Where Does It Go? Refining Indirect-Call Targets
with Multi-Layer Type Analysis

Kangjie Lu Hong Hu

M Georgia

UNIVERSITY OF MINNESOTA Tech

What is an indirect call?

Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);
}

typedef void (*fptr_t)(int);
// Take the address of foo() and

// assign to function pointer fptr
fptr_t fptr = &foo;

// Indirect call to foo()
fptr(10);

Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);
}

typedef void (*fptr_t)(int);
// Take the address of foo() and

// assign to function pointer fptr
fptr_t fptr = &foo;

// Indirect call to foo()
fptr(10);

Example, purpose, and commonness

void foo(int a) A
printf("a = %d\n", a);
}

typedef void (*fptr_t)(int);
// Take the address of foo() and

// assign to function pointer fptr
fptr_t fptr = &foo;

// Indirect call to foo()
fptr(10);

e Purpose
o To support dynamic
behaviors
e Common scenarios

o Interface functions
o Virtual functions
o Callbacks

e Commonness
o Linux: 58K
o Firefox; 37K

Example, purpose, and commonness

void foo(int a) A
printf("a = %d\n", a);
}

typedef void (*fptr_t)(int);
// Take the address of foo() and

// assign to function pointer fptr
fptr_t fptr = &foo;

// Indirect call to foo()
fptr(10);

e Purpose
o To support dynamic
behaviors
e Common scenarios

o Interface functions
o Virtual functions
o Callbacks

o Firefox; 37K

Indirect call is however a major roadblock in security

Couldn’t construct a precise call-graph!

Indirect call is however a major roadblock in security

Couldn’t construct a precise call-graph!

e All inter-procedural static analyses and bug detection

require a global call-graph!
o Otherwise, path explosion and inaccuracy

e Effectiveness of control-flow integrity (CFI) depends on
it!

Indirect call is however a major roadblock in security

Couldn’t construct a precise call-graph!

e All inter-procedural static analyses and bug detection

require a global call-graph!
o Otherwise, path explosion and inaccuracy

How can we identify them?

Two approaches: Point-to analysis vs. Type analysis

e Point-to Analysis

o Whole-program analysis to
find all possible targets

e Cons
o Precise analysis can't scale
o Suffers from soundness or
precision issues
o lItself requires a call-graph

Two approaches: Point-to analysis vs. Type analysis

e Point-to Analysis o (First-Layer) Type Analysis
o Whole-program analysis to o Matching types of functions
find all possible targets and function pointers ()
e Cons e Cons
o Precise analysis can't scale o Over-approximate
o Suffers from soundness or o Worse precision in larger
precision issues programs

o lItself requires a call-graph

Two approaches: Point-to analysis vs. Type analysis

e Point-to Analysis

o Whole-program analysis to

find all possible targets

e Cons

©)

©)

Precise analysis can't scale
Suffers from soundness or
precision issues

ltself requires a call-graph

o (First-Layer) Type Analysis
o Matching types of functions
and function pointers ()

e Cons

o Over-anbnhroximate

13

Our Intultion:

Function addresses are often stored to structs
layer by layer.

Layered type matching is much stricter.

14

Our intuition:;

Function addresses are often stored to structs
layer by layer.

MLTA: Multi-Layer Type Analysis

15

lllustrate MLTA

3.

// Assign address of foo to a nested field

2. d->b->c->fptr = &bar;

. // Complicated data flow
a->b->c->fptr(10); // Indirect call to foo() not bar()

16

lllustrate MLTA

3.

// Assign address of foo to a nested field

2. d->b->c->fptr = &bar;

. // Complicated data flow
a->b->c->fptr(10); // Indirect call to foo() not bar()

17

lllustrate MLTA

3.

// Assign address of foo to a nested field

2. d->b->c->fptr = &bar;

. // Complicated data flow
a->b->c->fptr(10); // Indirect call to foo() not bar()

] Complicated data flow

/__’-P
/\’V

18

lllustrate MLTA

3.

// Assign address of foo to a nested field

2. d->b->c->fptr = &bar;

. // Complicated data flow
a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr()
L t
fptr
' t
C
' t
b
] Complicated data flow 4
— a

19

lllustrate MLTA

// Assign address of foo to a nested field

2. d->b->c->fptr = &bar;

. // Complicated data flow

3. a->b->c->fptr(10); // Indirect call to foo() not bar()
Layered type fptr()
¥ t
fptr_t fptr
.. ‘f
struct C C
.. b A
struct B b
.. VO Complicated datatiow T F
struct A —

20

lllustrate MLTA

// Assign address of foo to a nested field
1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;
. // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

Layered type &foo
v
fptr_t fptr Only functions

................. " whose addresses

struct C C are ever stored to
___ T, the layered type

struct B b can be valid
.. ‘ Comphcateddataﬂow targets

struct A —_— —

Results comparison of approaches

// Assign address of foo to a nested field

2. d->b->c->fptr = &bar;
. // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

Approach MLTA FLTA 2-Layer

Matched targets foo() foo(), bar() foo(), bar()

Advantages of the MLTA apyproach

e Most function addresses are stored to structs
o 88% in the Linux kernel

e Being elastic

o When a lower layer is unresolvable, fall back
o Avoid false negatives

e MLTA should be always better than FLTA
e NoO expensive or error-prone analysis

23

"This Is very Intuitive;, what are the
challenges?”

‘Fine-grained control-flow integrity for kernel software” (EuroSP'16)
by Xinyang Ge, Nirupama Talele, Mathias Payer, Trent Jaeger.

24

Research questions and challenges

e To0 what extent can MLTA refine the targets?

e Can MLTA guarantee soundness?
o No false negatives

e Can MLTA also support C++?

o Virtual functions and tables
e Can MLTA scale to large and complex programs?

e How can MLTA benefit static analysis and bug finding?

25

Our technical contributions

e Multiple techniques to ensure effectiveness and

soundness
o With an elastic design and formal analysis

e Support C++
e [Extensive evaluation (OS kernels and a browser)

e 35 new kernel security bugs

26

Realize MLTA: Overview of the TypeDive system

LLVM
Bitcode
files

Layered
type analysis

Confinement
analysis

Propagation
analysis

Escaping
analysis

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

e Phase | Layered type analysis
o Three analysis techniques and three data structures

e Phase Il: Indirect-call targets resolving
o An iterative and elastic algorithm

Targets
resolving

Iterative &
elastic resolving
algorithm

Indirect-
call
targets

27

Analyze type-function confinements

e Purpose
o To identify which have been assigned with which functions
o We say confines foo(), if &foo is stored to an A object

e |nputs

o Address-taking and -storing operations
o Global object initializers

e Output

o The type-function confinement map

28

Analyze type-function confinements

e Purpose
o To identify which have been assigned with which functions
o We say confines foo(), if &foo is stored to an A object

e |nputs

o Address-taking and -storing operations
o Global object initializers

e Output

o The type-function confinement map

1. a->fptr = &foo;

2. fptr1 = &bar;

29

Analyze type-function confinements

e Purpose
o To identify which have been assigned with which functions
o We say confines foo(), if &foo is stored to an A object

e |nputs

o Address-taking and -storing operations
o Global object initializers

e Output
o The type-function confinement mao
Type Function set
1. a->fptr = &foo;
foo(), bar()

2. fptr1 = &bar; f00()

30

Analyze type propagations

e Purpose
o To capture propagation of addresses from one type to

e |nputs
o Type casts and non-address-taking object stores

e Output
o The type-propagation map

31

Analyze type propagations

e Purpose
o To capture propagation of addresses from one type to

e |nputs
o Type casts and non-address-taking object stores

e Output
o The type-propagation map

1. a = (struct Ax)b;

2. c->a = a;

Analyze type propagations

e Purpose
o To capture propagation of addresses from one type to

e |nputs

e Output
o The type-propagation map

o Type casts and non-address-taking object stores

1.

. C-=>a

a = (struct A*)b;

a,

Destination type Source type
struct B

struct A

33

Analyze type propagations

e Purpose

o To capture propagation of addresses from one type to
e |nputs

o Type casts and non-address-taking object stores
e Output

o The type-propagation map

1. a = (struct A%)b: Destination type Source type
struct B

. C->a =_a:
2. c->a ‘& struct A

\

34

l[dentify escaped types

e Purpose

o To identify types that may hold functions
o Discard such types to avoid false negatives

e What conditions result in an escaped type?

A type is escaping if:
(1) It is cast from an unsupported

type or
(2) It is cast to an unsupported

type

35

Examples of escaping cases

// Case T
void * ptr = ...;

c->a = (struct Ax)ptr;

// Case 2

void *ptr = (void *)c->a;

36

Resolve indirect-call targets

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

Targets resolving

37

Resolve indirect-call targets

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

Targets resolving

For each indirect call,
do initialization

38

Resolve indirect-call targets

Targets resolving

For each indirect call,
do initialization

Maintained

data structures Get current layered type

[Type-function map]

[Type-propa. map]
[Escaped types]

39

Resolve indirect-call targets

Targets resolving

For each indirect call,
do initialization

Maintained
data structures Get current layered type
[Type-function map] Escaped type?

[Type-propa. map]
[Escaped types]

40

Resolve indirect-call targets

Targets resolving

For each indirect call,
do initialization

Maintained
data structures Get current layered type
[Type-function map] Escaped type?

[Type-propa. map]
[Escaped types]

Get next layer?

41

Resolve indirect-call targets

Targets resolving

For each indirect call,
do initialization

Maintained
data structures Get current layered type
[Type-function map] Escaped type?

[Type-propa. map]
[Escaped types]

Get next layer?

42

Resolve indirect-call targets

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

Targets resolving

For each indirect call,
do initialization

Get current layered type

Escaped type?
Yes

Get next layer? Go prev layer

43

Resolve indirect-call targets

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

Targets resolving

For each indirect call,
do initialization

Get current layered type

Escaped type?
Yes

Get next layer? Go prev layer

o~

44

Resolve indirect-call targets

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

Targets resolving
For each indirect call,
do initialization

Get current layered type

Escaped type?
Yes

Get next layer? Go prev layer

o~

Recursively resolve targets
for the layered type

Indirect-
call
targets

45

Resolve indirect-call targets

Maintained
data structures

[Type-function map]

[Type-propa. map]
[Escaped types]

Targets resolving
For each indirect call,
do initialization

Get current layered type

Escaped type?
Yes

Get next layer? Go prev layer

o~

Recursively resolve targets
for the layered type

Indirect-
call
targets

46

Support C++

e Problem: VTable pointers are always cast to

unsupported-type pointers
o lIdentified as escaped types

o Cannot benefit from MLTA at all

e Our solution: Directly map virtual functions to class
types by skipping VTable pointers

o Also support multiple inheritances

47

Implementation

e BasedonLLVM

e Supported types: , , and

e Field-sensitive, but flow-insensitive and context-
Insensitive

e Hashing type information to reduce memory overhead

48

Formal analysis of effectiveness and soundness

confinement propagation resolving
< a=&f y = cast<t(y)>x (xp)()
= M[t(a)] U= (f) M[t(y)] U= M[t(x)] M[z(p)]
a=&f y=x (+p)()
g M[mlt(a)] U= {f} Yaecomp(mlt(y)), Yy €ecomp(mlt(p))
E Ypecomp(mlt(x)), U M[y]
M[mlt(y)] U= M[f]
Mla] U= M[f]
We prove:

e MLTA has fewer FPs than FLTA (effectiveness)
e FLTA may have FNs, but MLTA does not introduce extra FNs
(soundness)

49

Evaluate MLTA

e Evaluation goals
o Scalability, effectiveness, soundness, and use cases

e EXxperimental setup

o The Linux kernel, the FreeBSD kernel, and the Firefox browser
o 64GB RAM and Intel CPU (3.20 GHz, 8 cores)

System Modules SLoC Loading Time Analysis Time
Linux 17,558 10,330K 2m 6s 1m 40s
FreeBSD 1,481 1,232K 6s 6s

Firefox 1,541 982K 27s 1m 25s

50

Reduction of indirect-call targets: Average number

20
15
10

Average number of indirect-call targets
W FLTA
B 2-Layer
912 g 03 791 778 7.7 3-Layer
B 4-Layer
1.86 1.84 1.82 1.82 1.8 [5-Layer

® MLTA

353 3.5 3.49 3.49 3.49

Linux FreeBSD Firefox

MLTA-eligible indirect calls: 81%, 64%, 63%
MLTA achieves 94%, 86%, 98% reduction over FLTA
The second layer achieves the most reduction

More layers keep reducing the number

o 5 layers suffice
51

Reduction of indirect-call targets: Distribution (Linux)

1w 1.00 7
g 077 " —— CDF-MLTA
2 050 - CDF-FLTA
= —— PDF-MLTA
B 0.25 - PDF-FLTAY
0.00 4 . . ; . o |

number of indirect-call targets

e <8targets: MLTA , FLTA 58%
e Largest number: MLTA targets, FLTA 7,083 targets

False-negative analysis

Trace execution to collect "ground-truth” targets

e Instrument Firefox with PTWRITE via LLVM pass

o Dump source & destination for each indirect call
o Bok pairs of <indirect call, callee>
e Run Linux in QEMU and hook indirect calls
o Hook __x86_indirect_thunk_rax
o 3,666 pairs of <indirect call, callee>

e Several FNs caused by FLTA or lacking source

53

False-negative analysis

Trace execution to collect "ground-truth” targets

e Instrument Firefox with PTWRITE via LLVM pass

o Dump source & destination for each indirect call
o Bok pairs of <indirect call, callee>
e Run Linux in QEMU and hook indirect calls
o Hook __x86_indirect_thunk_rax
o 3,666 pairs of <indirect call, callee>

o Se\

54

Benefit static-analysis and bug-finding

[Subsys] File Function Variable Impact
drivers/gpu/drm/gma500/oaktrail_crtc.c:511 | [13->3]
[drm] cdv_intel_display.c cdv_intel_find_dp_pll clock 4B
[drm] oaktrail crtc.c mrst_sdvo_find_best_pll clock 16B
[drm] oaktrail_crtc.c mrst_lvds_find_best_pll clock 16B
drivers/media/v412-core/v4l2-ioctl.c:1509
[media] rcar_drif.c rcar_drif g fmt sdr_cap f 24B
drivers/staging/rt18188eu/core/rtw_security.c: 229
[crypto] 1ib80211_crypt_wep.c 1ib80211_wep_set_key wep 25B
[staging] rtllib_crypt_wep.c prism2_wep_set_key wep 25B
drivers/staging/media/davinci_vpfe/dm365_ipipe.c:1277
[staging] dm365_ipipe.c ipipe_set_wb_params wba 8B
[staging] dm365_ipipe.c ipipe_set_rgb2rgb_params rgb2rgb_ 12B
defaults
[staging] dm365_ipipe.c ipipe_set_rgb2yuv_params rgb2yuv_ 4B
defaults
crypto/af_alg.c:302
[crypto] algif hash.c ash_accept_parent_nokey ctx 680B

uninitialization bugs
% (see the left table)
" _FLTA #func — MLTA #func

—

u - MLTA helps save efforts
Ul

UI

Ul ' '

ur missing-check

v bugs
(see the paper)

U

b=

55

Conclusions

e MLTA can dramatically refine indirect-call targets

©)

O
O
O

Multiple new techniques and formal analysis
867%-98% further reduction over FLTA

Scale to large systems and support C/C++
No extra false negatives

e A building block for static analysis and CF|

e Precise indirect-call targets can serve as peers for
detecting deep bugs

©)

ldentify deviating operations

56

