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Abstract

System software commonly uses indirect calls to realize dynamic
program behaviors. However, indirect-calls also bring challenges
to constructing a precise control-flow graph that is a standard pre-
requisite for many static program-analysis and system-hardening
techniques. Unfortunately, identifying indirect-call targets is a hard
problem. In particular, modern compilers do not recognize indirect-
call targets by default. Existing approaches identify indirect-call
targets based on type analysis that matches the types of function
pointers and the ones of address-taken functions. Such approaches,
however, suffer from a high false-positive rate as many irrelevant
functions may share the same types.

In this paper, we propose a new approach, namely Multi-Layer

Type Analysis (MLTA), to effectively refine indirect-call targets
for C/C++ programs. MLTA relies on an observation that function
pointers are commonly stored into objects whose types have amulti-
layer type hierarchy; before indirect calls, function pointers will be
loaded from objects with the same type hierarchy “layer by layer”.
By matching the multi-layer types of function pointers and func-
tions, MLTA can dramatically refine indirect-call targets. MLTA is
effective because multi-layer types are more restrictive than single-
layer types. It does not introduce false negatives by conservatively
tracking targets propagation between multi-layer types, and the
layered design allows MLTA to safely fall back whenever the anal-
ysis for a layer becomes infeasible. We have implementedMLTA
in a system, namely TypeDive, based on LLVM and extensively
evaluated it with the Linux kernel, the FreeBSD kernel, and the
Firefox browser. Evaluation results show that TypeDive can elimi-
nate 86% to 98% more indirect-call targets than existing approaches
do, without introducing new false negatives. We also demonstrate
that TypeDive not only improves the scalability of static analysis
but also benefits semantic-bug detection. With TypeDive, we have
found 35 new deep semantic bugs in the Linux kernel.
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1 Introduction

Function pointers are commonly used in C/C++ programs to sup-
port dynamic program behaviors. For example, the Linux kernel
provides unified APIs for common file operations such as open().
Internally, different file systems have their own implementations of
these APIs, and the kernel uses function pointers to decide which
concrete implementation to invoke at runtime. Such an invocation
is known as an indirect call (icall for short). Common icall targets
include callback functions, jump-table entries, and virtual functions.

While icalls are common and useful, by their dynamic nature,
icall targets cannot be precisely decided through static analysis.
This leads to inherent challenges in constructing precise global
Control-Flow Graph (CFG) that connects icalls to their targets. In
particular, compilers such as GCC and LLVM do not recognize icall
targets by default. Users of CFG have two options: stopping an
analysis when encountering icalls or continuing an analysis by
taking all address-taken functions as potential targets. Both options
have apparent drawbacks. The former limits the coverage of the
analysis, while the latter limits the scalability and precision of the
analysis, and hurts the strength of system hardening techniques.
More specifically, many bug detection tools using inter-procedural
analysis choose to skip icalls [24, 26, 40, 50], and thus will miss bugs
hidden behind icalls. Including massive irrelevant functions, on the
other hand, will lead to significant false positives to bug detection
techniques based on cross-checking [34, 52], and will likely cause
path explosion to symbolic executions [5, 47], impeding precise
analyses. Furthermore, Control-Flow Integrity (CFI) [1, 6, 35, 46, 53,
55] prevents control-flow hijacking attacks by restricting control
transfers to predefined icall targets. The inaccuracy in finding icall
targets will result in a permissive CFI enforcement, rendering the
protection ineffective [8, 12, 14, 17, 42].

Given the importance of identifying icall targets, researchers
have attempted to achieve it in two general ways: pointer analysis
and type analysis. In theory, pointer analysis can find out all possible
icall targets through whole-program analysis [1, 2, 4, 33, 45]. How-
ever, since pointer analysis itself requires a CFG from the beginning,
the analysis must be recursive and thus computational expensive.
More importantly, realizing a precise pointer analysis is hard or
typically does not guarantee the soundness [3, 14]. Given the limita-
tions with pointer analysis, recent practical CFI techniques opt for
function-type analysis [14, 35, 46]. These approaches identify icall
targets by matching the type of function pointers with the ones
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of potential target functions. While such approaches have been
practically applied to harden programs, they still suffer significant
false positives—indirect calls with a small number of general-type
parameters (e.g., void (*)(char *)) will match a large number of
unrelated function targets.

In this paper, we propose a new approach,Multi-Layer Type Anal-

ysis (MLTA), to effectively refine icall targets without introducing
false negatives to existing type analysis–based approaches. The
intuition behind MLTA is that a function address is often stored
into objects whose types belong to a multi-layer type hierarchy;
when the function pointer is used in an icall, its value is loaded
layer by layer from the same type hierarchy. For example, in the
statement, b.a.fptr=&f, the function address of f is stored into the
function-pointer field (fptr) of a type-A object (a) which is stored in
a type-B object (b). Correspondingly, to invoke the function through
an icall, the function address will be loaded layer by layer: object a
will be first loaded from object b, and the function pointer, fptr, will
be further loaded from object a. By matching the multi-layer types
(i.e., B.A.fptr_t) instead of only the first-layer type (i.e., fptr_t)
between address-taken functions and function pointers, we can
dramatically refine icall targets. Accordingly, we denote the exist-
ing type analyses focusing on the “first-layer” as First-Layer Type
Analysis (FLTA).

MLTA has two unique advantages. First, given the fact that
multi-layer types are more restrictive than first-layer types, it can
significantly reduce false positives. Since the first-layer type P is
the inner-most layer of all multi-layer types for an icall, the target
set provided by FLTA for the first-layer type is the union of that
provided by MLTA for all related multi-layer types. In other words,
for the same icall, MLTA always provides a subset of the one given
by FLTA. Second, the multi-layer type matching can be elastic to
avoid potential false negatives. In general, types with more layers
provide stronger restrictions in confining icall targets. However,
when the complete multi-layer type is not available, e.g., due to
type escaping (§4.1.3), MLTA can fall back to a more permissive
sub-type to find icall targets, without introducing false negatives.
We provide a formal analysis in §6 to show that MLTA guarantees
the effectiveness and does not introduce false negatives.

There are however two challenges in implementing theMLTA
analysis. First, maintaining the map between multi-layer types and
address-taken functions can be expensive in both storage and com-
putation. In the aforementioned example,MLTA has to maintain
the map for fptr_t, A.fptr_t, and B.A.fptr_t, if they are used
separately in the program. Given that the map must be maintained
globally for the target program, it is potentially large. Second, the
maintaining may become complicated when casting occurs fre-
quently between these multi-layer types; types must be recursively
maintained for each casting. More importantly, the multi-layer
types in the source and sink of a cast should be extracted, which can
be challenging when complicated data flows are involved.MLTA
must address this issue carefully to avoid potential false negatives.

Our solution to these challenges is to break a multi-layer type
into a series of two-layer types and map each of them with its
associated icall targets. For example, given b.a.fptr=&f, we will
maintain the mapping for only B.A and A.fptr_t. Any cast can thus
be simply recorded for the two-layer type instead of all involved
multi-layer types. Each two-layer type is independent of others.

Given an icall, based on where the function pointer is loaded from,
we can assemble the two-layer types into a multi-layer type back
and resolve the final icall targets. This way, we can restrict icall
targets both effectively and efficiently.

Applying MLTA to C++ programs requires additional design
efforts because the pointer to virtual-function tables (VTable) is
frequently cast to general types such as char*, rendering the type
matching ineffective. To address this problem, we develop a mech-
anism to precisely connect VTables to the corresponding classes
and to keep track of class casting. A few recent works [25, 54] have
attempted to enforce CFI for C++ programs in a similar way that
a virtual function call can only invoke the virtual functions imple-
mented in the current class or its derived classes, but not others.
Such an analysis is realized by extracting the class hierarchy infor-
mation from the C++ programs. We find thatMLTA can outperform
these works for two reasons. First, MLTA can further refine icall
targets when an object pointer is recursively stored into an object
of a different class. Second, MLTA precisely tracks type casting.
Therefore, virtual functions of a derived class become valid icall
targets of a base class only when an actual cast exists.

We have implemented our design of MLTA in a system called
TypeDive. TypeDive can not only identify how function addresses
are stored into and loaded from objects layer by layer, but also
conservatively capture type-escaping cases. We have also evaluated
the effectiveness and potential false-negative cases of TypeDive
with three widely used large system programs—the Linux kernel,
the FreeBSD kernel, and the Firefox browser. The evaluation results
show that, compared to existing approaches using FLTA, TypeDive
can additionally eliminate 86% to 98% icall targets for these large
and complex programs. Our empirical false-negative evaluation
also shows that TypeDive does not introduce any false negatives to
FLTA. Further, we show how TypeDive can improve the scalability
and precision of traditional static analyses. At last, we leveraged
TypeDive to find peer functions and cross-check them to identify
semantic bugs that either miss security checks or use initialized
variables. From the results, we have manually confirmed 25 new
missing-check bugs and 10 new missing-initialization bugs in the
Linux kernel. All these bugs are hidden behind icalls where existing
detection approaches either simply ignore or have significant false
positives.

In summary, we make the following contributions in this paper.

• A new approach.We propose the multi-layer type analysis to
effectively refine indirect-call targets.MLTA is elastic and does
not introduce false negatives to existing type analysis–based
approaches.
• New techniques. We propose multiple techniques such as type
confinement and propagation analysis, and type escaping anal-
ysis to ensure the effectiveness of MLTA and to conservatively
eliminate potential false negatives. We also extend MLTA to
support C++ programs.
• Extensive evaluation and new bugs. We have implemented
MLTA in a prototype system, TypeDive. We extensively evalu-
ated its effectiveness, scalability, and false negatives by applying
it to three large and complex real-world system programs. With
TypeDive, we found 35 new semantic bugs in the Linux kernel.



The rest of this paper is organized as follows. We present the
problem of icall-target resolving in §2; the overview of TypeDive in
§3; the design of TypeDive in §4; the implementation of TypeDive
in §5. We then formally analyze MLTA in §6. We present the evalu-
ation of TypeDive in section §7, discuss its limitations in §8 and its
related work in §9. We finally conclude in §10.

2 Problem Definition

In this section, we first provide the background of function pointers,
including their usage and prevalence, and then show the limitations
with existing approaches to motivate our approach.

2.1 Function Pointers and Indirect Calls

Programs use function pointers to realize dynamic features and
to improve program performance. To achieve dynamic features,
the icall target is determined by the value of a function pointer
that originates from callbacks, exception handling, or C++ virtual
functions. For example, C++ programs heavily use virtual functions
to realize polymorphism, where the concrete behavior of a function
is determined by the runtime type. C++ compilers save the addresses
of all virtual functions implemented in a class into a table (VTable)
and store the table address into the first entry of each class object.
Following the pointer of a class object, the program can find the
virtual function table, obtain the real function pointer by indexing
the VTable and finally jump to the particular function through an
icall. In OS kernels, function pointers are also extensively used to
achieve polymorphism analogous to C++, e.g., which open() to
invoke is determined by the specific file system in use.

Indirect calls can also help save CPU cycles. Considering a com-
mand dispatcher which supposes to invoke proper functions based
on the input value. One way to implement the switch is to use a
long list of comparisons followed by direct function calls. However,
implementing such a switch with an icall is much more efficient
because the program can just retrieve the proper function pointer
using the input as an index and jump to that function through an
icall.
Function pointers in memory. Function pointers can reside in
two classes ofmemory objects, primitive-type variables or composite-
type objects. Before a function pointer is stored into memory, its
function type can be preserved or cast to general types, such as
char*. To understand how common each case is, we conducted a
study to statistically count each case in the Linux kernel by analyz-
ing its LLVM bitcode files. In our results, among 212K instructions
that store function pointers, 88% of them put function addresses
into a composite-type object, and only 12% of them save function
addresses into a primitive-type variable. In the former case, 91%
of them do not cast the function type before the store instruction,
while in the latter case, 80% of them cast the function pointer into
a different type. The numbers show that storing function addresses
in a composite-type object is quite common, and the function ad-
dresses will typically be loaded from objects of the same composite
types before being dereferenced for icalls. MLTA will exploit such
type information to refine icall targets.
A motivating example. We show a sample usage of function
pointers in Figure 1. This code snippet defines one function pointer
type, fptr_t, and three structures, A, B and C, where A contains

1 typedef void (*fptr_t)(char *, char *);
2 struct A { fptr_t handler; };
3 struct B { struct A a; }; // B is an outer layer of A
4 struct C { struct A a; }; // C is an outer layer of A
5
6 void copy_with_check(char *dst, char *src) {
7 if (strlen(src) < MAX_LEN) strcpy(dst, src);
8 }
9
10 void copy_no_check(char *dst, char *src) {
11 strcpy(dst, src);
12 }
13
14 // Store functions with initializers
15 struct B b = { .a = { .handler = &copy_with_check } };
16
17 // Store function with store instruction
18 struct C c; c.a.handler = &copy_no_check;
19
20 void handle_input(char *user_input) {
21 char buf[MAX_LEN];
22 ...
23 (*b.a.handler)(buf, user_input); // safe
24 (*c.a.handler)(buf, user_input); // buffer overflow !!
25 ...
26 }

Figure 1: Indirect function calls that can be confined by multi-layer

type analysis. Function pointers used in line 23 and line 24 have type
fptr_t, where traditional type-based matching will find two potential tar-
gets copy_with_check() and copy_no_check(). However,MLTAwill identify
that the pointer in line 23 can only be copy_with_check(), while the pointer
in line 24 can only be copy_no_check().

a field (handler) of a function-pointer type, fptr_t, while both B
and C have an instance of A. The code provides two string copy
functions: copy_with_check() takes two char * arguments and per-
forms the boundary check before copying a string; copy_no_check()
is identical to copy_with_check() except that it does not do any
boundary check. The code defines two global variables, b of type
B and c of type C, and initializes these two variables accordingly with
copy_with_check() and copy_no_check(). Function handle_input()
processes the untrusted user_input, which could be of arbitrary
length and contain malicious content. handle_input() first creates
a stack buffer buf with the fixed size MAX_LEN and then retrieves
function pointers from variables b and c, and uses them to copy
user_input to the stack buffer buf, respectively. Next, We use this
example to show how the existing FLTA and our MLTA identify
the different numbers of icall targets.

2.2 Existing Approaches and Limitations

Existing FLTA relies on type-based matching to infer the possible
target(s) for an icall. Specifically, FLTA (1) identifies the function-
pointer type in an icall (2) searches the whole program to find all
address-taken functions of the same type. In the example of Figure 1,
the icall in line 23 uses function pointer b.a.handler which takes
type fptr_t. As both copy_with_check() and copy_no_check() have
the matched type, and their addresses are taken for variable initial-
ization (line 15, 18), FLTA will label both of them as valid targets.
Similarly, FLTA will assign both functions to the icall in line 24.
However, with manual checking, we can tell that the icall in line
23 can only target function copy_with_check(), while the icall in
line 24 can only target function copy_no_check(). Thus, FLTA in-
troduces false positives when identifying icall targets.
Triggering false alarms. The inaccuracy of FLTAwill cause false
alarms when we use static analysis to detect bugs. Let us consider
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a static analysis for identifying buffer overflows. From the example,
the analysis first detects a buffer, buf, in handle_input(). Then
it proceeds to check whether the memory access to this buffer
is within its boundary. It follows the control flow and reaches
the icall in line 23. FLTA tells that both copy_with_check() and
copy_no_check() could be the targets. Therefore, the analysis in-
spects both functions and will report a buffer overflow in line 11 due
to the missing of a boundary check. However, this is a false alarm be-
cause the icall in line 23 will never reach function copy_no_check().
Crippling CFI protection. The inaccuracy of FLTA will also
bring security issues to CFI protection. CFI aims to prevent control-
flow hijacking attacks [1], where attackers maliciously change some
memory variables like function pointers to divert the control flow
for their bidding. CFI makes sure that each indirect control-flow
transfer (i.e., indirect call/jump and return) only goes to the prede-
fined valid target(s). Therefore, an accurate indirect-call analysis
is required for strong protection. In line 233 of Figure 1, attackers
may have corrupted the function pointer, b.a.handler, to divert
the control flow. With FLTA, the type analysis, as employed in
recent CFI mechanisms [36, 46, 49], will allow both functions. Such
approximation weakens the protection as attackers can divert the
control flow to copy_no_check() to launch attacks.

FLTA fails to identify the accurate icall targets in the simple code
of Figure 1. In real-world programs with millions of lines of code,
such inaccuracy will lead to significant false positives, rendering
the analysis results less meaningful. Therefore, it is necessary to
develop a new approach to effectively refine icall targets.

2.3 Our Approach: Multi-Layer Type Analysis

The example in Figure 1 shows that FLTA uses only one-layer type
information (i.e., the function pointer type) to find icall targets,
without considering more type layers. Such observation motivates
us to propose a new approach—multi-layer type analysis (MLTA).
The key insight of MLTA is that the target(s) of an icall can be con-
fined through multi-layer types. We consider not only the function
type but also the types of memory objects that hold the function
pointers. Since memory objects can hold other memory objects re-
cursively, we can further leverage the “layered” types to refine icall
targets. For example, in Figure 1, MLTA will find that the function
pointer, b.a.handler, in line 23 takes type fptr_t, and its value is
read from a, an object of type A. In turn, a is retrieved from b, an
object of type B. Therefore, we find a three-layer type to retrieve
the function pointer: B.A.fptr_t. MLTA requires that the target(s)
of the icall in line 23 must have its (theirs) address(s) taken and

assigned to some pointers of the three-layer type B.A.fptr_t. By
checking the program, we can find that the only function satisfying
such a requirement is copy_with_check(), while copy_no_check()
is assigned to a function pointer of type C.A.fptr_t. Therefore,
in this example, the multi-layer type analysis helps remove false
positives and find the correct, unique target.

3 Overview of TypeDive

MLTA refines icall targets through type analysis of multiple layers.
In this section, we introduce our system, TypeDive, a practical im-
plementation of multi-layer type analysis for refining icall targets.

Figure 2 shows the overview of TypeDive, which takes as input
the LLVM bitcode files of the target program and identifies the
targets for icalls as the outputs. TypeDive consists of two main
phases, the type-analysis phase, and the target-resolving phase.
The first phase thoroughly scans all bitcode files to collect type-
related information. Note that, for simplicity, we refer to types as
composite types by default in the following sections. TypeDive first
collects all address-taken functions and identifies all address-taking
operations, where the latter could be either a static initializer of
a global variable or a store instruction. TypeDive then analyzes
the address-taking operation to identify the multi-layer type of
the memory object. For example, in line 15 of Figure 1, the ad-
dress of copy_with_check() is taken and assigned to b.a.handler.
TypeDive will identify its multi-layer type as B.A.fptr_t. Then
TypeDive splits the multi-layer type into several two-layer types
for efficient target propagation. In this case, B.A.fptr_t is split into
fptr_t (the first layer), A.fptr_t (the second layer) and B.A (the
third layer). TypeDive adds such information to the type-function
mapwhere the key is the hash of the two-layer type, and the value is
the set of associated functions. Next, TypeDive identifies how typed
objects are stored to other objects of different types, e.g., through
*p=a, and adds the relationship between the types of two operands
into the type-propagation map. The key of the type-propagation
map is the type of the value object a, and the value is the type of
the pointer object, p. TypeDive analyzes all casting operations and
maintains the casting relationships between two types through the
type-propagationmap. Note that nested types will also be cast and
maintained for casting operations. The last component of the first
phase is to capture potential type escaping cases and add them into
the escaped-type set. A type is escaping if we cannot decide all the
icall targets it can confine. For example, when a primitive type is
cast to a composite type, because we cannot decide the targets of



the primitive type, the targets of the composite type also become
undecidable. In this case, the composite type is escaped.

The second phase of TypeDive aims to resolve targets for each
icall. Given an icall instruction, TypeDive identifies the multi-layer
type of the function pointer and breaks it into a series of two-layer
types. TypeDive initializes the target set with the first-layer type
matching (i.e., FLTA), and then iteratively resolves the targets layer
by layer, from the first layer to the last layer. The target set of one
layer will be intersected with the targets resolved from previous
layers. At each layer, TypeDive first checks if the type at the layer
has escaped or not, based on the maintained escaped-type set. If
the type has escaped, TypeDive conservatively stops confining
the targets for the icall and outputs the current target set (i.e., an
overestimation) as the final target set. Otherwise, TypeDive queries
the type-propagationmap to find all types that are ever cast to the
current type. All targets of these types are recursively collected and
combined as the targets set of the current layer, which are further
intersected with the targets of previous layers. After each iteration,
TypeDive continues to identify the next-layer type. If no further
types are identified, TypeDive reports the existing target set as the
final one for the icall. Otherwise, TypeDive continues the target
resolving with the next-layer type.

As targets at each layer are intersected, TypeDive can effectively
refine icall targets. TypeDive’s analysis is conservative and elastic:
(1) if TypeDive cannot find the next layer, it immediately returns
the final target set; (2) if any type is escaping, TypeDive stops
resolving the targets and falls back to a previous layer. Note that,
TypeDive’s analysis is field-sensitive, e.g., maintaining which field
a store is targeting.

4 Design of TypeDive

TypeDive has two design goals: (1) to effectively refine the targets
as much as possible and (2) to not introduce any false negatives (i.e.,
to not miss valid targets) to FLTA. In this section, we present how
we design each component of TypeDive to achieve both goals.

4.1 Phase I: Layered Type Analysis

TypeDive includes two phases. As shown in Figure 2, the first
phase identifies all stores and initializers of global variables that
save a function address into memory, maintains how functions are
confined by types, and how types are propagated to other types.
More importantly, to avoid false negatives, this phase also identifies
escaped types whose instances may hold type-undecided targets.

4.1.1 Maintaining Type-Function Confinements. For a function ad-
dress to be a valid icall target, it must be first stored into memory
(i.e., a variable or a field of an object). Given a store of a function
address, TypeDive identifies the layered types of it and maintains
the confinements in a global type-function map. While the key
is a type, the value is a set of functions confined by the type. We
call the stores of function addresses as confinements because the
function addresses are expected to be loaded from the objects of
the same types. The stores can be in a store instruction or a static
initializer of a global variable (e.g., line 15 and line 18 in Figure 1).
Our analysis is field-sensitive in that the type information in the
map also includes the index of the field that holds the function.

Layered confinements. In an address-taking operation, if an ob-
ject containing a function pointer is contained by another object
of a different type, the confinement is layered. Such information
enables TypeDive to match types layer by layer. Specifically, given
a store of a function address, in either an initializer or a store in-
struction, TypeDive will recursively identify the layered types and
also maintain the confinements in the map. As shown in Figure 1,
both functions copy_no_check() and copy_with_check() are ever
stored into objects of type A, which is further stored into objects
of types B and C. In this case, we will identify that type A confines
these functions at layer two, and that types B and C confine these
functions at layer three. The function type is always at layer one,
i.e., FLTA. The type matching at layer two (i.e., through type A) will
identify both functions, copy_no_check() and copy_with_check(),
as valid targets for icalls in lines 23 and 24. However, the typematch-
ing at layer three (i.e., through types B and C) can identify a unique
function target for each icall. That is, the icall in line 23 can only call
copy_with_check() because copy_no_check() is never confined by
type B, and the icall at line 24 can only call copy_no_check().

4.1.2 Maintaining Type Propagation. Amulti-layer type in address-
taking operations introduces layered confinement. However, if an
object of one type is stored into an object of another type in non-
address-taking operations, all functions confined by the first type
should be propagated as possible targets to the second type. In this
case, the targets of the second type could potentially be significantly
expanded. We call such cases as type propagation.

To identify type propagation, we thoroughly analyze all store and
cast operations. The store can be either value-based or reference-
based (i.e., storing a pointer of an object into a field of another
object). The cast operations can be in either a cast instruction or a
cast operator in static initializers. For example, in LLVM IR, unions
are implemented as one of its multiple types, and the IR relies on
type casting to load and store the instance of other types. Given a
store or cast operation, we identify the source type and the sink type,
and use the type-propagation map to maintain the propagation.
The key in the map is the sink type, and its value is a set of source
types that are ever cast to the sink type.
Propagation for nested sub-types. When a source type propa-
gates to a sink type, we will recursively perform the propagation
for the nested sub-types from the source to the sink. This is neces-
sary because TypeDive does not employ data-flow analysis, so we
cannot guarantee that TypeDive always finds the base type where
a function pointer is loaded from.

4.1.3 Identifying Escaping Types. The essence of TypeDive is to
identify the confined targets for a type. However, this may be-
come infeasible if the type contains undecidable targets. We call
such cases type escaping. To specify the policy for identifying type-
escaping cases, we first define unsupported types as follows:
(1) Non-composite types such as general pointer types (e.g., char *)

and integer types.
(2) A type whose object pointers are ever arithmetically computed.

Note this does not include field indexing for structures.
The first criterion is not mandatory; as long as the propagation of
a type is thoroughly tracked, it can be included for layered type
analysis. We exclude non-composite types based on the observation



that such types can potentially contain a large number of function
targets, rendering the layered analysis less effective. Further, includ-
ing non-composite types will significantly enlarge the maintained
data structures and impact the analysis efficiency. By contrast, the
second criterion is required because, once a pointer is arithmetically
computed, the type of the object it points to can be undecidable.

We then identify a composite-type as escaping if it has one of
the following cases.

(1) The type is cast from an unsupported type;
(2) Its objects are stored to objects of an unsupported type;
(3) It is cast to an unsupported type.

The first policy is intuitive. Casting propagates icall targets from
source to sink; because the target set of an unsupported type is
undecidable, the target set of the composite type will become un-
decidable. The same reason applies to the second policy because a
store also propagates icall targets. The third policy is also necessary.
When a composite type is cast to an unsupported type, it may be
used as a pointer to store a value with an unsupported type, like
the destination pointer in memory(). In this case, the target set of
the composite type will also become undecidable.

To identify escaping types, we analyze all store and cast opera-
tions targeting a composite type and extract the types of both the
source and the sink. If either type is unsupported, we conserva-
tively label the composite type as escaping. One thing to note is
that, when we cannot decide if a composite type would be stored
or cast to an unsupported type, e.g., a pointer of an object of the
composite type is passed to or from other functions, and we cannot
decide how this pointer is used in those functions, we will also treat
the composite type as escaping.

4.1.4 Supporting Field-Sensitive Analysis. TypeDive’s analysis is
field-sensitive. This is important to refining icall targets because a
type may have multiple fields that can hold different function tar-
gets. Therefore, TypeDive computes the indexes of fields into the
objects. TypeDive supports field-sensitive analysis by analyzing
operations that control pointers for accessing elements of arrays
and structs. The operations in LLVM IR are the GetElementPtrInst
and GEPOperator; both are for type-safe pointer arithmetic for ac-
cessing fields in composite-type objects. When the indices in the
operations are constants, analyzing the index of fields is straight-
forward. However, when the indices include non-constants, which
is uncommon, TypeDive conservatively labels the type as escap-
ing. All the types in the type-function confinement map, the
type-propagationmap, and the type-escaping set include indexes.
With the field-sensitive analysis, union types can also be naturally
supported—union types are treated as general composite types, and
their fields are recognized based on the fields indexes.

4.2 Phase II: Targets Resolving for iCalls

Based on the collected information from the first phase, the second
phase of TypeDive resolves possible targets for each icall. At a
high level, TypeDive iteratively resolves confined targets for the
type at each layer based on how the function pointer is loaded
from memory. The targets of each layer are intersected to have the
final target set for the icall. For each layer, TypeDive recursively
resolves the targets based on the maintained type confinements and

Algorithm 1: Iteratively resolve targets for an indirect call.
Input : iCall: The given indirect call requires target resolving,

type-function: The type-function confinement map,
type-propagation: The type-propagation map,
escaped-type: The set of escaped types

Output :TargetSet: The set of possible targets for the indirect call icall

1 Procedure ResolveTargets(iCall, type-function, type-propagation, escaped-type)
2 TargetSet← all address-taken functions;
3 CurValue← getCalledValue(iCall);

// get next-layer value with a composite type

4 while CurValue← getNextLayerValue(CurValue) do

// index is also obtained along with the base type

5 CurType← getBaseType(CurValue);
6 if isNotSupported(CurType) then break ;

// ensure CurType has not escaped

7 if CurType ∈ escaped-type then break ;
8 LayerTargetSet← type-function[CurType];

// merge targets of all types propagating to CurType

9 for each PropType in type-propagation[CurType] do

// recursively find targets of PropType

10 if PropTargetSet← recurGetTargets(PropType, ...) then

11 LayerTargetSet← LayerTargetSet
⋃

PropTargetSet;
12 else

13 return TargetSet;
14 end

15 end

// intersect with targets of the current layer

16 TargetSet← LayerTargetSet ∩ TargetSet;
17 end

18 return TargetSet;

19 Procedure recurGetTargets(PropType, type-function, type-propagation, escaped-type)
20 PropTargetSet← type-function[PropType];
21 for each RecurPropType in type-propagation[PropType] do

// ensure CurType has not escaped

22 if CurType ∈ escaped-type then return NULL;
// recursively find targets for PropType

23 if RecurPropTargetSet← recurGetTargets(RecurPropType) then

24 PropTargetSet← PropTargetSet
⋃

RecurPropTargetSet;
25 else

26 return NULL;
27 end

28 end

29 return PropTargetSet;

type propagations. In this section, we present TypeDive’s target-
resolving algorithm and the design of key components.

4.2.1 The Target-Resolving Algorithm. As shown in Algorithm 1,
TypeDive uses function ResolveTargets() to iteratively resolve
targets for an icall layer by layer. For simplicity, indices in types
are omitted in the algorithm. The target set of the icall is initial-
ized to contain all address-taken functions (line 2). Given an icall,
TypeDive first gets the called value and obtains its type (line 3-5).
The type must be either a function type or a composite type; it
is the type of the object containing the value (line 6). Once the
type is obtained, TypeDive ensures that it is not escaped by query-
ing the escaped-type set (line 7). After that, TypeDive queries
the type-function map to find the function targets confined by
the type with the index (line 8). As explained in §4.1.2, the field
with the index into the object of this type may be stored to or
cast from other types’ objects. TypeDive therefore also queries the
type-propagation map to find all types propagating to the type
(line 9), and employs the recursive function, recurGetTargets(), to
conservatively collect all their function targets (line 10). All these
targets are then “unioned” as the target set, LayerTargetSet, for
the current layer (line 11), which is further “intersected” with the
existing target set, TargetSet (line 16).



At this point, TypeDive finishes one iteration—resolving the
targets for the given layer. Next, TypeDive tries to find the next-
layer value and its base type, and starts another iteration (line
4). TypeDive stops the iterations when (1) it cannot get the next-
layer base type, (2) the base type has escaped (line 7), or (3) the
recursive function (recurGetTargets()) returns NULL (line 13).
TypeDive’s analysis is conservative: if any step cannot continue
or fails, TypeDive immediately stops the resolving and returns
the current target set. The returned target set by the algorithm
represents the final icall targets.

4.2.2 Resolving Targets for a Layer. As shown in line 10 of Al-
gorithm 1, TypeDive conservatively collects all targets of types
that may propagate to the current type. Given a propagating type
(PropType), recurGetTargets() first initializes the propagating tar-
get set (PropTargetSet) with the targets it confines by querying the
type-functionmap (line 20). Next, TypeDive finds types that prop-
agate to PropType by querying the type-propagationmap (line 21).
For each of them, TypeDive recursively finds the target set and
unions all of them (line 23-24). If any type is escaped, TypeDive
will return NULL (line 26) and terminate the target-resolving process
in ResolveTargets().
Resolving targets for function types (layer one). The first-
layer type is the function type, including the types of parameters.
In FLTA, parameter types are consolidated as a single type and
matched. Such an approach will cause false negatives in MLTA
because parameters may also have composite-types that have been
propagated or escaped. To address this problem, in TypeDive, we
treat the parameters of composite types as “fields” of the function
type and apply the propagation and escaping policies to parameter
types as well to resolve the targets of the function type.

4.3 Supporting C++

TypeDive’s approach is general and can support both C and C++
programs in principle. As long as type propagation and escaping are
captured, TypeDive can safely resolve icall targets without causing
false negatives. To be conservative,TypeDive terminates the targets
resolving whenever a type has escaped. As described in §4.1.3, a
type that is cast to an unsupported type (e.g., primitive type) will be
identified as escaping. This introduces a problem for C++ programs
because virtual-function table (VTable) pointers will always be cast
to an unsupported-type pointer, specifically, a pointer referring to
function pointers. This problemwouldmakeTypeDivemeaningless
because virtual-function pointers will be loaded through VTables.
Therefore, we develop a technique to overcome this problem.

In C++ programs, each polymorphic class has a VTable, and
each entry of the VTable contains the address of a virtual function.
VTables are essentially global arrays with static initializers. In the
constructor of a class, the VTable pointer is cast to a pointer of
function pointers and stored to the first field of the constructed
object. Before virtual functions are called, the VTable pointer is
loaded from the object and looked up to load the correct virtual-
function pointer.

Based on how VTable pointers are stored and loaded, we choose
to “skip” the VTable pointers (unsupported types in TypeDive)
and directly map the virtual functions to their class. Specifically,
we analyze the constructor of a class to identify VTables and the

contained virtual functions, and use the type-functionmap to map
the virtual functions to the class. Correspondingly, given an icall for
virtual functions, we ignore the layer for loading VTable pointers
and directly resolve the targets for the next layer that loads the
object pointer by querying the type-function map. This approach
also supports multiple inheritances; virtual functions of a second
base class will be mapped to the second field of the object, and so
forth. This way, we avoid the type-escaping issues in C++ programs,
and TypeDive can effectively support them as for C programs.

5 Implementation

We have implemented TypeDive based on LLVM of version 8.0.0 as
an easy-to-use LLVM pass. The inputs are a list of unlinked LLVM
bitcode files. TypeDive’s first phase analyzes all bitcode files and
generates the data structures for type information. Its second phase
analyzes all the bitcode files again to resolve targets for each icall.
The resulting icall targets are maintained in a map. The key of the
map is a call instruction (either direct or indirect), and the value is a
set of functions that can be targets of the call instruction. With the
map, the results of TypeDive can be easily queried. In this section,
we present important implementation details.

5.1 Generating Bitcode Files

Generating LLVM bitcode files for some system programs can be
challenging if they use GCC-specific features such as ASM goto. Our
strategy is to discard incompatible files because such cases are rare.
We thus use the “-i” option (ignoring error) for compilation. To
dump bitcode files, we implement an LLVM module pass that uses
WriteBitcodeToFile() provided by LLVM to save the LLVM IR.

5.2 Analyzing and Storing Types

Supported types. We currently support function type (i.e., signa-
ture), struct, array, and vector for confining icall targets. Other
types are conservatively excluded as unsupported types.
Storing types and indexes. LLVM has its own type system. Each
type has an object in each module. That is, the same type will
have different type objects and thus different type pointers, which
makes type comparison challenging. In TypeDive, we thus choose
to compare types through their strings; LLVM provides functions
to easily get the string for a type. If the strings of two types match,
we will say these types are the same. The string-based matching
incurs a significant storage overhead because TypeDive maintains
multiple maps for a large number of types. To address the problem,
we choose the store the hashing value of types. In the current
implementation, we used the default hash function in the C++
standard library. Integer indexes are first converted into strings and
hashed together with type strings.
Virtual-function types. When virtual functions are compiled, a
this pointer is automatically inserted as the first argument. When
a virtual function is invoked through an icall, the this argument
always has the type of the invoking object. For example, if an object
pointer of type base* is cast from type derived*, and the object
pointer is used to invoke a virtual function (the one in the derived
class), the first argument will be base* instead of derived*, which
will fail the matching of function types. To address this problem, we
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Table 1: Formal representation of FLTA andMLTA. The confinement
rule collects address-taken functions and initializes the map M . The prop-
agation rule propagates functions between cast types; The resolving rule
decides the icall targets. t (x ) gets the type of x ;mlt (x ) gets the multi-layer
type of x ; comp (α ) gets the compatible multi-layer type of α from M .

exclude the this pointer from the argument list when computing
the hash value for the virtual-function type. Instead, TypeDive will
correctly resolve the possible class types for the virtual-function
call by maintaining the casting history.

5.3 Identifying Next-Layer Values and Types

TypeDive iteratively identifies the next layer for type matching.
Identifying the next-layer value is required by both maintaining
the type-function map and resolving icall targets. The next-layer
value comes in two ways: (1) an outer layer and (2) a lower layer.
The outer-layer value is the host object holding the value of the
current layer object. In the example shown in Figure 1, b is the
out-layer object of a. By contrast, the lower-layer value is the host
object holding the pointer of the current layer object. Therefore if
the field of b is &a instead of a, then b is a lower-type value of a.

With the definition of the outer layer and the lower layer, getting
the next-layer value is easily implemented by recursively parsing
the GetElementPtrInst (or GEPOperator) and the LoadInst instruc-
tions directly against the current-layer object. That is, the pointer
operands in these instructions are identified as the next-layer value.
To be conservative, TypeDive does not consider instructions tar-
geting aliases of the current-layer object. The conservative analysis
ensures to avoid potential false negatives.

Once the next-layer value is identified, TypeDive obtains its base
type. Since the next-layer is always a pointer, its base type is the
type of its element, obtained through getPointerElementType().
We also identify the indexes at this step. Specifically, if the next-
layer value is obtained from a LoadInst, the index is always zero;
however, if the next-layer value is either GetElementPtrInst or
GEPOperator, the index is the accumulated constant indices. In case
some indices are non-constant, TypeDive conservatively flags the
type as escaping, which is rare.

6 Formal Analysis

To prove that (1)MLTA is effective in refining icall targets and (2)
MLTA does not introduce more false negatives than FLTA does, we
provide a formal analysis of MLTA and the state-of-the-art FLTA.
Assumption. The formal analysis focuses on operations related
to FLTA or MLTA, like icalls and address-taking, and ignore others
as they will not affect the type-analysis results. To simplify the
description and proof, we make the following assumptions.

• Changing types is always through explicit type casting, e.g.,
cast<Y> x casts variable x to type Y.
• Type information is available for each variable, and all code
is in the analysis scope.

The first assumption holds for most well-written programs. In case
implicit type casting exists, previous work [35] demonstrates that
it is not challenging to modify a program to eliminate all violations.
For the second assumption, LLVM generates IR that has an explicit
type for each variable as long as source code is available.

Table 1 shows the formal representation of FLTA and MLTA.
Each rule in the table contains a code statement and the corre-
sponding action to take. For example, for the confinement rule
of FLTA, a=&f is the code, and M[t (a)] ∪= { f } is the action. M is
the type-confinement map. Its key is a type, and its value is the
confined function set. t (x ) returns the first-layer type of variable x ,
whilemlt (x ) returns the multi-layer type of x . For example, for the
variable c.a.handler in Figure 1, t () returns fptr_t while mlt ()
returns C.A.fptr_t. comp (α ) returns the set of all multi-layer types
inM that is compatible with type α . We define multi-layer type α is
compatible with another type β if α and β have overlapping types,
and one of them is an instance of another. For example, “_:A:B:ptr”
represents a multi-layer type in which (1) the function pointer has
type ptr ; (2) the function pointer is stored in an object of type B; (3)
the object of B is stored in an object of type A; (4) the object of A
escapes from the current function, and we represent its next layer
as the wild-card “_”. “_:B:ptr” is compatible with “_:A:B:ptr” as they
share the same type B and the latter is an instance of the former.
But “A:B:ptr” is not compatible with “_:A:B:ptr” as it cannot be an
instance of the latter. “_:C:_” is not compatible with “_:A:B:ptr” due
to lack of common types.

FLTA only cares about three types of operations: address-taking,
casting involving function pointers, and icall. The confinement rule
inspects each address-taking instruction that stores the address
of f to the function pointer a. It adds function f to the function
set in M corresponding to the type of a, i.e., M[t (a)]. Storing a
function address to memory has the same effect. The propagation
rule handles the type casting from t (x ) to t (y), where one of them
is a function pointer type. With this cast, any function pointer with
type t (x ) could be used as type t (y). Therefore, all functions in
M[t (x )] should be added toM[t (y)]. FLTA resolves the targets of
each icall (∗p) () using the resolving rule. Specifically, any function
insideM[t (p)] is considered a valid target.

MLTA instead considers the multi-layer type for each rule. For in-
struction a=&f, the confinement rule adds function f to the function
set, M[mlt (a)], wheremlt (a) is the multi-layer type for a.mlt (a)
is obtained through a conservative backward analysis: if we cannot
find an outer-layer type, we set it to _ and finish the analysis. The
propagation rule inMLTA handles casts, loads, and stores. If one
variable x is assigned to another variable y, then all function tar-
gets reachable frommlt (x ) should propagate to M[mlt (y)]. Note
that all reachable functions frommlt (x ) are notM[mlt (x )], but a
union of all M[α], where α is in M and compatible with mlt (x ).
Further, any multi-layer type β inM that is compatible withmlt (y)
should receive the same update: if β is an instance ofmlt (y), the
assignment could ultimately reach β ; ifmlt (y) is an instance of β ,
M[β] should cover targets from all its instances: MLTA resolves
the icall targets with the new resolving rule. the reachable targets



1 typedef void (*fptr_t0)(char *); typedef void (*fptr_t1)(int);
2 struct A { fptr_t0 handler; }; struct B { ftpr_t1 handler; };
3 void func_A(char *); void func_B(int);
4 struct A a = { .handler = &func_A };
5 struct B b = { .handler = &func_B } ;
6 struct B * a2b = (struct B *) &a; (*a2b->handler)(0);

Figure 3: An example showing the FN of FLTA. The icall in line 6 takes
type ftpr_t1, which only func_Bmatches. However, the real target is func_A.
FLTA misses it as it does not consider the type casting between A and B.

of typemlt (p) should be the union of allM[γ ], where γ is inM and
compatible withmlt (p). All functions in the union are valid targets
of the icall.

Before we formally analyze MLTA and FLTA, we introduce the
term sensitive type defined in the paper of Code Pointer Integrity
recursively [27]: a sensitive type is a function-pointer type, a void
type, a pointer type of another sensitive type, or a pointer type of a
structure that has at least one member with a sensitive type.

Lemma 1. If the program does not have any type-cast of sensitive
types, (1) FLTA has no FN; (2)MLTA has no FN; (3)MLTA introduces
no extra FP than FLTA; (4)MLTA may have fewer FPs than FLTA.
Proof. Given any icall (∗p) (), suppose f is one target function
based on the ground-truth:
(1) FLTA has no FN. Suppose f has type F and its address is taken
with a=&f , a must have type F∗. The confinement rule of FLTA
will add f intoM[t (a)], i.e., f ∈M[F∗]. Similarly, p must have type
F∗. The resolving rule of FLTA infers the target set of this icall is
M[t (p)]=>M[F∗], which contains f .
(2) MLTA has no FN. Suppose the address of f is taken through
a=&f , and the complete multi-layer type of a is A: · · · :Z , and the
complete multi-layer type of p is A1: · · · :Z1. As there is not cast al-
lowed between sensitive types, for each involved basic byte X ,
X must be the same as X1. Suppose the mlt (a) in the confine-
ment rule is N : · · · :Z , where N is either A or _, then we have
f ∈M[N : · · · :Z ]. Similarly, in the resolving rule, suppose themlt (p)
is L: · · · :Z where L is either A or _, the resolving result will be
a super set of M[N : · · · :Z ] as N : · · · :Z is always compatible with
L: · · · :Z . Therefore, the result must contain f .
(3) MLTA has no extra FPs than FLTA. Suppose f has type F , p must
have type F∗. Suppose the resolving rule of MLTA findsmlt (p) is
N : · · · :F∗, then the resolving result of MLTA must be a subset of
that by resolving _:F∗, as any type compatible with N : · · · :F∗ is
also compatible with _:F∗. Meanwhile, resolving _:F∗ with MLTA
is equivalent to resolving F∗ with FLTA. Thus, for one icall, the
target set returned byMLTA is a subset of that returned by FLTA.
(4)MLTAmay have fewer FPs than FLTA. The code in Figure 1 shows
that MLTA introduces fewer FPs than FLTA. This is adequate to
prove this predicate. In fact, we can generally view the mapM in
FLTA as a union of that in MLTA. As long as the propagation of
MLTA does not merge all targets to their compatible first-layer
type, like _:ptr ,MLTA will have fewer FPs thanMLTA. □

Lemma 2. If the program has type-cast of sensitive types, (1) FLTA
may have FNs; (2)MLTA has no FN; (3)MLTA may have fewer FPs
than FLTA.
Proof. Given any indirect call instruction (∗p) (), suppose f is one
target function based on the ground-truth:

(1) FLTA may have FNs. Consider Figure 3: the function pointer
a2b->handler has type fptr_t1, and FLTA will report the target is
func_B as it is the only type-matched function. However, the real
target is func_A. FLTA misses the real target as it does not consider
the type casting in outer-layer types, i.e., from A* to B*. In fact,
FLTA will miss all implicit cast of function pointer types that are
indicated by casts between outer-layer types.
(2)MLTA has no FN. The only way to introduce FNs here is through
type casting. The propagation rule of MLTA handles type casting
conservatively.mlt (a) could be different frommlt (p) at each layer,
or even has a different number of basic types. The type casting may
take several steps, each happening at a different layer. However, the
propagation rule always conservatively propagates all functions
from all compatible types of the source type to all compatible types
of the destination type, including the longest type. Therefore,MLTA
will not drop any function targets during the type casting. Therefore,
it will not introduce any FN compared to the scenario where no cast
of sensitive types is allowed. In summary, even with type casting,
MLTA does not introduce any FN.
(3) MLTA may have fewer FPs than FLTA. With the multi-layer
confinement, for each source type, MLTA may have fewer FPs. For
programs with many type layers,MLTA can achieve significantly
fewer FPs than FLTA, as we will show in §7.2. □

Theorem 1. (1)MLTA does not introduce any FN. (2) FLTA may
have FNs. (3)MLTA can have fewer FPs than FLTA.
Proof. Lemma 1 and Lemma 2 indicate the theorem. □

7 Evaluation

We have provided our formal analysis of MLTA and implemented
TypeDive based the LLVM compiler infrastructure. In this section,
we evaluate TypeDive in the following aspects.

• Scalability. TypeDive excels in large programswhere composite
types are prevalent. The evaluation should first confirm that
TypeDive can scale to extremely large programs (§7.1).
• Effectiveness.Reducing icall targets is themain goal ofTypeDive.
The evaluation should show to which extent TypeDive can re-
duce the number of icall targets (§7.2).
• No false negatives.Avoiding potential false negatives is another
design goal of TypeDive. The evaluation should confirm that
TypeDive does not miss valid icall targets (§7.3).
• Important use cases. As a foundational approach, we apply
TypeDive to assist static bug-detection mechanisms to demon-
strate its usefulness (§7.4).

Experimental setup. We apply TypeDive to real-world system
programs, including the Linux kernel of version 5.1.0, the FreeBSD
kernel of version 12.0-RELEASE, and the Firefox browser (C++) with
the top commit number f2cd91cb305f. While the Linux kernel is
compiled with the allyesconfig option (including as many mod-
ules as possible), the FreeBSD kernel and the Firefox browser are
compiled with the default configuration. All programs are compiled
with flags -O0 -g -fno-inlining. These flags make sure that the
generated binary accurately contains all debug information, such
as line numbers and function names, which will simplify our ver-
ification on false negatives (§7.3) and analysis on detected bugs
(§7.4). However, TypeDive by design should work on any other



System Modules SLoC Loading Analysis

Linux 17,558 10,330K 2m 6s 1m 40s
FreeBSD 1,481 1,232K 6s 6s
Firefox 1,541 982K 27s 1m 25s

Table 2: Scalability of TypeDive.

compilation configurations, including higher optimization levels
(e.g., -O2) and aggressive code inlining. Although the evaluation
numbers could be different from what we report here, we believe
the effectiveness of TypeDive should be similar for other compila-
tion options. We leave the evaluation with other options as future
work. The experimental machine is equipped with Ubuntu 18.04
LTS with LLVM version-8.0 installed. The machine has a 64GB
RAM and an Intel CPU (Xeon R CPU E5-1660 v4, 3.20 GHz) with 8
cores.

7.1 Scalability of TypeDive

The results are shown in Table 2. TypeDive can finish constructing
the global call-graph for 10 million lines of code in the Linux kernel
within four minutes. In fact, more than two minutes are spent in
loading bitcode files. The promising scalability benefits from that
TypeDive avoids data-flow analysis or pointer analysis, but uses
only type analysis. TypeDive’s split of multi-layer types into two-
layer types also helps reduce the storage and computation cost.

7.2 Reduction of Indirect-Call Targets

The main goal of TypeDive is to reduce false positives in finding
icall targets. We evaluate the effectiveness of TypeDive by mea-
suring to what extent TypeDive can reduce icall targets. In this
evaluation, we take the total number of address-taken functions as
the baseline and count how many false-positive targets can be re-
moved. We report the average number of icall targets identified by
TypeDive, for the three system programs, present the distribution
of numbers of targets, and breakdown the reduction by layers.
Average number of targets. Table 3 shows the average numbers
of icall targets reported by TypeDive. Column iCall for TypeDive
denotes how many icalls benefit from TypeDive. If an icall does
not load the function pointer from a composite-type object, or
TypeDive cannot ensure zero false negatives (e.g., the composite
type has escaped), the icall does not qualify TypeDive and thus
is excluded in this column. The results show that most icalls can
enjoy the reduction offered by TypeDive. In particular, 81% icalls in
the Linux kernel have their targets refined by TypeDive. Column
&Func. denotes the number of address-taken functions. All tested
system programs have a large number of address-taken functions.
Therefore, traditional coarse-grained CFI techniques [1] that con-
servatively take all these functions as valid icall targets will have
weak protection. The column Ave. target (signature) shows the
average number of targets after applying the signature-based (i.e.,
function type, first-layer) matching. The last column shows the
final average number of targets after applying TypeDive, which is
based on the icalls that qualify TypeDive.

The average numbers are calculated over icalls that can benefit
fromMLTA, i.e., the types have at least two layers.When calculating
the average over all icalls (i.e., also including the ones cannot benefit

System
Total iCall for

&Func.
Ave. target Ave. target

iCall TypeDive (signature) (TypeDive)

Linux 58K 47K (81%) 180K 134 7.7 (94% ↓)
FreeBSD 6.3K 4.0K (64%) 8.7K 25.5 3.5 (86% ↓)
Firefox 37K 23K (63%) 58K 115 1.8 (98% ↓)

Table 3: Reduction of icall targets. &Func denotes the number of address-
taken functions. The reduction percentage is based on the targets reported
by the signature-based approach (i.e., the first-layer type analysis).
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Figure 4: Distribution of the numbers of icall targets. MLTA identifies
more icalls with fewer targets (less than four targets) while FLTA infers
more icalls with more targets. Both of them have a long tail, where icalls
under MLTA have at most 1,914 targets while icalls under FLTA have at
most 7,983 targets.

fromMLTA), the average numbers of indirect-call targets will be
amortized: they are 31.6, 11.5, and 44.6 for Linux, FreeBSD, and
Firefox, respectively.

The average number of targets reflects the complexity of static
analysis to traverse the whole CFG for any particular analysis. As
we treat TypeDive as a general tool for generating accurate CFG,
the average number of targets is a reasonable metric. However,
it may fail to measure the benefit of using TypeDive for defense
mechanisms such as improving CFI [15, 55]—as will be shown as
in the next evaluation of target distribution, some icalls still have a
large number of targets.
Distribution of the numbers of targets. We show the distribu-
tion of the numbers of icall targets in Figure 4. The CDF (cumu-
lative distribution function) of MLTA always has a larger value
than CDF-FLTA, showing that MLTA consistently identifies fewer
targets for icalls than FLTA. Based on the PDF (probability density
function) graphs,MLTA identifies more icalls with less than four
targets, while FLTA finds more icalls with at least four targets. All
graphs have long tails, indicating that under static analyses, some
icalls still permit a large number of targets. For example, under
theMLTA analysis, icalls have at most 1,914 targets, while under
FLTA, icalls could have up to 7,983 targets. For these icalls, we
may seek help from runtime information to reduce the number of
targets [22, 36, 48].
Reduction breakdowns. We further evaluated the extent towhich
the type matching at each layer can refine the icall targets. In this
evaluation, we make TypeDive configurable to layers by specify-
ing the maximum layers. Once TypeDive reaches the maximum



number, it stops the analysis and reports the current target set. Ta-
ble 4 shows the results. We found that the first couple of layers can
dramatically reduce the icall targets. This is because types for each
layer are largely independent. However, the reduction becomes
steady after four layers. TypeDive can still slightly reduce the tar-
gets for the Linux kernel given the extremely complex code. Based
on the results, we believe that a layer number of five should be able
to remove most targets for general programs. Several recent works
propose similar ideas for confining icall targets [15, 29], and most
of them can be treated as special two-layer type analysis. We will
discuss the difference between TypeDive and those works in §9.
False positives. Static analysis of icall resolution has to consider
all possible invocations of one icall instruction, where each invoca-
tion may have different targets by design instead of a unique code
target [22]. However, our evaluation shows that MLTA has dramat-
ically reduced the average number even for extremely complicated
programs like the Linux kernel. Especially for Firefox, the average
number is less than 2. As shown in Table 3, MLTA significantly
improves over the state-of-the-art FLTA techniques [35, 46], where
the average number of icall targets is reduced by around 90%.

7.2.1 Comparisons with existing works. The work by Ge et al. [15]
uses taint analysis and type analysis to find icall targets. The authors
use the average number of icall targets to evaluate the analysis ac-
curacy and provides the measurement on several operating systems.
One common benchmark between our work and [15] is FreeBSD,
where the latter reports that each icall has 6.64 targets on average.
Although our result is better than that, we have to clarify two dif-
ferences between the two evaluations. First, our result is calculated
over icalls thatMLTA can provide two-or-higher layer result, which
is 64% of all icalls. When we calculate the average number over all
icalls (i.e., also including the ones cannot benefit from MLTA), the
number is about 12, higher than 6.64 reported in [15]. Second, our
result does not count icalls in assembly code, which usually has
a single target. [15] takes them into consideration; therefore, the
average number should be higher if they exclude these single-target
icalls. Other than the accuracy, [15] requires manual fixing when
violations of assumptions are detected. In comparison, TypeDive
automatically falls back to an upper layer to avoid false negatives.
Further, since [15] uses static taint-analysis, it will take a longer
time to finish.

Pointer analysis is an alternative approach to finding icall targets.
Recent work [14] (section 5.4) compares the effectiveness of type-
based CFI (i.e., based on FLTA) and that of pointer analysis–based
CFI (i.e., using SVF [44]). The comparison indicates two results. First,
there is no strong evidence showing that pointer analysis can lead to
more accurate results in resolving icall targets. Among 14 evaluated
programs, FLTA achieves more accurate results than SVF on eight
programs but has worse results on the other four programs. Since
MLTA performs much better than FLTA on kernels and a browser,
we believe it will provide better results than pointer analysis–based
approaches in general. Second, for two out of 14 programs, specifi-
cally, Nginx (139 kLoC) and Httpd (267 kLoC), SVF cannot finish in
a reasonable time and crashes after five-hour running. This result
shows the limited scalability of pointer analysis–based approaches.
Our technique,MLTA, is able to finish the analysis for the Linux
kernel (millions of lines of code) within four minutes. Therefore,

System Baseline 1-Layer 2-Layer 3-Layer 4-Layer 5-Layer

Linux 180K 134 9.12 8.03 7.91 7.78
FreeBSD 8.7K 25.5 3.53 3.50 3.49 3.49
Firefox 58K 115 1.86 1.84 1.82 1.82

Table 4: Breakdowns of target reduction by layers. Here we measure
icalls that support multi-layer type analysis, which cover most icalls.

compared to pointer analysis–based approaches, we believe that
MLTA is able to find more accurate icall targets more efficiently.

7.3 False-Negative Analysis

To understand the false negatives of MLTA and to compare with
the FLTA, we empirically collect the icall traces of the Linux kernel
and the Firefox browser as the partial ground-truth.

7.3.1 Collecting Traces We first present how we use Intel PT (Pro-
cessor Tracing) and QEMU to accurately collect icall traces.
PT-based tracing. Intel PT is a hardware feature that records the
control-flow of the execution with nearly no overhead. We use
the most-recent feature of Intel PT ptwrite, to realize our trace
collection1. A ptwrite instruction can dump any value from its
operand into the trace, and Intel PT can generate another packet to
log the address of the instruction. We instrument the program to
insert a ptwrite before each icall, using the function pointer as the
operand. At runtime, ptwritewill dump the target into PT trace and
log the address of the ptwrite instruction, which is immediately
followed by the real icall. We implement the instrumentation as
an LLVM pass with 74 lines of C++ code, which can support any
programs compatible with the LLVM-compiler.
QEMU-based tracing. Unfortunately, the Linux kernel does not
fully support LLVM compilation, and collecting the PT trace for
the kernel requires modification of both userspace code and the
kernel [41]. Therefore, we instead modified QEMU to log the source
and target of each icall. We find that Linux kernel implements most
icall with thunks, where each thunk is a function containing only
one indirect jump instruction that uses one specific register as
the target, like __x86_indirect_thunk_rax. An icall instruction is
realized with a direct call to one thunk. This simplifies our logging
in QEMU, where we check whether the current code is within these
thunks. If so, we log the target address in the specific register and
the return address on the stack which immediately follows the
original icall instruction. We implemented the QEMU-based tracing
by adding 66 lines of code to the cpu-exec.c file of QEMU-2.9.0.

7.3.2 Results for False-Negative Analysis. We use the tracing tools
to collect icall traces for evaluating false negatives. Since the traces
include the source code information, the source file, and line num-
ber, we use such information for matching the callees. Specifically,
given a trace, we use the caller to query the global call-graph con-
structed by TypeDive and obtain the icall targets. If the callee in
the trace is contained in the icall targets, we say that TypeDive
correctly identified the callee; otherwise, it is a false negative.

1Without ptwrite, we can perform the same evaluation with Intel PT. However, in
that case, we have to sequentially decode all PT packages, which is time-consuming
and suffers the data-loss problem [22].



Checking for Firefox. By manually searching google.com and
youtube.com in the Firefox browser, our tracing tool in total col-
lected 50k traces (i.e., indirect caller and caller pairs). However,
the majority of them are repeating, or the corresponding bitcode
files are not available with our experimental setup. After remov-
ing these cases, we finally obtained 1,595 unique icall traces. The
evaluation results show that TypeDive missed only one callee. Af-
ter investigating the cause, we found that a function pointer is
loaded from a type other than the one confining the callee. There-
fore, there is a cast between these two types. However, we could
not find the casting in the analysis code. That is, the bitcode file
that contains the type casting is not in our analysis scope. Thus,
TypeDive missed the callee. We believe, once the bitcode file is
included in the analysis, TypeDive will successfully catch it. As we
will discuss in §8, TypeDive requires all source code to be available
to comprehensively identify all type propagations.
Checking for Linux. To collect the traces for Linux, we run the
kernel on QEMU and employ kAFL [41] to explore paths. Similarly,
after removing cases that are repeating or do not have source code
in our analysis scope, we in total collected 3,566 unique traces.
Using the same way, we compared the traces with the icall tar-
gets reported by TypeDive. We found that TypeDive originally
missed five callees in the recorded traces. We then investigated
these cases. We found that these callees are missed by the first layer
type analysis—function type matching. Specifically, the general
types of parameters, such as long int and void *, are used in an
interleaving way. Out of the missed cases, one is caused by the
implicit casting between long int and char *, and four are caused
by the implicit casting between int and unsigned int. Since the
current implementation of TypeDive does not support the casting
between primitive types, these cases are missed. This is a tradi-
tional problem in CFI works [27, 35, 46]. Current works solve the
problem by equalizing certain primitive types, such as integers and
pointers. TypeDive can also solve this problem using the same ap-
proach. However, given the small number of type violations, we will
leave the integration of the approach for future work. The results
show that although existing function-type matching may have false
negatives, TypeDive does not introduce extra false negatives to it.

The empirical evaluation evidences that TypeDive does not in-
troduce more false negatives to existing FLTA. However, due to the
limited code coverage of dynamic executions, such evaluation can
never be used as a complete proof. Applying TypeDive to more
programs with diverse inputs (e.g., through fuzzing [18, 37, 41, 51]
or symbolic execution [7, 11, 43]) would improve the reliability of
the evaluation.

7.4 TypeDive for Semantic-Bug Detection

While the goal of TypeDive is to refine icall targets, we believe that
TypeDive is also useful for finding semantic bugs that otherwise
cannot be detected through shallow specifications such as no out-
of-bound access. Our insight is that the targets of icalls are often
peer functions that implement pre-defined interfaces, thus sharing
similar semantics. By cross-checking peer functions, we can detect
deviations or contradictions as potential bugs, which avoids the
challenging problem of understanding semantics.

Detection approach. We also employ TypeDive to detect two
classes of semantics errors, missing initialization and missing secu-
rity check. Since TypeDive identifies icall targets that are typically
semantically equivalent, we cross-check how parameters and func-
tions are used in these peer targets. For example, if a parameter from
an icall is commonly initialized in all peers except one function, we
report a potential missing-initialization bug in this function. Also, if
a function call or a parameter is commonly checked but not in one
peer function, we also report it as a potential missing-check bug.
We have realized the detection based on LLVM. In the detection,
we implemented an intra-procedural data-flow analysis to reason
about whether parameters are checked and initialized, and whether
return values of function calls are checked. We then statistically
rank the potential bug cases based on the ratio of the peers which
do not have the issues.
Detection results. We have applied our detection to the Linux
kernel. Since TypeDive reported thousands of ranked potential
bugs, we chose the top 50 cases for each class of bugs and manu-
ally confirmed them. In total, we have confirmed 10 new missing-
initialization bugs and 25missing-check bugs. The details are shown
in Table 5 and Table 6. Each shaded line contains one icall, including
its location and the number of inferred targets by FLTA and MLTA.
As we can see,MLTA significantly reduces the number of targets,
which makes our bug detection efficient and reduces the manual
effort for confirming the bugs. The lines following each shaded
line show the bugs, including their subsystem, source file, function
name, and the affected variable. We also provide the impact of each
bug. For example, in Table 5 we show the number of bytes unini-
tialized (UI) or leaked (LK). The results confirm that TypeDive can
assist semantic-bug detection, as it accurately identifies icall targets
to allow effective cross-checking.

Existing detection methods on missing initialization [31] and
missing security checks [32] either do not handle indirect calls,
where they will miss all bugs we find here, or they use limited
type information to infer icall targets, where we can expect a much
higher false-positive rate. For example, to confirm the bugs shown
in Table 5, we have to manually check 518 targets when using
FLTA. However, the number is significantly reduced to 35 (6.8%)
when using MLTA, confirming the usefulness of TypeDive in bug
detection based on static analysis.
Case study: Bug hidden behind two indirect-calls. We use the
first missing-initialization bug to further demonstrate the benefit of
using MLTA for bug detection. This bug is an information leakage
bug in the Linux kernel. We manually checked it and confirmed
that it can leak a 4-byte memory region. To find this bug, one static
bug detector will reach an icall in line 511 of file oaktrail_crtc.c.
FLTA will identify 13 targets, and the bug-detector has to check
them one by one, which may analyze 13 functions to get a chance
to find this bug in the worst case. More importantly, if the detec-
tion employs cross-checking, including the 10 unrelated functions
will likely bury the true bug. In comparison,MLTA only reports 3
targets, saving 77% of the analysis effort. More than that, the buggy
function cdv_intel_find_dp_pl contains another icall, which the
bug-detector has to analyze to confirm the bug. For this new icall,
FLTA reports 54 targets whileMLTA only permits only 3. By check-
ing the latter set of targets, we quickly confirm this information



[Subsys] File Function Variable Impact

drivers/gpu/drm/gma500/oaktrail_crtc.c:511 [13->3]
[drm] cdv_intel_display.c cdv_intel_find_dp_pll clock 4B UI
[drm] oaktrail_crtc.c mrst_sdvo_find_best_pll clock 16B LK
[drm] oaktrail_crtc.c mrst_lvds_find_best_pll clock 16B LK
drivers/media/v4l2-core/v4l2-ioctl.c:1509 [438->5]
[media] rcar_drif.c rcar_drif_g_fmt_sdr_cap f 24B UI
drivers/staging/rtl8188eu/core/rtw_security.c:229 [18->6]
[crypto] lib80211_crypt_wep.c lib80211_wep_set_key wep 25B UI
[staging] rtllib_crypt_wep.c prism2_wep_set_key wep 25B UI
drivers/staging/media/davinci_vpfe/dm365_ipipe.c:1277 [36->18]
[staging] dm365_ipipe.c ipipe_set_wb_params wbal 8B UI
[staging] dm365_ipipe.c ipipe_set_rgb2rgb_params rgb2rgb_ 12B UI

defaults
[staging] dm365_ipipe.c ipipe_set_rgb2yuv_params rgb2yuv_ 4B UI

defaults
crypto/af_alg.c:302 [13->3]
[crypto] algif_hash.c hash_accept_parent_nokey ctx 680B UI

Table 5: Newmissing-initialization bugs foundwithTypeDive. Each
shaded line shows the location of the icall, followed by the number of targets
inferred by FLTA and MLTA. "UI" denotes that memory is not initialized
properly, and "LK" denotes that the uninitialization causes information
leakage, with "xB" indicates the size of the uninitialized memory.

leakage bug. Therefore, to find this bug, FLTA provides 702 possible
paths whileMLTA reduces the number to merely 9. The problem
will be exaggerated when the paths include branches, leading to
path explosion.

8 Discussion

Indirect jumps. Our current prototype of TypeDive does not
identify indirect-jump targets. We observe that indirect jumps are
mainly used for switch statements, where the compiler usually
identifies all cases of the switch and puts them inside a read-only
jump table. Therefore, the targets have been resolved by existing
compilers, and we do not have to use MLTA to find them. Previous
work also skips indirect jumps with the similar reason [15, 22].
However, if an indirect jump is used intentionally, we can definitely
use the same algorithm (Algorithm 1) to find the function targets.
Complementing to data-flowanalysis. AlthoughMLTA is more
scalable than data-flow analysis, they are complementary to each
other rather than exclusive. In fact,MLTA can benefit from small-
scale data-flow analysis (e.g., without aliases involved). For example,
we can rely on taint analysis to find the multi-layer type for each
variable within the same function. On the other hand, a data-flow
analysis may use our MLTA to infer icall targets so that it can con-
tinue the analysis across function boundaries. A data-flow analysis
equipped with MLTA will also be more scalable.
Indirect-call in assembly or binary. MLTA assumes that each
function pointer has a well-defined type, which is violated in assem-
bly and binary code. Fortunately, previous works show that icalls
and jumps written in assembly code can be easily resolved with
manual effort, in both user-space and system programs [15, 35]. A
solution could be lifting assembly code into LLVM IR, and propagat-
ing the types of input operands and output operands. This solution
may also work for icalls in binary. Further, we can infer the type
information for each variable through reverse engineering tech-
niques [28, 30], and use the inferred type for MLTA. Supporting
MLTA in assembly or binary is out of the scope of this work.

Variable-argument functions. Variable-argument function re-
duces the accurate of type-based function matching. Our current
prototype of MLTA uses the hash of the function type string as
the function type, and therefore, it conservatively concludes a type
matching as long as the fixed part of the arguments matches. How-
ever, this is not a new problem introduced inMLTA, which stems
from function-type matching used in FLTA. Therefore, we leave
the study of the problem as future work.
Data-only attacks. TypeDive provides an accurate control-flow
graph (CFG) for CFI solutions to achieve stronger protections on
control-flow transfers. However, data-only attacks will survive all
CFI solutions, even the ones enhanced with TypeDive, as these
attacks do not change any control-flow [10]. Recent works have
shown that data-only attacks are expressive [21], and can be con-
structed automatically [20, 23, 38]. In fact, both attackers and de-
fenders of data-only attacks can get benefit from the accurate CFG
generated by TypeDive: while attackers can find reachable data-
oriented gadgets with less false positives [21], which will simplify
the attack construction process, defenders can calculate more ac-
curate data flows, which helps realize more efficient and stronger
data-flow integrity [9].

9 Related Work

Struct location vector. Li et al. propose FINE-CFI [29] which uses
structure location vector (SLV) to confine icalls. The idea of SLV is
to identify the location of function pointer in a struct, and to use
location information to match icall targets. Compared with MLTA,
SLV has two important limitations. First, when constructing the
vector, SLV only considers struct members that are also structs (i.e.,
nested structs), which does not include pointers of structs. This will
cause false negatives because struct objects in OS kernels typically
include an object as a field through pointers to avoid copying of the
object memory. Second, SLV does not handle type casting generally.
Instead, they treat these problems as corner-cases and try to find
the real-type before casting. However, as we show in the paper,
casting is a fundamental and common problem that will lead to
false negatives if not properly handled.
Taint analysis. Ge et al. propose to use taint analysis to find icall
targets for operating systems [15]. Their observation is that there
are no complicated operations on function pointers inside the ker-
nel and thus data-flow analysis will not face too many challenges.
One of the taint propagation rules is that once a function pointer is
assigned to a structure field, they taint the field for all memory ob-
jects of that structure’s type. This policy is similar to ourMLTA but
is only applied to the first two layers: the function pointer and the
structure field. MLTA can capture such relationships between any
two layers. Moreover, [15] requires manual fixing when violations
are detected, like data pointers pointing to function pointers.MLTA
is elastic to automatically fall back to the inner layer to avoid false
negatives.
CFG construction. Researchers have spent a large amount of
effort in resolving icall targets for enforcing control-flow integrity
(CFI) [1]. If program source code is not available, icall targets are
conservatively set to all functions [53, 55]. That is, each icall is
allowed to reach any valid function. When program source code is
available, function-type information is used to infer fine-grained



targets, where each icall can only go to one of the type-matched
functions. Forward-edge CFI only uses partial function type—the
number of parameters to confine icall [46] while modular-CFI uses
the complete function type for type matching [35]. A mixed solu-
tion tries to infer the function type information from the program
binary and uses argument number to match callers and callees [49].
Compared with these solutions, MLTA uses type information of
multiple layers to dramatically refine icall targets. Recent CFI solu-
tions leverage runtime information to restrict runtime control-flow
transfer [13, 16, 22, 36, 48], which have a different problem scope—
ensuring that a runtime target is valid. Instead,MLTA aims to infer
a complete set of targets for all icalls statically.
Resolving C++ virtual calls. Most related work on resolving
C++ virtual functions relies on class hierarchy analysis to build the
class hierarchy tree [19, 25, 39, 46, 54]. That is, each virtual call can
divert the control-flow to the function implemented in the current
class, or those in derived classes. Essentially, such approaches use
an expanded single-layer type for finding targets. In comparison,
MLTA uses types of multiple layers to further refine the targets,
and only virtual functions in a derived class that is cast to a base
class are included as valid targets.

10 Conclusion

In this paper, we presented MLTA, a new approach that effectively
refines indirect-call targets for both C and C++ programs. We imple-
mentedMLTA in a system called TypeDive. TypeDive uses inde-
pendent types of different layers to dramatically refine the targets.
TypeDive decouples types from data flows and is elastic to avoid
false negatives. Evaluation results show that TypeDive can reduce
86%-98% more indirect-call targets than existing approaches based
on function-type matching. We believe that TypeDive can signifi-
cantly benefit existing static-analysis and system-hardening tech-
niques. As an illustrating example, we also used TypeDive to effec-
tively find 25 new missing-check and 10 new missing-initialization
bugs in the Linux kernel.
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[Subsys] File Function Variable missed checks

[net] cfg80211.c mwifiex_cfg80211_connect sme args
[firmware] edd.c edd_show_mbr_signature edev args
[char] tpm_infineon.c static int tpm_inf_recv count args
[dma] omap-dma.c omap_dma_prep_dma_cyclic period_len args
[treewide] se.c st21nfca_connectivity_event_received transaction retval devm_kzalloc()
[gpio] gpio-aspeed.c aspeed_gpio_probe gpio->offset_timer retval devm_kzalloc()
[media] tda18250.c tda18250_set_params ret retval regmap_write_bits()
[clk] gcc-ipq4019.c clk_cpu_div_set_rate ret retval regmap_update_bits()
[ASoC] cs35l34.c cs35l34_sdin_event ret retval regmap_update_bits()
[rtc] rtc-rx8010.c rx8010_set_time ret retval i2c_smbus_write_byte_data()
[mfd] tps65010.c tps65010_work status retval i2c_smbus_write_byte_data()
[treewide] realtek_cr.c rts51x_invoke_transport ret retval usb_autopm_get_interface()
[nfp] lag_conf.c nfp_fl_lag_do_work acti_netdevs retval kmalloc_array()
[scsi] mptscsih.c mptscsih_IssueTaskMgmt timeleft retval wait_for_completion_timeout()
[misc] tifm_7xx1.c tifm_7xx1_resume timeout retval wait_for_completion_timeout()
[Input] usbtouchscreen.c nexio_read_data ret retval usb_submit_urb()
[USB] iuu_phoenix.c iuu_rxcmd result retval usb_submit_urb()
[USB] iuu_phoenix.c read_rxcmd_callback result retval usb_submit_urb()
[USB] iuu_phoenix.c iuu_status_callback result retval usb_submit_urb()
[USB] kobil_sct.c kobil_open result retval usb_submit_urb()
[USB] kobil_sct.c kobil_write result retval usb_submit_urb()
[net/ncsi] ncsi-netlink.c ncsi_pkg_info_all_nl attr retval nla_nest_start()
[netfilter] conntrack.c ovs_ct_limit_cmd_get nla_reply retval nla_nest_start()
[dmaengine] fsl-edma-common.c fsl_edma_prep_slave_sg fsl_chan->tcd_pool retval dma_pool_create()
[mtd] generic.c generic_onenand_probe err retval mtd_device_register()

Table 6: New missing-check bugs found with TypeDive. Each row shows one missing-check bug, including the subsystem it belongs to, the file name,
the function whether the missing check is in, and variable that requires extra check, and the source code the variable: it is from the arguments, or is a return
value from another function.
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