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Social networks

Genome analysis

Graphs enable Machine Learning



Powerful single machines available
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Powerful single machines available
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Gigabytes of RAM

Powerful many-core coprocessors

Fast, large-capacity non-volatile Memory

⇒ Enable tera-scale data processing on a single machine
However: design and systems-level mechanisms required!



Thesis statement and approaches

Large-scale big data analytics is possible on a single machine using systems
and design-level abstractions for commodity and heterogeneous single
machines.
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Thesis statement and approaches

Large-scale big data analytics is possible on a single machine using systems
and design-level abstractions for commodity and heterogeneous single
machines.

Approaches:

Systems-level analysis and mechanism for improving virtual memory
performance with Latr

Design-level abstractions for trillion-scale graph analytics with
Mosaic

Design-level abstractions and data structures for billion-scale
evolving graphs with Cytom
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⇒ Focus of this talk: Processing evolving graphs with Cytom
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High-level structure

Operating System

(LATR)

Static

(MOSAIC)

Evolving

(CYTOM)

Graph Processing

D

B

⑥

⑤

①

②

③

④

➊
➋

➌

➍

➎

➏

➐

➑

➒
C

A
D

CA
B Communities

Ranking

A B C D

A
B

C
D

E

Anomaly

Raw Data

Cytom builds on lessons learned with Mosaic

However: Different challenges for setting of evolving graphs
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Roadmap

1 Thesis Statement and Approaches

2 Cytom: Processing Billion-Scale Evolving Graphs
Applications & Challenges
Cytom’s Cell-based Graph Representation
Handling Deletions
Programming Interface

3 Conclusion
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Importance of evolving graphs
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Social networks

Live traffic & route calculation

Analysis of next-gen Cellular Data,
Connected Cars, . . .

⇒ Applications enable by processing evolving graphs

Online route calculation

Online Anomaly detection

Online Ranking

Online Community detection



Challenges of billion-scale evolving graphs

Constant stream of updates

Optimizing graph storage format not possible on every update

Graph data structures supporting updates

Co-running graph updates with algorithm

Special challenges for single machines (compared to distributed
systems):

Limited memory & compute
Fault tolerance
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Background: Graph data structures for evolving graphs

Goal: Efficient update support and computational efficiency

Four options:

Adjacency matrix
Adjacency lists
Compressed sparse rows (CSR)
Edge lists
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Background: Graph data structures for evolving graphs

Goal: Efficient update support and computational efficiency

Four options:

Adjacency matrix
Adjacency lists
Compressed sparse rows (CSR)
Edge lists

Sample graph:

⑥

⑤④
➊

➋ ➌

Steffen Maass Abstractions for Big Data Processing April 3, 2019 10 / 46



Background: Adjacency matrix

Minimal storage per edge (1 bit)

Great for dense graphs

Limitation: Most real-world graphs are sparse

Example:

⑥

⑤④
➊

➋ ➌

④

⑤

⑥

④⑤⑥

Source 
vertex

Target vertex

➊ ➋
➌
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Background: Adjacency lists

For best case, storage cost per edge: 8 bytes

Relatively simple construction

Limitation: Overhead on traversal and allocation of new edges

Used by Stinger

⑥

⑤④
➊

➋ ➌

④
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⑥

⑤ ⑥

⑥

➊ ➋

➌

Steffen Maass Abstractions for Big Data Processing April 3, 2019 12 / 46



Background: Compressed sparse rows (CSR)

For best case, storage cost per edge: 8 bytes

Efficient access and lower storage overhead

Limitation: Changes require rebuilding or complicated overflow areas

Used by Llama

⑥

⑤④
➊

➋ ➌

④⑤⑥

⑤ ⑥ ⑥
➊ ➋ ➌
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Background: Compressed sparse rows (CSR)

For best case, storage cost per edge: 8 bytes

Efficient access and lower storage overhead

Limitation: Changes require rebuilding or complicated overflow areas

Used by Llama

Example: Add edge 4

⑥

⑤
➊

➋ ➌

④⑤⑥

⑤ ⑥ ⑥
➊ ➋ ➌

➍
④
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Background: Compressed sparse rows (CSR)

For best case, storage cost per edge: 8 bytes

Efficient access and lower storage overhead

Limitation: Changes require rebuilding or complicated overflow areas

Used by Llama

Problem: Array has to be shifted

⑥

⑤
➊

➋ ➌

④⑤⑥

⑤ ⑥ ⑥
➊ ➋ ➌

➍

④
➍

④
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Background: Edge lists

Simple construction

Adding new edges possible

Limitation: Overhead for storage cost, 16 bytes per edge

Used by GraphIn, GraphOne

⑥

⑤④
➊

➋ ➌

(④ ,⑤ )

(④ ,⑥ )

(⑤ ,⑥ )

➊

➋

➌

Steffen Maass Abstractions for Big Data Processing April 3, 2019 14 / 46



Data structures summary

Comparison of presented data structures

Representation Sparse graphs Updates Traversals Storage

Adj. matrix - ✓ ✓ 1 bit
Adj. lists ✓ ✓ - 8 bytes
CSR ✓ - ✓ 8 bytes
Edge list ✓ ✓ ✓ 16 bytes
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Data structures summary

Comparison of presented data structures

Representation Sparse graphs Updates Traversals Storage

Adj. matrix - ✓ ✓ 1 bit
Adj. lists ✓ ✓ - 8 bytes
CSR ✓ - ✓ 8 bytes
Edge list ✓ ✓ ✓ 16 bytes

Edge listCytom ✓ ✓ ✓ 4 bytes

Our choice for evolving graphs: edge lists

However: Mitigation for storage overhead needed
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High-level architecture

From raw input graph to algorithmic output:

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor
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High-level architecture

Step 1 : Update to input graph

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

➊
⑥ ⑧
🅐

Steffen Maass Abstractions for Big Data Processing April 3, 2019 16 / 46



High-level architecture

Step 2 : Update Cytom’s internal structure

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

❷ 
⓵ ⓶
🅐
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High-level architecture

Step 3 : Distribute update

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

❸
⓵ ⓶
🅐
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High-level architecture

Step 4 : Algorithmic processing of update

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

❹
⑥ ⑧
🅐
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High-level architecture: Cells

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

❷ 
⓵ ⓶
🅐

⇒ First focus: Cytom’s cells
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Construction of Cytom’s cells

Lightweight partitioning

Step 1: Input graph:
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Construction of Cytom’s cells

Lightweight partitioning

Step 2: Adjacency Matrix
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Construction of Cytom’s cells

Lightweight partitioning

Step 3: Construction of cell C11
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Construction of Cytom’s cells

Lightweight partitioning

Step 4: Construction of all other cells
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Construction of Cytom’s cells

Lightweight partitioning

Step 5: Overlay current cell size
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Construction of Cytom’s cells: Adding new edges

Adding new edges lightweight

Division to obtain partition
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Construction of Cytom’s cells: Adding new edges

Adding new edges lightweight

Division to obtain partition
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Cytom’s cells

Subgraph-centric

Difference to tiles (Mosaic) or partitions (GridGraph)?

Both designed for static execution
Immutable structures
Changes only possible coupled with preprocessing step
Cytom’s cells can grow (and shrink) as required without preprocessing

Enables short identifiers (16 bits)

2× to 4× less memory (32 or 64 bit identifiers)
Compared to Mosaic: No metadata needed
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Benefit of Cytom’s cells

Enables short identifiers (16 bits)

32 bits (4 bytes) per edge
2× to 4× less memory (32 or 64 bit identifiers)
No metadata needed

Usage of edge lists

Insert: Append at end of vector

Base case with global edge lists

C22

④

⑤

⑥

④⑤⑥

Source 
vertex

Target vertex
Edge list

➎
➏

➌ (④,⑤)

(⑤,⑥)
(④,⑥)➏

➎➌

64b 64b

16B
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Benefit of Cytom’s cells

Enables short identifiers (16 bits)

32 bits (4 bytes) per edge
2× to 4× less memory (32 or 64 bit identifiers)
No metadata needed

Usage of edge lists

Insert: Append at end of vector

Idea: Translate global IDs into local ones, store in Cytom’s edge list

C22

④

⑤

⑥

④⑤⑥

Source 
vertex

Target vertex

➏
➎➌

C22

⓵

⓶

⓷

⓵⓶⓷

Source 
vertex

Target vertex

➏
➎➌

Edge listCYTOM

➎
➏

➌

16b 16b

4B

(⓵, ⓶)

(⓶, ⓷)
(⓵, ⓷)
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Benefit of Cytom’s cells

Enables short identifiers (16 bits)

32 bits (4 bytes) per edge
2× to 4× less memory (32 or 64 bit identifiers)
No metadata needed

Usage of edge lists

Insert: Append at end of vector

Idea: Translate global IDs into local ones, store in Cytom’s edge list

C22

④

⑤

⑥

④⑤⑥

Source 
vertex

Target vertex

➏
➎➌

C22

⓵

⓶

⓷

⓵⓶⓷

Source 
vertex

Target vertex

➏
➎➌

Edge listCYTOM

➎
➏

➌

16b 16b

4B

(⓵, ⓶)

(⓶, ⓷)
(⓵, ⓷)

⇒ Impact of shortened identifiers?
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Impact of short identifiers - lower memory footprint
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⇒ Up to 24% higher overall performance, 47% fewer cache references
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High-level architecture: Cell distribution

How to operate on active cells?

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

❸
⓵ ⓶
🅐

Steffen Maass Abstractions for Big Data Processing April 3, 2019 23 / 46



How to load balance cells?

Problem: Many more
cells than threads

Millions of cells,
dozens of threads

Skewed cell size
distribution

Four choices
implemented:

Static partitioning
Work pool
Cell distributor
Hierarchical cell
distributor
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How to load balance cells?

Problem: Many more
cells than threads

Millions of cells,
dozens of threads

Skewed cell size
distribution

Four choices
implemented:

Static partitioning

Work pool
Cell distributor
Hierarchical cell
distributor
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How to load balance cells?

Problem: Many more
cells than threads

Millions of cells,
dozens of threads

Skewed cell size
distribution

Four choices
implemented:

Static partitioning
Work pool
Cell distributor
Hierarchical cell
distributor
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/
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⇒ Hierarchical cell distributor improves throughput by 2.1×
Further optimizations enabled by 2D structure?

Steffen Maass Abstractions for Big Data Processing April 3, 2019 24 / 46



2D-partitioning: Opportunity for different traversals

Multiple traversal strategies are possible with Cytom

Evaluated options:
Column first

Read optimized

Row first

Write optimized

Hilbert order

Mix between read and
write optimization

1
2
3
4
5
6
7
8
9

10
11
12

1   2   3   4   5   6   7   8   9  10  11 12

Global adjacency 
matrix

Source 
vertex

Target vertex

Partition
(S = 3)

P11 P12 P14P13

P21 P22 P24P23

P31 P32
P34P33

P41 P42 P44P43
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2D-partitioning: Opportunity for different traversals

Multiple traversal strategies are possible with Cytom

Evaluated options:
Column first

Read optimized

Row first
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Hilbert order

Mix between read and
write optimization
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Previous results

With Mosaic: Hilbert order best for locality and performance

Optimize for reads and writes

Mosaic’s scenario:

Batch-processing of large amounts of edges
Entire graph being processed at a time

However: Cytom’s scenario is different:

Small sets of changes, e.g., one million edges (maximum: 12MB of
vertex and edge data)
Only parts of the graph being processed

For Cytom: Optimizing writes beneficial!
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Traversal strategies with Cytom
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⇒ Row-first, write-optimized strategy performs up to 80% better

Steffen Maass Abstractions for Big Data Processing April 3, 2019 27 / 46



Optimization: Selective scheduling

Important in evolving graphs:
Not all vertices active all the time

Effect: Many inactive edges
Common in many algorithms
Idea: Only operate on cells with active vertices
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Impact of selective scheduling
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⇒ Up to 5.6× improvement due to reduced number cells
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High-level architecture: Algorithmic interface

What is Cytom’s algorithmic interface?

Tissue Manager 1

Tissue Manager 2

Cell Manager22

Cell Manager12

Cell Manager21

Cell Manager11

<current state> <next state>
Global vertex state

...

...

... ...

Algorithm Executor

Input Graph

Persistence
Manager

Checkpoints

Cell
Distributor

❹
⑥ ⑧
🅐
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Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 1: Initialize with local vertex ID

①

②

➊
➋

➌
③

1CC:

3CC:2CC:

Iteration: 1
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Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 2: Minimize over all incoming edges with Pull

①

②

➊
➋

➌
③

1CC:

3CC:2CC:

Pull

Pull

Iteration: 1
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Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 3: Update local connected component value

①

②

➊
➋

➌
③

1CC:

2CC:1CC:

Iteration: 1
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Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 4: Run apply and mark active vertices

①

②

➊
➋

➌

1CC:

2CC:1CC:
③

Apply

Apply
Apply

Iteration: 1

Steffen Maass Abstractions for Big Data Processing April 3, 2019 31 / 46



Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 5: New iteration, minimize with Pull

①

②

➊
➋

➌

1CC:

1CC:1CC:
③

Pull
Pull

Iteration: 2
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Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 6: Run Apply on all active vertices

①

②

➊
➋

➌

1CC:

1CC:1CC:
③

Apply
Apply

Iteration: 2
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Example connected components

Iterative algorithm

Minimize connected component over incoming edges

Step 7: Convergence reached after one more iteration

①

②

➊
➋

➌

1CC:

1CC:1CC:
③

Iteration: 3
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Handling updates

Add new vertex and edge

Algorithm has to update connected component
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Handling updates

Add new vertex and edge

Algorithm has to update connected component

Step 1: Add edge 4 and vertex 4 , init connected component

①

②

➊
➋

➌

1CC:

1CC:1CC:
③

④

➍

4CC:
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Handling updates

Add new vertex and edge

Algorithm has to update connected component

Step 2: Pull incoming edge for 4

①

②

➊
➋

➌

1CC:

1CC:1CC:
③

④

➍

1CC:

Pull
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Handling updates

Add new vertex and edge

Algorithm has to update connected component

Step 3: Convergence after next iteration

①

②

➊
➋

➌

1CC:

1CC:1CC:
③

④

➍

1CC:
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Dealing with deletions: Critical edges

Potentially devastating impact on algorithmic result

Example with connected components:
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Dealing with deletions: Critical edges

”Safe“ solution: Re-execute algorithm

Cytom’s approach: Mark critical edges carrying results

If critical edge deleted or updated: Re-execute

①

②

➊
➋

➌
③

Critical

Critical

1CC:

1CC:1CC:
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Critical edges: Example

Delete non-critical edge 2 :

①

②

➋

➌
③

1CC:

1CC:1CC:

➊
Critical

Critical
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Critical edges: Example

Delete critical edge 1 :

①

②
➌

③

1CC:

3CC:2CC:

➊
Critical

Critical
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Critical edges: Example

Re-execute algorithm for correct result:

①

②
➌

③

1CC:

2CC:2CC:

➊
Critical

Critical
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Programming interface

Scatter-Gather-Apply (GAS) variant

Algorithm developer not exposed to subgraph-centric aspects

Special addition for evolving graphs: edgeChanged callback

React to edge changes
Trigger algorithm re-execution if necessary (e.g., deletions)
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Example: Connected components

Edge processing callbacks:

// Inside a Cell (local)
// Edge e = (Vertex src, Vertex tgt)
def Pull(Vertex src, Vertex tgt):
    if src.value < tgt.value:
        markCritial(src, tgt)
        return src.value
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Edge-centric operation

Vertex-centric operation

// Collecting Cell Results (local & global)
def Reduce(Vertex v1, Vertex v2):
    return min(v1.value, v2.value)
// On Global Vertices 
def Apply(Vertex v):
    if current(v.value) != next(v.value):
        activate(v)
 

Edge-centric operation
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Example: Connected components

Special for evolving graphs: edgeChanged callback

Filter updates without implied changes

Handle deletions

// On Every Edge Update
def EdgeChanged(Vertex src, Vertex tgt, Event e):
    switch(e):
        case Inserted:
            // Update if New Path Discovered
            if src.value < tgt.value:
                tgt.value = src.value
                activate(tgt)
                markCritical(src, tgt)
        case Deleted:
            if isCritical(src, tgt):
                reExecuteAlgorithm()
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11
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Edge-centric operation
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Impact of edgeChanged callback for insertions

Benefit: Filter out uninteresting updates
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⇒ Up to 2.8× improvement in overall throughput due to reduced work for
algorithm
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Impact of edgeChanged callback for deletions

Re-execution vs. critical edges approach with CC:
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⇒ Up to 2.2× improvement, less when more deletions

Steffen Maass Abstractions for Big Data Processing April 3, 2019 40 / 46



Comparison to other systems

How does Cytom perform compared to other systems?

Metrics:

Throughput of graph updates
Overall throughput with updates and algorithm processing
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High-level comparison

Features offered by each system

Characteristics LLAMA GraphIn GraphOne Stinger Cytom

Incremental proc. - ✓ ✓ ✓ ✓
Synchronous proc. ✓ ✓ ✓ ✓ ✓
Asynchronous proc. - - - - ✓
Approximation - - - - ✓
Disk persistence ✓ - ✓ - ✓
Deletions ✓ ✓ ✓ - ✓
Snapshot view ✓ - - - ✓
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Throughput for graph updates

Compared to GraphOne, Cytom offers 2.8× the throughput

Uses CSR for static snapshots, edge lists for new data
Log-structured approach

Compared to Differential Dataflow, Cytom offers 4.8× the
throughput

Generalized data flow system
Graph support with edge lists
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Comparison to GraphIn

GraphIn uses edge lists

Only scales to ≈ 100M edges
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⇒ Up to 5.5× improvement in throughput
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Comparison to Stinger

Stinger’s focus: Use atomics to insert into adjacency lists

Earliest systems of all evaluated ones
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⇒ At least 60× speedup due to more efficient graph updates and APIs
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Conclusion

Cytom, a billion-scale engine for evolving graphs

Cell-based design enables high update rate
Selective scheduling enabled by cell-based design
edgeChanged callback to quickly react to graph updates

Additional components of dissertation:

Mosaic, a trillion-scale engine for static graphs
Latr, an OS-level approach to reduce overheads of synchronous TLB
shootdowns

Outcome: We can do large-scale data analytics on a single machine
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Conclusion

Cytom, a billion-scale engine for evolving graphs

Cell-based design enables high update rate
Selective scheduling enabled by cell-based design
edgeChanged callback to quickly react to graph updates

Additional components of dissertation:

Mosaic, a trillion-scale engine for static graphs
Latr, an OS-level approach to reduce overheads of synchronous TLB
shootdowns

Outcome: We can do large-scale data analytics on a single machine

Thanks!
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