number of active tiles per iteration and the execution time per iteration with and
without the selective scheduling on twitter for BFS. It converges after 16 iterations and improves the
performance by 2.2×.

manner. This allows 1.9× end-to-end improvement over an atomic-based approach and a

12.2× improvement over a locking-based approach, with 223-way-hashed locks to avoid a

global point of contention on the twitter graph.

Execution Strategies

Selective scheduling. MOSAIC keeps track of the set of active tiles (i.e., tiles with at least

one active source vertex), and fetches only the respective, active tiles from disk. Figure 3.10

shows the number of active tiles in each iteration when running the BFS algorithm with

twitter until convergence on vortex. It improves the overall performance by 2.2× (from

25.5 seconds to 11.2 seconds) and saves 59.1% of total I/O (from 141.6 GB to 57.9 GB).

Fault tolerance. We implement fault tolerance by flushing the state of the vertices to

disk in every superstep. As this operation can be overlapped with reading the states of the

vertices for the next iteration, it imposes negligible performance overhead. For example,

MOSAIC incurs less than 0.2% overhead in case of the Pagerank algorithm (i.e., flushing

402 MB in every iteration) with uk2007-05 and twitter on ramjet.

3.7.5 Performance Breakdown

We evaluate which factors influence MOSAIC’s overall performance and look at the storage

mechanism (NVMe or SSD?), the number of storage devices used, and the impact of using

the Xeon Phi compared to only using the CPUs of the host machine.
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Storage medium used

For this evaluation, we run MOSAIC using a varying number of SSDs instead of the usual

setup using a set of NVMes. Additionally, due to a limitation in the way our Xeon Phis

access the disks (NVMes are accessed via the PCIe interface while SSDs are accessed via

the legacy, serial-attached SCSI (SAS) interface), we run this experiment on the CPUs

only. We show the results in Figure 3.11 and note that, while MOSAIC scales well for the

first few SSDs added, up to three. However, after this the performance benefit stagnates

due to saturation of the number of threads used by MOSAIC to read from these SSDs:

When using four SSDs, we use two threads per SSD to read both the tile data itself as well

as the associated meta data. Thus, only a limited number of threads is still available for

data processing compared to simply reading from SSDs as MOSAIC does not include a

scheduling component to re-assign idle threads. Additionally, MOSAIC’s load balancing of

tiles is not perfect, as seen in Figure 3.9. This causes an imbalance in the amount of time

spent for each thread which is reading the graph from disk and degrades overall performance,

especially as the data is now split among a larger number of devices (e.g., ten SSDs instead

of four NVMes).

Scalability

We also investigate the scalability when using NVMes in place of SSDs, MOSAIC’s typical

configuration. When increasing the number of Xeon Phi and NVMe pairs from one to

four, it scales the overall performance of Pagerank (uk2007-05) by 2.8× (see Figure 3.12).

MOSAIC scales well up to the fourth Xeon Phi, when NVMe I/O starts to become saturated.

The graphs on the right side ( 1 – 4 ) show in detail how an increasing number of cores of

each Xeon Phi affects MOSAIC’s performance, highlighting MOSAIC’s scalability when

adding more cores.

45



0s
50s

100s
150s
200s
250s
300s
350s
400s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e

Pagerank

0s
20s
40s
60s
80s

100s
120s
140s
160s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e

BFS

0s

50s

100s

150s

200s

250s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e

CC

0s
50s

100s
150s
200s
250s
300s
350s
400s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e

SpMV

0s
50s

100s
150s
200s
250s
300s
350s
400s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e 0s

50s
100s
150s
200s
250s
300s
350s
400s
450s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e 0s

100s
200s
300s
400s
500s
600s
700s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e 0s

50s
100s
150s
200s
250s
300s
350s
400s
450s

1
SS

D
2

SS
D

s
3

SS
D

s
4

SS
D

s
5

SS
D

s
6

SS
D

s
4

N
V

M
e

C
om

pl
et

io
n

tim
e

(s
)

Twitter

C
om

pl
et

io
n

tim
e

(s
)

UK2007

Figure 3.11: The performance of MOSAIC running on an increasing number of SSDs. MOSAIC

scales well and saturates the available throughput until four SSDs when the overhead of polling
threads does not allow for further scalability. Pagerank and SpMV are run for 20 iterations while
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MOSAIC using the CPU only

Finally, to show the effectiveness of the techniques developed for MOSAIC, we compare

the execution of MOSAIC on ramjet using the previous setup of four Xeon Phis and six

NVMes with a CPU-only setup using only the six NVMes. The results of this setup are

shown in Table 3.11 and show that the CPU-only setup is mostly competitive with the Xeon

Phi-enabled setup. The CPU-only setup is at most 2.1× slower than the Xeon Phi-enabled

setup while outperforming it by up to 5.5× for algorithms with very small data movements

per iteration (such as SSSP and BFS), due to the CPU-only setup being able to move data in
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Table 3.11: The execution times for running graph algorithms on MOSAIC with real and synthetic
(marked ⋆) datasets, comparing the execution times on ramjet using the CPU only with the times
report in Table 3.5 on ramjet with four Xeon Phis. We report the seconds per iteration for iterative
algorithms (‡: PR, SpMV, TC, BP), while reporting the total time taken for traversal algorithms
(†: BFS, WCC, SSSP). A red percentage indicates cases where the CPU-only execution ran slower
compared to the Xeon Phi-enabled one while a green percentage indicates faster execution times.

Graph PR‡ BFS† WCC† SpMV‡ TC‡ SSSP† BP‡

⋆rmat24 0.35 s (+13%) 2.33 s (-51%) 2.74 s (-43%) 0.24 s (-25%) 1.55 s (+6%) 9.7 s (-21%) 1.01 s (+115%)
twitter 2.04 s (+9%) 12.13 s (+8%) 16.26 s (-14%) 1.79 s (+8%) 10.75 s (+14%) 63.96 s (+18%) 7.94 s (+49%)

⋆rmat27 3.20 s (+5%) 23.68 s (+39%) 28.77 s (+30%) 3.16 s (+15%) 17.03 s (+3%) 117.20 s (+15%) 11.82 s (+40%)
uk2007-05 2.51 s (+43%) 0.44 s (-255%) 4.71 s (-13%) 2.36 s (+58%) 6.64 s (+54%) 0.37 s (-454%) 3.66 s (-25%)
hyperlink14 38.53 s (+78%) 5.03 s (-30%) 1007.56 s (+42%) 32.82 s (+70%) 110.85 s (+63%) 7.15 s (-21%) 65.10 s (-9%)

⋆rmat-trillion 1358.67 s (+9%) 6984.46 s (+77%) 8650.66 s (+17%) 1257.50 s (+4%) 6128.57 s (+8%) - -

memory while the Xeon Phi-enabled setup has to copy data over the slower PCIe interface.

Summary of performance breakdown

As seen, MOSAIC scales well when using NVMes and is effective for both the setting of

using the Xeon Phi as well as the CPU-only setup. However, MOSAIC’s scalability is limited

when running on SSDs due to the much lower disk throughput offered by SSDs compared

to NVMes on a per-thread basis. This shows MOSAIC’s benefits when run in a modern

hardware setup (e.g., SSDs) as compared to relying on SSDs or hard drives.

3.8 Discussion

Limitations. To scale MOSAIC beyond a trillion edges, a few practical challenges need to

be addressed: 1) the throttled PCIe interconnect, 2) the number of attachable PCIe devices,

3) slow memory accesses in a Xeon Phi, and 4) the NVMe throughput. Next-generation

hardware, such as PCIe-v4, Xeon Phi KNL [80], and Intel Optane NVMe [81], is expected to

resolve 1), 3) and 4) in the near future, but to resolve 2), devices such as a PCIe switch [82]

need to be further explored.

Cost effectiveness. In terms of absolute performance, we have shown that out-of-core

processing of MOSAIC can be comparable to distributed engines [23, 24, 5, 4] in handling

tera-scale graphs. Moreover, MOSAIC is an attractive solution in terms of cost effectiveness,

contrary to the distributed systems requiring expensive interconnects like 10 GbE [63],
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40 GbE [5] or InfiniBand [4], and huge amount of RAM. The costly components of MOSAIC

are coprocessors and NVMes, not the interconnect among these. Their regular prices are

around $750 (e.g., 1.2 TB Intel SSD 750) and around $549 (Xeon Phi 7120A, used in

MOSAIC), respectively.

Conversion. In MOSAIC, we opt for an active conversion step, offline and once per dataset,

to populate the tile abstraction from the raw graph data. In a real-world environment, these

conversion steps can easily be integrated into an initial data collection step, amortizing the

cost of creating partitions while only revealing the costs for populating tiles. As shown

in §3.7.1, the conversion time is comparable to other systems such as GridGraph [18].

3.9 Chapter summary

In this chapter, we present MOSAIC, an out-of-core graph processing engine that scales

up to one trillion edges by using a single, heterogeneous machine. MOSAIC opens a new

milestone in processing a trillion-edge graph: 21 minutes for an iteration of Pagerank on

a single machine. We propose two key ideas, namely Hilbert-ordered tiling and a hybrid

execution model, to fully exploit the heterogeneity of modern hardware, such as NVMe

devices and Xeon Phis. MOSAIC shows a 3.2–58.6× performance improvement over other

state-of-the-art out-of-core engines, comparable to the performance of distributed graph

engines, yet with significant cost benefits.

While MOSAIC scales to very large, tera-scale graphs, we note that real-world graphs

often change over time and are dynamic in nature. We will now look and tackle the

challenges in the space of evolving graphs while building on the design principles outlined

with MOSAIC.
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CHAPTER 4

PROCESSING BILLION-SCALE EVOLVING GRAPHS ON A SINGLE

MACHINE WITH CYTOM

After introducing MOSAIC as a solution for processing tera-scale, static graphs we will

now look at the case of processing graphs that evolve over time using our system called

CYTOM. Compared to MOSAIC, CYTOM faces the more demanding challenge of having to

both quickly answer to user-facing queries while allowing the underlying graph structure to

change rapidly and efficiently.

4.1 Introduction

Large-scale graphs are a common building block in many real-world applications and

scenarios like social networks, data science, the World Wide Web, or route finding. While

there are many approaches to process static versions of these graphs in a diverse set of

fields, processing graphs that can change over time, so-called streaming or evolving graphs,

is a different, more latency-sensitive challenge. Thus, many real-world scenarios that

could benefit from a real-time analysis, such as anomaly detection [83] or topic detection in

streams of graph updates [84], are still handled in a batch-processing manner [3]. In addition,

these graphs see a large number of concurrent changes to their graph structures, e.g., at

Twitter [85] (≈ 150,000 tweets per second), Facebook [86] (≈ 85,000 updates per second),

as well as millions of emails being sent per second [87]. This provides the motivation for the

development of engines specifically targeted at processing evolving graphs while focusing

on achieving high throughput when updating the graph and also providing low latency to

obtain updated algorithmic results.

This problem of achieving both high throughput while providing low latency is prevalent

in both single-machine-based systems as well as distributed systems. However, while
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Table 4.1: Overview of CYTOM and other frameworks for processing evolving graphs. CYTOM will
be open-sourced upon publication.

Characteristics
Single Machine Distributed System

LLAMA [45] GraphIn [47] GRAPHONE [48] STINGER [46] CYTOM KickStarter [55] Timely
Dataflow [30]‡

Pe
rf

. Scale (#edges) 1 B 100 M 3 B 100 M 3 B 2 B 3 B
Ingestion rate (#edges/s) 10 M 10 M 40 M 1 M 140 M - 30 M (per machine)
Batch rate (#batches/s) ≈ 10 ≈ 100 ≈ 600 ≈ 1,000 ≈ 100,000 - ≈ 100,000
Batch sizes (#edges) > 1M > 100K > 65K > 10K > 1K - > 1K
Incremental proc. - ✓ ✓ ✓ ✓ ✓ ✓
Synchronous proc. ✓ ✓ ✓ ✓ ✓ ✓ ✓
Asynchronous proc. - - - - ✓ - ✓

Pr
og

.m
od

el

Approximation - - - - ✓† - ✓

Fe
at

ur
es

Disk persistence ✓ - ✓ - ✓ - -
Deletions ✓ ✓ ✓ - ✓ ✓ ✓
Snapshot view ✓ - - - ✓ - ✓
Open source ✓ - ✓ ✓ ✓ - ✓

‡: Note that Timely Dataflow is not specialized for graph analytics.
†: Through CYTOM’s edgeChanged API and varying δ for the pagerank algorithm.

distributed systems for this problem have been proposed [30, 55, 88, 89], they incur

additional overhead for tasks such as persisting the state of the graph (needs a two-phase

commit-like protocol to ensure strong consistency after graph updates) while presenting a

cost-intensive solution to a problem that can be solved on a smaller set of machines or a

single machine itself. On the other hand, approaches on a single machine face the problem

of limited graph sizes due to memory and storage constraints, as well as low performance

when trying to combine both high update throughput and low algorithmic latency.

To tackle these problems, we introduce CYTOM1, a graph-processing engine for evolving

graphs using a cell-based abstraction. At its core, CYTOM incorporates 2D cells of the

graph’s adjacency matrix that unlock a number of benefits for CYTOM, including a drastic

reduction in required memory storage space, a lightweight load-balancing scheme, and

a straightforward mechanism for parallel graph updates resulting in high throughput. In

addition, CYTOM is able to perform updates on a single edge basis rather than relying

on large update batches, if the application requires minimal latency for the updates to

be reflected in the graph. CYTOM’s design is also amenable to a simple, yet effective

persistence scheme, allowing updates to be written to disk with modest overhead to provide

for failure consistency and offline analysis.

Along with its cell abstraction for the data storage of the graph, CYTOM introduces an

1CYTOM is a shorthand for cytometry, the determination of the properties of cells.
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API tailored specifically for the setting of evolving graphs. This API allows the algorithm

to decide whether to heavily process new graph updates or to keep updates local inside

a cell, allowing for a lowered latency for the completion of graph updates in many cases.

Additionally, we demonstrate that CYTOM’s cell-based execution model is general and

flexible enough to support diverse operating modes like approximation, asynchronous graph

processing, as well as a snapshot-based view. Table 4.1 incorporates these operating modes

as well as key performance numbers for a representative set of graph-processing engines for

evolving graphs, including both single-machine as well as distributed systems. This shows

that CYTOM is able to uniquely combine multiple operating modes with high performance

and small update batch sizes rivaling even the performance of distributed systems.

In this chapter, we present CYTOM and its contributions:

• We introduce the design of CYTOM’s cell abstraction as well as the data structure

trade-offs necessary to support dynamically evolving graphs, yielding a zero-cost

compression scheme as well as a simple load-balancing scheme.

• We propose an API and execution model tailored for evolving graphs by incorporating

a hybrid edge- and vertex-centric API coupled with the edgeChanged API to allow a

timely reaction to graph changes.

• We demonstrate the benefits of CYTOM and its cell-based abstraction of the graph on

a commodity server and show that CYTOM is able to outperform other state-of-the-art

systems by 1.5×–200×.

4.2 CYTOM’s Design

We introduce CYTOM’s design, starting with CYTOM’s components and its core idea of

using cells. We then discuss the data structure at the core of CYTOM before introducing our

approach for persistence. Algorithmic aspects of CYTOM are then discussed in §4.3.
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Figure 4.1: Overview of CYTOM’s components along with an exemplary insertion of edge A and
the steps taken by CYTOM to generate an algorithmic output.

4.2.1 System Overview

CYTOM’s components, tailored towards processing an evolving graph, are shown in Fig-

ure 4.1 with the addition of an edge ( A ) and the steps taken by CYTOM to generate an

algorithmic output. These components are designed to be NUMA-aware, balancing the

number of cells between sockets.

Cell manager. (§4.2.2) Cell managers are responsible for storing the edges ( 1 in Fig-

ure 4.1). Additionally, they invoke the edgeChanged API for every updated edge. Cell

managers are not run as a thread and are rather a storage abstraction.

Load balancing. (§4.3.3) As part of the algorithm execution (step 2 in Figure 4.1), the

cell distributor achieves load balancing when executing an algorithm on CYTOM’s cells.

Algorithm executor. (§4.3.1) Algorithm executors are run as threads and execute cells

assigned to them by the cell distributor (see step 3 in Figure 4.1). They use the abstraction

of the cell manager to execute the given algorithm on every (active) cell, updating the values

stored in the global vertex array.

Persistence writer. (§4.2.3) The persistence writer is notified of all graph updates (step 4

in Figure 4.1) and asynchronously persists graph changes to disk.
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Figure 4.2: The construction of CYTOM’s cell structure as submatrices of the global adjacency
matrix with the submatrix size set to three.

4.2.2 Cell Model

The core idea of CYTOM is to form cells as distinct submatrices of size p of the adjacency

matrix of the evolving graph, as shown in Figure 4.2. This technique enables a number of

optimizations: local, short identifiers (e.g., 16 bits instead of 64 bits), implicit handling of

high-degree vertices, and load balancing for insertions as well as the algorithm execution.

Each cell represents a distinct subgraph of the global graph with no edges spanning two cells.

More formally, we assign an edge (u, v) to the cell (i, j) with i =
⌊
u
p

⌋
and j =

⌊
v
p

⌋
. This

structure allows each cell to be treated as an independent unit of computation and alleviates

load-balancing concerns. We show the individual data structure of a cell in Figure 4.3.

CYTOM also supports weighted graphs by storing the edge weight as a 4-byte float.

While systems designed for static graphs have adopted a similar structure (e.g., edge

blocks in GridGraph [18] or tiles in MOSAIC [6])2, these structures are immutable in nature

due to their tightly packed format to optimize I/O throughput. In comparison, CYTOM’s

cells are designed to dynamically expand or shrink as required. Furthermore, CYTOM’s cells

retain the benefits demonstrated by MOSAIC’s tiles of achieving a lower memory footprint

using short identifiers. In fact, with CYTOM’s cells, we are able to even remove the metadata

2The tiles in MOSAIC would contain [ 1 , 2 , 3 , 4 ] and [ 5 , 6 , 7 , 8 , 9 ] as a second tile in Figure 4.2.
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Table 4.2: Popular data structures and their applicability on real-world evolving graphs using 64-bit
vertex identifiers. CYTOM meets all requirements while improving the storage overhead.

Representation Sparse graphs Updates Traversal Storage
Adjacency matrix - ✓ ✓ 1 bit (all edges)
Adjacency lists ✓ ✓ - 8 bytes
CSR ✓ - ✓ 8 bytes
Edge list ✓ ✓ ✓ 16 bytes

CYTOM ✓ ✓ ✓ 4 bytes

overhead that MOSAIC suffers from, accounting for up to 30% of MOSAIC’s overall graph

storage cost.

Data structure. As shown, CYTOM stores new edges in an edge list format. Edge lists

have all the desired features for storing evolving graphs: They support sparse graphs (a key

feature of real-world graphs), updates are cheap, and there is no overhead for traversing the

edges, as they are stored in a contiguous array. However, compared to other options, such as

adjacency lists or the compressed sparse rows (CSR) format, edge lists have a higher storage

cost, as shown in Table 4.2. However, using CYTOM’s local, short identifiers, we are able to

retain all the benefits of traditional edge lists while removing the storage overhead, yielding

CYTOM’s representation. The structure of an individual cell is also shown in Figure 4.3.

Local identifiers. A key advantage of CYTOM’s cells is the opportunity to use shorter,

cell-local identifiers (e.g., 16 bits instead of 64 bits). This is facilitated by enumerating

a cell’s vertices from zero to the maximum per the given bit size (e.g., with 16 bits, up

to 216 = 65536 vertices per cell). This scheme yields a simple, arithmetic translation

mechanism to convert identifiers, as shown in Figure 4.3. This scheme allows a reduction

in memory cost of 50% (over 32-bit identifiers) or 75% (64-bit identifiers). CYTOM uses

16-bit identifiers as a balance between the number of cells and the potential overhead of

dealing with a large number of cells (e.g., using 8-bit identifiers results in more than one

billion cells for even the smallest real-world graph in our evaluation while 16-bit identifiers

only result in 16K cells) and the benefits for memory footprint and cache hits associated

with using 16-bit identifiers over 32-bit or 64-bit ones (see §4.4.3).
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Figure 4.3: The construction of a single cell, C21. Note that CYTOM is able to use shortened
identifiers (double-circled) by translating the global identifiers into the cell-local ID space.

Handling of high-degree vertices. High-degree (or hub) vertices are common in real-

world graphs that follow a power-law distribution [90] like Web graphs [91] or social

networks [76]. As such, hub vertices may become a bottleneck for load-balancing and

necessitate special treatment [23]. CYTOM handles these cases implicitly: CYTOM’s cell

structure balances the load for high-degree vertices, as incoming and outgoing edges will be

split among a large number of cells, allowing for both simultaneous updates to the graph

structure as well as parallelism when executing algorithms.

Load balancing. As another benefit of CYTOM’s cell design, load balancing for skewed

graphs is much simpler than with other schemes (e.g., splitting of high-degree vertices [26]).

Load balancing with CYTOM is achieved by allowing multiple threads to operate on their

assigned cells in parallel, while the cell distributor imposes load balancing decisions on the

distribution of cells to the executors (see §4.3.3).

Growing and shrinking. As shown in Figure 4.4, CYTOM’s cells can expand or shrink by

adding or deleting edges. When appending new edges, CYTOM retains an amortized constant

time per insertion by exponentially growing the underlying edge array. In addition, CYTOM

stores a bit list, marking deleted edges that will not be used by the evolving algorithm. The

potential overhead of already-deleted, but still-present edges can be recovered when loading
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Figure 4.4: The dynamic behavior of a cell including deletion of edge 8 and addition of edge 10 .
CYTOM uses a deletion bit and compacts its format when recovering from a persisted snapshot.

a previously persisted snapshot from durable storage (see §4.2.3).

Cell management. Managing CYTOM’s cells is challenging because of the large number

of cells: A graph with 130 million vertices will result in a total number of cells of more than

4 million, i.e., many more cells than threads available. However, it is desirable to assign a

cell exclusively to a thread to avoid synchronization overhead that would arise when multiple

threads were to update edges within the same cell. To address this issue, we introduce the

so-called cell managers (CMs): Each cell is exclusively assigned to a cell manager (i.e.,

a thread), and all cells are evenly divided among all cell managers. A simple partitioning,

however, might be prone to hotspots. To alleviate this problem, we use a checkerboard

pattern of the adjacency matrix to assign cells to the cell managers. This assignment is made

by the simple formula of CMassigned = (i+ j) mod countCMs, with i being the row and j

being the column of the cell. As a secondary benefit, this scheme is well-suited for being

expandable when new cells are added by simply extending the checkerboard pattern.

Compaction. CYTOM supports the deletions of edges and provides abstractions to handle

cases in which a deletion can result in incorrect algorithmic results (see §4.2.4). CYTOM

uses a deletion flag to track edges that are no longer part of the graph. This can result in

inefficiencies when a large number of edges is deleted; however, deletions are relatively rare

(e.g., 1% of edges being deleted per batch) and CYTOM supports compacting its storage
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Figure 4.5: A deleted edge can lead to incorrect results, shown with the CC algorithm: Edge A
is deleted ( 1 ), which in turn updates the result of vertex 2 ( 2 ). However, due to edge B ( 3 ),
the result of vertex 2 converges to an incorrect result ( 4 ). CYTOM (on the right side) defines
algorithm-specific critical edges to indicate when a deletion will result in incorrect algorithmic
results.

when recovering from a persisted snapshot, permanently removing deleted edges.

4.2.3 Persistence

CYTOM enables on-disk persistence of the evolving graph. Persistence is an important part

of every system processing evolving graphs; however, it is even more important on a single

machine given the potential for catastrophic data loss on a crash. CYTOM writes edge inser-

tions, changes (e.g., changes to edge weights), and deletions to a persistent, on-disk version.

For persistence, CYTOM uses a per-cell-manager log file that is synchronously written to

every batch. A synchronous write is important to allow for an immediate persistence of

the on-disk log rather than relying on a faster, but eventually-consistent buffer cache write.

CYTOM’s persistence mechanism overlaps with the execution of the evolving algorithm,

as the persistence operation will not change the graph structure. However, the persistence

operation cannot overlap the graph updates to avoid inconsistent snapshots. CYTOM also

supports restoring the persisted graph and allows a resumption of the graph updates from

the last successfully persistent snapshot, e.g., in the case of a power loss.
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4.2.4 Handling Deletions

Handling edge deletions is crucial in evolving graphs and can incur correctness issues [55,

47, 56], as shown in Figure 4.5, leading to extensive corrections or re-executions of the

algorithm to ensure correctness. As such, CYTOM has full support for deleting edges

of the evolving graph. CYTOM accomplishes this by carrying a vector of deleted edges

inside every cell to identify edges that should be skipped, as demonstrated in Figure 4.4.

Additionally, when reading back a graph from a previously persisted snapshot, deleted edges

are permanently removed from the graph.

Example. Figure 4.5 shows a graph where the deletion of edge 1 leads to an incorrect

algorithmic result of the connected components algorithm. To handle this issue, CYTOM

introduces a simple heuristic for path-based algorithms to control when a re-execution of

the algorithm will be necessary: If the deleted edge carried the result (e.g., the connecting

edge for a breadth first search), the edge is critical to the result of the algorithm and a

re-execution of the algorithm is necessary to ensure correctness. If an edge did not carry the

algorithmic result, deleting that edge does not change the result of the algorithm and can

safely be done without re-executing the algorithm. This is an efficient strategy, as there is

only a limited number of edges that can potentially carry the algorithmic result, i.e., one

per vertex for path-based algorithms. Thus, the number of critical edges is only as large as

the set of vertices V , which, in many real-world graphs, is much smaller than the overall

number of edges E, reducing the chance of an algorithm re-execution. This strategy also

only needs to store information of the size of O(V ), a single identifier per vertex, to identify

the critical connecting edge.

4.2.5 Batching of Graph Updates

Similar to other systems for processing evolving graphs, CYTOM allows the batching of

graph updates to achieve higher throughput. This is relevant for many real-world applications

in which eventual consistency coupled with higher performance is desirable (e.g., social
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Table 4.3: The APIs and callbacks exposed by CYTOM to algorithm developers. Figure 4.6 shows
an example usage of these APIs to implement a connected component analysis.

Function Description

API

activate(v) Activates v for the next iteration
markCritical(src, tgt) Marks src as the critical edge of tgt
isCritical(src, tgt) Checks if src is the critical edge of tgt
reExecuteAlgorithm() Reset all vertex values

Callbacks pull/reduce/apply (Static) Graph computation
edgeChanged(edge, event) Handles update for given edge and event

networks [92]). CYTOM supports any batch size from a single edge up to millions of edges

per batch; however, as our evaluation shows (see §4.4.2 and Figure 4.4.3), CYTOM achieves

a high throughput with batch sizes of 1,024 edges (for insertions) and 65,536 edges (when

also running an algorithm).

4.2.6 Implementation

We implement CYTOM in C++ in about 10,700 lines of code of which about 750 lines are

dedicated for implementing CYTOM’s algorithms. CYTOM’s components communicate via

a custom ring buffer implementation that allows for high throughput and a decoupling of the

individual components.

4.3 Execution Model

Using CYTOM’s cell model, we show how algorithms execute on snapshots of the evolving

graph using CYTOM’s APIs specifically tailored for evolving graphs.

4.3.1 Algorithmic Interface

CYTOM proposes an API modeled after the gather-apply-scatter (GAS) model [28, 23] in

which edge values are read from a current vertex array and updated in a next array, ensuring

bulk-synchronous-parallel (BSP) semantics [93, 94]. CYTOM extends this model to the

setting of evolving graphs with the edgeChanged interface and employs a hybrid edge-
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centric (operations within a cell) and vertex-centric (global operations and non-associative

steps) model. This allows for reacting to new edges, the deletion of edges, or a change

in the edge metadata (e.g., the weight). Additionally, some algorithms might converge to

an incorrect result in the presence of edge deletions [55, 56], necessitating a re-execution

of the algorithm. The functions exposed by CYTOM are listed in Table 4.3, including

the edgeChanged interface allowing the algorithm to quickly react to local, edge-centric

events. Possible values for the event are: insertion, update, or deletion (updates are possible

for weighted graphs). CYTOM incorporates an optimization for deleting edges that are

critical, which can impact the algorithm’s correctness while discarding most of the edges as

non-critical cases for which a deletion does not necessitate a re-execution of the algorithm.

We exemplify the API used by CYTOM in Figure 4.6 along with the edgeChanged

interface with a simple algorithm to compute the connected components (CC) of a graph. As

a general flow, CYTOM operates on cells as the smallest scheduling unit. Inside a cell, the

algorithm executor will execute the pull function on every (active) edge to compute a result

in a temporary result buffer. After all edges of a cell have been processed, this result buffer

will be atomically reduced onto the global vertex array. The use of an atomic operation is

necessary, as all algorithm executors operate in parallel. On conflict, the reduce operation

has to be repeated to ensure a correct result. Finally, the apply function is used to activate

non-converged vertices in a single, non-associative step. The algorithm converges once all

vertices are inactive.

Algorithms. We implement five algorithms: breadth first search (BFS), single-source

shortest paths (SSSP), pagerank calculation (PR), finding connected components (CC),

and single-source widest path (SSWP), with SSSP and SSWP operating on a weighted

graph. Table 4.4 gives an overview of the implemented algorithms. All algorithms use the

edgeChanged API to reduce computation whenever possible when the algorithmic result

does not change significantly on an edge update. We use a variant of pagerank outlined

in PowerGraph [23], which only propagates changes in the value of a vertex, skipping the
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// Inside a cell (local)
// edge e = (vertex src, vertex tgt)
def pull(Vertex src, Vertex tgt):
    if src.value < tgt.value:
        markCritial(src, tgt)
        return src.value
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// Collecting cell results (local & global)
def reduce(Vertex v1, Vertex v2):
    return min(v1.value, v2.value)

// On global vertices
def apply(Vertex v):
    if current(v.value) != next(v.value):
        activate(v)
 // Callback on every edge update
def edgeChanged(Vertex src, Vertex tgt, Event e):
    switch(e):
        case Inserted:
            // Update if New Path Discovered
            if src.value < tgt.value:
                tgt.value = src.value
                activate(tgt)
                markCritical(src, tgt)
        case Deleted:
            if isCritical(src, tgt):
                reExecuteAlgorithm()
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Figure 4.6: The connected components algorithm using CYTOM’s API. CYTOM includes cell-local
APIs as well as global, vertex-level APIs general enough to implement common graph algorithms.
Additionally, the edgeChanged API can significantly reduce the amount of work done after an edge
is changed. The base algorithm can be implemented similarly compared to computing on static
graphs and CYTOM adds the lines marked with ⋆.

Table 4.4: The algorithms implemented in CYTOM with their associative and commutative reduce
operators and the lines of code, especially for the edgeChanged interface added by CYTOM.

Type Algorithm Reduce operator Lines of code
Total EdgeChanged

unweighted
PR + 176 31
BFS min 138 25
CC min 148 25

weighted SSSP min 140 26
SSWP max 140 27
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computation on inactive edges.

4.3.2 Selective Scheduling

Especially for evolving graphs, it is common for large parts of the graph to already have

converged during the execution of an algorithm with only a portion of the vertices remaining

active. State-of-the-art frameworks for processing static graphs (e.g., GridGraph [18] and

Mosaic [6]) incorporate an optimization, called selective scheduling, which schedules only

the active parts of the graph. A key enabler for this technique is the use of a submatrix

structure of the adjacency matrix; consequently, CYTOM is able to incorporate this optimiza-

tion. Furthermore, CYTOM also skips the computation on inactive edges (as defined by the

algorithm) to further reduce the computational work. CYTOM is the first system processing

evolving graphs to take advantage of this optimization as a result of its cell-oriented design.

4.3.3 Load Balancing and Cell Distribution

Load balancing is a common concern when processing real-world, skewed graphs. While

other systems approach this problem with vertex-based load-balancing schemes [47, 46],

CYTOM is uniquely positioned to take advantage of the two-dimensional partitioning of its

cells to achieve load balancing. However, the two-dimensional nature of CYTOM’s cells

also poses a problem in terms of scalability, as the number of cells grows quadratically with

the number of vertices. We present CYTOM’s approach for load balancing before exploring

CYTOM’s approach to dealing with a large number of cells.

Load balancing. A classic option for load balancing is static partitioning of the cells. It

does not rely on any synchronization, but, suffers from stragglers [95] due to the dynamic,

evolving graph and algorithm-dependent behavior. For static graphs, work stealing can be a

solution [5, 96]; however, CYTOM chooses a different approach because of the synchroniza-

tion overhead of work stealing, which can be effective on static graphs, whereas evolving

graphs often include smaller sets of active vertices, necessitating a quicker intervention.
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We prototype a work-queue-based approach and atomically assign cells to executors.

This approach mitigates most stragglers; however, it is not free of them: Real-world

graphs exhibit a skewed distribution in cell sizes (shown in Figure 4.7), inducing stragglers.

Furthermore, atomically incrementing a shared variable can become a bottleneck [97].

Finally, we avoid synchronization issues while mitigating load imbalance with the cell

distributor. It assigns batches of cells in a single-threaded manner once a threshold of cells

has been reached, similar to the work-queue approach. However, the cell distributor also

tracks the number of edges in each batch of cells and assigns a batch with less cells than

the threshold if a significant number of edges are present in a single batch (set to 1
128

of all

edges in the graph). This results in a load-balanced system, avoiding stragglers.

Mitigate large number of cells. We explore an optimization of the cell distributor

mitigating potential scalability issues, using a hierarchical cell-distribution scheme. The

number of cells grows quadratically with the number of vertices (divided by the size of each

cell, e.g., 216), but, many cells will not contain any edges because of the highly skewed nature

of real-world graphs. We thus propose a two-level cell distribution scheme by introducing

a hierarchical scheduling scheme. For this, the space of cells is subdivided into a small

number of abstract cells (e.g., 1,024). The hierarchical cell distributor first enumerates all

abstract cells and checks if they can be skipped, saving up to 85% of cell explorations.

4.3.4 Optimizations Enabled by the Cell Model

We explore two optimizations enabled by CYTOM’s cells.

Cell batching. As introduced in §4.3.1, results from all edges in a cell are first collected in

a temporary buffer before (atomically) reducing them to the global vertex array. However,

doing this after every cell misses optimization opportunities, as multiple cells might write to

the same temporary output buffer (i.e., their target vertex sets are identical). Thus, CYTOM

batches cells and only reduces the temporary results onto the global array after a batch of

cells has been processed, allowing for potentially reusing intermediate results.
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Table 4.5: The support of different operating modes for the algorithms implemented for CYTOM.

Algorithm BSP Approximation Async. Proc. Timelapse

Pagerank ✓ ✓ - ✓
BFS ✓ - ✓ ✓
CC ✓ - ✓ ✓
SSSP ✓ - ✓ ✓
SSWP ✓ - ✓ ✓

Cell traversals. Different traversals of CYTOM’s cells allow further optimizations, as

the edges’ processing order is not fixed and does not influence the algorithms’ correctness.

CYTOM implements three traversal directions: column-first (read-optimized), row-first

(write-optimized), and the hilbert order [69] (both). However, while the hilbert order was

shown to be an effective mechanism to improve locality and overall execution speed for

static graphs [66, 6], our evaluation shows the row-first traversal to be the most effective (see

Figure 4.4.3). This is attributed to fundamental differences in the execution characteristics:

While static graphs have a large amount of work in every iteration, processing evolving

graphs results in less work every time the algorithm is invoked, as only the recently updated

edges have to be processed. In fact, with a million edge updates and the associated vertex

data, only 12 MB of the LLC have to be used due to CYTOM’s efficient encoding scheme.

This allows the row-first traversal to achieve better store cache locality and results in better

overall performance (see Figure 4.4.3).

4.3.5 Specialized Operating Modes

CYTOM supports specialized operating modes. These include approximate analysis as well

as asynchronous processing, two modes that are of special importance in the setting of

evolving graphs, as they allow significant reductions in computational work and can be used

to cut down on uninteresting updates at the time of an edge update. We demonstrate the

applicability of these techniques for evolving graphs and show the algorithms supporting

each mode in Table 4.5.

Approximate graph analytics. First, we prototype an approach to approximate graph
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processing with CYTOM’s edgeChanged API and the pagerank algorithm to allow for a

trade-off between execution speed and the quality of the algorithmic result. This is an

emerging area of interest for static graph processing [98, 99] and, as discussed, carries

even larger implications for evolving graphs, potentially reducing work on edge updates. In

CYTOM, we demonstrate this using the pagerank algorithm. Whenever an edge is updated,

CYTOM only propagates the result if it changes the pagerank value of a vertex by at least

a factor of δ (default: 0.01). We explore the effect of varying δ in §4.4.5 and show that a

speedup of more than 60× is possible with a reasonable approximation compared to the

non-approximated case.

Asynchronous processing. CYTOM furthermore supports asynchronous processing of a

subset of algorithms, i.e., BFS, SSSP, and CC. For this, the barrier at the end of an iteration

is removed and a periodic convergence checker runs to terminate the execution. Additionally,

both the input and output value of an edge are read and updated in the next array, allowing a

quicker dissemination of results than with synchronous, BSP-style processing.

Supporting timelapse-based analytics. Finally, we introduce the ability to take snapshots

of the evolving graph as well as the associated algorithmic result, persisting them on disk

for further analysis. This mode allows popular analysis tasks such as “how has the pagerank

of a specific webpage changed over time?” similar to systems like Kineograph [50] and

Chronos [49]. In addition, CYTOM can be extended with per-edge timestamps to produce

snapshots of the graph and allow for ad-hoc analysis scenarios [100, 54]. These timestamps

can be stored in CYTOM’s cells and are persisted to disk as well, increasing CYTOM’s

memory footprint by 50% (16-bit timestamps) to 100% (32-bit timestamps). However,

CYTOM still retains its favorable memory footprint over the traditional, edge list-based

approach.

4.4 Evaluation

We evaluate CYTOM by answering the following questions:
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Figure 4.7: The distribution of cell sizes for the real-world graphs used in CYTOM. As CYTOM’s
cells can vary widely in size due to the nature of real-world, skewed graphs, load-balancing is an
important consideration for CYTOM’s cell distributor.

Table 4.6: The graphs used in the evaluation of CYTOM and their characteristics (⋆marks synthetic
data sets). CYTOM reduces the data size by 48% due to its short, 16-bit identifiers.

Graph #vert. #edges Data size #Cells #edges in cell

Raw CYTOM avg stddev
⋆rmat-22 4.2M 67.1M 512.0MB 264.0MB 4.1K 16.4K (64.9K)
livejournal 4.8M 69.0M 526.4MB 271.4MB 5.5K 12.6K (42.7K)
orkut 3.1M 117.2M 894.1MB 461.0MB 1.1K 103.9K (151.8K)
twitter 41.7M 1.5B 10.9GB 5.6GB 395.4K 3.7K (34.2K)
uk2007-05 105.9M 3.7B 27.9GB 14.4GB 859.1K 4.4K (158.9K)

• How does CYTOM compare to other systems processing evolving graphs in terms of

throughput and latency?

• How do each design decisions of CYTOM impact its performance, including CYTOM’s

cells, its persistent mode, and the edgeChanged interface?

• How versatile is CYTOM with other processing modes like approximate or asyn-

chronous processing?

4.4.1 Evaluation Setup

Machine. We run CYTOM on a two-socket, 24-core machine (E5-2670 v3 2.3 GHz) with

256 GB of RAM. We run all experiments with an SSD (maximum transfer rate of 470 MB/s)

and empty the buffer cache before every experiment.

Datasets. We list the graphs used in the evaluation with their characteristics in Table 4.6.
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The synthetic graphs are generated using the R-MAT generator [75] using the configuration

of the graph500 benchmark.3 We use social network-based graphs (livejournal [101],

orkut [102], and twitter [76]) as well as a Web graph (uk2007-05 [77, 78]). These graphs

range from a few million vertices and edges up to a hundred million vertices and more than

3 billion edges with a raw data amount of 0.5 GB up to 30 GB. We run all algorithms on all

real-world graphs where possible but restrict the evaluation to the two smallest, real-world

graphs in cases where the runtime for the billion-scale graphs would be excessive (e.g., very

small insertion batches in Figure 4.4.3).

Methodology. We run all experiments five times and report the average. The predominant

metric is the throughput of graph updates, either with or without running an algorithm

(as specified). Where possible, we run other systems ourselves (e.g., STINGER [46] and

GRAPHONE [48]) but take numbers from respective papers if the system is not available

(e.g., GraphIn [47]). If not specified, we use a default batch size of 1 million updates and

run all algorithms to convergence or for 100 iterations, whichever occurs earlier.

4.4.2 Overall Performance

We first investigate CYTOM’s graph storage and its overall performance, the algorithmic

performance, and how CYTOM compares to other state-of-the-art systems for processing

evolving graphs (i.e., GRAPHONE, STINGER, and GraphIn).

Performance of Storing the Evolving Graph. We first evaluate the performance of

inserting and updating edges in the graph store itself. We vary the size of the batch of

updates from one edge to 224 ≈ 16M edges and set the deletion ratio to 1%. Note that the

maximum achievable performance is about 58 million edges per second, as the maximum

achievable throughput of the underlying SSD is 470 MB/s. The results in Figure 4.8

show that CYTOM with an update size of one edge achieves about 1.5 million edges per

second, while increasing the batch size to 128–512 allows the full usage of the offered SSD

3The default parameters are a = 0.57, b = 0.19, c = 0.19, d = 0.05, https://graph500.org/?page_
id=12#sec-3_2
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Figure 4.9: Comparison to GRAPHONE for algorithm processing and insertion throughput (without
an algorithm). CYTOM outperforms GRAPHONE by up to 6.9× with PR and 5.3× during insertion
as a result of CYTOM’s cell-based graph representation.

bandwidth. For the smaller graphs (orkut and livejournal), the throughput drops for batch

sizes larger than 1M updates, as the parallelism achievable inside the graph is limited due to

the very few batches necessary to insert the entire graph (i.e., five batches for the livejournal

graph at a batch size of 16 million).

Comparison to GRAPHONE. We compare CYTOM to GRAPHONE [48], a recent sys-

tem optimizing the throughput of graph updates. We run CYTOM in an in-memory mode

for this experiment, similar to the setup GRAPHONE is designed for. As shown in Fig-

ure 4.9, CYTOM outperforms GRAPHONE by up to 6.9× when running PR with smaller

improvements for less complicated algorithms. Additionally, CYTOM is able to support up

to 140 million graph updates per second (without running any algorithm), outperforming

GRAPHONE by up to 5.3× for large graphs.
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Figure 4.10: Comparison to STINGER on an rmat-22 graph with 4M vertices and 67M edges.
CYTOM achieves a maximum speedup of 192× in terms of edge update rates and at least 60× for
the algorithmic performance. CYTOM furthermore reduces the algorithm’s latency by up to 89.9%.
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Figure 4.11: Comparison of the size of the insertion batch used in CYTOM and its effect on the
overall throughput compared to GraphIn. CYTOM improves on GraphIn’s performance by up to
5.5× and consistently outperforms GraphIn with both small and large batch sizes.

Comparison to STINGER.

We compare CYTOM to STINGER, a popular open-source system for processing evolving

graphs. STINGER processes evolving graphs with atomic updates of its adjacency list. We

compare STINGER’s performance and algorithmic latency in Figure 4.10 with a small-scale

rmat-22 graph due to STINGER’s limited scalability. In comparison to CYTOM, STINGER

does not include APIs to accelerate and skip uninteresting updates and suffers from a poor

update rate due to the use of many atomic operations as well as long traversals to insert new

edges at the end of its adjacency lists. As a result, CYTOM is able to outperform STINGER by

a factor of up to 192× when purely updating edges and 60× to 200× when also running an

algorithm while updating the graph as well as reducing the latency for algorithmic updates

by up to 89.9%.

Comparison to GraphIn. We also compare CYTOM to GraphIn [47], a system optimizing
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Figure 4.12: Performance and locality of CYTOM compared to a version of CYTOM using longer
identifiers (32 or 64 bits) on the orkut graph. CYTOM performs up to 24% better using 16-bit
identifiers due to better cache hits as well as lowered memory footprint.

edge updates with an incremental, GAS-like programming model. Unfortunately, GraphIn

is not open-sourced; however, we obtain GraphIn’s numbers from its paper given that both

systems run on a relatively comparable system configuration. We show the comparison in

Figure 4.11, which demonstrates that CYTOM can outperform GraphIn by at least 2.1×

and up to 5.5× due to CYTOM’s efficient graph representation and better load balancing.

Additionally, GraphIn only scales to graphs with up to 70 million edges due to its expensive

programming model. CYTOM on the other hand is designed to scale to billions of edges.

4.4.3 Evaluating Taken Design Decisions

We now evaluate specific design decisions taken in CYTOM to see their impact on the overall

performance.

Compression and locality. We first evaluate CYTOM’s decision for short 16-bit identifiers:

The results in Figure 4.12 show that CYTOM with 16-bit identifiers achieves up to 25%

better performance, up to 5 percentage points better cache locality, while saving up to 75%

of memory when compared to a version with 32-bit or 64-bit identifiers. We do not include

8-bit identifiers as they result in more than a billion cells (compared to 16K cells with 16-bit

identifiers) and are not runnable for even the smallest real-world graph evaluated.

Traversals. As introduced in §4.3.4, CYTOM’s cells enable the use of different traversal

strategies, three of which are evaluated here: row-first, column-first, and the hilbert order
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Figure 4.14: Impact of CYTOM’s edgeChanged callback on the overall performance. Using
CYTOM’s APIs, the overall throughput improves by up to 2.9× due to the reduction in overall
work and the potential for skipping uninteresting updates.

traversal. The results in Figure 4.13 reveal that CYTOM performs best using the row-first,

write-optimized traversal. This surprising result is rooted in the nature of evolving graphs.

Only very little data needs to be processed in every iteration of the evolving algorithm (e.g.,

even 1 million updates result in less than 12 MB of edge and vertex data), allowing it to fit

into the cache. This in turn allows a write-optimized approach to work well, as it achieves

significantly better cache locality for stores, as seen in Figure 4.13, while the overall cache

locality remains similar between all traversals. This allows an improvement in throughput

by up to 2.4× (PR) when using the row-first traversal.

Impact of edge APIs. CYTOM uses the edgeChanged callback to allow on-the-fly updates

to the algorithmic result, while filtering out uninteresting updates. We evaluate the impact of

this callback by comparing CYTOM to a version of CYTOM that simply activates any edge

that is updated. The results in Figure 4.14 demonstrate that CYTOM achieves a speedup
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Figure 4.16: Comparison of the cell distribution mechanisms used in CYTOM. The hierarchical
cell distributor improves the overall throughput by up to 4.0× over a static partitioning due to the
improved load balancing and mitigated straggler problem.

of up to 2.9× due to the reduced amount of work to be done while still ensuring a correct

algorithmic result.

Incremental execution. We compare CYTOM to a version of CYTOM that simply re-

executes the algorithm from scratch after every batch of edge updates has been processed.

The results in Figure 4.15 show the importance of the incremental execution scheme, as

the overall throughput increases by 2.1×-13.1× when switching to CYTOM’s incremental

execution model, including its edgeChanged callback.

Cell distribution scheme & load balancing. We evaluate the importance of a dedicated

cell-distribution scheme in place of a simple static assignments of cells to threads. For this,
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Figure 4.17: Impact of CYTOM’s selective scheduling, which uses the active state of each edge to
determine which cells to process. Selective scheduling improves the performance by up to 5.6×.

we implement four different cell-distribution mechanisms: A static partitioning approach,

a load-balancing, work-queue-based approach, a cell distributor-based approach using

a dedicated thread to distribute cells to all executors while capping the amount of work

per executor, and a hierarchical cell distributor that uses two levels of partitioning to

focus on active subsets of the graph. All four options are shown in Figure 4.16 and

demonstrate the importance of the dedicated cell distributor, as it improves performance

by up to 4.0× compared to the static partitioning strategy. Additionally, the hierarchical

cell distributor is shown to perform better with larger graphs, with more opportunities for

skipping uninteresting parts of the graph.

Selective Scheduling. To further skip parts of the graph without activity, CYTOM provides

selective scheduling of its cells, skipping cells without any active edges, as defined by each

algorithm. Selective scheduling plays a crucial role in processing evolving graphs due to the

small number of active vertices after each batch of graph updates. As shown in Figure 4.17,

this allows speedups of up to 5.6×, as the amount of work per iteration is reduced once

large parts of the graph have become inactive, skipping up to 95% of cells due to inactivity

(PR). Selective scheduling is more important in algorithms that are slower to converge (e.g.,

PR) and weighted algorithms (e.g., SSSP, SSWP), as these cases can benefit significantly

from a reduced volume of data to be processed.

Batching. CYTOM utilizes batching at two levels (see §4.2.5 and §4.3.4): when updating

edges and when executing the algorithm on the cells. On graph updates, every batch of
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Figure 4.18: Impact of the chosen size of insertion batches on the overall throughput. With batch
sizes larger than 1M, CYTOM reaches a throughput of up to 40 million updates per second. As the
parallelism is limited with very large batch sizes, the throughput drops.

edges triggers an execution of the evolving algorithm with small batch sizes, inducing a

large overhead on the throughput of graph updates. Compared to batch-oriented systems

(e.g., GraphChi or X-Stream), CYTOM is able to support fine-grained insertion of edges. We

vary the batch size from 1024 to 16 million in Figure 4.18, demonstrating CYTOM’s ability

to support both fine-grained as well as large-volume updates. CYTOM is able to reach up to

40 million updates per second with large batches suffering from limited parallelism.

CYTOM also uses cell batching when running the algorithm. This reduces the synchro-

nization of results to the global vertex array done after completing the execution on a batch

of cells. We show the effect of varying the size of the cell batch from one to 1024 cells using

the livejournal graph in Figure 4.19. This shows that cell batching improves the throughput

by up to 63% with a batching size larger than eight cells and we select 128 cells as the

default batch size.

Impact of deletions. We analyze the impact that varying the percentages of deletions has

on CYTOM’s algorithmic performance with CYTOM’s optimization of critical edges (see

§4.2.4). The results, shown in Figure 4.20, show that with an edge deletion ratio of 1%,

CYTOM is able to reduce up to 84% of re-executions and improves the algorithm throughput

by up to 4.0× compared to the baseline of re-executing to ensure correctness. CYTOM shows
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Figure 4.20: Impact of edge deletions on the throughput compared to re-executing the algorithm to
ensure correctness. CYTOM’s approach of re-executing only when changing a critical edge skips
up to 84% of re-execution and achieves up to 4.0× the throughput compared to the baseline of
re-executing. Larger percentages of deletions have a higher probability of hitting a critical edge,
resulting in lower performance.
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the graph from disk as well as writing the processed edges back to the same medium.

smaller improvements with larger percentages of deletions as the probability of deleting

critical edges rises; however, it still retains advantages even for these cases. CYTOM’s

critical edge optimization is more effective on larger graphs due to the reduced chance of

hitting a critical edge on deletion as well as the increased cost of re-executions for larger

graphs (as seen in Figure 4.15).

4.4.4 Disk Persistence

CYTOM supports persisting as well as restoring the state of the evolving graph to and from

disk, providing fault tolerance (see §4.2.3). The results show that the overhead induced by

this mechanism ranges from close to 0% (for PR) to 48% (for CC), as CC usually converges

in a small number of iterations. This does not allow for enough time for the synchronous

writing of updates to disk to complete, thus stalling the updates to the graph, resulting in

higher overhead. Nonetheless, persistent CYTOM still retains a competitive performance

compared to other systems that run without persistence.

4.4.5 Evaluating Alternative Operating Modes

Approximate analytics. To show the effects of approximation on the quality of the

algorithmic result, we run the following experiment: We vary the δ value of PR, controlling

at what tolerance the algorithm terminates. In evolving graphs, δ determines whether or

not an edge is “important” when inserting it by testing if this additional edge changes the
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Figure 4.22: Impact of changing δ for PR on the throughput and the associated Kendall tau distance
in the associated vertex ranking with an increasingly larger approximation. A larger δ value allows
speedups of more than 60× while we choose a value of δ = 0.01 as the default, balancing speedup
and approximation.

Table 4.7: CYTOM’s throughput in an asynchronous mode compared to BSP-style processing when
processing the livejournal graph. We also show the reduction in the number of iterations (synchronous
mode) or convergence checks (asynchronous mode). The asynchronous mode is up to 3.2× faster
while saving up to 78.9% of iterations.

Algo. Tput (M edges/s) #Iteration

Sync. Async. (±%) Sync. Async. (±%)

BFS 17.69 24.55 (+38.8%) 145 64 ( -55.9%)
CC 22.29 28.60 (+28.3%) 125 35 ( -72.0%)
SSSP 6.01 19.78 (+229.3%) 323 68 ( -78.9%)

algorithmic result by more than δ. We vary δ from 0 (no approximation) to 0.64 and show

the effect on both the algorithm speedup (run to convergence) as well as the algorithmic

result in terms of the Kendall tau distance [103] in Figure 4.22. The Kendall tau distance is

a metric to compare two ranking lists and is 1 when both lists are equal and 0 if they are

inverted. A speedup of more than 60× can be obtained by using a larger δ; however at the

expense of the quality of the algorithmic result, although we note that the top-ranked vertices

are closely matched regardless of the approximation strategy. Using this analysis, we decide

for all other experiments to use a δ value of 0.01, as it balances the overall speedup with the

quality of the algorithmic result.

Asynchronous processing. CYTOM supports asynchronous processing for a subset of

algorithms (see Table 4.5), including BFS, CC, and SSSP, demonstrating CYTOM’s ver-

satility. We show the results of running CYTOM in its asynchronous mode in Table 4.7,
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Figure 4.23: CYTOM’s throughput when the snap-shotting mode is enabled. The snap-shotting
mode runs faster on the Orkut graph as it has only about half the number of vertices compared to
livejournal, resulting in lower overhead when writing to disk.

demonstrating that it improves performance by up to 3.2× as a result of a reduced number

of iterations to convergence. SSSP benefits the most due to its larger data size, with the

added weight per edge. Additionally, more iterations are saved for SSSP compared to both

BFS and CC due to the slower convergence of SSSP.

Timelapse-based analytics. In addition, CYTOM allows the analysis of intermediate

results of the evolving graph. This allows new analysis scenarios such as observing the

evolution of the pagerank of a specific vertex over time, similar to the API provided in other

systems such as Kineograph [50] or Chronos [49]. CYTOM maintains a reasonable perfor-

mance with up to 6.2 million updates per second for CC. The performance of snapshotting

with CYTOM is depicted in Figure 4.23, demonstrating the versatility of CYTOM for this

kind of analysis.

4.5 Chapter summary

We present CYTOM, a graph-processing engine for evolving graphs based on the abstraction

of cells, allowing a significant reduction in overall storage space as well as enabling a

simple, yet effective load-balancing strategy. Additionally, CYTOM’s APIs, including the

edgeChanged interface, are tailored toward processing evolving graphs and its incremental

processing mode provides significant benefits, outperforming other state-of-the-art engines

for evolving graphs by 1.5×–200×. Finally, as a result of its design decisions, CYTOM
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allows processing billion-scale real-world evolving graphs.
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CHAPTER 5

DISCUSSION

In this chapter, we discuss the applicability of the techniques developed in MOSAIC and

CYTOM to other systems as well other kind of system architectures (e.g., distributed systems).

Additionally, we discuss a few other, related topics, in particular the amount of overhead

added by MOSAIC and CYTOM compared to a single-threaded implementation of a graph

algorithm before concluding with the key lessons learned by designing both MOSAIC and

CYTOM.

5.1 Applicability of Techniques

MOSAIC as well as CYTOM propose a new programming interface for processing static,

respective evolving graphs in addition to the data structures proposed to store and process

both a static as well as an evolving graph.

5.1.1 Data Structures

Both MOSAIC and CYTOM base its data structure on a subgraph-centric approach. However,

CYTOM’s data structure design is targeted at removing the overheads associated with

keeping metadata to map a local subgraph to its global counterpart. As such, CYTOM’s data

structure design can form the basis of other systems processing evolving graph, especially

with a different programming model. As discussed in §4.4.3, CYTOM not only shows

great performance benefits when run with its native, 16-bit based identifiers, but is also

applicable when using longer, 32-bit or 64-bit identifiers. This in turn allows CYTOM’s data

structure design of using a cell-based approach to be applicable to other systems with an

edge list-based design (e.g., GraphOne [48] or Graphin [47]).
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5.1.2 Interface for Processing Static Graphs

For processing static graphs, MOSAIC’s interface is well-suited at giving the algorithm

developer enough flexibility to implement a wide range of common graph algorithms as it is

based on the popular and well-explored GAS (Gather, Scatter, Apply) model pioneered by

PowerGraph [23].

5.1.3 Interface for Processing Evolving Graphs

For processing evolving graph efficiently, CYTOM introduces a new API, the edgeChanged

interface. This interface allows the algorithm developer to quickly cut down on the set

of updated edges to remove uninteresting updates which would not result in a change in

the algorithmic result (e.g., an inserted edge connecting two vertices which are already in

the same connected component). The edgeChanged interface is thus not only applicable

to CYTOM but can be ported to other systems processing evolving graphs as well to cut

down on the amount of work to be done after every graph update. In particular, this API

is not restricted to the use case of processing evolving graphs on a single machine only

but can also be applicable to distributed systems for evolving graphs (e.g., GraphTau [54],

Kickstarter [55], or Aspire [88]). The edgeChanged interface is of special interest as it does

not rely on CYTOM’s conventional, graph processing API and as such is already decoupled

and applicable to other systems processing evolving graphs.

5.2 Overhead over Single-Threaded Implementation

Given their focus on optimizing the case of massively parallel execution, both for MOSAIC as

well as CYTOM the question for how much overhead is added by the infrastructure supporting

the multi-threaded computation over an optimized, single-threaded implementation is of

interest. This overhead is known as the configuration that outperforms a single thread

(COST) where a low COST (e.g., 1) indicates very low overhead for supporting the parallel
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execution while a high or infinite COST indicates that no matter the number of cores, a

single thread will always be faster than even a highly parallel execution [66].

5.2.1 COST for MOSAIC

For MOSAIC, we apply the COST metric to its heterogeneous execution and report the

number of Xeon Phi cores needed to outperform a single threaded implementation. The

COST [66] can be applied to MOSAIC to evaluate its inherent overhead for scalability: for the

uk2007-05 graph, a single-threaded, host-only implementation (in-memory) [66] on ramjet

took 8.06 seconds per iteration, while the out-of-core computation of MOSAIC on ramjet

with one Xeon Phi/NVMe using 31 cores on the Xeon Phi matches this performance. At

its maximum, MOSAIC is 4.6× faster than the single-threaded, in-memory implementation.

Similarly, for the twitter graph, a single-threaded, host-only implementation spends 7.23 s

per iteration, while MOSAIC matches this performance using one Xeon Phi with 18 cores

with a maximum speedup of 3.86×. Thus, we conclude that MOSAIC has a COST of up to

31 Xeon Phi cores. Please note that while this might look like a relatively large COST, Xeon

Phi cores are much less powerful than a conventional, full-featured Xeon core. In addition,

MOSAIC runs in a disk-based mode while the single-threaded implementation operates in

an in-memory setup.

5.2.2 COST for CYTOM

While we evaluate the COST value for MOSAIC, we also investigate the scalability behavior

and the overhead added by both the parallel runtime of CYTOM as well as the overhead

added by the support for evolving graphs using data structures that are be less optimized than

those for a graph processing engine processing static graphs (e.g., the CSR representation).

We again evaluate the configuration that outperforms a single thread (COST) [66] for

CYTOM to determine whether the support for evolving graphs added results in a significant

overhead for running (static) graph algorithms. We run both the optimized, single-threaded
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implementation of pagerank and CYTOM on the machine presented in §4.4.1. In this setup,

we note that CYTOM yields a COST of 3 threads for the livejournal graph while achieving

a maximum speedup of 5.6×. In addition, on the orkut graph, CYTOM has a COST of

3 threads as well while achieving a maximum speedup of 6.7×. This low COST value

demonstrates that CYTOM’s data structures are a good fit even for static graph computations

and emphasize CYTOM’s lightweight support for evolving graphs, especially as CYTOM

does not include any pre-processing phase compared to the COST implementation. We

specifically do not include this preprocessing cost of the COST implementation in the

final performance results, highlighting the performance benefits of CYTOM. Finally, it

demonstrates that CYTOM can scale well when adding more threads.

5.3 Generality

We demonstrate the generality of both systems developed in this dissertation, MOSAIC and

CYTOM, by investigating their applicability to a wider range of algorithms. We show that

this generality is an outcome of both MOSAIC and CYTOM being designed around a familiar

set of APIs, allowing the implementation of many common graph algorithms.

5.3.1 Extensibility of MOSAIC

We argue that the underlying design of MOSAIC can easily be extended to non-graph algo-

rithms as well to support more algorithms in a heterogeneous environment. We demonstrated

this by implementing k-means clustering in 122 lines of code as shown in §3.6 (the k-means

algorithm is also used at Facebook [3] with the extension of using the edge cut as a distance

metric). This algorithm runs in 3.89 seconds per iteration on the uk2007-05 dataset on our

heterogeneous machine as introduced in §3.7.1 demonstrating MOSAIC’s ability to support

other, more general algorithms in an efficient manner.
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5.3.2 Algorithm support for CYTOM

We demonstrate CYTOM’s API-level generality by implementing five, common graph

algorithms. However, CYTOM is not restricted to only these algorithms but can in fact be

extended to more, and especially, more complicated algorithms as well due to its use of a

variant of the popular and well-understood Gather, Apply, Scatter (GAS) model introduced

by PowerGraph [23]. In fact, many algorithms that can form the base for machine learning

applications like triangle counting [72] or alternating least squares [104] can be implemented

using the GAS model and are thus applicable to CYTOM as well.

5.4 Lessons learned

Before we conclude, we will address the lessons learned by designing both MOSAIC and

CYTOM to scale graph processing on a single machine to ever-larger data sets. In particular,

these lessons are essential to show the statement we set out to prove, that large-scale

analytics is possible on a single machine.

5.4.1 Compression

An important and essential lesson is that compression of the input data set is a key to being

able to store and process tera-scale static datasets as well as billion-scale evolving data sets.

However, while other systems (e.g., Ligra+ [105]) are using heavy-weight compression

algorithms to achieve this goal, both MOSAIC and CYTOM employ a light-weight, near-

zero-cost scheme to achieve a similar compression ratio.

5.4.2 Load Balancing

Load balancing is another important factor for any system processing skewed data sets,

and is of special importance for graph processing [23, 26] due to its tendency of heavily

skewed real-world data sets. Both MOSAIC and CYTOM address this challenge, however,
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for different contexts and execution environments. While MOSAIC mainly has to cater to the

static load imbalance and the need to balance load between a large number of relatively slow

cores, CYTOM has to cater to a much more dynamic environment, with the load changing

whenever the graph is updated.

As such, both systems incorporate components for active load balancing, e.g., MOSAIC

to split tiles between the slow coprocessor cores, while CYTOM incorporates a novel cell

distributor which allows load balancing of incoming updates to the waiting algorithm

execution cores. Addressing this challenge allows both MOSAIC and CYTOM to also scale

well when adding more cores, as demonstrated with the COST analysis.

5.4.3 Algorithmic Interface

Finally, both MOSAIC and CYTOM incorporate an algorithmic interface that shields the

algorithm developer from all the intricate details of both systems. In fact, for MOSAIC, the

algorithmic interface even hides the fact that part of the algorithm is executed on a many-

core coprocessor from the algorithm developer to enable a seamless transition between

the fast host processors and the slower, but plentiful cores of the many-core coprocessor.

Additionally, the algorithm developer does not need to worry about the data transfer to and

from the coprocessor or the low-level details of MOSAIC’s tile scheme as both of these

details are hidden behind MOSAIC’s algorithmic interface.

Similarly, CYTOM enables a diverse set of algorithms by hiding the details of its cell

scheme from the algorithm developer, focusing instead on the graph-centric aspects of the

algorithm. In addition, CYTOM offers the algorithm developer the option to quickly react to

graph updates using the edgeChanged interface. This interface allows CYTOM to realize

significant speedups by excluding uninteresting graph updates which would not result in

changes to the algorithmic result.
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5.4.4 Putting it all together

In tandem, these techniques, coupled with additional, domain-specific optimizations (e.g.,

the efficient usage of fast I/O devices for MOSAIC or the incremental execution model of

CYTOM) work together to allow both MOSAIC and CYTOM to scale graph data processing

to the trillion-scale for static graphs and the billion-scale for evolving graphs, thereby

validating the thesis statement we formulate in §1.2.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation covers two aspects of scaling big data processing on a single machine for

both processing tera-scale static and evolving graphs. We first summarize key contributions

laid out in this dissertation before discussing avenues for future work.

6.1 Conclusion

In response to the ever-increasing size of data sets coupled with the desire to be able to

efficiently process these data sets in an inexpensive setting, we propose two approaches

at scaling big data processing on a single machine for both the case of static and evolving

graphs.

We first introduce MOSAIC as a system to take advantage of a commodity, heterogeneous

machine to process trillion-scale graphs on a single machine. MOSAIC introduces a new

locality-optimizing, space-efficient graph representation—Hilbert-ordered tiles, and a hybrid

execution model that enables vertex-centric operations in fast host processors and edge-

centric operations in massively parallel coprocessors. Furthermore, MOSAIC is shown to

be effective in processing very large graphs even using the host CPUs only and scales well

when adding disk capacity and compute power.

Our evaluation shows that for smaller graphs, MOSAIC consistently outperforms other

state-of-the-art out-of-core engines by 3.2–58.6× and shows comparable performance to

distributed graph engines. Furthermore, MOSAIC can complete one iteration of the Pagerank

algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based

engine by 9.2×.

However, while static graphs can be processed efficiently, many real-world graphs are

dynamic in nature. To address the problems in evolving graphs, namely low throughput of
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graph updates coupled with a high latency to retrieve updated results, we propose CYTOM

based on a subgraph-centric graph representation. This approach is effective at reducing

both the storage overhead of state-of-the-art systems, as well as allowing for a highly

parallel process when updating the graph structure. Additionally, CYTOM couples this

subgraph-centric, cell-based graph representation with a novel execution model which

allows to process many graph updates locally within a subgraph instead of starting a global

computation step.

We show that CYTOM is effective in scaling to billion-edge graphs as well as providing

higher throughput when updating the graph structure (2.0×–192×) and higher throughput

(1.5×–200×) when additionally processing an algorithm.

Finally, we open source MOSAIC (https://github.com/sslab-gatech/mosaic/)

to allow further development of large-scale graph processing on a single machine and will

open source CYTOM in the future as well.

As a final note, both MOSAIC and CYTOM provide evidence to validate the thesis

statement this dissertation is built around (see §1.2) which states that large-scale big-data

analytics is possible on a single machine by demonstrating the scalability of graph processing

at the trillion-scale on a single machine.

6.2 Future Work

This dissertation presents techniques for scaling computations on a single, commodity

machine. However, there are a number of pointers towards future research in this space

that are worth exploring. As previously discussed in §5, both MOSAIC’s and CYTOM’s

algorithmic interface are already applicable to a wider range of systems and algorithms.

As such, employing the ideas implemented into MOSAIC and CYTOM can be applicable to

distributed graph processing engines as well. However, there are three additional aspects of

graph processing (both static and evolving graphs) that are worthy of exploration.
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6.2.1 Hardware-related optimizations

First, we take a look at optimizations that are using hardware primitives to improve the

performance of graph processing. Optimizing graph processing for a setting of specific

accelerators has recently become a topic of interest[106, 107, 108, 109, 110, 111] due to the

diminishing returns in terms of performance offered by new general-purpose architectures.

However, many of these projects focus on the usage of FPGAs or custom ASIC solutions

to improve the performance of graph analytics on static graphs in particular. Additionally,

the challenges (as hinted at with the Emu Chick prototype [106]) for processing evolving

graphs in hardware are even more significant due to the limited amount of memory available

on these accelerators.

As such, one potential accelerator for the setting of both static as well as evolving graphs

is a simple optimization of the cache: When processing graphs, the algorithm data (and thus

the output) is stored at a vertex-level granularity while the edges simply define the topology

of the graph. Currently, there is no distinction between either of these data structures and

both are handled equally when it comes to which data should be stored in the CPU’s caches.

However, the observation is that most of the topology data (i.e., the edges) is accessed

in a streaming, read-once fashion without making actual use of the cache. The vertex

data, however, is accessed much more frequently and thus benefits from a cache. From an

accelerator point-of-view, allowing a selective caching of only the frequently accessed vertex

values in, e.g., a scratchpad memory [112], while not caching the streaming-oriented set of

edges can unlock significant improvements for both the case of static as well as evolving

graphs.

6.2.2 Complex algorithms

While we explore a significant subset of graph algorithms with both MOSAIC and CYTOM,

there exists a large body of work of more complex and computationally involved algorithms,

for example in the domain of machine learning for both static [113] as well as evolving
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graphs [114]. While not currently supported in either MOSAIC or CYTOM, scaling these

kind of complex algorithms to a scale demonstrated in this dissertation uncovers a number

of design and systems challenges which need to be addressed. In particular, these algorithms

usually carry a significant amount of data per edge (e.g., a few hundred bytes per edge),

compared to a single integer (BFS, CC, . . . ) or float (PR, SSSP, . . . ) value per edge as

shown with MOSAIC and CYTOM.

This poses an obvious design challenge of storing these much larger graphs efficiently

and potentially opens the opportunity of using heavy-weight compression effectively to

reduce the data set size and allow it to be handled in an efficient manner. In addition, these

complex algorithms usually require significantly more complicated processing compared to

the relatively simple processing done for the algorithms presented for both MOSAIC and

CYTOM and due to this usually rely on accelerators (e.g., GPGPUs) to allow for reasonable

run times.

This opens an opportunity for new design- and systems-level abstractions to allow

expressing these kind of complex and heavy-weight algorithms in a unified framework

while shielding the algorithm developer from the current low-level, accelerator-specific

implementation of the algorithm and its associated data set. We explore this kind of direction,

albeit for less complicated algorithms, with MOSAIC and envision a system encompassing

all mentioned algorithmic and data set-specific features into a unified system and algorithmic

abstraction.

6.2.3 Approximation of graph algorithms

Finally, we propose exploring a topic that was briefly introduced for CYTOM already

(however, with a very simple algorithm and strategy)—approximation of algorithmic results

in the setting of evolving graphs. Approximating algorithmic results has the obvious

benefit of allowing for better scalability at the expense of slightly lowered accuracy for the

algorithmic result. This trade off is even more important in the setting of evolving graphs,
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where timeliness of the algorithmic results is more important than a perfectly accurate

algorithmic result, if an approximated version can give certain error bound guarantees. In

reality, this trade off might be worth exploring as the performance differences can be drastic,

For example, when mining a graph for motifs, the state-of-the-art approach for accurately

finding all patterns, Arabesque [115] can take hours to find all 3-motifs even on a “small”

graph such as the twitter graph [76] with 1.5 billion edges. In contrast, an approximated

version of the same graph and pattern can be found in a couple of minutes within a 5% error

bound [98, 116, 99]. However, all these systems are built with static graphs in mind and are

not directly applicable to the case of evolving graphs.

Using these results as motivation, a future avenue for processing evolving graphs can

evolve around the question how to efficiently approximate complicated algorithms given

the unique challenges of frequent updates and the requirement for low-latency algorithmic

updates. We present a first step in this direction with CYTOM and the approximation of

the pagerank algorithm which unlocks large algorithm speedups at modest costs to the

quality of the algorithmic result. This motivates further research into the question how to

approximate more complicated algorithms while guaranteeing error bounds for the resulting

approximation.
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