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What is an indirect call?
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Example, purpose, and commonness

void foo(int a) {
printf("a = %d\n", a);

}
typedef void (*fptr_t)(int);

// Take the address of foo() and 
// assign to function pointer fptr
fptr_t fptr = &foo;

...

// Indirect call to foo()
fptr(10);
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● Purpose
○ To support dynamic 

behaviors

● Common scenarios
○ Interface functions
○ Virtual functions
○ Callbacks

● Commonness
○ Linux: 58K
○ Firefox: 37K
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Example, purpose, and commonness
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printf("a = %d\n", a);

}
typedef void (*fptr_t)(int);

// Take the address of foo() and 
// assign to function pointer fptr
fptr_t fptr = &foo;

...
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● Purpose
○ To support dynamic 

behaviors

● Common scenarios
○ Interface functions
○ Virtual functions
○ Callbacks

● Commonness
○ Linux: 58K
○ Firefox: 37K

Indirect calls are essential 
and common
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Indirect call is however a major roadblock in security

Couldn’t construct a precise call-graph!
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○ Otherwise, path explosion and inaccuracy

● Effectiveness of control-flow integrity (CFI) depends on 
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Identifying indirect-call targets is foundational to security!



How can we identify them?
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Two approaches: Point-to analysis vs. Type analysis

● Point-to Analysis
○ Whole-program analysis to 

find all possible targets 

● Cons
○ Precise analysis can’t scale
○ Suffers from soundness  or 

precision issues
○ Itself requires a call-graph
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Two approaches: Point-to analysis vs. Type analysis

● Point-to Analysis

○ Whole-program analysis to 

find all possible targets 

● Cons

○ Precise analysis can’t scale

○ Suffers from soundness  or 

precision issues

○ Itself requires a call-graph

● (First-Layer) Type Analysis

○ Matching types of functions 

and function pointers (FLTA)

● Cons

○ Over-approximate

○ Worse precision in larger 

programs

Practical and used by CFI 
techniques
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Our intuition: 

Function addresses are often stored to structs 

layer by layer.

Layered type matching is much stricter.
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Our intuition: 

Function addresses are often stored to structs 

layer by layer.

Layered type matching is much stricter.
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MLTA: Multi-Layer Type Analysis



Illustrate MLTA
// Assign address of foo to a nested field

1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()
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Illustrate MLTA
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... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()

fptr
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fptr

c

b
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Complicated data flow

&foo fptr()

fptr_t

struct C

struct B

struct A

Layered type

Only functions 
whose addresses 
are ever stored to 
the layered type 

can be valid 
targets 
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Results comparison of approaches

// Assign address of foo to a nested field
1. a->b->c->fptr = &foo;
2. d->b->c->fptr = &bar;

... // Complicated data flow
3. a->b->c->fptr(10); // Indirect call to foo() not bar()
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Approach MLTA FLTA 2-Layer

Matched targets foo() foo(), bar() foo(), bar()



Advantages of the MLTA approach

● Most function addresses are stored to structs
○ 88% in the Linux kernel

● Being elastic
○ When a lower layer is unresolvable, fall back
○ Avoid false negatives

● MLTA should be always better than FLTA
● No expensive or error-prone analysis
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“This is very intuitive; what are the 
challenges?”
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“Fine-grained control-flow integrity for kernel software” (EuroSP’16)
by Xinyang Ge, Nirupama Talele, Mathias Payer, Trent Jaeger.



Research questions and challenges

● To what extent can MLTA refine the targets?

● Can MLTA guarantee soundness? 

○ No false negatives

● Can MLTA also support C++? 

○ Virtual functions and tables

● Can MLTA scale to large and complex programs?

● How can MLTA benefit static analysis and bug finding?
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Our technical contributions

● Multiple techniques to ensure effectiveness and 

soundness

○ With an elastic design and formal analysis

● Support C++

● Extensive evaluation (OS kernels and a browser)

● 35 new kernel security bugs
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Realize MLTA: Overview of the TypeDive system

● Phase I: Layered type analysis

○ Three analysis techniques and three data structures

● Phase II: Indirect-call targets resolving

○ An iterative and elastic algorithm

LLVM 

Bitcode

files

Layered 
type analysis

Confinement 
analysis

Propagation 
analysis

Escaping 
analysis

Maintained
data structures

Type-function map

Type-propa. map

Escaped types

Targets 
resolving

Iterative & 
elastic resolving 

algorithm

Indirect-

call 

targets
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Analyze type-function confinements

● Purpose

○ To identify which types have been assigned with which functions

○ We say type A confines foo(), if &foo is stored to an A object

● Inputs

○ Address-taking and -storing operations

○ Global object initializers

● Output

○ The type-function confinement map
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Analyze type-function confinements

● Purpose

○ To identify which types have been assigned with which functions

○ We say type A confines foo(), if &foo is stored to an A object

● Inputs

○ Address-taking and -storing operations

○ Global object initializers

● Output

○ The type-function confinement map

1. a->fptr = &foo;
...

2. fptr1 = &bar;

Type Function set

fptr_t foo(), bar()

struct Afptr_t foo()
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Analyze type propagations

● Purpose

○ To capture propagation of addresses from one type to another

● Inputs

○ Type casts and non-address-taking object stores

● Output

○ The type-propagation map
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Analyze type propagations

● Purpose
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● Inputs
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Analyze type propagations

● Purpose

○ To capture propagation of addresses from one type to another

● Inputs

○ Type casts and non-address-taking object stores

● Output

○ The type-propagation map

1. a = (struct A*)b;
...

2. c->a = a;

Destination type Source type

struct A struct B

struct CA struct A

Only for non-confinement stores
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Identify escaped types

● Purpose 
○ To identify types that may hold  undecidable functions
○ Discard such types to avoid false negatives

● What conditions result in an escaped type?

Unsupported type:
(1) General pointer (e.g., char *) 

and integer types or
(2) Types with arithmetically 

computed object pointers

A type is escaping if:
(1) It is cast from an unsupported 

type or
(2) It is cast to an unsupported 

type
35



Examples of escaping cases
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// Case 1
void * ptr = ...;
...
c->a = (struct A*)ptr;

// Case 2
void *ptr = (void *)c->a;



Resolve indirect-call targets

Maintained
data structures

Type-function map

Type-propa. map

Escaped types

Targets resolving
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Resolve indirect-call targets
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Targets resolving

Get current layered type 

For each indirect call, 
do initialization
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Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type 

For each indirect call, 
do initialization

Escaped type?

Get next layer?

No
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Resolve indirect-call targets
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Resolve indirect-call targets
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Resolve indirect-call targets
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Yes No
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Resolve indirect-call targets

Maintained
data structures
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Resolve indirect-call targets

Maintained
data structures

Type-propa. map

Escaped types

Targets resolving

Get current layered type 

Indirect-
call 

targets

For each indirect call, 
do initialization

Escaped type?

Get next layer?

Recursively resolve targets 
for the layered type 

Go prev layer

Yes No

No Yes

The recursive resolving algorithm queries type-function 
and type-propagation maps to collect all targets 

46

Type-function map



Support C++

● Problem: VTable pointers are always cast to 

unsupported-type pointers

○ Identified as escaped types

○ Cannot benefit from MLTA at all

● Our solution: Directly map virtual functions to class 

types by skipping VTable pointers

○ Also support multiple inheritances
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Implementation

● Based on LLVM

● Supported types: struct, vector, and function type

● Field-sensitive, but flow-insensitive and context-

insensitive

● Hashing type information to reduce memory overhead
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Formal analysis of effectiveness and soundness

We prove:  
●MLTA has fewer FPs than FLTA (effectiveness)
●FLTA may have FNs, but MLTA does not introduce extra FNs 

(soundness) Details in the paper
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Evaluate MLTA

● Evaluation goals

○ Scalability, effectiveness, soundness, and use cases

● Experimental setup

○ The Linux kernel, the FreeBSD kernel, and the Firefox browser

○ 64GB RAM and Intel CPU (3.20 GHz, 8 cores)

System Modules SLoC Loading Time Analysis Time

Linux 17,558 10,330K 2m 6s 1m 40s

FreeBSD 1,481 1,232K 6s 6s

Firefox 1,541 982K 27s 1m 25s
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Reduction of indirect-call targets: Average number

● MLTA-eligible indirect calls: 81%, 64%, 63%
● MLTA achieves 94%, 86%, 98% further reduction over FLTA
● The second layer achieves the most reduction

● More layers keep reducing the number
○ 5 layers suffice
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Reduction of indirect-call targets: Distribution (Linux)

● <8 targets: MLTA 89%, FLTA 58%
● Largest number:  MLTA 1,914 targets, FLTA 7,983 targets
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False-negative analysis

Trace execution to collect “ground-truth” targets

● Instrument Firefox with PTWRITE via LLVM pass

○ Dump source & destination for each indirect call

○ 50k pairs of <indirect call, callee>

● Run Linux in QEMU and hook indirect calls

○ Hook __x86_indirect_thunk_rax

○ 3,566 pairs of <indirect call, callee>

● Several FNs caused by FLTA or lacking source 
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False-negative analysis

Trace execution to collect “ground-truth” targets

● Instrument Firefox with PTWRITE via LLVM pass

○ Dump source & destination for each indirect call

○ 50k pairs of <indirect call, callee>

● Run Linux in QEMU and hook indirect calls

○ Hook __x86_indirect_thunk_rax

○ 3,566 pairs of <indirect call, callee>

● Several FNs caused by FLTA or lacking source The MLTA approach does not introduce 
extra false negatives than FLTA
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Benefit static-analysis and bug-finding

10 uninitialization bugs
(see the left table)

- FLTA #func → MLTA #func
- MLTA helps save efforts

25 missing-check 
bugs
(see the paper)
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Conclusions

● MLTA can dramatically refine indirect-call targets
○ Multiple new techniques and formal analysis
○ 86%-98% further reduction over FLTA
○ Scale to large systems  and support C/C++
○ No extra false negatives

● A building block for static analysis and CFI

● Precise indirect-call targets can serve as peers for 
detecting deep bugs
○ Identify deviating operations 56


