PhD Dissertation Defense:

Systems Abstractions for Big Data Processing on a
Single Machine

Steffen Maass
Advisor: Taesoo Kim

April 3, 2019

Steffen Maass Abstractions for Big Data Processing April 3, 2019 1/ 46

Large-scale data processing is ubiquitous

One Trillion Edges: Graph Processing at Facebook-Scale

Avery Ching Sergey Edunov Maja Kabiljo
Facebook Facebook Facebook
1 Hacker Lane 1 Hacker Lane 1 Hacker Lane
Menlo Park, California Menlo Park, California Menlo Park, California
aching@fb.com edunov@fb.com majakabiljo@fb.com
Dionysios Logothetis Sambavi Muthukrishnan
Facebook Facebook
1 Hacker Lane 1 Hacker Lane
Menlo Park, Galifornia Menlo Park, California
ionysi .com ambavi .com
ABSTRACT a project to run Facebook-scale graph applications in the

Analyzing largo graphs provides valuable insights for social S0mmer of 2012 and s stil the case today.

networking and web companies in content ranking and rec-

ommendations. While numerous geaph processing systems §
have been developed and evaluated on available benchmark (‘1‘“']1': Popular ber
graphs of up 10 6,68 edges, they ofien face significant, dif e

fculties in sealing to much larger graphs. Industry graphs Liveloum:

can be two orders of magnitude larger - hundreds of bil- [Lwitter 2010 BTL___|
lions or zp to one trillion cdges. In addition to scalability UK web graph 2007 10

challenges, real world applications often require much more
complex eranh brocessing workfiows than rovieusly evalu-

Social networks

3, 2019 2 /46

Steffen Maass Abstractions for Big Data Processin

Large-scale data

One Trillion Edges:
Avery Ching
Facebook

1 Hacker Lane
Menlo Park, California
aching@fb.com
Dionysios
Fac

1 Hac
Menlo Pa
dionysic

ABSTRACT

Analyzing large graphs provides valuable i
networking and web companies In content
ommendations. While numerous graph pr
have been developed and evaluated on ava.
graphs of up 10 6,68 edges, they ofien fat
fieulties in scaling to much larger graphs.
can be two orders of magnitude larger -
lions or up to one trillion edges. In addit
challenges, real world applications often re.
complex eranh vrocessing workfiows than

Social networks

processing is ubiquitous

namre

biotechnology

Home | Currentissue | News & comment | Research | Archive v | Authors & referees v | About the journal

home » archive » issue » computational biology » primer » full text

NATURE BIOTECHNOLOGY | COMPUTATIONAL BIOLOGY | PRIMER

How to apply de Bruijn graphs to genome
assembly

Phillip E C Compeau, Pavel A Pevzner & Glenn Tesler

Afdlliations | Corresponding author

Nature Biotechnology 29, 987-991 (2011) | doi:10.1038/nbt.2023
Published online 08 November 2011

PoF | & citation [Reprints % Rights & permissions Article metrics
A mathematical concept known as a de Bruijn graph turns the formidable challenge of
assembling a contiguous genome from billions of short sequencing reads into a tractable
computational problem.

Genome analysis

Steffen Maass

Abstractions for Big Data Processi

Large-scale data processing is ubiquitous

ngture
biotechnology
Home | Currentissue | News & co

home » archive » issue » computa Graph-powered Machine Learning at Google
Thursday, October 06, 2016

One Trillion Edges:

Avery Ching
Facebook

1 Hacker Lane
Menlo Park, Galifornia

aching@f.com NATURE BIOTECHNOLOGY | CO)) N
Dionysiot Posted by Sujith Ravi, Staff Research Scientist, Google Research
Fac
1 Hac Recently, there have been significant advances in Machine Learning that enable computer systems
:.E"'“ ra - How to apply de E wsone complex real-world problems. One of those advances is Google's large scale, graph-based
lonysic assembl machine learming platform, built by the Expander team in Google Research. A technology that is
ABSTRACT Yy behind many of the Goagle products and features you may use everyday, graph-based machine

learning is a powerful tool that can be used to power useful features such as reminders in Inbox

Analysing lage graphs provides valuable § and smart messaging in Allo, or used in conjunction with deep neural networks to power the latest

networking and web companies In content
ommendations. While numerous graph pr
have been developed and evaluated on ava.
graphs of up 10 6,68 edges, they ofien fat

Phillip E C Compeau, Pavel A P

Affi

tions | Corresponding aut

image recognition system in Google Photos.

fieulties in scaling to much larger graphs.
can be two orders of magnitude larger -
lions or up to one trillion edges. In addit
challenges, real world applications often re.
complex eranh vrocessing workfiows than

Social networks

Nature Biotechnology 29, 987-9¢
Published online 08 November 2¢

poF | & citation | [Reprint

A mathematical concept known
assembling a contiguous genor
computational problem. pedfon) kil

s zxcvbama

(-]
Genome analysi

Learning with Minimal Supervision

Graphs enable Machine Learning

13, 2019 2

Ap

Steffen Maass Abstractions for Big Data Process

Powerful single machines available

Solutions Partners About SGI

More sockets. More memory. More SAP HANA.

Cort Pasinett
2 tweet (0| [shore (0| B shore 1

SGI UV 300H 20-Sacket Appliance Certified by SAP to Run SAP HANA® Under Controlled Availability
Announcing the first 20-socket SAP HANA-certified in-memory server!

SGI announced today that the SGI® UV™ 300H is now SAP@-certified to run the SAP HANAG platform in
controlled availability at 20-sockets-delivering up to 15 terabytes (TB) of in-memory computing capacity in a
single: node. Asserting the value of key enhancements in support package stack 10 (SPS10) for SAP HANA and
SAP's close collaboration with system providers, SGI UV 300H delivers outstanding single-node performance and
simplicity for enterprises moving to SAP HANA to gain business breakthroughs

SGI UV 300H is a specialized offering in the SGI® UV™
server line for in-memory computing that enables
enterprises to further unlock value from information in
real-time, boost innovation, and lower IT costs with SAP
HANA. Featuring a highly differentiated single-node
architecture, the system delivers significant performance
advantages for businesses running SAP® Business Suite
4 SAP HANA (SAP S/4HANA) and complex analytics at
extreme scale. The single-node simplicity also helps
enterprises eliminate overhead associated with clustered
environments, streamline high availability, and scale-up
seamlessly as data volumes grow with near-linear
performance.

Integrated with the racently announced SAP HANA
SPS10, SGI UV 300H capitalizes on deep collaboration
between SAP, Intel and SGI to optimize SAP HANA-based
workloads on multicore NUMA (non-uniform mermory
access) systems. This enables enterprises to leverage single-node systems with very large memory capacity and

Gigabytes of RAM

Steffen Maass Abstractions for Big Data Processin April 3, 2019 3 /46

Powerful single machines available

pwwes [ntel Unveils Plans for Knights Mill, a Xeon Phi for Deep
More sockets. More Learning

Cort Pasinetti Michael Feldman | August 18, 2016 01:33 CEST

2 Tweet (0| [shore 0

Atthe Intel Developer Forum (IDF) this week in San Francisco, Intel revealed it is working on a new Xeon Phi processor aimed
SGI UV 300 20-Sacket Applian 3
Announcing the fret 20-seeket : At deep learning applications. Diane Bryant, executive VP and GM of Intel’s Data Center Group, unveiled the new chip, known
561 announced today that the sci¢ as Knights Mill, during her IDF keynote address on Wednesday.
controlled availabity at 20-sockets
single node. Asserting the value of
SAP's close collaboration with syste.
simplicity for enterprises moving to

SGI UV 300H s a specialized offerir
server line for in-memory computin

enterprises to further unlock value |

COMING 2017

NGHTS NEKT 66 XEONPH
st Tadrge e 2
e s - g OPTINZEFR g

performance.

Integrated with the recently annour Improve
59510, SG1 UV 300H capitalzes on

between SAP, Intel and SGI o opti
workloads on mulicore NUMA (non
access) systems. This enables enter

Opti

Enhanced variable precisior

Gigabytes of

Flexible, high ca

Powerful many-core coprocessors

Steffen Maass Abstractions for Big Data Processing April 3, 2019 3 /46

Powerful single machines available

e [Ntel Unveils P Intel Announces SSD DC P3608 Series

More sockets. More Le arnin g by Billy Tallis on September 23, 2015 12:00 PM EST

Cori Pasinetti Michael Feldman | August 18,2016 posted in Intel Storage SSDs PCle SSD Enterprise SSDs

2 rweet o Pl share |0
At the Intel Developer Forum (I

SGI UV 300H 20-Socket Applian

Announcing the first 20-socket ¢ At deep learning applications. C

SGI announced today that the Sa1¢ 3 Knights Mill, during her IDF

controlled availabilty at 20-sockets

single node. Asserting the value of

SAP's close collaboration with syste
simplicity for enterprises moving to

SGI UV 300H s a specialized offerir
server line for in-memory computin
enterprises to further unlock value |
real-time, boost innovation, and lov
HANA. Featuring a highly differentiz
architecture, the system delivers si¢
advantages for businesses running

4 SAP HANA (SAP S/4HANA) and cc
extreme scale. The single-node sim
enterprises eliminate overhead assc
environments, streamline high avai
seamlessly as data volumes grow w
performance.

INTE*
x "“Oﬂssge'i?'sr‘“"? DRIVE

i, -
L

Integrated with the recently annour
SPS10, SGI UV 300H capitalizes on
between SAP, Intel and SGI to optit
workloads on multicore NUMA (non
access) systems. This enables enter

Intel is introducing a new family of enterprise PCle SSDs with the aim of outperforming their existing DC
P3600 series and even beating the DC P3700 series in many metrics. To do this, they've essentially put two
P3600 SSDs on to one expansion card and widened the interface to 8 lanes of PCle 3.0. While this does
POWe rfu I N Q come across as a bit of a quick and dirty solution, it is a very straightforward way for Intel to deliver higher
performance, albeit at the cost of sharply increased power consumption.

Gigabytes of

Fast, large-capacity non-volatile Memory

Steffen Maass Abstractions for Big Data Processi Apri 3 /46

Powerful single machines available

e [Ntel Unveils P Intel Announces SSD DC P3608 Series

Learnin g by Billy Tallis on September 23, 2015 12:00 PM EST

More sockets. More
Corl Pasinetti Michael Feldman | August 18, 2016 pogtediin Intel Storage SSDs PCle SSD Enterprise SSDs

2 Tweet (0| [shore 0

At the Intel Developer Forum (I
SGI UV 300H 20-Sacket Applian
Announcing the first 20-socket ¢ At deep learning applications. C

SGI announced today that the Sa1¢ 3 Knights Mill, during her IDF

controlled availabilty at 20-sockets

single node. Asserting the value of

SAP's close collaboration with syste [

= Enable tera-scale data processing on a single machine
However: design and systems-level mechanisms required!

workloads on multicore NUMA (non
access) systems. This enables enter

Intel is introducing a new family of enterprise PCle SSDs with the aim of outperforming their existing DC
P3600 series and even beating the DC P3700 series in many metrics. To do this, they've essentially put two
P3600 SSDs on to one expansion card and widened the interface to 8 lanes of PCle 3.0. While this does
POWe rfu I N Q come across as a bit of a quick and dirty solution, it is a very straightforward way for Intel to deliver higher
performance, albeit at the cost of sharply increased power consumption.

Gigabytes of

Fast, large-capacity non-volatile Memory

Steffen Maass Abstractions for Big Data Processing April 3, 2019 3 /46

Thesis statement and approaches

Large-scale big data analytics is possible on a single machine using systems
and design-level abstractions for commodity and heterogeneous single
machines.

Steffen Maass Abstractions for Big Data Processing April 3, 2019 4 /46

Thesis statement and approaches

Large-scale big data analytics is possible on a single machine using systems
and design-level abstractions for commodity and heterogeneous single
machines.

Approaches:

o Systems-level analysis and mechanism for improving virtual memory
performance with LATR

@ Design-level abstractions for trillion-scale graph analytics with
MosAIc

@ Design-level abstractions and data structures for billion-scale
evolving graphs with CyTOM

Steffen Maass Abstractions for Big Data Processing April 3, 2019 4 /46

High-level structure

Communities
Raw Data N / . \
Graph Processing
S 0}
8 Static Evolving
(MOSAIC) (CyTOM) Ra“k‘“g
; —» [AB[

Operating System Anomaly G
(LATR)

A S) l...@ﬁ

Steffen Maass Abstractions for Big Data Processing April 3, 2019 5/ 46

High-level structure

\ Communities
Pfocessing
Evolving
(Cytom) Rankmg
/| P> [

Operating System Anomaly G
(LATR) . . @

Raw Data
N (1]

= Focus of this talk: Processing evolving graphs with CyTOM

Steffen Maass Abstractions for Big Data Processing April 3, 2019 5/ 46

High-level structure
’ Communities

Rankmg

> [Ascfp
Operating System Anomaly G
(LATR)

B9 B
\ %
..I’i

Raw Data
(1]

@ CYTOM builds on lessons learned with MOSAIC

@ However: Different challenges for setting of evolving graphs

Steffen Maass Abstractions for Big Data Processing April 3, 2019 6 /46

© Cvrom: Processing Billion-Scale Evolving Graphs
@ Applications & Challenges
o CyToM's Cell-based Graph Representation
@ Handling Deletions
@ Programming Interface

Steffen Maass Abstractions for Big Data Processing April 3, 2019 7 /46

Importance of evolving graphs

New Tweets per second record,
and how!

@raff

Recently, something remarkable happened on Twitter: On Saturday, August 3 in Japan, people watched
an airing of Castle in the Sky, and at one moment they took to Twitter so much that we hit a one-second
peak of 143,199 Tweets per second. (August 2 at 7:21:50 PDT; August 3 at 11:21:50 JST)

To give you some context of how that compares to typical numbers, we normally take in more than 500
million Tweets a day which means about 5,700 Tweets a second, on average. This particular spike was
around 25 times greater than our steady state.

Social networks

Steffen Maass Abstractions for Big Data Process

Importance of evolving graphs

New Tweets per second record,
and how!

@raff

R R
B ¥R

Recently, something remark
an airing of Castle in the Sk
peak of 143,199 Tweets per

To give you some context of

million Tweets a day which r. g /S
)

around 25 times greater thar

NERRRE

Social netwo \ 7 /(

Live traffic & route calculation

Steffen Maass Abstractions for Big Data Processing April 3, 2019 8 /46

Importance of evolving graphs

New Tweets per second record,
and how!

@raffi 2 9 ‘Sandy Springs:
\/ :
Recently, something remark: N
an airing of Castle in the Sky D v L« hover 1
peak of 143,199 Tweets per <

To give you some context of

million Tweets a day which r, g £
Y

g)
- - 3 3 ' i
e {. terragraph Tt %
- T " Solving the Urban s 2.
- 55 : E-N | Bandwidth Challenge : b 55
Social netwo \ 7 /(rLo
L b
Live traffic & routg A g WP L o e

Analysis of next-gen Cellular Data,
Connected Cars, ...

Steffen Maass Abstractions for Big Data Processing April 3, 2019 8 /46

Importance of evolving graphs

New Tweets per second record,
and how!

@raff

Recently, something remark N
an airing of Castle i the Sky
peak of 143,199 Tweets per

- J — IR \ r, 5 ‘
i s “ 5 RS <
To give you some context of PoR! B

= Applications enable by processing evolving graphs

@ Online route calculation
@ Online Anomaly detection
@ Online Ranking

@ Online Community detection

Live traffic & routq ¥ e

)y A S
‘e 7 - -

Analysis of next-gen Cellular Data,
Connected Cars, ...

Steffen Maass Abstractions for Big Data Processing April 3, 2019 8 /46

Challenges of billion-scale evolving graphs

Constant stream of updates

Optimizing graph storage format not possible on every update
o Graph data structures supporting updates

Co-running graph updates with algorithm

Special challenges for single machines (compared to distributed
systems):

e Limited memory & compute

o Fault tolerance

Steffen Maass Abstractions for Big Data Processing April 3, 2019 9 /46

Background: Graph data structures for evolving graphs

@ Goal: Efficient update support and computational efficiency

@ Four options:

e Adjacency matrix
Adjacency lists

]
o Compressed sparse rows (CSR)
°

Edge lists

Steffen Maass

Abstractions for Big Data Processing

April 3, 2019

10 / 46

Background: Graph data structures for evolving graphs

@ Goal: Efficient update support and computational efficiency
@ Four options:

e Adjacency matrix

o Adjacency lists

o Compressed sparse rows (CSR)
o Edge lists

Sample graph:

Steffen Maass Abstractions for Big Data Processing April 3, 2019 10 / 46

Background: Adjacency matrix

@ Minimal storage per edge (1 bit)
@ Great for dense graphs

o Limitation: Most real-world graphs are sparse
Example:

Target vertex

@O®
@ 00
—> 5 (3]

Source
vertex

Steffen Maass Abstractions for Big Data Processing April 3, 2019 11 / 46

Background: Adjacency lists

For best case, storage cost per edge: 8 bytes

Relatively simple construction

Limitation: Overhead on traversal and allocation of new edges
Used by Stinger

0
(1) ©

—_—|

o o —>O0
© (3]

?

Steffen Maass Abstractions for Big Data Processing April 3, 2019 12 / 46

Background: Compressed sparse rows (CSR)

For best case, storage cost per edge: 8 bytes
Efficient access and lower storage overhead

Limitation: Changes require rebuilding or complicated overflow areas

Used by Llama

(1]
(2) (3]

Steffen Maass Abstractions for Big Data Processing April 3, 2019 13 / 46

Background: Compressed sparse rows (CSR)

For best case, storage cost per edge: 8 bytes

Efficient access and lower storage overhead

Limitation: Changes require rebuilding or complicated overflow areas
Used by Llama

Example: Add edge @

o, ©

—

(2) (3]
®

Steffen Maass Abstractions for Big Data Processing April 3, 2019 13 / 46

Background: Compressed sparse rows (CSR)

For best case, storage cost per edge: 8 bytes
Efficient access and lower storage overhead

Limitation: Changes require rebuilding or complicated overflow areas

Used by Llama
Problem: Array has to be shifted

U N 1)

—_—

o\ /0

Steffen Maass Abstractions for Big Data Processing April 3, 2019 13 / 46

Background: Edge lists

Simple construction

Adding new edges possible

Limitation: Overhead for storage cost, 16 bytes per edge
Used by Graphln, GraphOne

0 0(®,®)
% o — > 0(®.©)
® 0(®,0)

Steffen Maass Abstractions for Big Data Processing April 3, 2019 14 / 46

Data structures summary

@ Comparison of presented data structures

Representation Sparse graphs Updates Traversals Storage

Adj. matrix - v v 1 bit

Adj. lists v v - 8 bytes
CSR v - v 8 bytes
Edge list v v v 16 bytes

Steffen Maass Abstractions for Big Data Processing April 3, 2019 15 / 46

Data structures summary

@ Comparison of presented data structures

Representation

Sparse graphs Updates

Traversals Storage

Adj. matrix - v v 1 bit

Adj. lists v v - 8 bytes
CSR v - v 8 bytes
Edge list v v v 16 bytes
Edge listcyroum v v v 4 bytes

@ Our choice for evolving graphs: edge lists

@ However: Mitigation for storage overhead needed

Steffen Maass

Abstractions for Big Data Processing

April 3, 2019 15 / 46

High-level architecture

From raw input graph to algorithmic output:

Global vertex state
<current state> <next state>

TlssueManagerl I 7 | 7]

~ Tl i[: —
' Dlstrlbutor —)» | Algorithm Executor
Cell Managerp
Input Graph
Cell Mana; ger21 -_—
Persistence > 'I

Tissue Manager 2 Manager

Cell Manager,

Checkpoints

Steffen Maass Abstractions for Big Data Processing April 3, 2019 16 / 46

High-level architecture

Step @ : Update to input graph

l Tissue Manager 1 l

(Cell Manager“

ell

[ar

Cell
Dlstrlbutor

.. q,& Cell Manaﬂelp
Input Graph
Cell Manager21
Persistence

| Tissue Manager 2 |

Manager

Global vertex state
<current state> <next state>

Checkpoints

Steffen Maass

Abstractions for Big Data Processing

April 3, 2019

High-level architecture

Step @ : Update CYTOM's internal structure

Cell

Cell Manage121
Persistence

Cell Manager,, \> Distributor
Input Graph (

| Tissue Manager 2 |

Manager

Global vertex state
<current state> <next state>

Checkpoints

Steffen Maass

Abstractions for Big Data Processing

April 3, 2019

High-level architecture

Step @ : Distribute update

ﬁ Cell Manager 11

Input Graph
Cell Manage121
Persistence

| Tissue Manager 2 |

Cell
Dlstrlbutor

Manager

Global vertex state
<current state> <next state>

Checkpoints

Steffen Maass

Abstractions for Big Data Processing

April 3, 2019

High-level architecture

Step @ : Algorithmic processing of update

Global vertex state
<current state> <next state>

(\> Ce nags G f
Cell |57 . [ng terpnersngenens
C ell Manager 11 Dlstrlbutor

Input Graph
Cell Manage121 -
Persistence » 'I

Tissue Manager 2 Manager

Checkpoints

Steffen Maass Abstractions for Big Data Processing April 3, 2019 16 / 46

High-level architecture: Cells

Global vertex state
<current state> <next state>

{2)
i 020

\> Distrieitor —> Algorithm Executor
Cell Manager,

Input
Cell Manager,;

.
.

-
Persistence ,
. Manager I
Tissue Manager
Checkpoints

= First focus: CyTOM’s cells

Steffen Maass Abstractions for Big Data Processing April 3, 2019 17 / 46

Construction of CyTOM's cells

o Lightweight partitioning
Step 1: Input graph:

Target vertex

DPR@®B®

e/
(7]

Source Global adjacency
vertex matrix

Steffen Maass Abstractions for Big Data Processing April 3, 2019 18 / 46

Construction of CyTOM's cells

o Lightweight partitioning
Step 2: Adjacency Matrix

Target vertex

DPR@®B®®
(1) 0
(4]

g °3
S (8]

Source Global adjacency
vertex matrix

e/
(7]

Steffen Maass Abstractions for Big Data Processing April 3, 2019 18 / 46

Construction of CyTOM's cells

o Lightweight partitioning
Step 3: Construction of cell Ci;

Target vertex

022006

Source Global adjacency
040 vertex matrix

Steffen Maass Abstractions for Big Data Processing April 3, 2019

18 / 46

Construction of CyTOM's cells

o Lightweight partitioning
Step 4: Construction of all other cells

Target vertex

220000

Source Global adjacency
040 vertex matrix

Steffen Maass Abstractions for Big Data Processing April 3, 2019

18 / 46

Construction of CyTOM's cells

o Lightweight partitioning
Step 5: Overlay current cell size

Target vertex

DREDO O

040 Source Global adjacency
vertex matrix
Steffen Maass Abstractions for Big Data Processing April 3, 2019

18 / 46

Construction of CyTOM's cells: Adding new edges

o Adding new edges lightweight
@ Division to obtain partition

Target vertex

023656

Source Global adjacency
040 vertex matrix

Steffen Maass Abstractions for Big Data Processing April 3, 2019

19 / 46

Construction of CyTOM's cells: Adding new edges

o Adding new edges lightweight
@ Division to obtain partition

Target vertex

120800

Source Global adjacency
vertex matrix

Steffen Maass Abstractions for Big Data Processing April 3, 2019

19 / 46

CyTOM's cells

@ Subgraph-centric
e Difference to tiles (MOSAIC) or partitions (GridGraph)?

Both designed for static execution

Immutable structures

Changes only possible coupled with preprocessing step

CyToM's cells can grow (and shrink) as required without preprocessing

e Enables short identifiers (16 bits)

o 2X to 4x less memory (32 or 64 bit identifiers)
o Compared to MoOsAIC: No metadata needed

Steffen Maass Abstractions for Big Data Processing April 3, 2019 20 / 46

Benefit of CyTOM's cells

@ Enables short identifiers (16 bits)

o 32 bits (4 bytes) per edge
e 2x to 4x less memory (32 or 64 bit identifiers)

o No metadata needed
o Usage of edge lists
o Insert: Append at end of vector
Base case with global edge lists

Target vertex

@ @ @ Edge list

@ %99’ 0 @.6)
® 0O > 0o
®| 0 ©0)
Source 67b 670
vertex 6B

Steffen Maass Abstractions for Big Data Processing April 3, 2019 21 / 46

Benefit of CyTOM's cells

@ Enables short identifiers (16 bits)

o 32 bits (4 bytes) per edge
e 2x to 4x less memory (32 or 64 bit identifiers)

o No metadata needed

o Usage of edge lists
o Insert: Append at end of vector

Idea: Translate global IDs into local ones, store in CYTOM's edge list

Target vertex Target vertex Edge listeyrom

@®@0® j0]e]e)

@| 99% 00 g<,)
grée — rée — @
4B

vertex vertex

Steffen Maass Abstractions for Big Data Processing April 3, 2019 21 / 46

Benefit of CyTOM's cells

@ Enables short identifiers (16 bits)

o 32 bits (4 bytes) per edge
e 2x to 4x less memory (32 or 64 bit identifiers)
o No metadata needed

o Usage of edge lists
o Insert: Append at end of vector

Idea: Translate global IDs into local ones, store in CYTOM's edge list

Target vertex Target vertex

@6 of-1c}

Edge li StCYTOM

@ 00 | ewo
o| 0 > o| Fo|>82 2
Source Source MI;#
= Impact of shortened identifiers? J

Steffen Maass Abstractions for Big Data Processing April 3, 2019 21 / 46

Impact of short identifiers - lower memory footprint

Performance Ratio Cache References Cache hits .

L4 - [16-bit|identifiers z== - 80.0%
- 12 L 64-bit|identifiers 75.0% %
210 i bt - e - - £
ST R 3 0] - - 70.0% 8
208+ - o
5 -65.0% &
© 0.6 - = v
Z B o £
° 04l | 60.0% -ﬁ
ey
ool L - 55.0% L,)‘a‘

0.0 e 50.0%

pagerank
bfs

sssp
pagerank
sssp
pagerank
bfs

sssp

Q
(5]

bfs

O O
(%] (%]

= Up to 24% higher overall performance, 47% fewer cache references

Steffen Maass Abstractions for Big Data Processing April 3, 2019 22 / 46

High-level architecture: Cell distribution

How to operate on active cells?

Global vertex state
T state> <next state>

Vg,

Celr Manage™

Distributor —) I/gorithm ExecutorUJ

Cell Manager,

Input Graph
Cell Manager,,

-

Persistence I

[Tissue Manager 2]J Manager ‘> '
Checkpoints

Steffen Maass Abstractions for Big Data Processing April 3, 2019 23 / 46

How to load balance cells?

@ Problem: Many more
cells than threads

o Millions of cells,
dozens of threads

@ Skewed cell size
distribution

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46

How to load balance cells?

@ Problem: Manv more

Livejournal

cells - 1 x 107
o | Tlx10°
O]
¢ 100000
¥ 10000
@ Skew &
distri 3 1000
istri § -
S 10
1 | | | | | | |
0 200 400 600 800 1000 O 1000 2000 3000 4000 5000
Sorted Cell ID Sorted Cell ID

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46

How to load balance cells?

@ Problem: Many more 12.0M -

cells than threads <
o Millions of cells, & 100m |
dozens of threads .%’ 8.0M L
o Skewed cell size 2 oML
distribution 5
2 40M
@ Four choices @
implemented: £ 20M
e Static partitioning T o.om

static

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46

How to load balance cells?

@ Problem: Many more

cells than threads - 120M
o Millions of cells, & 100m |
dozens of threads .%’ 8.0M L
o Skewed cell size 2 oML
distribution 5
2 40M -
@ Four choices @
implemented: £ 20M
e Static partitioning T o.om

e Work pool

static

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46

How to load balance cells?

@ Problem: Many more

cells than threads - 120M
o Millions of cells, & 100m |
dozens of threads .%’ 8.0M L
o Skewed cell size 2 oML
distribution 5
2 40M -
@ Four choices @
implemented: £ 20M
e Static partitioning T o.om

e Work pool
o Cell distributor

static
work-pool
cell-distributor

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46

o~
i
O
O
(]
O
[
A
O
0
e
©
o
(@]
-
=
(@)
I

@ Problem: Many more

R R AR

’ -
LRRRRAKRRAXRRAKRRKK PRrIER8481Y

R aRas

RSREKGEEELKELEKL Joinquisip-|e2
0229606 26% %656 26%% %ot It e

12.0M

Jood-yiom
RO
b o1nel1s
RRRRRRRRRRKS nes
L L L L L
=z = = = = =
S 9 9 9 9 9
o ® © < o o
i
(09s/s98pa |\) IndySnoay |
o0
-G £ _
v @ c -
v g L .0 20
|m O c [0} = 5 —
0o 5 Y N =23 «
= O4 R o5 2°c .2 0
< » © noT 4 0 o c L
v cnw = c VO o wn oo 3
o < [Ce) .m = L «T© m Im
c 2 g 0.2 5¢c 5= G
T = N + V © 0= o +
£ <0 T 3 §F5E & T .= .0
s = O m 2 Y50 S0
| —
N e 245 SO 060 0 o
o) X 9 o ¢
o V) T L .=
o o

24 / 46

Abstractions for Big Data Processing April 3, 2019

Steffen Maass

How to load balance cells?

@ Problem: Many more

12.0M

cells than threads <
Q Yo'
o Millions of cells, 2. 10.0M - RS
o oo o %%
dozens of threads W g oM L PSS 202
3 8 KBS
. R 2000 I %%
@ Skewed cell size 2 60ML 0% SoSo I %!
S s BY 2 K
distribution 5 1] Lo o %%
2 4.0M - 1] WSO I %%
; ® 1] WSO o %%
@ Four choices & KA KA R
. 0% R RS
| d: o 2.0M [XX] XX [XX]
Implemented: = 1] oSS %%
. o = [XX] £XX] (X
o Static partitioning 0.0M Ko XA KX

e Work pool

o Cell distributor

~ Hinvavrhiscal ~all

= Hierarchical cell distributor improves throughput by 2.1 x J

stributor
chical-cd

Further optimizations enabled by 2D structure?

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46

2D-partitioning: Opportunity for different traversals

@ Multiple traversal strategies are possible with CyToM

Target vertex
1 23456728910I1112

1
o Evaluated options: 2
o Column first 431 fu fz iz
o Read optimized 5
6 |Ps 22 23
7
8
9 | P P ,
10 i
11 i
12 |Pa Pay Pas |
Source Global adjacency 4 =
vertex matrix Partition-

§=3)

Steffen Maass Abstractions for Big Data Processing April 3, 2019 25 / 46

2D-partitioning: Opportunity for different traversals

@ Multiple traversal strategies are possible with CyToM

Target vertex
1 23456728910I1112

1
o Evaluated options: 2
o Column first 431 fu Bz > B
o Read optimized 5
o Row first oo~
e Write optimized 8
9 | L
1
10 !
11 H
1
12 |pa !
Source Global adjacency """ "% =
vertex matrix Partition-

§=3)

Steffen Maass Abstractions for Big Data Processing April 3, 2019 25 / 46

2D-partitioning: Opportunity for different traversals

@ Multiple traversal strategies are possible with CyToM

Target vertex
1 23456728910I1112

1
o Evaluated options: 2| — —>
e Column first 431 fu P B Pt
o Read optimized 5
e Row first 3 = = P> Pos
e Write optimized 8
. P3q
o Hilbert order e R R s
. 1
@ Mix between read and 11 :
write optimization 12 [P P, Pas Pas i
Source Global adjacency """ "% -
vertex matrix Partition-
(=3

Steffen Maass Abstractions for Big Data Processing April 3, 2019 25 / 46

Previous results

@ With MosAic: Hilbert order best for locality and performance
e Optimize for reads and writes
© MOSAIC's scenario:

o Batch-processing of large amounts of edges
e Entire graph being processed at a time

@ However: CYTOM’'s scenario is different:

o Small sets of changes, e.g., one million edges (maximum: 12 MB of
vertex and edge data)
e Only parts of the graph being processed

@ For CyToM: Optimizing writes beneficial!

Steffen Maass Abstractions for Big Data Processing April 3, 2019 26 / 46

April 3, 2019

Hilbert mx=xza
Row First s

dsss

Column First ==

R R
R
st eesed
s
XXX XXX XXX XX X XXX X XX

a0
=
‘B
a
0
o
I}
2
[a
@
8
©
(a]
=y
a3}
L
0
=
.9
o]
5}
o
b1
17}
a
<

%) uelaed

L 1 1 1 1
o o o o [I9) o

Steffen Maass

L I S =t 1
(puooas/se3pa uol||iN) Indysnoay |

= Row-first, write-optimized strategy performs up to 80% better

-
=
©
=
>
@
=
=t
=
w)
Q0
o0
[
+—
T
—
=
(0]
"o
wn
—
(D]
>
T
—
_I

Optimization: Selective scheduling

@ Important in evolving graphs:
o Not all vertices active all the time

o Effect: Many inactive edges
@ Common in many algorithms
@ Idea: Only operate on cells with active vertices

Steffen Maass Abstractions for Big Data Processing April 3, 2019 28 / 46

Optimization: Selective scheduling

@ Important in evolving graphs:
o Not all vertices active all the time

o Effect: Many inactive edges

@ Common in many algorithms

@ Idea: Only operate on cells with active vertices
Target vertex

QIEJIOIOLO)

O)
a|
©)]
@E
®
®

Source Global adjacency
vertex '

1y X
Steffen Maass Abstractions for Big Data Processing April 3, 2019

Optimization: Selective scheduling

@ Important in evolving graphs:
o Not all vertices active all the time

o Effect: Many inactive edges

@ Common in many algorithms

@ Idea: Only operate on cells with active vertices
Target vertex

@@@@@@

Source Global adjacency
vertex

1nr
Steffen Maass Abstractions for Big Data Processmg April 3, 2019

Impact of selective scheduling

]

Livejournal ex=a
Orkut xxzzxx

,‘VV

]
X

4

—
R
2R

%S

s
RSRssses
3

> o o
o o o

2030%
Y

e'
R
5

3.0

23

%
%5

%S

X
R

NS
O
KR

o
SR
o

=

2
S

3

%S

<

R Rk

9%

%

X
o3
%S

R RRRRLELK:

Throughput ratio

03
0

%S
o2

XS
o3

%S
%5

o

oo

i"
X

X

%3
09098
X
XX
KK

S
P50
A’A
R
%
%

IR
b
%
5
S
k5

X

'S
¢

o = b
o o o

sssp

Q@
a

cc

= Up to 5.6 x improvement due to reduced number cells

Steffen Maass Abstractions for Big Data Processi April 3, 20

High-level architecture: Algorithmic interface

What is CyTOM's algorithmic interface?

Global vertex state
<current state> <next state>

Cell)
Distributor

Cell Manager,,

Input Graph
Cell Mzmager21
Persistence |
[T raer2 | N | 2|

Checkpoints

Steffen Maass Abstractions for Big Data Processing April 3, 2019

30 / 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 1: Initialize with local vertex 1D

cc:|1 Iteration: 1

CC:|?2 CC:|3

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 2: Minimize over all incoming edges with Pull

cc:|1 Iteration: 1

CC:|?2

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 3: Update local connected component value

cc:|1 Iteration: 1

CcC:|1 CC:|2

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 4: Run apply and mark active vertices

cc:|1 Iteration: 1
Apply

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 5: New iteration, minimize with Pull

cc:|1 Iteration: 2

CC:|1

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 6: Run Apply on all active vertices

cc:|1 Iteration: 2

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Example connected components

@ lterative algorithm

@ Minimize connected component over incoming edges

Step 7: Convergence reached after one more iteration

cc:|1 Iteration: 3

CcC:|1 CC:|1

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31/ 46

Handling updates

@ Add new vertex and edge

@ Algorithm has to update connected component

Steffen Maass Abstractions for Big Data Processing April 3, 2019 32/ 46

Handling updates

@ Add new vertex and edge

@ Algorithm has to update connected component

Step 1: Add edge @ and vertex @), init connected component

CC:|1] CC:14

CcC:|1 CC:|1

Steffen Maass Abstractions for Big Data Processing April 3, 2019 32/ 46

Handling updates

@ Add new vertex and edge

@ Algorithm has to update connected component

Step 2: Pull incoming edge for @

CC:|1] CC:|1

CcC:|1 CC:|1

Steffen Maass Abstractions for Big Data Processing April 3, 2019 32/ 46

Handling updates

@ Add new vertex and edge

@ Algorithm has to update connected component

Step 3: Convergence after next iteration

CC:11 CC:11

ccC:|1 CC:|1

Steffen Maass Abstractions for Big Data Processing April 3, 2019 32/ 46

Dealing with deletions: Critical edges

@ Potentially devastating impact on algorithmic result

@ Example with connected components:

Steffen Maass Abstractions for Big Data Processing April 3, 2019 33/ 46

Dealing with deletions: Critical edges

@ Potentially devastating impact on algorithmic result

@ Example with connected components:

CC:11

CC:

Steffen Maass Abstractions for Big Data Processing April 3, 2019 33/ 46

Dealing with deletions: Critical edges

@ Potentially devastating impact on algorithmic result

@ Example with connected components:

CC:11

Steffen Maass Abstractions for Big Data Processing April 3, 2019 33/ 46

Dealing with deletions: Critical edges

@ Potentially devastating impact on algorithmic result

@ Example with connected components:

CC:11

Steffen Maass Abstractions for Big Data Processing April 3, 2019 33/ 46

Dealing with deletions: Critical edges

@ Potentially devastating impact on algorithmic result

@ Example with connected components:

CC:11

@

CC:|1] 2: |

Steffen Maass Abstractions for Big Data Processing April 3, 2019 33/ 46

Dealing with deletions: Critical edges

@ "Safe" solution: Re-execute algorithm
e CYTOM's approach: Mark critical edges carrying results

@ If critical edge deleted or updated: Re-execute

CC:|1
]

Criticg (2]
2 ©

Critical '

CC:11

Steffen Maass Abstractions for Big Data Processing April 3, 2019 34 / 46

Critical edges: Example

Delete non-critical edge @ :

CC:|1]
]

Critical

CC:
Critical

CC:11

Steffen Maass Abstractions for Big Data Processing April 3, 2019 35/ 46

Critical edges: Example

Delete critical edge @ :

CC:

i

Critical

CC:12

2

(3) :
Critical cC:

Steffen Maass Abstractions for Big Data Processing

April 3, 2019

35 / 46

Critical edges: Example

Re-execute algorithm for correct result:

CC:|1]

CC:
Critical

Steffen Maass Abstractions for Big Data Processing April 3, 2019 35/ 46

Programming interface

@ Scatter-Gather-Apply (GAS) variant
@ Algorithm developer not exposed to subgraph-centric aspects

@ Special addition for evolving graphs: edgeChanged callback

o React to edge changes
o Trigger algorithm re-execution if necessary (e.g., deletions)

Steffen Maass Abstractions for Big Data Processing April 3, 2019 36 / 46

Example: Connected components

Edge processing callbacks:
Edge-centric operation

= 1 //Inside a Cell (local)
=0 2 // Edge e = (Vertex src, Vertex tgt)
§ § 3 def Pull(Vertex src, Vertex tgt):
%D %D 4 if src.value < tgt.value:
3’ § 5 markCeritial(src, tgt)
S 6 return src.value
S | 7 //Collecting Cell Results (local & global)
8 def Reduce(Vertex v,, Vertex v,):

9 return min(v,.value, v,.value)
10 // On Global Vertices
11 def Apply(Vertex v):
12 if current(v.value) != next(v.value):
13 activate(v)

Global graph
processing

Vertex-centric operation

Steffen Maass Abstractions for Big Data Processing April 3, 2019 37 / 46

Example: Connected components

Special for evolving graphs: edgeChanged callback
o Filter updates without implied changes
@ Handle deletions
1 // On Every Edge Update

2 def EdgeChanged(Vertex src, Vertex tgt, Event e):
3 switch(e):

4 case Inserted:
5 Update if New Path Discovered
6 if src.value < tgt.value:
7 tgt.value = src.value
8 activate(tgt)
9 markCritical(src, tgt)
10 case Deleted:
11 if isCritical(src, tgt):
12 reExecuteAlgorithm()

Edge-centric operation

Steffen Maass Abstractions for Big Data Processing April 3, 2019 38 / 46

Impact of edgeChanged callback for insertions

o Benefit: Filter out uninteresting updates

w
o
|

Livejournal ex=a
Orkut x==zza

' =N N
o u o w
T

-

Throughput ratio

o ©°
o

bfs
cc
sssp

= Up to 2.8x improvement in overall throughput due to reduced work for
algorithm

Steffen Maass Abstractions for Big Data Processing April 3, 2019 39 / 46

(7]
c
.9
)
Q
[}
e
-
L
X
O
g0}
=
“©
O
o
Q
(@)
o
©
<
(W)
Q
(@)}
o
(]
(e
(@)
-
O
g0}
o
£

Re-execution vs. critical edges approach with CC:

SUOIINDO9Xa3Yy Ol1EYy

PR R R R R R IR R R R IR IR R RR IR RRR
S S R RS
R R RRIRRI DRI
oo

G RRRRERARAAY
IRy
oot ooesateoe%
RS

RS

VAVAVAS

PRI
SRR
R
R

R IRIRILIR
e
BRRRERARRRARARK]

R R

”’ 4

1 1 1 1
A

N i i o o

oney indysnouy |

25 -
0

%0T

%S

%1

%01

%S

%1

Deletion Percentage

= Up to 2.2x improvement, less when more deletions

Deletion Percentage

40 / 46

Abstractions for Big Data Processing April 3, 2019

Steffen Maass

Comparison to other systems

@ How does CyTOM perform compared to other systems?
@ Metrics:

e Throughput of graph updates
e Overall throughput with updates and algorithm processing

Steffen Maass Abstractions for Big Data Processing April 3, 2019 41 / 46

High-level comparison

@ Features offered by each system

Characteristics LLAMA Graphln GraphOne Stinger Cytom
Incremental proc. - v v v v
Synchronous proc. v v v v v
Asynchronous proc. - - - - v
Approximation - - - - v
Disk persistence v - v - v
Deletions v v v - v
Snapshot view v - - - v

Steffen Maass Abstractions for Big Data Processing April 3, 2019 42 / 46

Throughput for graph updates

@ Compared to GraphOne, CYTOM offers 2.8 x the throughput

e Uses CSR for static snapshots, edge lists for new data
o Log-structured approach

@ Compared to Differential Dataflow, CyTOM offers 4.8 the
throughput

o Generalized data flow system
o Graph support with edge lists

Steffen Maass Abstractions for Big Data Processing April 3, 2019 43 / 46

Comparison to Graphlin

@ Graphln uses edge lists

@ Only scales to ~ 100M edges

Livejournal rmat-22

)

o

o

<
\

CYTOM —4—
Graphln --x--

VIRV P IR Y TR
pe e Xmm X m X

Throughput (M edges/sec)

| | | | | | | |
250k 500k 750k 1000k 250k 500k 750k 1000k
Update Batch Size Update Batch Size

= Up to 5.5 improvement in throughput

Steffen Maass Abstractions for Big Data Processing April 3, 2019 44 / 46

Comparison to STINGER

@ STINGER's focus: Use atomics to insert into adjacency lists

@ Earliest systems of all evaluated ones

~100.00 M = rmat-22
g i STINGER m=x=x1
2 i CYTOM E==xx1
5 10.00 M -
b F
nel C
© 1.00M L
2 i
5 010M
g : -
3 001Mp i
< 5 E.% %
F 0.00M
c
©
g
8 £ g

= At least 60x speedup due to more efficient graph updates and APlIs

Steffen Maass Abstractions for Big Data Processing April 3, 2019 45 / 46

Conclusion

e CYTOM, a billion-scale engine for evolving graphs

o Cell-based design enables high update rate
o Selective scheduling enabled by cell-based design
o edgeChanged callback to quickly react to graph updates

Steffen Maass Abstractions for Big Data Processing April 3, 2019 46 / 46

Conclusion

e CYTOM, a billion-scale engine for evolving graphs

o Cell-based design enables high update rate
o Selective scheduling enabled by cell-based design
o edgeChanged callback to quickly react to graph updates

@ Additional components of dissertation:

e MOSAIC, a trillion-scale engine for static graphs
e LATR, an OS-level approach to reduce overheads of synchronous TLB
shootdowns

@ Outcome: We can do large-scale data analytics on a single machine

Steffen Maass Abstractions for Big Data Processing April 3, 2019 46 / 46

Conclusion

e CYTOM, a billion-scale engine for evolving graphs

o Cell-based design enables high update rate
o Selective scheduling enabled by cell-based design
o edgeChanged callback to quickly react to graph updates

@ Additional components of dissertation:

e MOSAIC, a trillion-scale engine for static graphs
e LATR, an OS-level approach to reduce overheads of synchronous TLB
shootdowns

@ Outcome: We can do large-scale data analytics on a single machine

Thanks! J

Steffen Maass Abstractions for Big Data Processing April 3, 2019 46 / 46

	Thesis Statement and Approaches
	Cytom: Processing Billion-Scale Evolving Graphs
	Applications & Challenges
	Cytom's Cell-based Graph Representation
	Handling Deletions
	Programming Interface

	Conclusion

