
Where Does It Go? Refining Indirect-Call Targets

with Multi-Layer Type Analysis

Kangjie Lu Hong Hu

What is an indirect call?

2

Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);

}
typedef void (*fptr_t)(int);

// Take the address of foo() and
// assign to function pointer fptr
fptr_t fptr = &foo;

...

// Indirect call to foo()
fptr(10);

3

Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);

}
typedef void (*fptr_t)(int);

// Take the address of foo() and
// assign to function pointer fptr
fptr_t fptr = &foo;

...

// Indirect call to foo()
fptr(10);

4

Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);

}
typedef void (*fptr_t)(int);

// Take the address of foo() and
// assign to function pointer fptr
fptr_t fptr = &foo;

...

// Indirect call to foo()
fptr(10);

● Purpose
○ To support dynamic

behaviors

● Common scenarios
○ Interface functions
○ Virtual functions
○ Callbacks

● Commonness
○ Linux: 58K
○ Firefox: 37K

5

Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);

}
typedef void (*fptr_t)(int);

// Take the address of foo() and
// assign to function pointer fptr
fptr_t fptr = &foo;

...

// Indirect call to foo()
fptr(10);

● Purpose
○ To support dynamic

behaviors

● Common scenarios
○ Interface functions
○ Virtual functions
○ Callbacks

● Commonness
○ Linux: 58K
○ Firefox: 37K

Indirect calls are essential
and common

6

Indirect call is however a major roadblock in security

Couldn’t construct a precise call-graph!

7

Indirect call is however a major roadblock in security

● All inter-procedural static analyses and bug detection

require a global call-graph!

○ Otherwise, path explosion and inaccuracy

● Effectiveness of control-flow integrity (CFI) depends on

it!

Couldn’t construct a precise call-graph!

8

Indirect call is however a major roadblock in security

● All inter-procedural static analyses and bug detection

require a global call-graph!

○ Otherwise, path explosion and inaccuracy

● Effectiveness of control-flow integrity (CFI) depends on it!

Couldn’t construct a precise call-graph!

9

Identifying indirect-call targets is foundational to security!

How can we identify them?

10

Two approaches: Point-to analysis vs. Type analysis

● Point-to Analysis
○ Whole-program analysis to

find all possible targets

● Cons
○ Precise analysis can’t scale
○ Suffers from soundness or

precision issues
○ Itself requires a call-graph

11

Two approaches: Point-to analysis vs. Type analysis

● Point-to Analysis

○ Whole-program analysis to

find all possible targets

● Cons

○ Precise analysis can’t scale

○ Suffers from soundness or

precision issues

○ Itself requires a call-graph

● (First-Layer) Type Analysis

○ Matching types of functions

and function pointers (FLTA)

● Cons

○ Over-approximate

○ Worse precision in larger

programs

12

Two approaches: Point-to analysis vs. Type analysis

● Point-to Analysis

○ Whole-program analysis to

find all possible targets

● Cons

○ Precise analysis can’t scale

○ Suffers from soundness or

precision issues

○ Itself requires a call-graph

● (First-Layer) Type Analysis

○ Matching types of functions

and function pointers (FLTA)

● Cons

○ Over-approximate

○ Worse precision in larger

programs

Practical and used by CFI
techniques

13

Our intuition:

Function addresses are often stored to structs

layer by layer.

Layered type matching is much stricter.

14

Our intuition:

Function addresses are often stored to structs

layer by layer.

Layered type matching is much stricter.

15

MLTA: Multi-Layer Type Analysis

Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

16

Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr

c

b

a

&foo

17

Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr

c

b

a
Complicated data flow

&foo

18

Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr

c

b

a

fptr

c

b

a
Complicated data flow

&foo fptr()

19

Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr

c

b

a

fptr

c

b

a
Complicated data flow

&foo fptr()

fptr_t

struct C

struct B

struct A

Layered type

20

Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr

c

b

a

fptr

c

b

a
Complicated data flow

&foo fptr()

fptr_t

struct C

struct B

struct A

Layered type

Only functions
whose addresses
are ever stored to
the layered type

can be valid
targets

21

Results comparison of approaches

// Assign address of foo to a nested field
1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

22

Approach MLTA FLTA 2-Layer

Matched targets foo() foo(), bar() foo(), bar()

Advantages of the MLTA approach

● Most function addresses are stored to structs
○ 88% in the Linux kernel

● Being elastic
○ When a lower layer is unresolvable, fall back
○ Avoid false negatives

● MLTA should be always better than FLTA
● No expensive or error-prone analysis

23

“This is very intuitive; what are the
challenges?”

24

“Fine-grained control-flow integrity for kernel software” (EuroSP’16)
by Xinyang Ge, Nirupama Talele, Mathias Payer, Trent Jaeger.

Research questions and challenges

● To what extent can MLTA refine the targets?

● Can MLTA guarantee soundness?

○ No false negatives

● Can MLTA also support C++?

○ Virtual functions and tables

● Can MLTA scale to large and complex programs?

● How can MLTA benefit static analysis and bug finding?

25

Our technical contributions

● Multiple techniques to ensure effectiveness and

soundness

○ With an elastic design and formal analysis

● Support C++

● Extensive evaluation (OS kernels and a browser)

● 35 new kernel security bugs

26

Realize MLTA: Overview of the TypeDive system

● Phase I: Layered type analysis

○ Three analysis techniques and three data structures

● Phase II: Indirect-call targets resolving

○ An iterative and elastic algorithm

LLVM

Bitcode

files

Layered
type analysis

Confinement
analysis

Propagation
analysis

Escaping
analysis

Maintained
data structures

Type-function map

Type-propa. map

Escaped types

Targets
resolving

Iterative &
elastic resolving

algorithm

Indirect-

call

targets

27

Analyze type-function confinements

● Purpose

○ To identify which types have been assigned with which functions

○ We say type A confines foo(), if &foo is stored to an A object

● Inputs

○ Address-taking and -storing operations

○ Global object initializers

● Output

○ The type-function confinement map

28

Analyze type-function confinements

● Purpose

○ To identify which types have been assigned with which functions

○ We say type A confines foo(), if &foo is stored to an A object

● Inputs

○ Address-taking and -storing operations

○ Global object initializers

● Output

○ The type-function confinement map

1. a->fptr = &foo;
...

2. fptr1 = &bar;
29

Analyze type-function confinements

● Purpose

○ To identify which types have been assigned with which functions

○ We say type A confines foo(), if &foo is stored to an A object

● Inputs

○ Address-taking and -storing operations

○ Global object initializers

● Output

○ The type-function confinement map

1. a->fptr = &foo;
...

2. fptr1 = &bar;

Type Function set

fptr_t foo(), bar()

struct Afptr_t foo()
30

Analyze type propagations

● Purpose

○ To capture propagation of addresses from one type to another

● Inputs

○ Type casts and non-address-taking object stores

● Output

○ The type-propagation map

31

Analyze type propagations

● Purpose

○ To capture propagation of addresses from one type to another

● Inputs

○ Type casts and non-address-taking object stores

● Output

○ The type-propagation map

1. a = (struct A*)b;
...

2. c->a = a;

32

Analyze type propagations

● Purpose

○ To capture propagation of addresses from one type to another

● Inputs

○ Type casts and non-address-taking object stores

● Output

○ The type-propagation map

1. a = (struct A*)b;
...

2. c->a = a;

Destination type Source type

struct A struct B

struct CA struct A

33

Analyze type propagations

● Purpose

○ To capture propagation of addresses from one type to another

● Inputs

○ Type casts and non-address-taking object stores

● Output

○ The type-propagation map

1. a = (struct A*)b;
...

2. c->a = a;

Destination type Source type

struct A struct B

struct CA struct A

Only for non-confinement stores
34

Identify escaped types

● Purpose
○ To identify types that may hold undecidable functions
○ Discard such types to avoid false negatives

● What conditions result in an escaped type?

Unsupported type:
(1) General pointer (e.g., char *)

and integer types or
(2) Types with arithmetically

computed object pointers

A type is escaping if:
(1) It is cast from an unsupported

type or
(2) It is cast to an unsupported

type
35

Examples of escaping cases

36

// Case 1
void * ptr = ...;
...
c->a = (struct A*)ptr;

// Case 2
void *ptr = (void *)c->a;

Resolve indirect-call targets

Maintained
data structures

Type-function map

Type-propa. map

Escaped types

Targets resolving

37

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

For each indirect call,
do initialization

38

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

For each indirect call,
do initialization

39

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

For each indirect call,
do initialization

Escaped type?

40

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

For each indirect call,
do initialization

Escaped type?

Get next layer?

No

41

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

For each indirect call,
do initialization

Escaped type?

Get next layer?

Yes

No

42

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

For each indirect call,
do initialization

Escaped type?

Get next layer? Go prev layer

Yes

No Yes

43

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

For each indirect call,
do initialization

Escaped type?

Get next layer? Go prev layer

Yes No

No Yes

44

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

Indirect-
call

targets

For each indirect call,
do initialization

Escaped type?

Get next layer?

Recursively resolve targets
for the layered type

Go prev layer

Yes No

No Yes

45

Type-function map

Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type

Indirect-
call

targets

For each indirect call,
do initialization

Escaped type?

Get next layer?

Recursively resolve targets
for the layered type

Go prev layer

Yes No

No Yes

The recursive resolving algorithm queries type-function
and type-propagation maps to collect all targets

46

Type-function map

Support C++

● Problem: VTable pointers are always cast to

unsupported-type pointers

○ Identified as escaped types

○ Cannot benefit from MLTA at all

● Our solution: Directly map virtual functions to class

types by skipping VTable pointers

○ Also support multiple inheritances

47

Implementation

● Based on LLVM

● Supported types: struct, vector, and function type

● Field-sensitive, but flow-insensitive and context-

insensitive

● Hashing type information to reduce memory overhead

48

Formal analysis of effectiveness and soundness

We prove:
●MLTA has fewer FPs than FLTA (effectiveness)
●FLTA may have FNs, but MLTA does not introduce extra FNs

(soundness) Details in the paper
49

Evaluate MLTA

● Evaluation goals

○ Scalability, effectiveness, soundness, and use cases

● Experimental setup

○ The Linux kernel, the FreeBSD kernel, and the Firefox browser

○ 64GB RAM and Intel CPU (3.20 GHz, 8 cores)

System Modules SLoC Loading Time Analysis Time

Linux 17,558 10,330K 2m 6s 1m 40s

FreeBSD 1,481 1,232K 6s 6s

Firefox 1,541 982K 27s 1m 25s
50

Reduction of indirect-call targets: Average number

● MLTA-eligible indirect calls: 81%, 64%, 63%
● MLTA achieves 94%, 86%, 98% further reduction over FLTA
● The second layer achieves the most reduction

● More layers keep reducing the number
○ 5 layers suffice

51

Reduction of indirect-call targets: Distribution (Linux)

● <8 targets: MLTA 89%, FLTA 58%
● Largest number: MLTA 1,914 targets, FLTA 7,983 targets

52

False-negative analysis

Trace execution to collect “ground-truth” targets

● Instrument Firefox with PTWRITE via LLVM pass

○ Dump source & destination for each indirect call

○ 50k pairs of <indirect call, callee>

● Run Linux in QEMU and hook indirect calls

○ Hook __x86_indirect_thunk_rax

○ 3,566 pairs of <indirect call, callee>

● Several FNs caused by FLTA or lacking source

53

False-negative analysis

Trace execution to collect “ground-truth” targets

● Instrument Firefox with PTWRITE via LLVM pass

○ Dump source & destination for each indirect call

○ 50k pairs of <indirect call, callee>

● Run Linux in QEMU and hook indirect calls

○ Hook __x86_indirect_thunk_rax

○ 3,566 pairs of <indirect call, callee>

● Several FNs caused by FLTA or lacking source The MLTA approach does not introduce
extra false negatives than FLTA

54

Benefit static-analysis and bug-finding

10 uninitialization bugs
(see the left table)

- FLTA #func → MLTA #func
- MLTA helps save efforts

25 missing-check
bugs
(see the paper)

55

Conclusions

● MLTA can dramatically refine indirect-call targets
○ Multiple new techniques and formal analysis
○ 86%-98% further reduction over FLTA
○ Scale to large systems and support C/C++
○ No extra false negatives

● A building block for static analysis and CFI

● Precise indirect-call targets can serve as peers for
detecting deep bugs
○ Identify deviating operations 56

