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SUMMARY

A new breed of low-latency I/O devices, such as the emerging remote memory access

and the high-speed Ethernet NICs, are becoming ubiquitous in current data centers. For

example, big data center operators such as Amazon, Facebook, Google, and Microsoft are

already migrating their networks to 100G. However, the overhead incurred by the system

software, such as protocol stack and synchronous operations, is dominant with these faster

I/O devices. This dissertation approaches the above problem by redesigning a protocol stack

to provide an interface for the latency-sensitive operation, and redesigning synchronous

operation such as TLB shootdown and consensus in the operating systems and distributed

systems respectively.

First, the dissertation presents an extensible protocol stack, XPS to address the software

overhead incurred in protocol stacks such as TCP and UDP. XPS provides the abstractions

to allow an application-defined, latency-sensitive operation to run immediately after the

protocol processing (called the fast path) in various protocol stacks: in a commodity OS

protocol stack (e.g., Linux), a user space protocol stack (e.g., mTCP), as well as recent smart

NICs. For all other operations, XPS retains the popular, well-understood socket interface.

XPS’ approach is practical: rather than proposing a new OS or removing the socket interface

completely, our goal is to provide stack extensions for latency-sensitive operations and use

the existing socket layer for all other operations.

Second, the dissertation provides a lazy, asynchronous mechanism to address the system

software overhead incurred due to a synchronous operationTLB shootdown. The key idea

of the lazy shootdown mechanism, called LATR, is to use lazy memory reclamation and

lazy page table unmap to perform an asynchronous TLB shootdown. By handling TLB

shootdowns in a lazy fashion, LATR can eliminate the performance overheads associated

with IPI mechanisms as well as the waiting time for acknowledgments from remote cores.

By proposing an asynchronous mechanism, LATR provides an eventually consistent solution

xix



to TLB shootdowns.

Finally, the dissertation untangles the logically coupled consensus mechanism from the

application which alleviates the overhead incurred by consensus algorithms such as Multi-

Paxos/Viewstamp Replication(VR). By physical isolation, DYAD eliminates the consensus

component from competing for system resources with the application which improves

the application performance. To provide physical isolation, DYAD defines the abstraction

needed from the SmartNIC and the operations performed on the application running on the

host processor. With the resulting consensus mechanism, the host processor handles only

the client requests on the host processor in the normal case and the disappropriate messages

needed for consensus is handled on the SmartNIC.
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CHAPTER 1

INTRODUCTION

Data center applications, such as search, social networking, and e-commerce platforms, are

commonly developed as hundreds of micro-services deployed over thousands of servers [1].

For instance, a single-user search query turns into thousands of remote procedure calls

(RPCs) [2, 3, 4]. To accommodate the large traffic generated by these applications, 100/200

Gbps network interface cards (NICs) are becoming part of the next-generation data centers.

In addition to traditional TCP/IP processing, NIC cards with remote direct memory access

(RDMA) capability are finding their way into data centers. With such NIC cards, however,

latency incurred by the existing system services, due to virtual memory and protocol stacks,

is dominant in data centers. A recent study by Gao et al. [5] shows the latency induced

by systems software in data centers to be 66% of the inter-rack latency and 81% of the

intra-rack latency. To overcome the system service overheads, SmartNICs that contain

processing elements to reduce the host processing overhead are becoming popular in data

centers. However, an end-host system services does not have any abstractions to utilize

these SmartNICs.

To address these challenges, this dissertation presents three low-level mechanisms to

reduce latency induced by systems services on data center applications, and in addition

provides abstractions to leverage the emerging SmartNICs.

We first focus on the software overheads induced by both the kernel and user-space

protocol stacks, which is reduced by an extensible protocol stack, XPS, that allow a service-

defined, latency-sensitive operation to run immediately after the protocol processing. XPS

demonstrates the applicability of such an approach in various protocol stacks: in a com-

modity OS protocol stack (e.g., Linux), a user space protocol stack (e.g., mTCP), as well as

recent smart NICs [6, 7]. In addition, XPS retains the existing socket layer for the rest of the
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operations that are not latency sensitive. XPS’ approach is practical: rather than proposing a

new OS [8, 9, 10] or removing the socket interface completely [11], our goal is to provide

stack extensions for latency-sensitive operations and use the existing socket layer for all

other operations.

The dissertation then focuses on synchronous operations: TLB shootdown in operating

systems and consensus in distributed systems. System services, such as virtual memory op-

erations, page swap, and NUMA page migration, suffer from a synchronous TLB shootdown

operation which impacts the throughput and latency of system services. LATR presents an

asynchronous mechanism to maintain TLB coherence which eliminate the performance

overheads associated with IPI mechanisms as well as the waiting time for acknowledg-

ments from remote cores. The proposed lazy migration approach can play a critical part in

emerging systems using heterogeneous memory where pages are migrated to faster on-chip

memory [12, 13, 14] and in emerging disaggregated memory systems in data centers where

pages are swapped to remote memory using RDMA [15, 5]. LATR shows the impact of re-

ducing the TLB shootdown overhead on the tail latency of system services such as key-value

stores.

Consensus algorithms in distributed systems require expensive coordination similar to a

TLB shootdown. However, a lazy approach which is similar to eventual consistency is not

applicable to consensus algorithms. Finally, we introduce DYAD, a system that untangles

tightly coupled consensus mechanism from the system services by physically isolating them,

allowing the high-overhead consensus component to run on the SmartNIC and the system

service to run on the host processor. By physical isolation, DYAD eliminates the consensus

component from competing for system resources with the services. To provide physical

isolation, DYAD defines the abstraction needed from the SmartNIC and the operations

performed on the system service running on the host processor. With the resulting consensus

mechanism, the host processor handles only the client requests on the host processor in

the normal case and the disappropriate messages needed for consensus is handled on the

2



SmartNIC.

1.1 Statement of Problem

Protocol stack:. Most services running in data centers rely on TCP/IP through the socket

interface provided by operating systems (OS) such as Linux and FreeBSD. Using the socket

interface is known to incur two performance overheads: First, overheads associated with the

socket interface itself , such as epoll() and socket read()/write(), and second, overheads

induced by cache misses when accessing cold network data followed by epoll events. To

make the matter worse, recent kernel features, such as kernel page table isolation (KPTI),

exacerbate the socket interface overheads. To address this problem, XPS presents the

abstractions to execute the latency-sensitive operations of a service inside the protocol stack.

L7 abstractions and stack specific infrastructure:. Packet processing frameworks such

as eBPF and XDP, while supporting an inline packet processing model, lack L7 abstractions.

Such frameworks provide L2 packet processing abstractions that does not support multiple

services. In addition to leveraging the OS and user-space protocol stack, the L7 abstractions

are needed to leverage the emerging smart NICs, that provide low latency for packet

processing, which is not available in existing systems. XPS’ demonstrates the flexibility of

its L7 abstractions by running them on three types of protocol stacks: in-kernel and user

space protocol stacks, and on smart NICs.

Synchronous TLB shootdown:. The synchronous TLB shootdown mechanism available

in existing operating systems show three types of performance overheads that increases

the system service latency: sending IPIs to remote cores, which has an increased overhead

on large NUMA machines; handling interrupts on remote cores, which might be delayed

due to temporarily disabled interrupts; and the wait time for acks on the initiating core.

The TLB shootdown mechanism is performed during a munmap() system call, a NUMA

page migration, and a page swap, which impose high overhead on these operations. To

alleviate the impact of TLB shootdown, LATR provides an asynchronous scheme for TLB
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shootdowns.

Logically coupled consensus. : A typical consensus algorithm is developed as a library

which provides an upcall to the service after reaching an agreement with a majority of

the replicas [16, 17, 18]. Such a library provides a nice logical abstraction which isolates

the consensus algorithm from the system service. However, with a logical isolation, the

performance overheads of an consensus algorithm are entangled with the service, i.e.,

the consensus component competes with the service for system resources such as CPU,

processor cache, etc. To overcome this challenge, DYAD untangles the tightly coupled

consensus mechanism from the system services by physically isolating them, allowing the

high-overhead consensus component to run on the SmartNIC and the services to run on

the host processor. By physical isolation, DYAD eliminates the consensus component from

competing for system resources with the services.

1.2 Thesis statement

The existing system services used by current data center applications suffer from inefficient

implementation of lower-level mechanisms. By optimizing the lower-level mechanisms, the

latency of these system services can be significantly improved.

To support the hypothesis, this dissertation makes the contributions outlined below.

1.3 Contributions

• We first show the protocol stack overhead in existing kernel and user-space protocol

stacks. In addition, we designed XPS that allows an latency-sensitive operation

to run immediately after the protocol processing (called the fast path) in various

protocol stacks: in a commodity OS protocol stack (e.g., Linux), a user-space protocol

stack (e.g., mTCP). In addition, XPS provides L7 abstractions to execute the latency

sensitive operations in the SmartNIC.

• XPS provides a practical solution to reduce the socket overhead: rather than proposing
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a new OS or removing the socket interface completely, XPS provides protocol stack

extensions for latency-sensitive operations and use the existing socket layer for all

other operations. XPS improves the throughput and tail latency of the Redis key-value

store by up to 98.1% and 73.3% respectively.

• LATR shows the overhead of a synchronous TLB shootdown overhead. In addition,

we designed a asynchronous mechanism that reduces the kernel overhead of a syn-

chronous TLB shootdown operation from the critical path of system services. LATR

eliminates the performance overheads associated with IPI mechanisms as well as the

waiting time for acknowledgments from remote cores. LATR improves the latency of

Apache web server by up to 26.1%.

• DYAD shows the overhead of existing consensus mechanism on distributed services.

In addition, we designed a mechanism that filters the client requests, and executes the

consensus data operations on the SmartNIC reducing the overhead of consensus on

the host processor. The service, running on the host, executes only the client request

which reduces the end-to-end latency of a system service. DYAD improves the latency

of time-stamp server by up to 90%.

1.4 Organization

The reminder of this dissertation is organized as follows. In Chapter 2 (§2), we provide

a background on SmartNICs followed by the system overhead in protocol stacks and the

existing research approaches that address the protocol stack overhead. We next discuss

the synchronous TLB shootdown overhead followed by the existing research approaches

that address the TLB shootdown overhead. Finally, we discuss the consensus algorithm

overheads due to the consensus messages and the system overhead.

In Chapter 3 (§3), we detail the design of XPS, a practical approach to eliminate the

socket overhead in existing protocol stacks. In addition, this chapter details the evaluation

of XPS with services such as Redis, Memcached, and Nginx.
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In Chapter 4 (§4), we detail the design of LATR that provides a lazy shootdown mecha-

nism In addition, this chapter details the evaluation of LATR with services such as Apache,

Memcached, and Mosaic.

In Chapter 5 (§5), we detail the design of DYAD that leverages the future SmartNICs

to reduce the consensus overhead. In addition, this chapter details the evaluation of DYAD

with services such as time-stamp server, key-value store, and Memcached.

In Chapter 6 (§6), we discuss the advantages of combining the approaches provided

by XPS, LATR, and DYAD. In addition, we demonstrate the applicability of a combined

approach with Memcached.

And finally in Chapter 7 (§7), we conclude this dissertation and present ideas for future

research.
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CHAPTER 2

RELATED WORK

In this chapter, we provide the background and related work for the latency incurred due to

protocol stacks, TLB shootdown in operating systems, and consensus algorithms.

2.1 Protocol stack

In this section, we present the overheads incurred in the protocol stack and the research

approaches that address these overheads. To address the protocol stack overheads, in chapter

3 (§3) we present XPS that provides an extensible protocol stack that eliminates the socket

interface overheads, in protocol stacks, by providing a fast path.

2.1.1 Socket interface overheads

To demonstrate the importance of reducing the overheads associated with the socket interface,

we quantified their overheads when processing packets in two common scenarios: handling

GET requests with 32-byte keys in Redis and restricting HTTP POST methods with 256 bytes

in Nginx. Both services simply wait for a packet (or multiple packets) via epoll(), read it

via read/v(), process it, and respond back via write/v(). Our evaluation shows that the

socket interface cost is dominant in both services: 83.3% in Redis and 43.5% in Nginx (refer

to Table 2.1 for a detailed breakdown). In addition, the socket interface cost increases with

new kernel features such as KPTI [19]. Similar to Linux, with Redis running on Arrakis,

up to 44% of the time is spent on Arrakis’ POSIX APIs that does not provide a zero copy

interface [11]. The costs involved in these common operations are eliminated by delegating

the service logic to the fast path in XPS.
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Table 2.1: Breakdown of the time spent when handling GET requests in Redis, and when blocking
HTTP packets in Nginx. Up to 83.3% (Redis) and 43.5% (Nginx) of the total time is spent in the
socket interface (machine configuration: Table 4.2).

Functions Redis (a key-value store) Nginx (a web server)

Time (%, µs) Time (%, µs)

Socket interface 83.3% (11.64µs) 43.5% (13.32µs)

epoll_wait() 23.3% (3.25µs) 8.4% (2.58µs)
read/v() 16.8% (2.34µs) 5.9% (1.82µs)
write/v() 43.3% (6.05µs) 29.2% (8.92µs)

Application logic 16.7% (2.33µs) 56.5% (17.27µs)

Total 100.0% (13.97µs) 100.0% (30.59µs)

2.1.2 Existing Approaches

Existing approaches for alleviating the socket interface overheads can be classified into three

categories: 1) kernel-batching mechanisms, which attempt to amortize kernel crossings by

batching; 2) kernel-bypass mechanisms, which eliminate the kernel crossing overhead by

bypassing it; and 3) extensions, which attempt to place service logic inside the kernel.

Kernel batching mechanisms. Existing kernel protocol approaches [20, 21, 22, 23]

amortize the system call overhead by using extensive batching. For example, IX [22]

and ZygOS [23], the latest state-of-the-art kernel protocol stacks, provide an event-based

system call interface with adaptive batching. However, although batching-based approaches

amortize the system call overhead, their effect of increasing latency is a fundamental

limitation.

Kernel bypass mechanisms. One might think that using kernel bypass mechanisms,

such as DPDK [24], resolves the latency problem incurred as a result of system calls. But

unless tightly integrated into the service logic, protocol stacks built in user space suffer

from similar, often more serious, problems. For example, mTCP [25], a state-of-the-art

protocol stack developed with DPDK, uses extensive socket-level batching. It efficiently

amortizes the cost of control transfer between the TCP and service threads1but imposes

1 mTCP has two threads per core: one performs protocol processing, and another processes service logic
using the mTCP socket interface.
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an up to 10× higher latency with mtcp_epoll_wait() as compared to epoll_wait() in the

Linux kernel (see Table 3.1), which becomes predominant with increasing TCP connections

(see Figure 3.4). Even worse, mTCP incurs the control transfer overhead twice: once for

transferring data from the TCP thread to the service thread, and vice versa [25, 22]. Another

problem of batching mechanisms is that the temporal cache locality of the network data is not

retained during service processing, as services read the data after protocol processing [22,

26]. For example, with Redis, mTCP incurs 17% more L3 cache misses compared to

Linux (see Table 3.6). Instead of using batching, we advocate a run-to-completion fast path

that utilizes the service context, allowing the protocol stack to execute a latency-sensitive

operation.

Extension approaches. Extending the protocol stack is not a new idea; Plexus [27]

on SPIN [28] and ASHs [8, 9] on Exokernel [29] introduced kernel protocol extensions.

However, ASHs and Plexus do not provide a mechanism to classify the latency-sensitive

operations of a service. ASHs and Plexus apply their packet filters at the L2 layer, and

provide these filtered packets to different protocol handlers. However, XPS introduces a

concept of the predicates at the L4 layer and invokes corresponding service handlers. ASHs

and Plexus are kernel-based approaches, whereas XPS demonstrates the applicability of

immediate handler execution in the kernel, a user space protocol stack, and Table 2.2 shows

a comparison of XPS with the existing approaches.

2.1.3 eBPF

eBPF [30] is an extension of the Berkeley Packet Filters (BPF) [31, 32], which introduce

the concept of an in-kernel interpreter, allowing a safe translation of restricted bytecodes.

To implement network tracing and L2/L3 functionality close to the NIC driver, eBPF

provides extension points in the Traffic Control (TC) [33] and eXpress Data Path (XDP) [34]

components, respectively.

Safety properties. eBPF provides kernel-safe code execution by first verifying inserted
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Table 2.2: XPS compared with existing approaches.

Plexus ASHs Linux IX mTCP XPS
(Micro.) (Exo.) (Mono.) (Dataplane) (Userspace)

Extension ✓ ✓ - - - ✓
Predicate L2 L2 N/A N/A N/A L4 & L7
Fast path ✓ ✓ - - - ✓
Slow path - - ✓ ✓ ✓ ✓
Kernel ✓ ✓ ✓ ✓ - ✓
Userspace - - - - ✓ ✓
Smart NIC - - - - - ✓

code, and then providing native performance guarantees via JIT compilation for x86 and

ARM. The eBPF verifier performs the following checks before loading the eBPF program:

the first test ensures that the eBPF program terminates and does not contain any infinite

loops; next it ensures that out-of-range data accesses are not performed, and finally it restricts

the kernel function access based on the eBPF program type.

Data structures. eBPF supports sharing a memory region between eBPF programs running

in the kernel and user space. One such data structure are maps, pre-allocated binary blobs,

which allow program-specific interpretation and are accessible from the user space via the

bpf() system call. They are also accessible in parallel, protected by a kernel lock, from

any eBPF module. The size of each map entry can be up to 32 MB, and the entire map size

should not exceed the available memory. XPS’ fast path handlers are eBPF functions that

keep an isolated copy of the service data in eBPF maps.

Limitations. In the Linux kernel, eBPF extension points are located at the L2 layer, which

cannot provide a fast path, as the transport layer (L4) is not available at the L2 layer. In

addition, eBPF does not provide a mechanism to account the execution of a service handler

to the user space service, resulting in unfairness among user space processes. XPS addresses

the above limitations of eBPF, and abstracts the fast path (L7) operations such that they are

executed in kernel, user-space stacks, and smart NICs.
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Figure 2.1: Page munmap design in Linux.

2.2 TLB shootdown

In this section, we present the overheads incurred by a synchronous TLB shootdown and

the research approaches (both hardware and software) to address this problem. To address

the delay incurred by synchronous shootdowns, in chapter 4 (§4) we will present LATR that

provides lazy mechanism for TLB shootdowns during free and migration operations. With

its lazy mechanism, LATR eliminates three types of performance overheads associated with

the current TLB shootdown, namely, sending IPIs and waiting for the ACKs in the initiating

core, and handling interrupts in the remote cores.

2.2.1 Existing OS Designs

Most architectures, including x86, do not support TLB cache coherence. The current x86

architecture allows two operations on TLBs: invalidating a TLB entry using the INVLPG

instruction and flushing all local TLB entries by writing to the CR3 register. However, both

instructions provide control only over the local, per-core TLB. To invalidate entries in

remote TLBs on other cores, a process known as TLB shootdown, commodity OSes use an

expensive, IPI-based mechanism. IPIs are individually delivered to each remote cores via

the Advanced Programmable Interrupt Controller (APIC) [35] as it does not support flexible

multicast delivery [13].

Free operations. We analyze the existing handling of a free operation (munmap()) in Linux,

on a system with three cores (as shown in Figure 2.1). The OS receives an munmap() system

call from the service to remove a set of virtual addresses on core C2 with the current process
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Figure 2.2: AutoNUMA page migration in Linux.

running on all existing cores (C1, C2, and C3). The munmap() handler removes the page table

mappings for the set of virtual addresses and frees the virtual addresses and physical pages

associated with the virtual addresses. In addition, C1 performs a local TLB invalidation

for the set of virtual addresses before initiating an IPI (to C1 and C3) to perform the TLB

shootdown. On receipt of the interrupt, C1 and C3 perform a local TLB invalidation in their

IPI handlers and send an ACK to C2 by the means of cache coherence. After receiving both

ACKs from C1 and C3, the munmap() handler on C2 finishes processing the munmap() system

call and returns control back to the service. The same TLB shootdown mechanism is used

for all virtual address operations, though the page table changes are different.

The TLB shootdown mechanism outlined above shows three types of performance

overheads: sending IPIs to remote cores, which has an increased overhead on large NUMA

machines; handling interrupts on remote cores, which might be delayed due to temporarily

disabled interrupts; and the wait time for ACKs on the initiating core.

AutoNUMA page migration. AutoNUMA page migration is a feature provided by Linux

to migrate pages to the NUMA node where they are being frequently accessed from, to

avoid costly cross-NUMA-domain accesses.

To identify pages that are predominantly used on a remote NUMA node, the AutoNUMA

background task periodically scans a process’ address space and changes page table entries

which triggers frequent TLB shootdowns. After the TLB shootdown for a specific virtual

address, any subsequent memory access to this virtual address triggers a page fault. If,

during this page fault, a page is accessed twice from a NUMA node different from the

current node the page resides on, the page will be migrated to the node accessing the page,

pending other factors such as enough free memory on the target node. Figure 2.2 gives a
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high-level overview of this process in Linux (shown with a single page fault for simplicity).

As explained above, if the page is accessed from the same NUMA node, the page migration

is not performed even though the expensive TLB shootdown (5.8%, with one 4 KB page, to

21.1%, with 512 4 KB pages, of the overall migration cost) was performed.

Page swapping. Page swapping is a feature in commodity OSes, such as Linux and

FreeBSD, to swap least recently-used (LRU) pages to disk during high memory pressure.

In Linux, a kernel background task (kswapd) maintains an active and inactive list of pages.

To begin with, the kernel adds the allocated pages to the inactive list. By tracking the PTE

access bits, kswapd takes an informed decision to move pages from the inactive to the active

list, and vice versa. During high memory pressure, pages are swapped out to disk from the

inactive list, which triggers a synchronous TLB flush as shown in Figure 2.3.

With the advent of disaggregated data centers, the paradigm for page swapping shifts

from disks to remote memory using fast network interconnects. Instead of swapping pages

to disk, recent research systems, such as INFINISWAP [15], advocate for the usage of remote

memory using Infiniband RDMA, which reduces the tail latency of page swapping by up to

61×. Due to the reduced remote paging latency, the TLB shootdowns needed for swapping

become an important contributor to the cost of page swapping (contributing up to 18% for a

Memcached workload using INFINISWAP).

2.2.2 Hardware-based Approaches

Hardware-based research approaches provide cache coherence to the TLB. UNITD [36],

a scalable hardware-based TLB coherence protocol, uses a bit on each TLB entry to

store sharing information, thereby eliminating the use of IPIs. However, UNITD still
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Table 2.3: Comparison between LATR and other approaches to TLB shootdowns.

Properties DiDi Oskin et al. ARM TLBI UNITD HATRIC ABIS Barrelfish Linux LATR[38] [13] [46, 47, 48] [36] [37] [49] [50] [51]

Asynchronous approach - - - - - - - - ✓
Non-IPI-based approach ✓ - ✓ ✓ ✓ - ✓ - ✓
No remote core involvement ✓ ✓ ✓ ✓ ✓ - - - ✓
No hardware changes required - - - - - ✓ ✓ ✓ ✓

resorts to broadcasts for invalidating shared mappings. Furthermore, UNITD adds a costly

content-addressable memory (CAM) to each TLB to perform reverse address translations

when checking whether a page translation is present in a specific TLB, thereby greatly

increasing the TLB’s power consumption. HATRIC [37] is a hardware mechanism similar

to UNITD and piggybacks translation coherence information using the existing cache

coherence protocols.

DiDi [38] employs a shared second-level TLB directory to track which core caches

which PTE. This allows efficient TLB shootdowns, while DiDi also includes a dedicated

per-core mechanism that provides support for invalidating TLB entries on remote cores

without interrupting the instruction stream they execute, thereby eliminating costly IPIs.

Similarly, other approaches provide microcode optimizations to handle IPIs without remote

core interventions [13]. Though these approaches remove interrupts on remote cores, the

wait time on the core initiating the TLB shootdown is not removed. Finally, these approaches

require intrusive changes to the micro-architecture, which adds additional verification cost

to ensure correctness [39, 40, 41, 42, 43, 44, 45].

2.2.3 Software-based Approaches

Commodity OSes, such as Linux and FreeBSD, implemented a set of non-trivial software-

base optimizations. For example, Linux made two important optimizations for TLB shoot-

downs: 1) batched remote TLB invalidation [52], where multiple invalidation entries are

batched together in one IPI, and 2) lazy TLB invalidation that balances between the over-

heads of TLB flushes and TLB misses when a core becomes idle. It is worth noting that

Linux’s lazy invalidation mechanism refers to lazily invalidating entries on the local TLB
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in idle cores, which is different from LATR’s lazy mechanism that lazily invalidates entries

on remote cores. More specifically, it works as follows: when a core becomes idle, the

OS speculates that the same process may get scheduled on the same core, so it defers the

invalidation of the local TLB to avoid potential future TLB misses. However, if the idle

core subsequently receives a TLB shootdown, the OS performs a full TLB invalidation

and indicates to the other cores not to send further shootdown IPIs to this core while it

remains idle. Unfortunately, all these optimizations do not eliminate the IPIs needed for

TLB invalidation.

Barrelfish [50], a research multi-kernel OS, uses message passing instead of IPIs to

shoot down remote TLB entries. Thus, it eliminates the interrupt handling on remote cores.

However, it still has to wait for the ACK from all remote cores participating in the shootdown.

We note that Barrelfish thereby still takes a synchronous approach for TLB shootdowns.

ABIS [49], a recent state-of-the-art research prototype based on Linux, uses page table

access bits to reduce the number of IPIs sent to remote cores by tracking the set of CPUs

sharing a page, which can be complementary to LATR. However, the operations in ABIS to

track page sharing introduce additional overheads.

Similarly, there are a number of approaches in the OS [53, 54, 55, 50, 49, 56, 57, 58,

59] to optimize TLB shootdowns. However, none of them eliminate the synchronous TLB

shootdown overhead. An alternative approach for reducing TLB shootdown is that services

can inform the OS on how memory is used or handle TLB flushes explicitly. Corey OS [60]

avoids TLB shootdowns of private PTEs by requiring the user services to explicitly define

shared and private pages. Apart from this, FreeBSD uses versions with process context

identifiers (PCIDs) [61] to eliminate the IPI operation. However, this approach invalidates

all the TLB entries by using a version-based mechanism, which induces TLB misses.

Other TLB-related optimizations. SLL TLBs introduced a shared last-level TLB [62, 63]

and evaluated the benefit of using a shared last-level TLB compared to a private second-level

TLB. However, their design still relies on IPI-based coherency transactions. In addition,
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research approaches showed that TLB misses are predictable and that inter-core TLB

cooperation and prefetching mechanisms can be applied to improve TLB performance [64,

65]. However, this implies that a TLB shootdown must also invalidate mappings in the TLB

prefetch buffers. In addition, other approaches improve TLB misses, which is an orthogonal

problem [66, 67, 68, 69].

We conclude that these hardware- and software-based approaches for TLB shootdowns

do not eliminate all TLB shootdown overheads and are not easy to apply in current systems

due to their required hardware changes. Table 2.3 provides a comprehensive comparison of

existing approaches with LATR.

2.3 SmartNIC consensus

In this section, we present the overheads (direct and indirect) incurred by a consensus

algorithm such as VR and the approaches that address these overheads. To address the direct

and indirect cost of consensus, in chapter 5 (§5) we will present DYAD that delegates the

consensus algorithm to the SmartNICs that handles the coordination with replicas closer to

the network I/O, eliminating the PCIe and CPU overheads.

2.3.1 Consensus algorithms

Data center services provide high availability and consistency by replicating their data using

consensus algorithms. For example, lock services such as Chubby [16] and Zookeeper [17],

persistent storage systems such as H-Store [70], Granola [71], Megastore [72], and Span-

ner [73], use consensus algorithms for replicating their data. These systems provide high

availability by using multiple replicas, and they provide better performance by maintaining

in-memory state.

Consensus protocols, such as Paxos [74, 75], Viewstamped Replication (VR) [76, 77],

atomic broadcast [78], or Raft [18], ensure that operations execute in a consistent order

across replicas. In DYAD, we consider systems that provide leader based state machine
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Figure 2.4: Normal-case execution of VR. The existing VR algorithm incurs high direct and indirect
cost which increases with increasing replicas.

replication where a set of nodes are either clients or replicas. The replicas run the service

code and communicate with the other replicas using the consensus algorithms. Note that,

we explicitly use the term leader to refer to the leader replica and the replicas to refer to

the replicas other than the leader. Clients submit a request, containing an operation, to the

leader that begins a multi-round protocol with the replicas to agree on a consistent order of

operations before executing the request.

We will look at the normal case operation of leader-based multi-paxos which is equivalent

to VR algorithm. Figure 2.4 shows the normal case operation of multi-paxos when there

are no failures. The leader node is responsible for ordering requests which is replaced by a

new leader upon failure. Clients send their requests to the leader which assigns a sequence

number to each request, and sends a PREPARE message to the other replicas containing the

request and the corresponding sequence number. The other replicas record the request in the

log and acknowledge with a PREPAREOK message to the leader. When the leader receives

the PREPAREOK message from the majority of the replicas, it executes the operation and

sends a reply to the client. In addition, the leader sends a COMMIT message to all the

replicas to commit the sequence number.

2.3.2 Consensus overheads

Data center services demand high throughput and low latency from replication services. Low

latency is an important factor for modern online services that access data from thousands

of servers. For consensus algorithms, throughput and latency is limited by the high CPU
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overhead on the leader node to process disproportional number of messages. For example, to

execute a single client request with three replicas, the leader handles eight messages: receive

one client request, send two PREPARE messages, receive two PREPAREOK messages, send

one client response, and send two commit messages. And, the number of messages handled

on the leader increases with the number of replicas. Handling disproportional number of

messages incur typical system overheads, such as context switch, protocol processing, and

PCIe [79, 80], which increases the CPU utilization on the leader. We classify the cost of

consensus latency into direct and indirect cost.

Latencydirect =
n− 1

2
∗RTT +

Leader prepare︷ ︸︸ ︷
(n− 1) ∗ TX +

n− 1

2
∗RX

+

Replicas prepare︷ ︸︸ ︷
n− 1

2
∗ (RX + TX + tprocess)+Latencyother (2.1)

Latencyother =

Leader prepare︷ ︸︸ ︷
n− 1

2
∗RX +

Leader commit︷ ︸︸ ︷
(n− 1) ∗ TX

+

Replicas commit︷ ︸︸ ︷
(n− 1) ∗RX + tprocess (2.2)

Direct cost. We define the direct cost as the sum of the round-trip times (RTT) needed

to reach consensus, the system overhead on the leader in sending PREPARE message and

processing PREPAREOK messages, and the system latency on replicas for processing a

PREPARE message (as shown in Equation 2.1). In addition, the direct cost comprises

of the other costs that includes the cost of processing the COMMIT messages and the

PREPAREOK from the remaining replicas after reaching consensus (as shown in Equa-

tion 2.1). In the direct cost, the data center network is optimized for microsecond RTTs

whereas the system overhead in processing the consensus messages play a larger role, which

increases with increasing replicas.

Indirect cost. The indirect cost is defined as the cost incurred due to sharing the hardware

18



0

20

40

60

80

100

0K 5K 10K 15K 20K 25K

C
PU

U
sa

ge

Messages/sec

Leader
Replica

(a) CPU usage with 5 replicas

0

10000

20000

30000

40000

50000

0K 5K 10K 15K 20K 25K

C
on

te
xt

sw
itc

h

Messages/sec

Leader
Replica

(b) Context switch overhead with 5 replicas

0

0.2

0.4

0.6

0.8

1

1 3 5 7

L
L

C
ca

ch
e

hi
t%

# Replicas

Leader
Replica

(c) LLC cache hits with increasing replicas

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

1 3 5 7

L
L

C
ca

ch
e

hi
t%

# Replicas

Leader
Replica

(d) Memory accesses with increasing replicas
Figure 2.5: The system overhead of consensus algorithms with a timestamp server.

resources, such as cache pollution, context switches, and CPU overhead, which is caused

by handling consensus messages on the host processors along with the service. The impact

of the indirect cost on the end-to-end latency is difficult to measure, though the indirect

cost also increases with increasing replicas. Approaches that reduce the direct cost by using

kernel-bypass mechanisms, such as DPDK and RDMA, does not eliminate the indirect cost.

For example, these approaches rely on busy polling which wastes CPU cycles and increases

the CPU overhead. In conclusion, the system overheads play a vital role in consensus latency

due to both the direct and indirect cost.

2.3.3 Network-assisted approaches

Research approaches propose to move the ordering guarantees of consensus protocol to

the data center network [81, 82, 83, 84, 85]. However, such approaches impose certain

(ordering) requirements on the network to eliminate the consensus overheads, and their

resulting throughput drops as the out-of-order messages increase. NetPaxos, a prototype

implementation of Paxos at the network level, consists of a set of OpenFlow extensions

implementing Paxos on SDN switches. Similarly, another research extends P4 to implement
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Paxos on switches which is constrained by hardware resources [86, 87]. However, the

Paxos implementations on the switches suffer from performance bottlenecks that limit their

throughput.

2.3.4 RDMA approaches

Recent research systems focus on optimizing consensus using RDMA [88, 89, 90, 91].

Systems such as DARE [88] built state machine replication on top of a protocol similar to

Raft and optimized for one-sided RDMA. Similarly, APUS [89] built an RDMA based paxos

protocol that scales to multiple client connections. However, consensus algorithms built

using RDMA is tightly coupled with the service, and does not reduce the CPU overhead for

consensus.

2.3.5 Hardware approaches

To avoid the consensus overhead, research approaches implement the Zookeeper Atomic

Broadcast (ZAB) consensus protocol and the services on FPGA devices using a low-level

language [92]. This hardware-based solution, however, may not be scalable as it requires the

storage of potentially large amounts of service data which is limited on the FPGA hardware.

In addition, other than the normal case, the corner failure cases which are common is

distributed systems is hard to implement in the FPGAs. Finally, such systems tightly couple

both the consensus component and the service in the hardware restraining the service to run

on special FPGA hardware with limited memory.

2.4 Hardware trends

In this section, we provide a primer on SmartNICs that are becoming part of the data center

architectures.
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2.4.1 SmartNIC

SmartNICs are gaining popularity because of the increasing network bandwidth (100 and

200 Gbps) available in Ethernet NICs and the software and PCIe overhead [79] for packet pro-

cessing on the host processors [93, 94]. In addition, SmartNICs eliminate the PCIe overhead

predominant in current servers [79]. Such SmartNICs are already deployed in Microsoft

Azure data centers [93]. Three different processing elements are available in SmartNICs:

ASICs, SoCs, and FPGAs [95, 93]. SmartNICs with SoCs or FPGAs are available commer-

cially, with the existing SoC-based SmartNICs providing better programmability compared

to FPGAs [93]. Commercial SmartNIC SoCs are available with ARM processors (8 GB

memory)or with custom network processing units (NPUs) (up to 24 GB).

The Netronome Agilio, an NPU-based SmartNIC, provides P4 programming [96] capa-

bilities that allow for flexible header parsing, and allows custom C program invocation from

P4 [97]. Similar to Netronome, other FPGA based SmartNICs support P4 programmability.

The Agilio NIC has a many core processor, which contains 72 processing elements called

micro engine (ME) with 8 threads each.
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CHAPTER 3

XPS: ADDRESSING LATENCY INCURRED BY PROTOCOL STACK

3.1 Introduction

Data center applications, such as search, social networking, and e-commerce platforms, are

commonly developed as hundreds of micro-services deployed over thousands of servers [1].

Micro-services communicate using the protocol stacks, which should provide low latency

and high throughput over high bandwidth links (10–40 Gbps) [3, 4, 2]. Lower latency, while

serving a large number of requests, is a requirement for such data center applications. In

reality, however, latency incurred by the existing protocol stack is dominant in data centers.

A recent study by Gao et al. [5] shows the latency induced by network software in data

centers to be 66% of the inter-rack latency and 81% of the intra-rack latency.

Most system services running in data centers rely on TCP/IP through the socket interface

provided by operating systems (OS) such as Linux and FreeBSD. Using the socket interface

is known to incur two performance overheads: first, overheads associated with the socket

interface itself [25, 98, 20, 11] , such as epoll() and socket read()/write() (shown

in Table 3.1), and second, overheads induced by cache misses when accessing cold network

data followed by epoll events [99, 100, 101]. To make the matter worse, recent kernel

features, such as kernel page table isolation (KPTI) [102], exacerbate the socket overheads

by up to 48% (shown in Table 3.1). Apart from Linux, even an optimized socket interface

provided by Arrakis incurs 44% overhead for a GET operation with Redis [11]. These

overheads, as a result, negatively impact an service’s performance by decreasing throughput

and increasing tail latency.

To amortize the socket overheads, research approaches that use the kernel protocol

stack propose a batched system call based on sockets [20, 21] or events [10, 22, 23]. For
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Table 3.1: Breakdown of the socket interface costs in an echo server (64 B messages) with Linux
and mTCP. Socket overhead is dominant in Linux, and increases by 48% with new features such as
KPTI. Similarly, mTCP incurs a high control transfer overhead due to the mTCP socket APIs. (Note:
AWS has a faster CPU, the machine configuration is in Table 4.2)

Functions Linux kernel User space

AWS Bare metal w/ KPTI mTCP

Socket APIs† 5.2µs (99.6%) 8.9µs (99.8%) 13.9µs (99.9%) 23.5µs (99.9%)

epoll() 1.8µs (34.4%) 2.4µs (26.4%) 4.9µs (35.0%) 22.3µs (94.6%)
read() 1.0µs (18.2%) 1.8µs (19.6%) 2.8µs (19.8%) 0.4µs (1.5%)
write() 2.5µs (47.0%) 4.8µs (53.8%) 6.3µs (45.1%) 0.9µs (3.8%)

Application 0.02µs (0.4%) 0.02µs (0.2%) 0.02µs (0.1%) 0.02µs (0.1%)
† : mtcp_* for mTCP’s socket interface.

example, MegaPipe [20], FlexSC [21], and IX [22] process a group of system calls as a

batch, amortizing the cost of context switching. Similar to the kernel batching approaches,

mTCP [25], a user space stack developed with the data plane development kit (DPDK) [24],

avoids system calls by providing mTCP socket APIs that use extensive batching to amortize

the cost of control transfers (detailed in §2.1.2). However, such batching approaches

sacrifice latency in pursuit of higher throughput which negatively impacts system service

performance [26].

Alternatively, textbook extension systems such as Plexus [27] and Application-specific

Safe Handlers (ASHs) [8, 9] allow specific handlers to run in a research OS, thus avoiding

the socket overheads. The main goal of these approaches is to assemble various protocol

layers to build a custom protocol stack that suits the system service, while also running the

entire service within the kernel. However, these approaches require significant refactoring

of services and are not supported in current commodity OSes. Apart from software protocol

stacks, a more drastic approach, popularly used by modern systems, is to replace the socket

interface with a native RDMA API. However, this requires the presence of specialized

adapters at both ends of the connection, and often needs a complete redesign of services [103,

91, 104, 90, 105, 106].

Instead of running the entire service within the kernel, we observe that network services

such as key-value stores, web servers, and distributed systems often have a latency-sensitive
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operation that should be performed with less software stack overhead. For example, GET

latency is critical in key-value stores, which is optimized by research approaches that process

GETs in the network using programmable switches [107, 108]. Similarly, web servers restrict

requests based on an HTTP method or any HTTP headers, which should be done with less

software stack overhead [109, 110]. The above observation implies that low software stack

overhead is a key requirement for the latency-sensitive operation of a service, whereas the

rest of the operations, e.g., SET operations in Memcached, can incur reasonable overhead.

We propose XPS, an extensible protocol stack, which provides the abstractions to allow

an latency-sensitive operation to run immediately after the protocol processing (called the

fast path) in various protocol stacks: in a commodity OS protocol stack (e.g., Linux), a

user space protocol stack (e.g., mTCP), as well as recent smart NICs [6, 7]. In addition,

XPS retains the existing socket layer for the rest of the operations (called the slow path).

XPS’ approach is practical: rather than proposing a new OS [8, 9, 10] or removing the

socket interface completely [11], our goal is to provide stack extensions for latency-sensitive

operations and use the existing socket layer for all other operations. Though extending

the protocol stack is not a new idea, XPS provides a general and portable framework for

embedding latency-sensitive operations within three different protocol stacks by separating

the stack-specific infrastructure and API that is stack agnostic. To provide the fast path,

XPS leverages eBPF that provides extension points only at the L2 layer in the Linux kernel

(see §2.1.3). However, XPS is a generalization of eBPF, which abstracts the fast path (L7)

operations such that they are executed in kernel, user-space stacks, and smart NICs.

To show the benefits of XPS, we ported three types of real-world services with XPS—

caching in a key-value store, filtering and restricting HTTP requests in a web server [111],

and handling heartbeats and consensus in a distributed system—each of which requires

service changes of less than 200 LoC. We show that XPS improves the throughput and tail

latency of the Redis [112] key-value store by up to 98.1% and 73.3% and the Nginx web

server [113] by up to 2.2× and 82.0%, respectively. In addition, compared to IX [22] and
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Figure 3.1: The three XPS components (in bold) co-existing with the existing interface.

ZygOS [23], XPS-mTCP improves Redis’ throughput and tail latency by up to 50.1% and

63.5%, respectively.

With XPS, We make the following contributions:

• Abstraction: We devised the key properties and abstractions of XPS that is stack

agnostic and allow the adoption of our approach with minimal code changes.

• Demonstration: We demonstrate the applicability of an extensible protocol stack in

kernel, user-space stacks, and smart NICs.

• System service: We demonstrate XPS’ benefits with three types of real-world services

in various machine and network environments.

3.2 Design

Overview. XPS consists of three components: the XPS library that provides the abstrac-

tions, the extension framework, and the XPS protocol stack. The extension framework

contains both the predicate table and the packet processing framework and allows inserting

application handlers into the framework. The XPS protocol stack invokes the extension

framework, and the corresponding application handler containing the service logic and a

data map to store the associated data, before the payload is delivered to the service using the
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socket interface. The predicate table, used by the extension framework, binds an application

handler to a predicate. During packet processing, the appropriate application handler is in-

voked if the predicate is true. Predicates are based on the standard 5-tuple: (source IP, source

port, destination IP, destination port, protocol). Figure 3.1 shows the three components that

co-exist with the existing socket interface.

We first present XPS’ abstractions before introducing its extension framework and proto-

col stack. Finally, we describe XPS’ characteristics in three different execution environments:

in-kernel, user space, and smart NICs.

3.2.1 XPS Abstractions

XPS provides four abstractions—control, data, composability, and statistics—that are stack

agnostic and allow the fast path operations; Table 3.2 shows each API in detail.

Control abstractions. The control abstractions provide APIs to create and delete a handler

context that contains the predicate and the handler. The create_context operation returns

the context that is used for the data operations, while the update_context operation allows

changing the handler for an already existing context. The delete_context operation deletes

the predicate and the associated handler details from the predicate table. As the control

operations are isolated from the data path, the control operations are eventually consistent

(i.e., a change of a predicate and its handler details will take effect on the incoming packets

eventually).

Data abstractions. The data abstractions are associated with the application handler

context, which provides APIs to insert/update/delete data from the data map. The data_put

and data_update operations take the handler context along with a key and a value to update

the data map. The data_delete operation takes the context along with a key to delete an

existing entry. Similar to the control operations, data operations are eventually consistent.

In addition, XPS supports strong consistency that is discussed in §3.2.5.

L7 composability abstractions. The composability abstraction binds a handler to a
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Table 3.2: APIs provided by XPS in each category of abstractions, namely, Control, Data, Data
statistics, and Composability.

Abstraction API Description

Control
context* create_context(char *file, int server_sock) Create context with the handler in an object file, for a socket
context* update_context(context *c, char *file) Update existing context with the new handler in an object file
void delete_context(context *c) Delete the already existing handler context

Data
bool put_data(context *c, key *k, val *v) Create new data entry for an existing context with given data
bool update_data(context *c, key *k, val *v) Update existing data entry with the new value
bool delete_data(context *c, key *k) Delete the existing data entry

Statistics void* get_stats(context *c, key *k) Get the number of data access events for a given key
void* get_allstats(context *c) Get the number of data access events for all keys

Composability context* create_compcontext(int server_sock, int offset, int len) Create composability context with the given offset and length
context* create_subcontext(context *c, char *file, char *value) Create subcontext with the handler in an object file for a value

L7 predicate that matches a value retrieved from an offset and length in the L7 payload.

For a single TCP/UDP flow, the L7 predicate invokes an application handler depending

on the value retrieved from the offset and length. For example, IncBricks’ [108] packet

format contains the command, which selects the operation, with a length of four bytes at

offset eight. With the composability abstraction, the value retrieved at offset eight of the

IncBricks’ L7 payload would be used to invoke the appropriate application handler. The

offset and length of the L7 payload is provided in the create_compcontext operation, and

the create_subcontext operation binds an application handler to the provided predicate

value.

Data statistics abstractions. The data statistics abstractions provide APIs to return the

statistics about the operations performed by the associated handler. Data statistics are needed

for services to implement algorithms (e.g., eviction algorithms, event reporting, etc.) based

on the data access pattern.

3.2.2 Extension framework

Predicate and handler binding. The extension framework acts as an interface between

the XPS APIs and its protocol stack by using the predicate table that binds the predicates

to the corresponding application handlers. Further updates to the predicate table (i.e., the

predicates and their associated handlers) are performed using this framework. The predicates

are standard 5-tuples.
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Packet processing. During packet processing, the XPS protocol stack invokes the extension

handler before delivering events to the service. The extension handler performs a predicate

table lookup based on the header retrieved from the packet metadata (e.g., the sk_buff in

the Linux kernel), providing the application handler to the protocol stack if an entry is found.

Similarly, the composability handler is invoked with the packet metadata.

L7 Composability handler. The composability handler is invoked after a L4 predicate is

matched. The composability handler retrieves a value from an offset and length in the L7

payload, and uses the retrieved value to invoke an application handler. The composability

handler uses another map, called the composability map, that binds a handler to the predicate

value. For example, with IncBricks’ packet format, the retrieved increment command (with

a length of four bytes at offset eight), in the L7 payload, is looked up in the composability

map to invoke the increment handler.

3.2.3 The XPS Protocol Stack

XPS provides extensibility by providing an interface to insert the application handlers, and

invokes the extension and application handlers during packet processing. During packet

processing, the application handlers provided by the extension framework are executed

before delivering the events to the service. The XPS protocol stack, based on the return

code of an application handler (TX, DROP, PASS, or RESET), performs further actions such as

sending a response from the application handler (TX), dropping the packet (DROP), passing

the packet to the service (PASS), or terminating the client connection (RESET).

The fast-path processing enables three key design aspects: first, by avoiding the socket

interface for sending responses and dropping packets; second, by immediately handling

requests in the protocol stack, the temporal cache locality of the packet and its metadata is

retained for the application handlers and third, the immediate handling provides a zero copy

interface to the application handler for receiving and sending messages. In addition, the

explicit fast-path handler is executed on smart NICs, avoiding the PCIe overhead.
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TCP protocol processing. In the kernel and user space TCP stack, application handlers

are executed after the protocol stack processing, before delivering (if needed) the events

(EPOLLIN/MTCP_EPOLLIN) to the service. Each packet invokes the application handler if

the predicates match, and the application handler processes the TCP stream. Though the

handlers are invoked for each packet, the message boundaries are identified by the handlers,

and the actions (e.g., TX, DROP) are performed only at message boundaries. Similarly, the

composability handler retrieves the value from an offset and length at message boundaries,

which shows the advantage of tightly integrating the service logic with the protocol stack.

The necessary TCP protocol processing, such as segmentation, congestion control, and

handling packet loss, is performed before the handler execution. With XPS, the return codes

TX or DROP immediately updates the TCP window size and sends an acknowledgment.

We present an example to understand how the extension framework fits into the XPS

kernel TCP stack. Note that with a user space stack, such as mTCP, the logical flow remains

the same though the stack runs in a dedicated thread within the service’s address space. We

look at the packet path in detail with an service—Nginx, for restricting HTTP POST methods

(see §2.1). As shown in Figure 3.2, the packets are first DMAed to the core that processes

the requests 1 . After TCP protocol processing, such as check sum and sequence number

validation, the XPS stack invokes the extension handler before adding events (EPOLLIN) to

the socket layer 2 . Since the extension framework predicate table associates the Nginx

handler with destination port 80, the Nginx handler is invoked for packets destined to

port 80 3 . The Nginx handler builds a response depending on the HTTP method parsed

in the packet, containing an HTTP status code, 405 or 444, for POST or PUT methods,

respectively. For the POST and PUT methods, the Nginx handler returns TX to the XPS TCP

stack 4 , signalling the transmission of the response to the NIC after finishing the protocol

processing (e.g., updating the window size and congestion control), without notifying the

user space Nginx service 5 (fast-path processing). When the method does not match POST

or PUT, the Nginx handler returns PASS to the XPS TCP stack 6 which provides the events
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❶
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❹,❺: Fast-path processing to filter POST requests
❻,❼,❽: Slow-path processing for GET requests

NIC NIC

DMA

DMA

Predicate Handler
DstPort:80 Nginx

... ...

task_struct

*(1234)
...

Predicate table Data map

TCP/IP Stack

Extension

XPS

Figure 3.2: Example of the packet flow with the XPS kernel stack with Nginx. The extension
framework predicate table associates the Nginx handler with destination port 80, while the Nginx
handler data map associates the HTTP status code 405 and 444 with the POST and PUT methods,
respectively. All other methods are passed to Nginx.

(EPOLLIN) to the Linux epoll layer 7 , in turn providing the read event to the Nginx service

in user space 8 (slow-path processing).

3.2.4 Stack Specific Infrastructure

The fast-path handlers specified with XPS’ abstraction are flexible enough to run on three

types of protocol stacks: in-kernel and user space protocol stacks, and on smart NICs. In

this section we describe specific issues and characteristics of XPS’ infrastructure. Table 3.3

shows details of XPS with various implementations.

In-kernel Protocol Stack

The extension framework and fast-path handlers are implemented as eBPF functions that

are inserted into the kernel TCP stack. The data map, accessed by the fast-path handlers,

is available in the kernel, and the service should keep an isolated copy of the data in the

data map using the data abstractions. Consistency is provided by locking the data map entry

during inserts/updates, which provides an eventual consistency model for services. For

example, with services such as key-value stores, the new values updated with SET operation
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is eventually consistent with the handler’s data map, which is acceptable. In addition, to

provide fairness and safe extensibility, the XPS kernel protocol stack provides two important

properties: handler accountability and safety.

Handler accountability. With a kernel protocol stack, an unaccounted application handler

could hurt the entire system by introducing unfairness across user processes. To address

that, XPS ensures that the time taken for fast-path handler execution is accounted for in the

appropriate user space service, which the stock eBPF fails to provide. To provide handler

accountability, the XPS kernel stack accounts for the cycles spent in the extension framework

and the application handler in a new field in the task structure. To avoid frequent accounting

updates, the accumulated cycles in the new field are not accounted for in the user space

process on a per-packet granularity. Instead, once the accumulated cycles amount to the

cycles of one scheduler tick (1 ms in Linux and x86-64), the handler execution time is

accounted for in the user space process. By accumulating the handler execution cycles, XPS

avoids too frequent accounting and yet maintains accuracy with respect to the scheduler

ticks. Similarly, the memory usage of each handler’s data map is accounted for in the user

space process during handler insertion.

eBPF improvements. In addition to the handler accountability property, XPS provides

the following improvements over the existing eBPF interface. First, XPS provides an

extension point in the TCP stack, unlike eBPF’s existing extension points in the TC and

XDP components. By using the TCP extension point, XPS avoids the need for any driver

support, and reuses the existing protocol stack available in the Linux kernel.

Safety. Using the eBPF safety mechanism, XPS ensures that the kernel is secure when

executing various application handlers (detailed in §2.1.3). It is worth noting that, even with

these restrictions, eBPF is expressive enough to perform the latency-sensitive operations

of an application. For example, operations such as handling GETs in key-value stores or

restricting HTTP methods in web servers do not employ unbounded loops or complex

operations. On the other hand, complex operations should be handled in the slow path. In
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Table 3.3: Programming languages used for the handlers and the data structures used for the control
and data abstraction in the kernel, user space, and smart NIC implementations of XPS.

Protocol stack Handler Handler data Data map Predicate table

Kernel eBPF isolated eBPF map eBPF map
User space eBPF/C shared - hash table
SmartNICs eBPF/C isolated hash table P4 tables

addition, XPS’ L4 predicate ensures that the appropriate application handler is invoked,

avoiding packet delivery to the wrong service.

User Space Protocol Stack

With the XPS user space TCP stack, the fast path is executed by the thread that performs

the protocol processing and the slow path is executed by the service thread. The extension

framework and fast-path handlers can be implemented as functions written in either C or

eBPF that are simply hooked into the user space protocol stack using XPS’ control APIs

(see, §3.2.1). The slow path in the XPS user space stack leverages the batching mechanism,

available in mTCP, amortizing the socket overhead. Since the service and the user space

TCP stack directly run in the same address space, XPS’ user space stack has key differences

compared to the in-kernel one. First, in terms of consistency, the handler’s data is shared

between the service and the fast-path handlers, but the data should be guarded explicitly by a

synchronization mechanism in the service. Second, in terms of accountability, the execution

time taken for the fast-path handler is, by default, accounted to the service, requiring no

separate accounting mechanism. Third, in terms of safety, any bugs in the fast-path handler

are limited to the service’s address space, requiring no explicit validation of the handler

code.

Smart NIC

With XPS’ abstractions, the fast-path handlers are invoked directly on the smart NIC,

avoiding overheads associated with the PCIe and socket interfaces. The L4 and L7 predicates

are implemented using P4 that parses the protocol headers, and invokes the application
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Redis GET handler Redis decode Redis encode

int redis_decode_payload(struct sk_buff *skb

                                            redis_datakey_t *key) {

    int len = 0;

    int req_len = skb->proact_info->req_len;

    char *input = skb->proact_info->req;

    // check for GET request in the buffer 

    len += redis_checkget(input, req_len);

    if (!len)

        return 0;

    // update key length and value

    redis_getkey(input, key, &len);

    return len;

}

int redis_encode_payload(struct sk_buff *skb

                                             redis_value_t *value) {

    int len = 0;

    char *output = skb->proact_info->res;

    // encode length into response 

    len += redis_encode_len(output, len, value);

    if (!len)

        return 0;

    // encode value and end-of string CRLF

    len += redis_encode_value(output, len, value);

    return len;

}

❶ ❷

❶

❷

int redis_get_handler(struct sock *sk,

                                     struct sk_buff *skb) {

    redis_datakey_t k = {.len = 0};

    redis_value_t *value = NULL;

    redis_decode_payload(skb, &k); 

    if (k.len) {

        value = bpf_map_lookup_elem(&datamap, &k);

        if (value) {

            if (redis_encode_payload(skb, value))

               return TX;

        }

    }

    return PASS;

}

Figure 3.3: An overview of the Redis GET handler operations using eBPF and the XPS framework.
The handler contains a decode function that provides the key for the eBPF lookup. The encode
function builds the response based on the outcome of the lookup.

handlers based on the predicate. The fast-path application handlers can be implemented as

functions written in either C or eBPF that are provided with the parsed IP, UDP headers, and

the payload as the parameters. Similar to the XPS kernel stack, the data map is explicitly

isolated from the service and should be updated using XPS’ data APIs that perform the

updates over the PCIe interface, thus providing an eventual consistency guarantee. XPS

supports fast-path accounting on NPU-based NICs by binding an application handler to a

micro engine (ME), which does not interfere with another application handler. On ARM-

based NICs, the kernel eBPF accounting mechanism provides fast-path accounting similar

to the accounting mechanism on the host. Finally, any bugs in the fast-path handler are

simply limited to the service and do not impact other services running on the host, satisfying

the safety property. XPS’ smart NIC prototype is implemented with the Netronome Agilo

(2 GB memory) [7] NIC. Although we show XPS’ hardware fast path with a Netronome

NIC, the kernel fast-path mechanism using eBPF can be implemented on other ARM-based

NIC cards, such as the Mellanox Bluefield NIC [6].

The current XPS prototype implements only a stateless UDP protocol: it allows executing

the fast-path handler on the smart NIC, while the slow path is executed on the host. The

fast path response, provided by the application handler, is encapsulated with the protocol

headers, and transmitted from the NIC. The packets not matching the predicates are DMAed

to the host for slow path processing. Because of the statelessness of UDP, the slow path
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processing proceeds normally on the host even if some prior packets were processed in the

fast path. However, with a stateful protocol, such as TCP, the following problem arises:

packets handled by the fast-path handler on the smart NIC result in out-of-order handling

for packets that are handled by the slow-path on the host. The reason for the above problem

is that TCP states (e.g., sequence numbers) are not synchronized between the smart NIC

and the host. The TCP protocol implementation addressing these problems is part of our

future work.

3.2.5 Memory Management

With the kernel and smart NIC prototype, XPS maintains a data cache in the kernel and

smart NIC respectively, which is used to store the service data. The data abstractions allow

an service to explicitly create, update, and delete the entries in the data cache, providing

eventual consistency. However, some service need strict consistency. For such services, XPS

provides strict consistency by updating the data cache before delivering the write requests to

the services, similar to the consistency model provided by programmable switches [107].

For strict consistency, in addition to the fast-path handler for the read requests, a service

should register a fast-path handler for processing the write requests, which updates the XPS

data cache before delivering the write requests to the service. With the fast-path handler for

write operations, with smart NICs, services avoid the explicit data updates over the PCIe

interface.

3.3 Case Studies

We ported three types of services to take advantage of XPS, identifying appropriate op-

erations and implementing them as fast-path handlers using XPS’ abstractions; Table 3.5

describes them in detail.

Key-value stores: Redis and Memcached. With Redis, the latency-sensitive GET requests

are handled in the XPS fast path, and the SET requests are handled in the slow path. Figure 3.3
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shows the eBPF handler which handles the GET requests in XPS kernel protocol stack.

The redis_get_handler performs the following operations: It decodes the request in the

sk_buff structure via redis_decode_payload and provides the decoded key from a GET

request. Subsequently, a key lookup is performed to find the value, which in turn is used to

encode the response via redis_encode_payload. In the case where the value is successfully

retrieved (i.e., it was decoded properly and the key was present in the data map), the

redis_get_handler returns TX to transmit the response immediately, without delivering the

request to the user space Redis. Otherwise, the return code PASS is used to indicate that the

request has to be passed to the user space Redis. The Redis service logic is handled by the

redis_get_key and the redis_encode_payload functions, while bpf_map_lookup_elem is

a eBPF helper function to retrieve the handler data map. The SET requests in the kernel

trigger the data updates to the GET handler’s data map. With Memcached, we show the same

use case using XPS’ UDP stack implemented in a smart NIC.

Nginx. With Nginx, the functionality to black list requests based on the HTTP method

(implemented in a Nginx service module), which should be performed with low overhead, is

implemented using XPS’ fast path. During initialization, Nginx inserts the fast path handler,

and updates the data map with the HTTP method as the key and the HTTP status code (e.g.,

405) as the value using XPS’ data abstraction. Unlike Redis, Nginx slow path does not

trigger an data update operation. Figure 3.2 shows an example of this functionality.

Distributed systems. In our experiment §3.5.2, rediscluster is unable to sustain the traffic

from the client and the replica, resulting in replica heartbeat timeouts. To eliminate these

timeouts, we use XPS’ kernel stack to identify the process’ status using its task structure

and to handle cluster heartbeats in the fast path. In addition to heartbeat handling, we also

handle GET requests from the clients, similar to the case of Redis with XPS. In this case,

Redis Cluster inserts a GET handler on port 6379, which parses client requests and handles

only GET requests. On the cluster port (16379), Redis Cluster inserts the composability

handler, which retrieves the value from offset 12 to 14 (length 2 bytes) in the request, which
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identifies the message type in the specific cluster message. Using the retrieved value, the

composability handler invokes the heart beat handler that handles cluster heartbeats by

identifying the process’ status.

For LogCabin [114], a Raft protocol [18] leader handles the client requests and issues

an AppendEntries RPC to the other servers for replicating log entries. On the other servers,

we use XPS’ kernel stack to handle the AppendEntries RPC in the fast path. The fast-path

handler’s data map is used to append the log entries. Unlike Redis, LogCabin’s slow path

does not trigger an data update operation.

3.4 Implementation

XPS’ kernel prototype extends Linux 4.8-rc1 and modifies the kernel TCP stack to insert

and invoke its handlers. tcp_rcv_established() and tcp_input() invoke the extension

framework with a pointer to the sk_buff and sock structures, and, based on the return code

from the handler, deliver the read/write events to the user space service. To perform proper

accounting of application handlers the task_struct contains an additional field to keep

track of cycles spent.

XPS’ user space prototype extends mTCP [25] to insert and invoke the extension frame-

work before delivering events to the services. ProcessTCPPayload invokes the extension

framework with the TCP payload and the cur_stream metadata and, based on the return

code from the handler, delivers the read/write events to the service. XPS’ smart NIC UDP

prototype implements the predicate table using P4. The application handler on the smart

NIC shares memory with the host using the __export and __emem macro which the XPS

library, on the host, reads and writes to.

3.5 Evaluation

In the evaluation, we answer the following four questions:

• How much effort is required for existing services to adopt XPS? (§3.5.1)
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Table 3.4: The machine configurations used to evaluate XPS.

Machine Type Commodity Large NUMAdata center [115]

Model E5-2630 v3 E7-8870 v2
Frequency 2.40 GHz 2.30 GHz
# Cores 16 120
Layout (cores × sockets) 8 × 2 15 × 8
RAM 128 GB 768 GB
LLC (size × sockets) 20 MB× 2 30 MB× 8
L1 D-TLB entries (per core) 64 64
L2 TLB entries (per core) 1024 512
Hyperthreading Disabled Disabled

Table 3.5: The usage of XPS’ lookup operation demonstrating the applicability of XPS for a range
of services, along with the lines of code for the application handlers (eBPF) and for integrating XPS

to the respective services.

Type Application Functionality Data map lookup Handler Application
(eBPF/C) (modified / baseline (%))

Web server Nginx Blocking POST method Status code using HTTP method 157 149 / 118,452 (0.13%)

Key-value store
Redis-Linux

GET request handling Value using key
266 130 / 44,069 (0.29%)

Redis-mTCP 326 143 / 44,069 (0.32%)
Memcached 513 154 / 17,014 (0.91%)

Composed Redis Redis & Redis Cluster GET and heartbeat handling Comb. Redis & Redis Cluster 460 192 / 44,069 (0.44%)

Distributed system Logcabin AppendEntries RPC handling Append log entries 162 145 / 31,126 (0.47%)

• What are XPS’ benefits in terms of tail latency and throughput for services? (§3.5.2)

• What is the impact of XPS’ fast-path processing on the service’s slow-path processing?

(§3.5.2, §3.5.2)

• What are the costs for the operations of XPS? (§3.5.3)

Experiment setup. We evaluate XPS on three machine setups, as shown in Table 4.2. The

Linux kernel and mTCP are evaluated using the Mellanox ConnectX-2 NIC (40G), and

IX and ZygOS are evaluated using the Intel 82599ES NIC (10G). We used and extended

Redis 3.2.6, Memcached 1.5.7, Nginx 1.10.2, and the most recent version of LogCabin from

Github. For the Redis experiments, we used 32-byte keys and 128-byte values with 2 million

entries that are available in XPS data cache. We measured the latency and throughput using

Memtier [116] with 100 TCP connections for a one-minute run of the experiment. For

mTCP [25], we modified Redis to use the mTCP sockets and configured mTCP to use Intel
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Figure 3.4: The impact of increasing connections using RedisBenchmark in the bare-metal setup.
XPS retains a higher throughput and lower 99th percentile latency with increasing connections.

DPDK [24]. For IX [22] and ZygOS [23], we modified Redis to use the IX event system

calls. For all experiments, the clients use Linux BSD sockets. IX, ZygOS, and mTCP use

a batch size of 64, unless otherwise stated. For Nginx, we use the Wrk benchmark [117],

which provides the latency and throughput for HTTP requests. Henceforth, XPS-mTCP

refers to XPS’ user space TCP stack (with mTCP), while XPS-Linux refers to XPS’ kernel

TCP stack.

3.5.1 Required Porting Efforts

XPS is easy to adopt for real-world services. For example, four types of fast-path handlers

consist of around 100 to 500 LoC (see Table 3.5). To adopt these service handlers, we

modified 100 to 200 LoC (less than 0.9% of changes of the original services) using XPS’

user space library. The XPS library comprises 2,132 LoC and implements the APIs described

in Table 3.2. We show that XPS’ approach is practical and easy to adopt for real-world

services.

3.5.2 Performance of Ported Services

We evaluate XPS with five services: Redis and Memcached NoSQL stores with varying

read/write workload patterns, Nginx with HTTP filtering and blocking, Redis Cluster han-

dling the cluster heartbeat messages, and LogCabin handling consensus messages.
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Figure 3.5: CDF of the latency of requests for 100% reads in the bare-metal setup. XPS shows a
significantly lowered latency compared to Redis on Linux and mTCP.

Redis

Read performance. We first evaluate the impact of the fast path provided by XPS on

read-intensive workloads after loading Redis with 2 million entries that are available in XPS

data cache and by varying the number of connections using RedisBenchmark from 100 to

10,000 in Figure 3.4. We evaluate this experiment in the bare-metal setup with a read-only

workload for 1024 byte values, in line with real cloud deployments [118]. The results

show that with increasing connections, XPS retains the advantage of using the fast path

by achieving both higher throughput and lower 99th percentile latency. In particular, with

10,000 connections, XPS-Linux improves the baseline Linux throughput by up to 34.9%,

while XPS-mTCP improves the baseline mTCP throughput by up to 29.3%. Additionally,

XPS-Linux reduces the 99th percentile latency of Linux by up to 61.3%, while XPS-mTCP

reduces the 99th percentile latency of mTCP by up to 73.3%.

To understand XPS’ performance benefits over Linux and mTCP, we measure the cache

misses of Linux and mTCP with Redis (see Table 3.6) with 100 connections. mTCP shows

increased L3 and L2 cache misses compared to Linux as an artifact of mTCP’s batching,

whereas XPS-Linux reduces L3 cache misses by 21.1% compared to Linux. Similarly,

XPS-mTCP reduces the number of L3 cache misses by up to 66% compared to mTCP,

demonstrating the cache locality benefits of XPS’ immediate handler execution.

To further understand the latency behavior with XPS’ fast-path processing, Figure 3.5

shows the cumulative density function (CDF) for read requests in the bare-metal setup.

XPS-Linux shows a consistently lower latency than Redis on Linux (42.5% lower 99th

percentile latency), and both XPS-Linux and XPS-mTCP provide a reduced 99th percentile
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Table 3.6: Cache misses of Redis on XPS, mTCP (with a batch size of 64 and 128), and Linux for
100% reads in the bare-metal setup. XPS shows up to 66% lower cache misses compared to both
mTCP and Linux.

Linux (In kernel) mTCP (User space)

Stock XPS mTCP-64 XPS mTCP-128 XPS

L2 hit 0.54 0.60 (+11%) 0.45 0.55 (+22%) 0.31 0.53 (+71%)
L3 hit 0.99 0.99 (±0%) 0.87 0.95 (+9%) 0.83 0.95 (+14%)

L3 miss 114k 90k (-21%) 630k 260k (-59%) 940k 320k (-66%)
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Figure 3.6: The CPU utilization, normalized to a single core, with 100% reads in the bare-metal
setup. XPS-Linux shows much lower overall CPU utilization than Redis on Linux and mTCP, even
though XPS improves both throughput and latency.

latency compared to mTCP. In addition, XPS-Linux reduces CPU utilization by 50-80%,

as shown in Figure 3.6. By using immediate handlers, XPS eliminates the socket overhead

shown in Table 2.1 in both the kernel and the user space, along with the additional service

scheduling and cache pollution overheads. With XPS-Linux, the processing time is spent in

the network RX softirq layer in the Linux kernel. With XPS-mTCP, the processing time is

spent in the TCP thread. With these results, we conclude that, for a read-intensive workload

that takes the fast path, XPS-Linux and XPS-mTCP provide significant improvements to

both throughput and latency. In addition, XPS-Linux provides reduced CPU usage.

Read and write performance. We evaluate the throughput and 99th percentile latency of

Redis and XPS-Linux with a varying percentage of reads and writes (GET and SET operations

in Redis), which shows the impact of the fast path on slow-path operations. The results are

presented in Figure 3.7 and show a higher throughput, not only for GETs, but also for SET

operations across different workloads. This highlights the benefit of XPS, speeding up not
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Figure 3.7: Throughput and 99th percentile latency of varying the read/write ratio of the requests.
XPS outperforms the baseline for both GET and SET operations for all cases by up to 98.1% (GET) and
88.9% (SET), showcasing XPS’ ability to improve both slow- and fast-path operations.

only the fast-path processing (GET requests), but also the slow-path processing (SET requests)

by limiting the socket layer only for the slow path.

For a read-intensive workload (5% SETs), XPS improves the throughput of both GETs

and SETs by up to 80%. With respect to the 99th percentile latency, read and write latency is

improved by up to 40%. With a write-intensive workload that has 25% SETs, XPS improves

the fast- and slow-path throughput by up to 25%. With respect to the 99th percentile latency,

read latency is improved by up to 22%. However, the increased 99th percentile write

latency stems from two factors: the handler decode cost, and the delay in delivering write

events to the service when the reads are processed by the handlers. However, the handler

decode cost is minimal (≈450 ns), and the queuing delay for delivering the slow-path events

dominate. To understand the detailed write latency behavior, we show the CDF for 25%

writes in Figure 3.8. The results show that up to the 85th percentile, XPS’ write latency

is lower, and beyond that the slow-path event’s queuing delay dominates. The improved

XPS 85th percentile write latency is the reason for the improved write throughput. With
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Figure 3.9: Throughput of Redis running on AWS and a self-hosted VM. XPS-Linux improves the
throughput by 52.2% for a read-only workload and by 32.7% for a 95% read workload on AWS.

these results, we conclude that for write-intensive workloads (25% SETs), the co-existence

of slow- and fast-path processing improves the throughput for both GETs and SETs, at the

same time reducing the latency for reads and 85% of the SETs.

Figure 3.7 compares the performance of XPS-Linux and XPS-mTCP with both IX and

ZygOS. Though XPS-Linux’s performance improves over the baseline due to eliminating

the socket interface overheads, it still suffers from synchronization and bloated metadata

overheads. However, XPS-mTCP eliminates the above overheads [25] and the batching

overhead, which improves the throughput and latency compared to both IX and ZygOS.

With a read-intensive workload (5% GETs), XPS-mTCP improves the throughput by up to

50.1% and the latency by up to 63.5%, compared to IX and ZygOS. With a write-intensive

workload (25%), compared to IX and ZygOS, XPS improves throughput of reads by up to

20.6% and throughput of writes by up to 32.7%.

Evaluation on local VMs and AWS. To show the impact of XPS-Linux in a VM using SR-
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IOV, we evaluate XPS with Redis using a read-intensive workload. We show the throughput

of both Redis and XPS with both 100% and 95% GETs in Figure 3.9. XPS improves the

throughput by up to 80% and, in addition, improves SET operations. Additionally, XPS

reduces the 99th percentile latency for both GETs and SETs by up to 51.0%.

To show the impact of XPS-Linux in a real-world cloud environment, we evaluate XPS

with Redis using a read-intensive workload on Amazon AWS, using r3.2xlarge VMs with

Intel 10G interfaces. We show the throughput of both Redis and XPS using both 100%

and 95% GETs in Figure 3.9. XPS is able to improve the throughput by up to 52.2% and in

addition improves SET operations. Additionally, XPS reduces the 99th percentile latency for

GETs by 46.6% and SETs by 50.8%.

Comparison with Arrakis. We compare the performance of XPS and Arrakis using Redis

with 100% reads. For Arrakis, we used the Barrelfish operating system that has the merged

Arrakis code. We fixed bugs in Arrakis source code, such as releasing the TX buffers, to

evaluate Redis with Arrakis. In addition, Arrakis does not support congestion control in

the TCP stack. Though the Arrakis paper reports Redis’ read performance to be 250K

PPS, the Arrakis version evaluated with Barrelfish shows 154K PPS. Arrakis shows higher

latency in handing over the packets to the service which reduces its throughput( as shown

in Figure 3.10). Both Linux and XPS shows improved performance compared to Arrakis.

In conclusion, this shows the benefit of XPS providing a mechanism for latency-sensitive

operation in Linux compared to developing a new operating system.

Memcached

With Memcached, 20% of the total keys are stored in the smart NIC data cache, and the

remaining keys are stored in the host. The read requests for the 20% keys are handled

in the fast path, and all the other requests are handled in the slow path. In addition, L7

predicates are used to invoke the GET handler from P4. We use Mutilate [119] to measure

the latency and throughput of requests using the Facebook data set with a Zipf distribution
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Figure 3.10: Comparison of redis’ throughput with 100% gets in Arrakis, Linux, XPS-linux, mTCP,
XPS-mTCP, IX and Zygos. XPS-mTCP outperforms all the other systems, and XPS-linux provides
similar performance as IX and Zygos.

that considers the keys in the smart NIC as the popular keys [120]. Figure 3.11 shows

Memcached’s performance for different workloads. XPS’ hardware fast path shows an

improvement of up to 4.0× for all workloads, and for both read and write operations. In

addition, the latency of both the read and write operations is reduced by up to 58.8%.

XPS’ hardware fast path overcomes the overheads predominant in a software approach

(XPS-Linux and XPS-mTCP). First, decoding the service payload in hardware does not

incur the same overheads as the software mechanisms. Second, the PCIe overhead incurred

in a software-based approach is substantially reduced by executing the fast path in hardware.

Finally, the host CPUs are used only for the slow path, drastically improving the slow path

performance.

Redis Cluster

To demonstrate the flexibility provided by XPS in composing L7 handlers, we evaluate

Redis Cluster with XPS-linux handling both the client’s GET requests and the cluster PINGs

(i.e., heartbeat messages) using fast-path processing in Figure 3.12. In our experiment,

we configure Redis Cluster to generate a PING message every 2 ms, similar to [16, 92].

The master node handles the client’s GET and the cluster PING messages, while the replica

handles only the PING messages. In this experiment, with one master and one replica, the
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Figure 3.12: Throughput comparison with Redis Cluster and LogCabin. With Redis Cluster, XPS-
Linux sustains a 2.1× higher throughput while still answering all PING requests. With LogCabin,
XPS-Linux improves the write throughput by up to 19.9%.

Redis Cluster master node is unable to sustain both the traffic from the client and the replica,

resulting in 4.6 timeouts per second during a 1-minute experiment. With XPS, the master

node not only handles 2.1× more messages but also responds to all cluster PING messages

without any timeouts.

LogCabin

We evaluate LogCabin by configuring a three-node setup with VMs, where one VM acts

as the Raft leader. The client requests are served from the leader, and the leader issues

AppendEntries RPCs to the other servers, which are handled in the fast path on the other
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Figure 3.13: Throughput and 99th percentile latency for HTTP filtering and blocking with Nginx
by blocking POST requests. XPS improves the throughput by up to 2.2× while reducing the 99th
percentile latency by up to 82.0%.

servers. We use the LogCabin benchmark, which repeatedly writes 1,000 values to evaluate

the service throughput. With XPS, the leader handles up to 19.9% more writes because the

other servers respond faster to the AppendEntries RPC (see Figure 3.12).

Nginx

With Nginx, we show the benefits of providing HTTP filtering and blocking using XPS-

Linux (as shown in §3.3). Figure 3.13 shows the results, which demonstrate that XPS

improves the throughput by up to 2.2× for handling 100% POST requests. For 75% and

50% POST requests, XPS improves the throughput of both methods. Additionally, the 99th

percentile latency is reduced by at least 68.6% across all cases. The latency improvement

with XPS is attributed to two reasons: In user space, the entire HTTP request is parsed

before taking action based on the method, whereas XPS’ Nginx handler decodes only the

HTTP method to perform the action. Additionally, GET processing in Nginx does not trigger

data updates.
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Table 3.7: Execution time for the XPS operations in the kernel.

Operation Redis Nginx Redis Cluster LogCabin

Framework load 3.4 ms 2.8 ms 2.4 ms 2.8 ms
create_context() 131.4 ms 4.1 ms 137.4 ms 130.8 ms
update_context() 13.3 ms 14.2 ms 16.6 ms 15.6 ms

data_put() 12.9µs 10.6µs 8.1µs NA
data_update() 9.1µs 2.8µs 3.3µs NA
data_delete() 5.9µs 2.0µs 2.2µs NA

3.5.3 Performance Breakdown

Table 3.7 shows the cost of control and data operations in XPS Linux. The control operation

create_context() loads the handler in the kernel and updates the predicate table, which

takes up to 140 ms, for all the handlers. For handler loading, the high overhead stems

from transferring the eBPF byte code to the kernel and verifying the byte code to maintain

integrity. The lightweight extension framework loads faster than the handlers, which shows

that both the transfer and verification time depend on the size of the handlers. In addition,

the Nginx handler loads faster without the composability handler. For update_context, the

transfer and verification processes are already performed and only the predicate table is

updated, drastically reducing the time. Due to the overhead of create_context, handlers are

loaded during initialization and further updates are handled at run time. For the user space

stack, the control operations are performed using function pointers, which is negligible. For

the smart NICs, the handlers are statically loaded while loading the firmware, which takes a

few hundred milliseconds.

For the data operations in the kernel, we observe a maximum of 12.9µs for data_put on

Redis when inserting a 1KB value, while operations using Nginx and Redis Cluster are less

expensive due to smaller data sizes. With LogCabin, data is not provided from user space

using data operations. Data operations are not applicable in the user space stack because the

data is shared with the service.
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3.6 Limitations

In our current implementation, we identify three limitations. First, the current XPS kernel

implementation uses an isolated data map, which could be further improved by employing a

shared memory between the service and the kernel. Second, operations such as put operation

in key-value store need to update the global data which is only available in the user space

which limits XPS from performing such operations in the slow-path. Third, operations in

key-value stores that operate on larger sets of data ,such as SORT, LREM, SUNION, incur

latency in the order of milli seconds, which are not the right fit for the fast-path operations.

Such operations will block the protocol processing layer in the kernel/user-space from

reading further packets from the NIC which could result in packet drops on the NIC.

Comparison with offloading approaches. Web servers such as IIS [121, 122] have

an HTTP driver to provide kernel-mode caching, which serves frequently visited static

pages. But, unlike XPS, the kernel HTTP drivers do not provide a generic approach,

making them specific HTTP protocol that is implemented in the kernel. In contrast, XPS

enables augmenting the protocol stack with any service-specific code, rendering it a generic

framework applicable to the kernel stack, user space stacks, and smart NICs.

3.7 Chapter Summary

We introduced XPS, which provides a generalized solution to enable the co-existence of both

slow- and fast-path processing in the kernel and the user-space protocol stacks. In addition,

XPS’ abstractions enable real-world services to take advantage of fast path processing on

smart NICs. We demonstrated the benefits of XPS using real-world services and improved

their throughput and tail latency by up to 4.0× and 82%, respectively. In addition to the

protocol stack, other synchronous operations in the operating system and distributed system

impact service latency. Next, We present LATR which provides an asynchronous mechanism

for TLB shootdown.
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CHAPTER 4

LATR: ADDRESSING LATENCY INCURRED BY SYNCHRONOUS

OPERATIONS

4.1 Introduction

Translation lookaside buffers (TLBs) are frequently accessed per-core caches that store

recently used virtual-to-physical address mappings. TLBs enable fast virtual address transla-

tion that is critical for service performance. Since TLBs are per-core caches, TLB entries

should be kept coherent with their corresponding page table entries. The lack of hardware

support for TLB coherence implies that software should provide the necessary coherence.

In most existing systems, system software such as an operating system (OS) maintains the

TLB coherence with the page table.

To provide TLB coherence, an OS performs a TLB shootdown, which is a mechanism

to invalidate stale TLB entries on remote cores. TLB shootdowns are triggered by various

virtual memory operations that modify page table entries, such as freeing pages (unmap()),

page migration [123, 13], page permission changes (mprotect()), deduplication [124, 125],

compaction [126], and Copy-on-Write operations (CoW).

Unfortunately, the existing TLB shootdown mechanism is very expensive—a shootdown

takes up to 80µs for 120 cores with 8 sockets and 6µs for 16 cores with 2 sockets that is a

widely used configuration in modern data centers [115]. This is mainly because most existing

systems use expensive inter-processor interrupts (IPIs) 1 to deliver a TLB shootdown: e.g.,

an IPI takes up to 6.6µs for 120 cores with 8 sockets and 2.7µs for 16 cores with 2 sockets.

Even worse, current TLB shootdown mechanisms handle invalidation in a synchronous

manner. That is, a core initiating a TLB shootdown first sends IPIs to all remote cores and

1IPIs are the mechanism used in x86 to communicate with different cores.
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Figure 4.1: The performance and TLB shootdowns for Apache with Linux and LATR. LATR

improves Apache’s performance of serving 10 KB static web pages by 59.9%; it removes the cost of
TLB shootdowns from the critical path and handles 46.3% more TLB shootdowns.

then waits for their acknowledgments, while the corresponding IPI interrupt handlers on the

remote cores complete the invalidation of a TLB entry (see §2.2 for details).

Such an expensive TLB shootdown severely affects the overall performance of services

that frequently trigger memory management operations that change the page table [38, 49],

such as web servers like Apache [127] and data analytic engines like MapReduce [128, 129].

For example, a typical Apache workload serving small static web pages or files does not

scale beyond six cores with the current TLB shootdown mechanism in Linux (see Figure 4.1).

Once alleviated by our new mechanism, Apache can handle 46.3% more TLB shootdowns

and thus improve its throughput by 59.9%. More importantly, it is all possible without any

service-level modifications.

To solve this problem, there have been two broad categories of research, namely,

hardware- and software-based approaches. Hardware-based approaches strive to provide

TLB cache coherence in hardware (see §2.2.2), but require expensive hardware modifications

and introduce additional verification challenges to the microarchitecture, which is known to

be bug-prone [39, 40, 41, 42, 43, 44, 45]. Software-based approaches, on the other hand

(see §2.2.3), focus on reducing the number of necessary IPIs to be sent, either by batching

TLB invalidations (e.g., identifying the sharing cores [49]), or using alternative mechanisms

instead of IPIs (e.g., message passing [50]). However, current software-based approaches
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still handle TLB shootdowns synchronously and do not eradicate the overheads associated

with the TLB shootdown. It means that, even with a message-passing alternative [50], a core

initiating a TLB shootdown should wait for acknowledgments from participating remote

cores. A synchronous TLB-shootdown mechanism increases the latency by several micro-

seconds for certain virtual address operations, which is known to a culprit that contributes to

the tail latency of some critical services in data centers [2].

To solve this inherent synchronous behavior of TLB shootdowns, we propose a software-

based, lazy shootdown mechanism, called LATR, that can asynchronously maintain TLB

coherence. The key idea of LATR is to use lazy memory reclamation and lazy page table

unmap to perform an asynchronous TLB shootdown. By handling TLB shootdowns in a lazy

fashion, LATR can eliminate the performance overheads associated with IPI mechanisms

as well as the waiting time for acknowledgments from remote cores. In addition, as a

software mechanism, LATR is readily implementable in commodity OSes. In fact, as a

proof-of-concept, we implement LATR in Linux 4.10.

We enumerate in Table 4.1 the operations in which a lazy TLB shootdown is possible. For

free operations, such as munmap() and madvise()2, lazy memory reclamation enables a lazy

TLB shootdown. Similarly, a lazy TLB shootdown is applicable to migration operations,

such as AutoNUMA page migration, where page table entries can be lazily unmapped

to enable a lazy TLB shootdown. However, LATR’s lazy approach is not applicable to

operations such as permission changes, ownership changes, and remap (mremap()), where

the page table changes should be synchronously applied to the entire system. LATR supports

common operations, such as free and migration, and improves real-world services such as

Apache, Graph500, PBZIP2, and Metis. In addition, the proposed lazy migration approach

can play a critical part in emerging systems using heterogeneous memory where pages are

migrated to faster on-chip memory [12, 13, 14] and in emerging disaggregated memory

systems in data centers where pages are swapped to remote memory using RDMA [15, 5].

2For example for the case of MADV_DONTNEED and MADV_FREE.
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However, there are a few challenges in handling TLB coherence in a lazy manner. First

and foremost, LATR should guarantee the correctness of the new, lazy approach (i.e., how

does LATR ensure that stale entries do not have negative, or adversarial impacts on the kernel

and to service?). We laid out the correctness sketch in §4.3.2 and §4.3.3. Second, a lazy

TLB mechanism should make non-trivial design decisions: how the shootdown information

is communicated to the remote cores without relying on IPIs, and when the remote cores

should invalidate their TLB entries (§4.3.1).

We developed LATR as a proof-of-concept in Linux 4.10, and compared it with both

Linux 4.10 and ABIS [49], a recent, state-of-the-art approach to reduce the number of TLB

shootdowns that can be complementary to LATR. LATR makes the following contributions:

• LATR provides a lazy TLB shootdown for free operations using a lazy memory

reclamation mechanism, and for migration operations using a lazy page table unmap

mechanism.

• We also reason about why such lazy operations are still correct for both free and

migration operations in commodity operating systems.

• We demonstrate LATR’s approach is effective on both small (2 sockets, 16 cores)

and large NUMA machines (8 sockets, 120 cores) when running real-world services

(Apache, PARSEC, Graph500, PBZIP2, and Metis). With a large NUMA machine,

LATR reduces the cost of munmap() by up to 66%. In addition, LATR improves

Apache’s performance by up to 37.9% compared to ABIS and 59.9% compared to

Linux.

4.2 Overview

LATR proposes a lazy TLB shootdown approach for virtual memory operations such as free

(e.g., munmap() and madvise()) and page migration (e.g., AutoNUMA page migration), as

shown in Table 4.1. The key idea that drives LATR is the delayed reuse of virtual and physical

memory for free operations. Currently, the immediate reuse of the virtual and physical pages
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Table 4.1: Overview of virtual address operations and whether a lazy TLB shootdown is possible. A
lazy TLB shootdown is not possible when PTE changes should be immediately applied to the entire
system for their correct behavior.

Classification Operations Lazy operation
possible

Free munmap(): unmap address range ✓
madvise(): free memory range ✓

Migration

AutoNUMA [123]: NUMA page migration ✓
Page swap: swap page to disk ✓
Deduplication [124, 125]: share similar pages ✓
Compaction [126]: physical pages defrag. ✓

Permission mprotect(): change page permission -

Ownership CoW: Copy on Write -

Remap mremap(): change physical address -

involved in a munmap() operation necessitates an immediate TLB shootdown, e.g., via a

mechanism like inter-processor interrupts (IPIs). However, considering the large virtual

address space (248 bytes) and the amount of RAM (64 GB and more) available in current

servers, not reusing the virtual and physical pages immediately enables an asynchronous

TLB shootdown.

Support for free operations. LATR relies on the following invariant for the correctness

of free operations: virtual and physical pages can be reused only after the associated TLB

entries have been cleared on all cores. To ensure that the invariant holds for a free operation,

LATR stores the virtual and physical pages to be freed in a separate lazy-reclamation list

instead of adding them to the free pool immediately, which avoids their immediate reuse

across all cores. LATR issues a local TLB invalidation for the TLB entries on the current

executing core. In addition, instead of sending IPIs to the other participating cores, the

state needed for the TLB shootdown is recorded in per-core invalidation states (referred to

as LATR states §4.3.1). During a context switch or scheduler tick, the participating cores

perform a local TLB invalidation by sweeping the other cores’ LATR states via regular

memory reads. The context switch and scheduler tick provide a periodic transition to the OS,

which provides the opportunity to perform the state sweep and a TLB invalidation. Since the
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TLB invalidation is performed during a context switch or scheduler tick, the scheduler tick

interval (1 ms in Linux x86) establishes an upper bound time limit for a TLB shootdown.

Based on this upper bound, LATR releases the virtual and physical pages using a background

thread after a scheduler tick on the cores. As these scheduler ticks are not synchronized

across all the cores, LATR delays the reclamation by twice the scheduler tick interval (2 ms).

Support for page migration operations. In addition to free operations, LATR’s lazy

TLB shootdown mechanism is applicable to page migration (e.g., AutoNUMA in Linux).

For AutoNUMA, lazily changing the page table enables a lazy TLB shootdown. In LATR,

the background task records the LATR state without changing the page table immediately.

During the scheduler tick, the first core that reads the LATR state changes the page table,

followed by local TLB invalidation. The other cores that read the LATR state during the

scheduler tick, perform only the local TLB invalidation. The existing AutoNUMA page-fault

handling and page-migration algorithm handle page migration, which is not modified by

LATR. A similar algorithm can be used for other migration operations such as page swapping,

deduplication, and compaction. For example, with a least recently used (LRU) based page

swapping algorithm, the page table unmap and swap operation can be performed lazily after

the last core has invalidated the TLB entry. LATR’s proposed lazy AutoNUMA and page

swap algorithms are important for emerging systems with heterogeneous memory [13] and

disaggregated memory [15, 5].

4.3 Design

Using the idea introduced in §4.2, we describe the design of LATR for x86-based Linux

machines in detail. We first introduce the states needed by LATR (referred to henceforth

as LATR states), and explain the TLB shootdown operation using the LATR states. Using

the LATR states component, we describe the free operations (e.g., munmap() and madvise()

in §4.3.2) and migration operations (e.g., AutoNUMA in §4.3.3). An overview of the LATR

states is given in Figure 4.2.
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Figure 4.2: Overview of LATR’s interaction with the system and its data structures. LATR uses per-
CPU states ( 1 ) to identify the cores included in a TLB shootdown. The states are made accessible
to remote cores via the cache coherence protocol ( 2 ) that remote cores use to clear entries in their
local TLB.

4.3.1 LATR States

LATR saves the shootdown information in the LATR states, which are used for asynchronous

TLB invalidation. The LATR states are a per-core cyclic lock-less queue (as shown in Fig-

ure 4.2), which is allocated from a contiguous memory region. Each entry in the LATR

states holds the following information: the addresses start and end of the virtual address for

the TLB shootdown, a pointer to the mm_struct to identify the current running process, a

bitmask to identify the remote CPUs involved, flags to identify the reason for the shootdown

(e.g., to distinguish migration and free operations), and an active flag. The CPU bitmask

identifies the remote cores on which the TLB invalidation should be performed for a partic-

ular entry’s address. The active flag is used to identify currently valid entries. To ensure

ordering between memory instructions, an entry is activated after setting all the fields using

an atomic instruction coupled with a memory barrier.

Storage overhead. In LATR, each core stores 64 LATR states. The size of each state is

68 B, while all LATR states on a system with 32 cores amount to 136 KB, occupying less

than 1% of the last-level caches (LLC) of recent processors (e.g., at least 16 MB for an

8-core Intel CPU [130]). Even on an 8-socket, 192-core machine, the total size of all LATR

states grows to only 816 KB, which corresponds to less than 1.3% of the LLC [131].

State update. The core initiating the TLB shootdown sets all fields of a LATR state,
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including the CPU bitmask. Currently, Linux calculates the CPU bitmask for sending IPIs

based on the cores where the process is currently scheduled. LATR uses the same logic

to update the CPU bitmask in the state. Since the states are in memory, the state updates

are available to all other cores using the cache-coherence protocol. We show an example

in Figure 4.3, where CPU1 initiates the TLB shootdown. It includes CPU2 and CPU5 in the

bitmask, as the process is currently scheduled on both these CPUs ( 1 ). The state update in

LATR eliminates the overhead of sending IPIs waiting for the ACKs that present in Linux and

existing OSes.

Asynchronous remote shootdown. During a periodic interval (scheduler tick or context

switch), each core sweeps the LATR states of all available cores. The state sweep operation

checks the LATR states from all cores, taking advantage of hardware prefetching since the

states are allocated as contiguous memory blocks. Using the active flag and the CPU bitmask

available in a LATR state, a core identifies states relevant to itself and invalidates the TLB

entries on the core. In addition, after the TLB invalidation, the core removes itself from the

CPU bitmask of the respective state. During the state sweep operation, each core updates

the CPU bitmask and the active flag using an atomic operation that eliminates the need for

locks. For example, in Figure 4.3, CPU2 and CPU5 invalidate their local TLB entries during

the state sweep operation before resetting the CPU bitmask in the state ( 2 and 3 ). In

addition, CPU5, the last core performing the local TLB invalidation, resets the active flag

in the LATR state ( 3 ). By means of this lazy asynchronous shootdown, LATR inherently

provides batched TLB invalidation without using IPIs. For example, similar to Linux where

the entire TLB is flushed if there are more than 33 TLB invalidations (i.e., half the size of

the L1 D-TLB), LATR flushes the entire TLB during state sweep.

The LATR shootdown is performed during the scheduler tick or a context switch,

whichever event happens first. The scheduler tick or context switch event provides an

existing transition mechanism in the current OS, which we leverage for the state sweep and

TLB invalidation. The LATR TLB invalidation during a scheduler tick or a context switch
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Figure 4.3: Example of the usage of a LATR state. CPU1 unmaps a page ( 1 ) which is also present
in CPU2 and CPU5. At the scheduler tick, all other CPUs will use the LATR state to determine if
a local TLB invalidation is needed and CPU2 ( 2 ) and CPU5 ( 3 ) will invalidate their local TLB
entry before resetting the LATR state to be reclaimed.

eliminates the interrupt handling overheads associated with IPIs. In addition, it reduces the

cache pollution overhead resulting from IPI interrupts (see Table 4.4).

4.3.2 Handling Free Operations

In this section, we analyze the handling of free operations using the LATR states.

Lazy memory reclamation. A key part in the design of LATR, as outlined in §4.2, is

the lazy reclamation of both virtual and physical pages. LATR establishes the following

invariant: during free operations, virtual or physical pages are released only after associated

TLB entries have been cleared. In LATR, to honor this invariant, we explore the following

relaxation: By allowing a delay (e.g., 2 ms, twice the scheduler tick interval as introduced

in §4.2) before reclaiming virtual and physical pages, we can remove both the reclamation

of memory and the need for a TLB shootdown from the critical path of free operations such

as munmap() and madvise().

LATR deletes the mappings from the page table entry (PTE) during free operations;

however, instead of freeing the virtual and physical pages, LATR maintains the list of virtual

and physical pages to be freed lazily in the mm_struct. In addition, LATR maintains a global

list of mm_structs, synchronized using a global spin lock, to identify the tasks participating
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Figure 4.4: An overview of the operations involved in unmapping a page in LATR. LATR removes
the instantaneous TLB shootdown from the critical path by executing it asynchronously.

in a lazy reclamation. To ensure that the virtual address is not reused, the lazy virtual address

list is traversed during any memory allocation, and the addresses in the lazy list are not

reused. Similarly, since the physical page reference count is non-zero, LATR ensures that

the physical pages are not reused.

Handling munmap(). Using the lazy memory reclamation and the LATR states, LATR

removes the instantaneous shootdown from the critical path of free operations. Instead,

on execution of these operations, LATR simply records the states to shootdown a set of

virtual addresses (the state information) but does not send an IPI immediately, as outlined

in §4.3.1. In the case where there are more shootdowns per interval than there are per-core

LATR states (i.e., 64 LATR states per core), LATR issues IPIs as a fallback mechanism.

Furthermore, LATR’s lazy free operation introduces new race conditions that LATR solves,

these conditions are discussed in §4.3.4.

A detailed example of LATR handling an munmap() operation is shown in Figure 4.4 as a

timeline. Core 2 executes the munmap() system call resulting in a TLB invalidation followed

by core 2 saving the LATR state which includes the cores 1 and 3 in the CPU bitmask. The

munmap() execution adds the page to the lazy free list. Due to the CPU bitmask, core 1 and

core 3 invalidate their local TLB entry during their respective scheduler ticks (after 1 ms)

and reset their respective CPU bitmask in the LATR state. Core 2 runs the LATR background

thread (after 2 ms), and frees the virtual and physical pages in the lazy list.

Lazy TLB shootdown correctness. The correctness of LATR’s handling of TLB shoot-
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Figure 4.5: AutoNUMA page migration in LATR. LATR removes the need for an immediate TLB
shootdown when sampling pages for NUMA migration.

downs for free operations relies on the invariant introduced in §4.2: Virtual and physical

pages can only be reused after associated TLB entries have been invalidated. To fulfill this

invariant, LATR waits two full cycles of TLB invalidations (i.e., two scheduler ticks and

2 ms) to ensure that all associated entries have definitely been invalidated by at least one

scheduler tick.

4.3.3 Handling NUMA Migration

In addition to supporting free operations, LATR’s design also provides a lazy mechanism for

migration operations, such as AutoNUMA page migration. We discuss the LATR mechanism

for AutoNUMA page migration in this section.

The current AutoNUMA design in Linux includes a remote TLB shootdown (see §2.2),

which accounts for up to 5.8–21.1% (page count ranging from 1 to 512) of the overall time

in the case of a page migration. However, this TLB shootdown cost is paid even if the page

fault handling decides to not migrate the page. LATR’s mechanism for AutoNUMA provides

a lazy TLB shootdown approach, eliminating the expensive TLB shootdown operation.

Lazy page table change. For AutoNUMA, a key part of LATR design is the lazy page table

change after an interval (1 ms). LATR maintains an invariant that the pages are migrated,

after the interval, only after all cores performed a TLB shootdown. LATR uses the state

abstraction to maintain this invariant and to perform the lazy page table change.

AutoNUMA mechanism. We illustrate the approach taken with LATR in Figure 4.5, which

exemplifies LATR’s key design change (shown with two cores on two different sockets):
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When the AutoNUMA daemon decides to unmap a page from the page table to test for a

potential migration, LATR records only this state into a LATR state instead of unmapping

the page immediately, delaying the TLB shootdown. This state simply informs all cores to

invalidate their local TLB for the specified page at the next scheduler tick. Any memory

access before the scheduler tick can proceed without interruption. In addition to invalidating

the local TLB entry, the first core performs the page table unmap operation (shown as “Clear

PTE”) before invalidating its TLB entry. The page unmap operation results in a page fault

when the page is next touched, resulting in a potential page migration, similar to the existing

design in Linux.

LATR removes the need for an instantaneous and costly IPI while retaining the design of

AutoNUMA. As LATR delays the page table unmap operation until the next scheduler tick

(1 ms), there is no additional overhead imposed on the services. This design trades off the

expensive IPI-based TLB shootdown for additional waiting time until the next scheduler

tick (up to 1 ms). Furthermore, LATR’s lazy migration introduces new race conditions; their

handling in LATR is discussed in section §4.3.4.

Figure 4.5 shows an example of the LATR mechanism used in conjunction with the

AutoNUMA page migration. The AutoNUMA background daemon on core 2 adds a state

to the LATR states instead of unmapping the page from the page table. This state includes

the CPU bitmask of all the cores, including core 1 and core 2. The scheduler tick on core 2

initiates the unmap operation (shown as “Clear PTE”) and then invalidates its local TLB.

The scheduler tick on core 1 only invalidates its local TLB. The next page access on core 1

triggers the page fault handler and subsequently the page migration due to a page access

from a different NUMA node.

Correctness for AutoNUMA migration. We show the correctness of LATR’s AutoNUMA

migration. Memory accesses during the interval (1 ms) proceed normally. The first core

performing the TLB shootdown, after the interval, will unmap the page from the page table.

Memory accesses after the interval thus result in a page fault. If the page fault handler
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migrates pages, LATR holding a lock until all cores perform their local TLB invalidation

ensures that parallel writes are not allowed during the migration.

4.3.4 LATR Race Conditions

In this section, we discuss the possible race conditions introduced by a lazy TLB shootdown

and their handling with LATR.

Reads before a TLB shootdown. For free operations, an service error can result in reading

already freed memory before the scheduler tick (1 ms). On cores where the respective TLB

entry is not invalidated yet, LATR serves the read from the old, not yet freed page. However,

after the LATR TLB shootdown during the scheduler tick, any further reads will result in a

page fault, which eventually results in a segmentation fault.

Writes before a TLB shootdown. For free operations, an service error can result when

writing values to the unmapped memory before the scheduler tick (1 ms). On cores where

the TLB entry is not invalidated yet, LATR allows writes to the old page that is not yet

freed. However, after the scheduler tick interval, any further writes will result in a page fault,

which eventually results in a segmentation fault.

For both reads and writes, LATR does not prohibit services to read or write to an

unmapped page for a specific interval (until the scheduler tick, up to 1 ms) although this

service behavior is the result of an service error. However, LATR prevents the consequences

(e.g., page corruption) of these reads or writes to impact other processes or the kernel by not

releasing the physical pages before the LATR TLB shootdown is complete.

AutoNUMA balancing. With LATR’s delayed page table unmap operation for the case

of AutoNUMA, there is a possibility that a page fault could occur on any core before the

page table unmap operation is complete, for example if a page fault occurs simultaneously

with the first core unmapping the page from the page table. However, both the page fault

and the AutoNUMA page table unmap operation are guarded by the mmap_sem semaphore,

which ensures that the unmap operation is completed before the page fault handler can
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proceed. Similarly, the page fault is handled only after all cores have performed the LATR

TLB invalidation for the AutoNUMA migration; otherwise, cores that have not invalidated

their TLB entries yet could proceed in writing to the page under migration. To avoid such

a race condition, the first core that performs the page table unmap releases the mmap_sem

only after all CPU bitmasks in the LATR state are cleared, indicating that all cores have

invalidated their TLB entries. Thus, the next page fault can then trigger the NUMA page

migration.

4.3.5 Approach With and Without PCID

Process-context identifiers (PCIDs) are available in x86 to allow a processor to cache TLB

entries for multiple processes and to preserve it across context switches. LATR’s lazy

invalidation approach is applicable regardless of the OS’ use of PCIDs. When PCIDs are

not used (as Linux 4.10 elects to do), invalidating TLB entries pertaining to the states during

the scheduler tick is important to remove stale entries within a bounded time period (e.g.,

1 ms). During a context switch, however, the TLB is flushed, eliminating the need for a

LATR invalidation. In the case where PCIDs are being used, only TLB entries matching the

currently active PCID can be invalidated. Since the invalidation should be performed before

the PCID is changed, LATR’s TLB invalidation during a context switch is mandatory. When

using PCIDs, TLB invalidations can be triggered only for the currently active PCID. When a

different PCID is active, LATR aborts migrations similar to a case where AutoNUMA aborts

a page migration if the page fault does not indicate a remote socket accessing the page.

4.3.6 Large NUMA Machines

LATR eliminates the use of expensive IPIs to disseminate the TLB shootdown information.

Instead, LATR requires writing the LATR states to memory, which implicitly propagate to

the LLCs of all sockets via the hardware cache coherence protocol, making LATR highly

scalable. The lazy approach employed by LATR eliminates the synchronous TLB shootdown
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Figure 4.6: INFINISWAP with support for lazy swapping with LATR. Access bits are used to move
pages on access ( 1 ) to the active list ( 2 ). After the LATR epoch is finished and all TLB invalidations
have taken place, the pages are swapped out to remote memory ( 3 ).

overhead, which amounts to up to 80µs on an 8-socket machine (as shown in Figure 4.9).

4.3.7 Handling page swapping

In addition to supporting free operations with PCIDs, LATR’s design provides a lazy mech-

anism for page swap operations. We discuss the LATR mechanism for page swapping in

this section. The current page swap design in Linux includes a remote TLB shootdown (see

Figure 2.3), which accounts for up to 18% of the overall time in the case of a page swap

using INFINISWAP. LATR’s mechanism for page swapping provides a lazy TLB shootdown

approach, eliminating the expensive TLB shootdown operation (see Figure 4.7).

Lazy page swapping. The key part of LATR’s design for background page swapping (e.g.,

kswapd in Linux), is to swap pages lazily after LATR’s epoch of 1 ms, after the inactive

pages’ TLB entries are invalidated. LATR maintains an invariant that the pages are swapped

out, after an LATR epoch, only if their TLB entries are not present in any of the TLBs. The
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Figure 4.7: Page swapping in LATR. LATR removes the need for an immediate TLB flush after
pages are swapped out.

pages accessed during the epoch, whose TLB entries are present in any of the TLBs, are not

swapped out and added to the active list.

LATR extends LATR’s states to record the TLB shootdown states needed by a page swap.

The page swap background task instead of swapping out inactive pages immediately, adds

the state to the LATR states. Due to the large inactive list, the added state indicates a full

TLB flush on all CPU cores, similar to the existing page swap mechanism (handled using

IPIs). After an LATR epoch, when all cores have fully flushed their TLBs, the inactive pages

are swapped out to remote memory.

To swap out pages to remote memory after an epoch, LATR has to ensure that the TLB

entries of inactive pages are not present in any cores. However, some cores could access

the page in phase two, which would set up the TLB entry again. LATR tracks such inactive

page accesses using the access bit in the PTE. For tracking accesses to inactive pages, the

background task, in addition to adding the states, resets the access bit in the PTE for all the

pages in the inactive list. After an LATR epoch inactive pages that have their access bit set,

indicating that those pages were accessed during phase 2, are moved to the active list while

other pages are (potentially) swapped out.

Page swap policy change. LATR’s lazy mechanism delays page swapping by an LATR

epoch, providing an additional epoch to track page accesses. By tracking accesses during

an epoch, LATR changes the existing page swapping policy by not swapping out pages

accessed during an LATR epoch. Using its lazy swapping policy, LATR improves, in addition

to removing the TLB shootdown overhead, the temporal locality of pages accessed during
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Table 4.2: The two machine configurations used to evaluate LATR.

Machine Type
Commodity

Large NUMA
data center [115]

Model E5-2630 v3 E7-8870 v2
Frequency 2.40 GHz 2.30 GHz
# Cores 16 120
Layout (cores × sockets) 8 × 2 15 × 8
RAM 128 GB 768 GB
LLC (size × sockets) 20 MB× 2 30 MB× 8
L1 D-TLB entries (per core) 64 64
L2 TLB entries (per core) 1024 512
Hyperthreading Disabled Disabled

an epoch by not swapping them out.

Correctness for page swapping. We show the correctness of LATR’s page swapping

operation during the three phases. Page accesses for inactive pages during phase one and

two proceed as before, with the hardware setting the access bit when needed. In phase

two, any page access to an inactive page sets the access bit, as the TLB is flushed and the

access bit is reset when setting up the LATR state. Correctness for page swapping is thus

maintained by not swapping out any pages with the access bit set, maintaining the invariant.

One potential race condition is in phase three: when pages are being swapped out, the

access bit could be set in parallel with the page being accessed, e.g., one core is performing

swapping while another core accesses the page resulting in the access bit set. LATR avoids

this race condition by checking the access bit immediately after resetting the present flag in

the PTE. If the access bit is set, the page is moved back to the active list and is not swapped

out.

4.4 Implementation

We implemented the LATR prototype in 1,012 lines of code by extending Linux 4.10. We

modified the kernel’s TLB shootdown handler to save the LATR states instead of sending

IPIs. We extend the kernel’s munmap() and madvise() handlers to perform the lazy memory
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reclamation, and the AutoNUMA page table unmap handler to save the LATR states.

Lazy TLB shootdown. LATR’s lazy TLB shootdown is handled in native_flush_tlb_others,

in which sending of IPIs is replaced with saving the corresponding LATR states. The state

sweep to invalidate the LATR states is handled in scheduler_tick and __schedule.

Lazy memory reclamation. The VMA and page pointers are added to a lazy list in the

mm_struct, and the mm_struct is added to a global list. The background kernel thread frees

the VMA and page using remove_vma and free_pages, respectively.

NUMA page migration. The function task_numa_work is modified to not trigger the page

table unmap via change_prot_numa. Instead, a handler saving the LATR state is invoked

while, change_prot_numa is invoked later during the scheduler_tick, along with the local

TLB invalidation.

4.5 Evaluation

We implemented a proof-of-concept of LATR based on Linux 4.10. The baseline for the

evaluation is Linux 4.10, while we also compare a subset of cases against ABIS [49], which

is based on Linux 4.5. ABIS is a recent research prototype that aims at reducing the number

of IPIs sent by tracking the set of cores sharing a page via the page table access bits [49].

Using this setup, we evaluate LATR by answering the following questions:

• Does LATR show benefits with microbenchmarks on machines with a larger number

of NUMA sockets?

• What are the benefits of LATR for data center services with heavy usage of free

operations (introduced in Table 4.1)?

• What are the benefits of LATR in the context of AutoNUMA page migration?

• What is the impact of LATR for services which show few TLB shootdowns and what

is the overhead of LATR for memory usage and cache misses?
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Figure 4.8: The cost of an munmap() call for a single page with 1 to 16 cores in our microbenchmark.
TLB shootdowns account for up to 71.6% of the total time. LATR is able to improve the time taken
for munmap() by up to 70.8% with its asynchronous mechanism.

4.5.1 Experiment Setup

We evaluate LATR on two different machine setups, as shown in Table 4.2. The primary

evaluation target is the 2-socket, 16-core machine, while we also show the impact of LATR

on a large NUMA machine with 8 sockets and 120 cores . We run each benchmark five

times and report the average results.

The machines are configured without support for transparent huge pages, as this mecha-

nism is known to increase overheads and introduce additional variance to the benchmark

results [132]. Furthermore, to reduce variance in the results, all benchmarks are run on the

physical cores only, without hyperthreads. We furthermore deactivate Linux’s automatic

balancing of memory pages between NUMA nodes, AutoNUMA, unless specifically noted,

as it might introduces TLB shootdowns during the migration of a page (see §2.2).

4.5.2 Impact on Free Operations

First, we discuss the impact of LATR on operations centered around freeing virtual and

physical addresses, such as munmap() and madvise() (as introduced in Table 4.1).
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Figure 4.9: The cost of munmap() along with the cost for the TLB shootdown for a single page in
Linux compared to LATR on an 8-socket, 120-core machine. TLB shootdowns account for up to
69.3% of the overall cost, while LATR is able to improve the cost of munmap() by up to 66.7%.

Microbenchmarks

To understand the scalability behavior of LATR in isolation, we compare LATR to Linux

while we exclude ABIS [49], as its behavior matches Linux in a microbenchmark where

all cores actually access a shared page. We devise a microbenchmark that shares a set of

pages between a specified number of cores. A subsequent call to munmap() on this set of

pages will then force a TLB shootdown on the participating cores. Each data point is run

250,000 times. The microbenchmark records the time taken for the call to munmap(), as well

as the time taken for the TLB shootdown, excluding other overheads, e.g., the page table

modifications and syscall overheads.

The results of this microbenchmark using one page on our 2-socket, 16-core machine are

shown in Figure 4.8 and exemplify the overheads introduced by the TLB shootdown: In the

baseline Linux system, the TLB shootdowns contribute up to 71.6% to the overall execution

time of munmap(), while a single munmap() call for 16 cores takes up to 8µs. LATR on the

other hand is able to reduce almost all of this overhead and improves the latency of munmap()

by 70.8% by recording only the LATR states on the critical path of munmap(). LATR thus

reduces the latency for munmap() to 2.4µs for 16 cores.

Large NUMA machine. To investigate the behavior of LATR and the baseline Linux on a

large NUMA machine, we run this microbenchmark on the 8-socket, 120-core machine and
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Figure 4.10: The cost of munmap() with an increasing number of pages along with the cost of the
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up to 70.8%, while the impact of the TLB shootdown diminishes with a larger number of pages. At
512 pages, LATR still retains a 7.5% benefit over Linux.

show the results in Figure 4.9. These results show a drastic increase in latency for munmap()

on Linux when using more than 45 cores (more than 3 sockets), as the IPI delivered through

the APIC needs two hops to reach the destination CPU. At 120 cores, the latency for a single

munmap() rises to more than 120µs, with the TLB shootdown accounting for up to 82µs

or 69.3%. LATR on the other hand is able to efficiently use the cache coherence protocol

to complete the munmap() operation in less than 40µs on 120 cores, reducing the latency

by 66.7% compared to Linux, as LATR’s munmap() does not rely on expensive IPIs and

eliminates the ACK wait time on the initiating core.

Increasing number of pages. We investigate the behavior of LATR compared to Linux

when using more than one page; the results for up to 512 pages on 16 cores are shown

in Figure 4.10. The impact of the TLB shootdown diminishes with a larger number of

pages, as the overhead of clearing TLB entries is amortized by more costly operations,

such as changing the page table. Furthermore, Linux elects to fully flush the TLB when

more than 32 pages are being invalidated at once, which furthermore limits the maximum

possible overhead. Even though the impact of the TLB shootdown reduces, LATR still

improves the performance at 512 pages by 7.5% while showing larger benefits with fewer

pages. Furthermore, services can use huge pages (either 2 MB or 1 GB pages on x86), either

directly or via transparent huge pages support in the OS [132], to mitigate the effects of
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performs up to 37.9% better at 12 cores than it.

unmapping many pages at once.

Impact on data center services

We evaluate LATR by quantifying its impact on free operations with real-world services,

using both Apache and the PARSEC [133] benchmark suite.

Apache webserver. We compare the requests per second of Apache with Linux, ABIS [49],

and LATR on the 2-socket, 16-core machine. We use the Wrk [117] HTTP request generator,

using four threads with 400 connections each for 30 seconds, to send requests to Apache,

which hosts a static, 10 KB webpage. Wrk and Apache run on the same machine (to avoid

the network stack becoming the bottleneck) but on a distinct set of cores to isolate the two

services. This configuration leaves up to 12 cores available for Apache. We disable logging

in Apache and use the default mpm_event module to process requests. This module spawns a

(small) set of processes that in turn spawn many threads to handle the requests. To serve an

individual request, Apache mmap()s the requested file to serve a request and munmap()s the

file after the request has been served. This behavior generates many TLB shootdowns due to

the frequent unmapping of (potentially) shared pages. The results are shown in Figure 4.11

70



0

0.5

1

1.5

2

2.5

3

3.5

4

Linux LATR

L
at

en
cy

(m
s)

Figure 4.12: Comparison of Apache’s latency with LATR and Linux using wrk benchmark. LATR

improves the latency of Apache by up to 26.1%.

and show both the requests per second served by Apache, as well as the TLB shootdowns

per second. LATR outperforms Linux by up to 59.9% and ABIS by up to 37.9%. ABIS

shows a reduced performance on lower core counts (¡ 8 cores) because of the overhead of

frequent changes to access bits while outperforming Linux for larger core counts because

of the significantly reduced number of TLB shootdowns. LATR outperforms both Linux

and ABIS because of its efficient asynchronous handling of TLB shootdowns, even though

the rate of shootdowns is up to 46% higher due to the increased performance of LATR.

Furthermore, LATR does not need to use any fallback IPIs (see §4.3.2) during the execution

of this test.

Latency of Apache. In addition to throughput, we evaluate apache latency with LATR and

Linux using the same benchmark used for throughput. LATR improves apache latency by

26.1% compared to Linux (as shown in Figure 4.12). By optimizing the synchronous TLB

shootdown, LATR reduces the CPU overhead on all the cores which enables the reduction in

latency. Apache latency evaluation shows the latency improvement by optmizing system

services such as virtual memory.

Parsec benchmark. We show the performance of LATR compared with Linux across a

wider range of PARSEC benchmarks. The normalized runtime (with respect to Linux) along

with the TLB shootdowns per second is shown in Figure 4.13. LATR shows improvements of

up to 9.6% on cases with a larger number of TLB shootdowns (e.g., dedup) due to frequent

calls to madvise() and shows small improvements for most of the other benchmarks. The
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Figure 4.13: The normalized runtime and the rate of shootdowns for the PARSEC benchmark suite,
comparing LATR and the Linux baseline using all 16 cores. LATR imposes at most a 1.7% percent
overhead while improving the runtime on average by 1.5% and by up to 9.6% for dedup.

reason for the small improvement for most benchmarks is that LATR optimizes background

operations of the system such as reading files via mmap()/munmap(). For one benchmark,

canneal, LATR shows a slight degradation of 1.7% due to frequent context switches for this

benchmark, which triggers frequent state sweeps. Overall, LATR shows an improvement of

1.5% on average over Linux across all PARSEC benchmarks.

4.5.3 Impact on NUMA Migration

In contrast to previous benchmarks, we enable AutoNUMA for the following experiments.

We evaluate the impact of LATR on AutoNUMA with a subset of services (fluidanimate

from PARSEC and ocean_cp from the SPLASH-2x benchmark suite) that benefit from

enabling NUMA memory balancing. Additionally, we evaluate LATR with three real-world

services: Graph500 [134], PBZIP2 [135], and Metis [136, 56, 137]. Graph500 is a graph

analytics workload running a breadth-first search on a problem of size 20. PBZIP2 allows

compressing files in parallel and in memory. We compress the Linux 4.10 tarball while

splitting the input file among all processors. Finally, Metis is a Map-Reduce framework

optimized for a single-machine, multi-core setup.

The results are given in Figure 4.14 and show the normalized runtime of LATR compared
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Figure 4.14: Impact of NUMA balancing on the overall runtime as well as the overall number of
page migrations of LATR compared to Linux on 16 cores. LATR performs up to 5.7% better, showing
a larger improvement with more page migrations.

to Linux, as well as the number of page migrations per second. The results show an

improvement of up to 5.7% for the Graph500 benchmarks while showing similar benefits on

other benchmarks that show a large number of migrations. On PBZIP2, LATR improves only

marginally compared with Linux, as for this service other overheads dominate the runtime.

As AutoNUMA migrates one page at a time, this result aligns with the cost breakdown of a

migration operation showing a 5.8% (one 4 KB page) to 21.1% (512 4 KB pages) overhead

for the TLB shootdown.

4.5.4 Impact on Page Swapping

We evaluate LATR’s benefits with page swapping using INFINISWAP [15] that uses remote

memory as the swap device. We constrain the service inside an lxc container and set

the soft-memory limit of the container to about half of the services working set to induce

swapping via kswapd. Overall, the TLB shootdown accounts for up to 20% of the swapping

time with INFINISWAP when running Memcached with 5M keys using a recently published

workload (ETC) by Facebook [118]. This workload shows around 100,000 TLB shootdowns

per second from background swapping, as the kernel has to ensure that dirty pages are

unmapped and not being written to on all cores before swapping them out.
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Figure 4.15: The impact of swapping using INFINISWAP with Linux and LATR for Memcached
in terms of both latency and throughput for a varying number of cores. LATR improves the 99th
percentile tail latency by up to 70.8% and the throughput by up to 13.5% by reducing the impact of
synchronous TLB shootdowns.

Memcached. We use the Mutilate tool [138] to send requests to Memcached [139],

constraining Memcached and Mutilate to separate NUMA nodes to minimize interference

effects. We show the results with a differing number of cores when running Memcached

with INFINISWAP, on Linux and LATR, for both tail latency and throughput in Figure 4.15.

We show the tail latency for the 90th, 95th and 99th percentile, using 4, 8, and 12 cores.

LATR shows benefits for all of these percentiles, with a larger benefit being visible for

higher percentiles (up to a reduction of 14.8%, 47.2%, and 70.8% for the 90th, 95th, and

99th percentile, respectively). LATR helps in reducing the tail latency for in-memory

caches, which is a critical goal to many data-center services [2]. LATR also shows a larger

benefit when Memcached is run on less cores (e.g., on four cores) as Memcached doesn’t

scale well when increasing the number of cores [140], thus allowing for more idle CPUs

when using more cores which in turn results in a lower tail latency. LATR is also able to

improve the throughput of Memcached by up to 13.5% and 9.8% on average across all three

configurations tested.

LATR’s deferred TLB shootdown algorithm allows pages to move from the inactive

list to the active list (with the help of the active bits in the page table entry) during the

epoch before the TLB shootdown is completed on all cores (e.g., 1 ms). For example, this

swap policy change allows LATR to move around 180 pages per second from the inactive to
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Figure 4.16: The impact of swapping using INFINISWAP with Linux and LATR for Mosaic and
Make. LATR is able to improve the service’s completion time by up to 17.2% as a result of the lazy
swapping approach.

the active list when running Memcached on 12 cores, thus saving the overhead of having

to swap out a page that actually would have been used soon after and would need to be

swapped in again.

Make and Mosaic. We demonstrate LATR’s benefits when swapping with INFINISWAP with

two more services, building a Linux kernel with Make and running a graph processing engine

with Mosaic, focusing on the services’s completion time. In more detail, Make compiles the

Linux 4.10 kernel on a specified number of cores in a massively parallel fashion, loading

the source files into memory in the process. On the other hand, Mosaic [141] is a graph

processing engine, running in an in-memory mode, executing the pagerank algorithm

algorithm on the twitter graph [142]. Mosaic initially loads the graph into memory before

executing 10 iterations of the pagerank algorithm. We report the overall time taken for all

10 iterations.

For both services, we run two configuration for both Linux and LATR, using 12 and 24

cores. The results are given in Figure 4.16 and show that LATR achieves a speedup of up to

17.2% for Make and 17.1% for Mosaic. LATR shows a smaller benefit (of 9.5% and 9.4%,

respectively) for the 24 core configuration as the system has to use all physical and virtual

cores for that configuration which results in only marginal speedup, thereby reducing the

impact of LATR’s improved handling of swapping via INFINISWAP.
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4.5.5 Overheads of LATR

We investigate the overheads imposed by LATR in three aspects: what is the memory

overhead of LATR, how does LATR impact services with few TLB shootdowns, and how

does LATR impact the cache locality of service?

Memory utilization. We perform an analysis based on the microbenchmarks presented

to show LATR’s overhead in terms of memory utilization. In each time period (e.g., 1 ms),

LATR shows an overhead of up to 21 MB of physical and virtual pages (for the case of

16 cores and 512 pages per munmap() call). If fewer cores and pages are being used, the

overhead ranges from 3 MB (for 2 cores sharing a single page) to 1.5 MB (for 16 cores

sharing a single page). Using more pages, the memory overhead stays bounded by 21 MB,

as the overhead of page table modifications and related operations dominates the cost of the

TLB shootdown (as seen in Figure 4.10). Considering the large virtual address space (248

bytes) and the amount of RAM (64 GB and more) available in current servers, the memory

overhead is not high (smaller than 0.03%) and is released back within a short time interval

(2 ms).

Overhead on services. We show the overhead imposed by LATR on real-world services

with few TLB shootdowns in Figure 4.17. This focuses on services being run only on a

single core (two webservers: Nginx and Apache) and a subset of PARSEC benchmarks

which show very few TLB shootdowns. LATR shows a maximum overhead of 1.7% due to

a larger number of context switches while imposing a smaller overhead on other services.

LATR is even able to improve the performance of some of the benchmarks due to optimizing

various background activity in the system, as well as the general benefit of faster unmapping

and freeing of shared memory.

An interesting analysis is the percentage of LLC cache misses for various services and

core counts. These results are shown in Table 4.4 and show that LATR improves cache

misses for a number of services while only imposing a maximum overhead of 0.8% on
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Figure 4.17: The overhead imposed by LATR on services with few TLB shootdowns; subscripts
indicate the number of cores. LATR shows small overheads of up to 1.7% for one benchmark.
Table 4.3: A breakdown of operations in LATR compared to Linux when running the Apache bench-
mark. LATR reduces the time taken for a single shootdown by up to 81.8% due to its asynchronous
mechanism.

Operation Time spent

Saving a LATR state 132.3 ns
Performing single state sweep with LATR 158.0 ns

Single TLB shootdown in Linux 1594.2 ns

other cases. LATR’s improvements in cache misses are due to the removed handling of IPI

interrupts on remote cores. These benefits outweigh the increased cache utilization of the

LATR states, which, however, occupy only a small portion of the LLC of modern processors

(less than 1%, see §4.3.1).

Breakdown of operations. We show a breakdown of operations in LATR compared to

Linux when running Apache on 12 cores in Table 4.3. This breakdown shows the two

separate phases of LATR: saving the LATR states on a per-core basis as well as invalidating

local TLB entries based on the other’s LATR states. This breakdown only includes the time

taken for the TLB shootdown, excluding other effects such as modifying the page table or

the syscall overhead, allowing for a fair comparison between Linux and LATR. Overall,

LATR reduces the time taken for the TLB shootdown by up to 81.8%.
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Table 4.4: The ratio of L3 cache misses between Linux and LATR; subscript indicates the number
of cores the benchmark ran on. LATR shows cache misses to be very close (or better) to the Linux
baseline due to the minimal cache footprint of LATR’s states.

Application Cache Misses Relative Change
Linux LATR

Apache1 6.08% 6.13% +0.84%
Apache6 1.60% 1.55% -3.27%
Apache12 1.23% 1.22% -1.32%

canneal16 80.51% 79.94% -0.71%
dedup16 18.33% 18.14% -1.09%
ferret16 48.02% 48.21% +0.38%
streamcluster16 95.42% 95.25% -0.18%
swaptions16 47.48% 47.23% -0.54%

4.6 Chapter Summary

We presented LATR, a lazy software-based TLB shootdown mechanism that is readily

implementable in modern OSes, for significant operations such as free and page migration,

without requiring hardware changes. In addition, the proposed lazy migration approach can

play a critical role in emerging heterogeneous memory systems and in disaggregated data

centers. LATR reduces the cost of munmap() by up to 70.8% on multi-socket machines while

improving the performance of services like Apache by up to 59.9% compared to Linux and

37.9% compared to ABIS. In addition to synchronous operations in operating systems, such

operations impede service performance in distributed systems where a lazy mechanism

(eventual consistency) is not applicable. Next, we present DYAD that untangles the logically

coupled consensus mechanism from the service.
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CHAPTER 5

DYAD: UNTANGLING LOGICALLY COUPLED CONSENSUS

5.1 Introduction

Consensus algorithms [74, 76, 78, 18] are commonly required in distributed services such

as lock managers [16, 17], key-value stores, and timestamp servers [81]. To guarantee high

availability, consensus algorithms perform state machine replication on multiple replicas.

Consensus algorithms, such as leader-based Paxos [74], Viewstamped replication (VR) [77],

or Raft [18], are used by these distributed services.

Since services optimize their execution to reduce latency and need to classify client

requests to orchestrate consensus for specific operations, existing consensus algorithms tend

to be entangled with the services. For example, services such as Etcd and Cassandra need to

classify the client operations after decoding the packet and then orchestrate the PREPARE

message (see Table 5.1). In addition, Zookeeper [17] speculatively checks the quorum logic

for faster execution of operations, reducing latency, which entangles consensus with service

logic. Unfortunately, such a design practice of entangling the service and consensus logic

incurs two problems. First, it results in an unpredictable, conflicting resource allocation

between an service and a consensus algorithm, in which the consensus algorithms tends to

dominate the resource usage with an increasing number of replicas or when it is contended

(see, indirect cost in §2.1), second, it results in a weak fault domain in which the consensus

states are lost when a service fails.

In this work, we attempt to address these problems by untangling the service and

consensus logic via delegation. Delegation, in this context, means that the consensus logic

is separated from the service logic, and the entire consensus part is executed on a separate

processing element. Unlike offloading techniques that run the entire service with consensus
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Table 5.1: Services need to optimize latency and orchestrate consensus for specific operations after
decoding the packet, which entangles the service with the consensus algorithm.

App. Algo. Consensus operations intertwined in app.

Zookeeper ZAB The application, to reduce latency, speculatively ver-
ifies the quorum logic and the sequence number for
faster execution of operations (create, delete, and
setData)

Cassandra Paxos The storage proxy needs to classify the client opera-
tions (insert and delete), after decoding the packet,
and then orchestrates the PREPARE † message

Etcd Raft The application needs to classify put operations, after
decoding the packet, then the put handler orchestrates
the PREPARE † message

† : PREPARE shown in Figure 5.1. Paxos and Raft: PREPARE ⇔ PROPOSE

on special-purpose hardware, this approach delegates part of the service—consensus—to a

separate entity. In addition, delegation isolates the consensus states, eliminating the weak

isolation problem. In normal cases, the delegated consensus logic handles the high-overhead

coordination needed with replicas before delivering the client requests to the service in

consensus order. The service ensures linearizability by executing the client requests in

the order received from the delegated consensus logic. With delegation, service-level

coordination is only needed for events such as recovery and view change.

Existing research approaches can be classified into two categories. The first category

attempts offloading to FPGAs [92], which is limited in two aspects: first, the service is also

running with the consensus algorithm in an FPGA, and second, the service is limited by the

hardware resources available on an FPGA. In addition, such an attempt to offload does not

eliminate the two problems incurred by a logically-coupled consensus (i.e., unpredictable

resource allocation and a weak fault domain is not eliminated). The second category of

approaches, such as NoPaxos [81], Speculative Paxos [82], and NetPaxos [143, 85], attempts

partial delegation by pushing certain functionality to the network. However, because of

partial delegation, the network-based approaches impose strict ordering guarantees on the

network to decouple consensus. In addition, the approaches that rely on the programmable

switch suffer from high latency and low throughput because of the ordering constraints
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needed in the switches [143, 85, 92, 86].

The key idea of DYAD is to address the problems incurred as a result of logically-coupled

consensus by delegation of consensus algorithms, which are naturally integrated as part

of network operations, using SmartNICs as a target platform. Current SmartNICs provide

hardware filtering, which enables delegation by filtering certain services’ operations, e.g.,

the write operations in Zookeeper, Etcd, and Cassandra are filtered and delivered to the

delegated consensus logic on the SmartNIC. By delegating the consensus algorithm on the

SmartNIC, the consensus coordination with replicas is handled closer to the network I/O,

eliminating the PCIe and CPU [79, 80] overheads (direct and indirect cost §2.1). DYAD

eliminates the unpredictable resource-allocation problem by processing only the client

requests on the host processor. In addition, DYAD eliminates the weak fault domain by

storing the ordered logs and the consensus states on the SmartNIC (currently up to 32 GB [7]

supported). DYAD ensures linearizability [144] by processing the client requests, on the

host processor, in the order delivered by the SmartNIC.

DYAD improves service recovery for consensus algorithms, such as VR, by using the

ordered logs available on the SmartNIC. In addition, DYAD provides an adaptive fault-

detection mechanism that identifies service failures and supports service parallelism by

appending a logical timestamp to the client requests. DYAD’s evaluation with increasing

replicas shows that it improves the throughput and tail latency of service, such as timestamp

server and key-value store, by up to 8.2x and 90%, respectively. In addition, DYAD reduces

the CPU usage by up to 62% by processing only the client request on the host processors. By

delegation, DYAD improves service recovery by up to 67% using the logs on the SmartNIC

and demonstrates ease-of-use with real-world service such as Memcached.

In DYAD, we make the following contributions:

• DYAD provides delegation of consensus, eliminating the unpredictable resource-

allocation and weak fault domain problems in a logically-coupled consensus.

• We demonstrate delegation using SmartNICs by leveraging the hardware packet
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Figure 5.1: Normal-case execution of VR with and without Dyad. The existing VR algorithm incurs
high direct and indirect costs, which increases with increasing replicas. Dyad reduces the direct and
indirect costs by untangling VR, which is executed on the SmartNIC.

filtering and custom packet handling which is supported on commodity SmartNICs.

• We evaluate DYAD on a cluster with three, five, and seven replicas using services such

as timestamp server and key-value stores.

5.2 Design

5.2.1 DYAD Overview

DYAD provides a software architecture which leverages the emerging SmartNICs to build

leader based consensus algorithm such as Viewstamp Replication (VR) protocol that uses

replicated state to provide persistence. By leveraging the SmartNICs, DYAD physically

isolates the consensus operation performed on the SmartNIC and the services running

on the host processor(). To provide the physical isolation, DYAD defines the abstractions

provided by the SmartNIC and the operations performed by the on the host processor (shown

in Figure 5.1). Other than leveraging the SmartNIC, DYAD does not impose any additional

ordering constraints on the network. We assume an asynchronous network, where there are

no guarantees that packets will be received in a timely manner, in any particular order, or

even delivered at all. As a result, the consensus algorithm which is running on the SmartNIC

is responsible for both ordering and reliability. Figure 5.2 shows the system architecture

with the host processor containing the service and the SmartNIC containing the consensus

component.

The SmartNIC provides an ordered client request abstraction to the service running on
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Figure 5.2: Architecture overview of DYAD. Packets are classified by the P4 rules ( 1 ) providing
them to the consensus module ( 2 ) that coordinates with the replicas. The watchdog ( 3 ) monitors
the host RTT for each packet and the timeout handler processes retransmits ( 4 ). The application ( 5
) runs on the host processors executing the ordered requests. In addition, the application performs
disk logging ( 6 ) for protocols such as Raft, and uses DYAD library ( 7 ) for recovery and view
change. The DYAD library reads the ordered logs in SmartNIC memory over the PCIe interface.

the host(§5.2.2). With such an abstraction, the client requests are serialized on the SmartNIC

and delivered in the log order to the host processor after executing the consensus algorithm.

The host processor executes the requests, either using a single or multiple thread, in the order

received from the SmartNIC which ensures linearizability. For multi-threaded services, the

SmartNIC appends logical timestamp to the client requests which is used by the service

to ensure linearizability(§5.2.3). In addition to processing client requests, the ordered

client request abstraction enables the service running on the host processor to recover after

a software failure(§5.2.5). However, to provide physical isolation, fault tolerance is an

important property needed in DYAD. i.e., the service failure on the host processor should

be detected by the SmartNIC, and vice versa(§5.2.4). For service failures, DYAD provides

agnostic fault tolerance by using the round-trip time (RTT) measurements on the SmartNIC.

And for SmartNIC failures, DYAD relies on the heart-beat messages that are part of the
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consensus protocol. We explain the hardware capabilities available on the SmartNICs that

enable DYAD’s abstractions.

Hardware packet filtering. DYAD leverages the hardware packet filtering mechanism

available in the SmartNICs to filter client and consensus messages. Existing commodity

SmartNICs, with FPGAs or network processors, support L7 packet decoding and filtering

mechanism by providing P4 language support. In addition to packet decoding and filtering,

SmartNICs support custom application handlers that executes specific action (process) on a

received packet. In addition to processing a received packet, the application handlers can

either drop a packet or DMA a packet to the host processor or forward a packet back to the

network. DYAD implements custom actions for the client requests and consensus messages

to handle a consensus protocol on the SmartNIC. DYAD classifies the client messages and

the various consensus messages by using the Message type in the DYAD packet format.

SmartNIC processing. The software on the SmartNIC is the core component of DYAD

which is responsible for providing the ordered logs and executing the consensus algorithm.

SmartNICs expose one (or more) virtual interface to the host, which is treated as a network

interface by the operating system for sending and receiving packets. DYAD leverages the

hardware filtering mechanism available in SmartNICs to filter and process the packets deliv-

ered to or received from a virtual interface. The packets destined to the host processors are

processed on the SmartNIC before delivering the packets to the host processor, and similarly

the packets leaving the host processors are processed by the SmartNIC before delivering

the packet to the network. Only the filtered packets are processed on the processing ele-

ments available on the SmartNIC, while the other packets are treated with standard NIC

functionality.

5.2.2 Ordering client requests

The SmartNIC maintains the ordered logs to execute the consensus algorithm on the

SmartNIC. The ordered logs is a linear memory on the SmartNIC where the requests
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Figure 5.3: Packet flow of consensus messages and client messages in the leader node with DYAD.
The client requests ( 1 ) are ordered and logged on the SmartNIC ( 2 ) before executing the VR
algorithm ( 3 , 4 ). After the majority of replicas respond ( 5 ), the client request is forwarded to the
host for application processing ( 6 ). The response message from the host ( 7 , 8 ) is used to send the
COMMIT messages to the replicas ( 9 ). With three replicas, for handling one client message, the
NIC processes eight messages (request + response + 2 PREPARE + 2 PREPAREOK + 2 COMMIT).

from clients are serialized using an atomically increasing sequence number. The ordered

log is used to deliver the client request in the logged order, and are stored on the DRAM

available on the SmartNICs which support upto 32 GB of DRAM capacity. With such a

DRAM capacity, millions of log entires with 1 KB size can be stored. In addition, the

ordered log is available on the SmartNIC after an service failure on the host processor which

enables service recovery. Figure 5.3 shows the packet flow on the leader.

Ordering on leader. The SmartNIC on the leader node filters the client requests and logs

them on the smartnic. Instead of immediately sending the requests to the service running

on the host processor, the consensus PREPARE request are sent to all the replicas. After

majority of the replicas respond with the PREPAREOK message for an entry in the head

of the log, the logged client request is sent to the host processor. The PREPARE messages

received from the other replicas (after the majority) are dropped by the SmartNIC.

Consensus messages can arrive out-of-order from the network. i.e., the PREPAREOK
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message from the majority of the replicas can arrive for a log entry beyond the first log entry.

In such a scenario, DYAD ensures delivering the client requests in log order by forwarding

the requests to the host processor only when the majority of replicas respond to the first log

entry. In addition to sending the first log entry to the host, DYAD sends further log entries

for which consensus is reached. This ensures that the SmartNIC only delivers packets in the

log order to the host even if the network reorders the packet.

In addition to reordering, the network is not reliable which means that the consensus

messages can be dropped. The dropped messages could result in a condition where the first

log-entry does not receive a PREPAREOK message from the majority of replicas. DYAD

relies on timers and back-logs to reinitiate the consensus messages for the log entries that did

not receive the PREPAREOK messages. Though some NICs that use network processors do

not support timers, they can be overcome by using dedicated network processing that trigger

retransmisson at periodic intervals. In addition to timers, retransmissions are triggered when

the log entires are back-logged beyond a particular threshold. Both the above mechanisms

ensures that DYAD provides best-effort delivery when the underlying network in unreliable.

The response message sent by the service is filtered and processed on the SmartNIC.

The response message is processed on the SmartNIC for two reason: the first reason is to

send the COMMIT message to all the replicas and the second reason is to measure the RTT

which is used for fault tolerance. After the SmartNIC processing, the response message

is forwarded to the client over the network. As an optimization, the SmartNIC identifies

in-progress consensus operations and piggybacks the sequence number on the PREPARE

message instead of sending a COMMIT message which reduces the number of messages

processed on the replicas.

Ordering on replicas. In addition to maintaining the ordered logs on the leader SmartNIC,

the ordered logs abstraction is useful on the replicas other than the leader. In the replicas,

the PREPARE message from the leader SmartNIC is decoded , filtered, and append to the

log on the SmartNIC. The PREPARE message is handled and dropped on the SmartNIC
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without forwarding it to the host. In addition to appending the log, the replica SmartNIC

responds with the PREPAREOK message to the leader. The COMMIT message received

from the leader is forwarded to the host along with the corresponding logged data which

results in committing the operation on the replica host. Similar to the ordered client request

delivery on the leader, the COMMIT messages are forwarded to the host processor in the

same log order. Request (client messages on the leader and PREPARE messages on the

replicas) delivered to the host in log order ensures linearizability. Figure 5.4 shows the

packet flow on the leader.

5.2.3 Service parallelism

A single threaded service, running on the host, is linearizable by processing the requests

in the order they are received. However, the same deterministic execution order can not

be maintained if the service is multi-threaded, i.e., a multi-threaded service can not ensure

that the execution order is same as the arrival order. Such a multi-threaded service does not
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ensure linearizability when the requests are delivered in log order. Multi-threaded service

require deterministic execution to provide linearizability, which is provided by DYAD using

logical timestamps.

A logical timestamp is the sequence number which is used to identify a request in the

ordered log on the SmartNIC, which defines the total order for the client requests. DYAD’s

SmartNIC component appends a logical timestamp to client requests that require consensus

to support multi-threaded service. For example, the read operation in a key-value store

requires consensus for which the logical timestamp is appended by the SmartNIC, and the

logical timestamp is not appended to operations such as write. A multi-threaded service

running on the host is linearizable by executing the client requests in the logical timestamp

order. The appended logical timestamp acts as an interface between the SmartNIC and the

host to support multi-threaded services.

DYAD services running on the host use the logical timestamp to ensure total order for the

client commands that require consensus. The logical timestamp is similar to a ticket used in

a ticket lock where the locks are serviced in the order of the ticket issued. However, unlike

a ticket lock, the logical timestamp (ticket) is issued by the SmartNIC. The commands

that does not require consensus, such as the read operations, could be placed on a separate

queue in the host avoiding head-of-line blocking due to linearizable operations. Though the

command execution is serialized, other operations such as receiving the request and sending

the response are handled in parallel.

5.2.4 Fault tolerance

DYAD enables fault tolerance by using the ordered logs available on the SmartNIC. In

addition, DYAD provide failure detection mechanisms to identify services and SmartNIC

failures.

Log persistence. The ordered log maintained by the SmartNIC consensus component is

available after a service failure. In Netronome SmartNICs, the lifetime of the ordered log
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is till an power failure or till the firmware on the SmartNIC is reloaded. In SmartNICs,

such as Mellanox Bluefield, that run a separate operating system (Linux) on the SmartNIC,

the SmartNIC operating system is not affected by the system reboot. In such SmartNICs,

the logs persist a service failure and system reboot, and are only lost upon a power failure.

Consensus algorithms, such as VR, fetch the logs from other replicas during a power failure,

which is a fall back mechanism in DYAD. In addition,DYAD enables disk logging if needed

by the protocol.

Failure detection. To provide physical isolation of the consensus algorithm and the service,

DYAD identifies service failures on the SmartNIC and SmartNIC failures on the host. Iden-

tifying such failures allow the service and the SmartNIC to recover the failed subsystem.

In case of an service failure, the SmartNIC stops executing the consensus algorithm and

the service recovery is initiated using the logs on the SmartNIC and the replicas. In case

of the SmartNIC failure, the SmartNIC should be recovered depending on the SmartNIC

used. e.g., In Netronome SmartNICs, the firmware is reloaded to instantiate the SmartNIC

subsystem. The service running on the host processor sends the heart-beat message to all

the replicas which is only needed when there are no client requests to be handled.

Service failures. Identifying an service failure on the SmartNIC is important, otherwise

the SmartNIC would continue to execute the consensus algorithm and forward the ordered

client requests to the host processor where the service is not running. The other replicas will

not identify the leader service failure because the consensus messages are received from

the leader node which identifies the healthy status of the leader node. However, though the

SmartNIC on the leader node is healthy, the service on the host may not be running.

DYAD measures the RTT for handling each client request from the host processor. i.e.,

an RTT constitutes the time from sending the client request to the host to the time the client

response is received on the SmartNIC. DYAD calculates the weighted moving average of

the RTT, similar to the TCP RTT calculation, and uses this metric to detect service failures.

Equation 5.1 shows the RTT calculation where α value can be between zero and one, and
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DYAD used 0.8 which is a recommended value for TCP RTT calculation. When a client

request does not receive a response for a threshold that is a function of the RTT, then the

SmartNIC identifies the service failure. The threshold should be decided considering the

occasional outlier that could falsely identify a service failure. The different multiplier

values and their corresponding false positive value is further discussed in the evaluation.

When there are no client requests handled by the system, DYAD identifies service failures

using the heart beats sent/received by the service. Since the service on the replicas do

not respond to COMMIT messages, service failure on the replicas is detected using the

heart-beat messages.

HostRTT = α ∗HostRTT + (1− α) ∗ currentRTT (5.1)

SmartNIC failures. The client requests received on the host identifies the health status

of the SmartNIC. In addition, When there are no client request, the heart-beat messages

from the other replicas is used to identify the health status of the SmartNIC. The above fault

tolerance mechanism is applicable on both the leader and the replicas.

5.2.5 Recovery

Service recovery for consensus protocol such as VR involves fetching the replicated logs

from the other replicas, after the service is restored from a checkpoint. DYAD handles the

state-transfer messages that retrieve the replicated logs from the replicas on the SmartNIC.

After the state-transfer messages are decoded and filtered on the SmartNIC, the logs avail-

able on the SmartNIC are used to respond to the state-transfer message. In addition to

handling the state-transfer message, the logs on the SmartNIC provide a first-level recovery

mechanism before fetching the states from the other replicas. The first-level recovery mech-

anism is applicable for recovery resulting from software failure which is the major cause of

failures in data center services. In case of hardware or power failure resulting in the entire

system failure, DYAD falls back to recovering the logs from other replicas.

Replica recovery. DYAD proposes a two stage recovery mechanism to recover the service
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Table 5.2: Recovery and view change interface provided by DYAD

Function Description

clientRequest(request) Provide client request format at compile time
clientResponse(response) Provide client response format at compile time
getNicLog(data, length, dstport) Retrieves the ordered log from the SmartNIC
updateReplica(replicas, dstport) Updates the replica’s state on the SmartNIC

.

on the replicas. In the first stage, the service fetches the logs from the respective SmartNIC

over the PCIe interface. And, in the second stage, it fetches the remaining logs from the

other replicas in the network which is the recovery mechanism proposed by VR protocol.

Without the first stage, all the logs should be retrieved over the network from all the replicas

increasing the network bandwidth needed for recovery.

Leader recovery. Similar two stage recovery mechanism is used to recover the service on

the leader node. The logs on the leader SmartNIC identify the last committed log entry for

which a response is sent to the client. By recovering the last committed operation, DYAD

ensures the “execute-once semantics” after crash recovery [145]. Without the SmartNIC

logs, the last committed entry which sent a response to the client is not trackable because the

leader node could crash after sending the client response and before sending the COMMIT

messages.

Recovery interface. DYAD provides a recovery API that fetches the logs from the

SmartNIC over the PCIe interface(as shown in Table 5.2). As part of the API, the port

number used by the service is used to multiplex the logs used by various services. With the

current interface provided by NIC vendors such as Netronome, the PCIe read throughput

is 16 MB/s with a single thread. However, DYAD increases the PCIe read throughput by

sharding the log and reading the logs with multiple threads. With 16 threads, the PCIe read

throughput is increased to 256 MB/s. The PCIe read throughput for the logs is discussed

further in the evaluation with various log size and threads.
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5.2.6 View change and leader election

View change and leader election are handled by the service running on the host. DYAD

considers these operations as control operations which change the consensus state on all the

replicas. During the view change and leader election operation, the SmartNICs subsystem

stops processing messages, and forwards the messages between the host and the network.

After a view change and leader election, the service running the host performs a service

checkpoint and updates the replica details on the SmartNIC.

DYAD provides UpdateReplica API to update the replica details to the SmartNIC Ta-

ble 5.2. Similar to the log recovery interface, DYAD multiplexes the replica details using the

service port number.

5.2.7 Supporting reliable connection

unlike the VR protocols, there are certain consensus algorithms designed with the assumption

of the reliable network transportation layer. One of such examples is the Raft consensus

protocol: it relies on TCP to communicate with the replicas and to log the client commands

to storage for persistence. DYAD SmartNIC component has a basic TCP protocol that allows

the Raft leader to communicate with the replicas. DYAD TCP stack specifically decodes

Raft headers and payload. And since packet reordering is infrequent in data centers, DYAD

processes only in-order packets and relies on TCP retransmission on the replicas [146].

There are existing approaches proposed in the Linux kernel community to process the

out-of-order packets on the CPU core instead of the SmartNICs, which is applicable to

DYAD TCP stack. In addition, the service running on the host processor logs the requests

to disk before executing the command and sending the response. DYAD demonstrates that

the SmartNIC design allows disk logging if needed by the protocol. Logging to disk, for

persistance, can be eliminated when the SmartNICs support non-volatile memory in future.

Running the basic TCP stack reduces the latency of Raft consensus drastically which in

turn reduces the end-to-end latency. In addition, with Raft, the network packet drops and
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Figure 5.5: The consensus data operations could be executed on three different infrastructure, XDP,
SmartNICs, and programmable switches.

reordering are taken care by the TCP protocol.

5.3 Dyad applicability - infrastructures

In this section, we discuss the applicability of DYAD’s design to other infrastructures such as

express data path, SmartNICs with RDMA, and programmable switches. Figure 5.5 shows

the pictorial representation of consensus data operation that is executed on various infras-

tructures. Figure 5.6 shows the three phases of consensus where ordering and replication

is untangled. With such a untangled algorithm, programmable switches need coordination

with the service running on the host to provide ordered execution. In addition, we discuss

the direct and indirect cost of consensus in these infrastructures. Table 5.3 shows the way

DYAD’s components fit in different infrastructures. In addition, the table shows the protocol

used between the replicas and the need for ordering in these infrastructures. Table 5.4 shows

the direct and indirect cost of consensus with various infrastructures.

5.3.1 Express Data Path

Express data path (XDP) is a new mechanism to reduce the protocol processing and context

switch overhead in the kernel. XDP allows custom user-space functionality to be executed

closer to the NIC drivers which provides the performance benefits needed for consensus

consensus algorithms.
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Table 5.3: The table shows where the control and data operations are performed and the applica-
bility of DYAD’s fault tolerance mechanism on various infrastructures such as XDP, SmartNICs,
and Switches. In addition, it shows the protocol possible between the replicas in the respective
infrastructure and the need for network ordering in these infrastructures.

Systems Operations App Failure Replica Network

Data Control Detection Recovery Protocol Ordering

eXpress Data Path (XDP) Kernel XDP Host App RTT XDP Logs UDP/TCP Not Needed
SmartNIC SmartNIC Host App RTT SmartNIC Logs UDP/TCP Not Needed
SmartNIC-RDMA SmartNIC Host App RTT SmartNIC Logs RDMA Not Needed
Programmable Switch Switch Host App RTT Switch Logs UDP/TCP Needed

DYAD’s data operations can be executed inside XDP, and the control operations can be

executed with a library in the service. The ordered log needed for storing the client requests

is stored in the XDP maps that can store up to 2 million entries. DYAD with XDP needs

failure detection mechanisms to identify service crashes which is possible by tracking the

host RTT. The ordered logs in DYAD XDP is isolated from the service which enables the

service to recover the logs after failures. getNicLog API should be extended to retrieve the

logs from XDP instead of the NICs. However, during the system failure, the entire logs are

lost and the service recovers the logs from other replicas. updateReplica API is needed to

update the XDP module with view changes performed as part of the control operations.

We next analyze the direct and indirect cost with XDP. With respect to the direct cost,

XDP reduces the context switch and protocol processing cost for consensus operations.

However, the PCIe overhead is not reduced by executing consensus with XDP in a normal

NIC. Though, XDP is more useful for System on Chips (SoCs), such as Mellanox Bluefield,

where the PCIe overhead is eliminated, and XDP reduces the system overhead for consensus

messages. With respect to the indirect cost, XDP does not reduce the cache pollution

and CPU overhead completely. In summary, XDP is a more flexible packet processing

framework for consensus which will improve consensus performance. However, the indirect

cost of consensus is not reduced by XDP.

Limitations. The packet parsing and filtering is done in software which adds additional

overhead compared to hardware filtering and parsing. In addition, such parsing should be
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Figure 5.6: The three phases of consensus – ordering, replication, and ordered execution – are shown
in this figure. The cost of ordering and replication is reduced by untangling the operations in XDP,
SmartNICs, or programmable switches. However, programmable switches need coordination with
the service to perform ordered execution.

done for every packet which will induce additional latency for packets which are not filtered.

5.3.2 SmartNICs

In addition to the applicability of DYAD to SmartNICs which we have discussed before this

section, we discuss the applicability of DYAD to SmartNICs with RDMA in this section.

The main difference is that the SmartNICs with RDMA can update the logs on the remote

replicas using RDMA writes which could eliminate the protocol overhead incurred in

non-RDMA SmartNICs. In addition, the RDMA SmartNICs need support for hardware

packet filtering and processing packets which enable data operations on the SmartNIC. With

respect to the SmartNICs, ordering is ensured on the SmartNIC without the need of network

ordering.

5.3.3 Programmable Switches

In this section, we discuss the applicability of building leader based consensus mechanisms,

such as VR, Raft and Zab, on programmable switches. Programmable switches such as

Barefoot Network’s Tofino ASIC chip provide data path programming which enable building

the DYAD data operations on the switches. DYAD’s data operations which perform ordering

and replication is possible on the switches. In addition, the service executes on a server

which handles the control operations. However, an important restriction with respect to

the switches for supporting data operations is that they should ensure ordered delivery of

95



Table 5.4: The table shows the impact of the direct and indirect cost on various infrastructures, such
as XDP, SmartNICs, and Switches, where DYAD’s design is applicable. In addition, the table shows
network ordering which is needed in programmable switches.

Systems Direct Cost Indirect Cost Network

PCIe Control Protocol Cache CPU Ordering

eXpress Data Path (XDP) Applicable Removed Applicable Applicable Applicable Not needed
SmartNIC Removed Removed Reduced Removed Removed Not Needed
SmartNIC-RDMA Removed Removed Removed Removed Removed Not Needed
Programmable Switch Removed Removed Reduced Removed Removed Needed

these packets from the switch to the server running the service. In Figure 5.6, the ordered

execution phases requires coordination between the service and the programmable switches.

In case of XDP and SmartNICs, this is ensured in a single node using the software layer and

PCIe interface respectively.

Fault detection is needed on the switches to identify service failures on a server which is

possible using DYAD’s host RTT. However, the response should traverse through the same

switch, that runs the data operation, to identify service failures on the switch. Similarly,

service recovery is possible using the logs available on the switches. However, unlike DYAD

using SmartNICs, the logs need to be retrieved over the network for recovering the service.

In addition, the switches could use either TCP or UDP to communicate with the other

replicas.

With respect to the direct cost and indirect cost, data operations running on the SmartNIC

provides the same benefits as SmartNIC. However, switches add an additional overhead of

routing the packets through the leader switch which might not be the optimal route to reach

the server.

Limitations. Programmable switches are limited by resources, both memory and compute

capabilities, which limit the number of logs stored and the amount of per-flow states [86, 87].

In addition, placing the leader on the switches in data center impose addition requirements

such as the leader switch should provide consensus data operations to all the services with

the limited compute and memory resource available. In addition, the client requests should

be routed to the leader switch before send it to the host which might not be the optimal route.
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An important design level requirement is that the requests from the leader switch to the host

should be ordered to ensure linearizability which was provided by XDP and SmartNICs. In

addition, the service running on the host recovers the logs from the leader switch over the

network.

With switches, another conceptual limitation is the number of nodes used for replication.

Leader based consensus algorithms, such as Raft, Zab, or VR, use (2f + 1) nodes to support

f failures. With the switch and the hosts, the number of nodes used increases to 2 * (2f+1)

with (2f + 1) switches and (2f + 1) hosts.

5.4 Implementation

DYAD prototype is implemented using Netronome SDK RTE version 6.1.0.1 with around

5000 lines of C (called as Micro-C) and P4 code written for the SmartNIC subsystem. Out

of the 5000 lines of code, 1700 lines constitute the leader handling, 1000 constitute the

replica handling, 2000 lines constitute the TCP handling, and the remaining constitute

the P4 code. In addition, DYAD implements a time-stamp server and key-value store that

runs as an service on the host processor, and the library that provides the recovery and

view-change interface. DYAD provides an library to the service running on the host which

provides the interface for recovering logs from the SmartNIC and updating the replica status

on the SmartNIC.

Forwarding requests. The netronome SDK provides APIs to generate packets and to

calculate hardware checksum, which is used to generate the consensus messages to the

replicas. However, there are no APIs currently available to generate packets to the host

processor. This limitation is overcome in DYAD by modifying any message received from

the network with the message that should be sent to the host processor and forwarding it to

the host processor. DYAD sends the client requests by modifying the prepare-ok messages

from the last replica, that constitutes the majority, with the client request that is logged in

the SmartNIC, and forwards the modified message to the host processor. The prepare-ok
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messages from the other replicas are dropped on the SmartNIC.

Hierarchical memory. The memory on the netronome NIC is hierarchical, consisting of 5

levels, with various size and access times. The closest memory to the processor is 4 and

64 KB with access times of 13 to 15 cycles whereas the farthest memory is available in GBs

with access times of 150 to 500 cycles. The decoded packet data, the remaining payload,

and the packet metadata are stored in the closest memory, and the ordered log are stored in

the farthest memory. The other data such as the replica and client states are store in one of

the middle hierarchy. The data structures are explicitly allocated in one of the hierarchical

memory at compile time using unique keywords.

Handling messages. The Netronome SmartNIC contains many compute elements called

as micro engines (ME) that handle messages in parallel. i.e., the client messages and the

consensus messages are processed by multiple MEs in parallel. With such parallel processing,

the client requests are ordered by using the atomic operations such as mem_test_add and

mem_incr64 that are available on the Netronome SmartNIC. The packet buffers for sending

the consensus messages are received from pkt_ctm_alloc which allocates the buffers on

the nearby memory in the hierarchy, and the messages are transmitted to the outside network

using pkt_nbi_send. The timers for sending retransmits is implemented using the me tsc -

read() and the sleep() functions, which are executed on dedicated MEs.

5.5 Evaluation

In the evaluation, we answer the following four questions:

• What are DYAD’s benefits in terms of tail latency and throughput for services?

• What is the impact of DYAD’s performance with parallelism?

• What is DYAD’s impact on fault tolerance?

• What are DYAD’s benefits in recovering the replicas after software failures?

Experiment setup. We evaluate DYAD using five servers that are connected by a Mellanox

SN2700 switch that handles only the traffic generated by the experiments. All clients and
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Figure 5.7: 99th percentile latency as a function of throughput for a 3-node testbed deployment of
VR protocol running on the CPU vs the SmartNIC for a time-stamp server. DYAD-leader increases
the throughput by up to 4x and reduces the latency by up to 68.5% for 36K PPS. In addition, DYAD-all
reduces the latency by another 5% for 36K PPS.

replicas ran on the servers with atleast two 2.0 GHz Intel Xeon processors with 16 cores

in total and 64 GB of RAM. For replicas that ran the SmartNIC subsystem, the servers

are configured with a Netronome Agilio CX 40GbE SmartNIC that has 2GB of RAM.

The other replicas and clients, that do not use a SmartNIC, are configured with Mellanox

ConnectX-2 (40G) or Intel 82599ES (10G) NIC. All machines ran Ubuntu LTS 16.0.4 with

the 4.15.0 Linux kernel. All experiments used three replicas that handled requests from 20

clients unless otherwise stated. DYAD is compared to two other replication protocols that

are executed on the host processors: Paxos and Paxos with batching. VR with batching,

run with batch size 64 unless stated, shows the overall benefits provided by kernel-bypass

mechanisms such as DPDK that rely on batching. DYAD modified the NOPaxos benchmark

to use structures as messages instead of using protobuf. For all the experiments, We

measured the latency and throughput using a benchmark that sends request for one-minute

run of the experiment. All the services are single threaded in a bare-metal setup unless

otherwise stated. Henceforth, DYAD leader refers to using the SmartNIC subsystem only on

the leader, and DYAD replica refers to using the SmartNIC subsystem on the leader and all

the other replicas.
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Figure 5.8: 99th percentile latency as a function of throughput for a 5-node testbed deployment of
VR protocol running on the CPU vs the SmartNIC for a time-stamp server. DYAD-leader increases
the throughput by up to 5.8x and reduces the latency by up to 76% for 24K PPS. In addition, DYAD-all
reduces the latency by another 3% for 24K PPS.

5.5.1 Service performance

DYAD shows the end-to-end performance using two services. First, a timestamp server

that generates monotonically increasing timestamps or globally unique identifiers used for

distributed concurrency control. Each replica maintains its own counter which is incremented

after consensus with a majority of replicas. Second, a key-value store that replicates the

put operation on all the replicas before executing the operation on the leader which sends

the response to the client. The other replicas execute the put operation after receiving the

commit message from the leader.

Timestamp server. We first evaluate the throughput vs latency of DYAD for a timestamp

server with multiple replicas (three, five, and seven nodes). With three replicas, the results

in Figure 5.7 show that DYAD-leader improves the throughput by up to 4x and the tail

latency by up to 68.5%. DYAD-leader SmartNIC subsystem handles sending and receiving

the consensus messages which frees up the host CPU to handle only the client requests

which is the reason for DYAD’s performance improvement. Particularly, the SmartNIC

subsystem handles 1 Million messages from the clients and the replicas, which eliminates

such overhead on the CPU. DYAD-all further reduces the latency of the timestamp server by

handling the prepare messages on the replica SmartNIC. Though the reduction in latency is

5% for lower packets per second (PPS), the improvement increases by up to 36% (compared
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to DYAD-leader) with increased PPS (80K - 115K). With increased PPS on the replicas, the

host processing overheads on the replicas increase which is eliminated by DYAD-all. When

the PPS increases further (beyond 115K), the service processing overhead on the leader

node increased which increases the latency in DYAD-all. In addition, the baseline VR with

batching shows that batching increases the latency of DYAD operations without impacting

the throughput.
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Figure 5.9: 99th percentile latency as a function of throughput for a 7-node testbed deployment of
VR protocol running on the CPU vs the SmartNIC for a time-stamp server. DYAD-leader increases
the throughput by up to 8.2x and reduces the latency by up to 90% for 17K PPS. In addition, DYAD-all
reduces the latency by another 25µs for 17K PPS

We evaluate the throughput and latency of timestamp server using DYAD with five and

seven replicas. The results in Figure 5.8 and Figure 5.9 show that the baseline throughput

drops by up to 33% and 52% respectively, which shows the overhead induced to handle

messages to/from increased number of replicas. DYAD improves the throughput by 5.8x

for a five-node setup and the latency by up to 79% compared to the baseline. And with the

seven-node setup, DYAD improves throughput by up to 8.2x and the latency by up to 90%

compared to the baseline. With five and seven replicas, the number of messages handled

on the SmartNIC is 1.9 and 3 Million respectively. with DYAD-leader and DYAD-all, the

increased messages are handled by the SmartNIC which does not increase the end-to-end

latency considerably (up to 8µs). Since the service on the host processor only handles the

client requests, the throughput and latency is approximately similar with the various number

of replicas.

101



100

200

300

400

500

600

700

800

900

0K 20K 40K 60K 80K 100K 120K

Key-value store - 3 nodes

L
at

en
cy

(µ
s)

Messages/sec

VR
VR batching
DYAD-leader

DYAD-all

Figure 5.10: 99th percentile latency as a function of throughput for a 3-node testbed deployment of
VR protocol running on the CPU vs the SmartNIC for a key-value store. DYAD-leader increases the
throughput by up to 3.6x and reduces the latency by up to 65% for 34K PPS. In addition, DYAD-all
reduces the latency by another 10% for 34K PPS.
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Figure 5.11: 99th percentile latency as a function of throughput for a 5-node testbed deployment of
VR protocol running on the CPU vs the SmartNIC for a key-value store. DYAD-leader increases the
throughput by up to 5.3x and reduces the latency by up to 79% for 22K PPS. In addition, DYAD-all
reduces the latency by another 20µs for 22K PPS.

Key-value store. We next evaluate the throughput vs latency of DYAD for a key-value store

with multiple replicas (three, five, and seven nodes). The key-value store is evaluated by

performing put operation with 64 byte data. With three-replicas, the results in Figure 5.10

show that DYAD-leader improves the throughput by up to 3.6x and the tail latency by up

to 65%. Similar to the time-stamp server, handling 1 Million messages on the SmartNIC

improves the throughput and latency of a key-value store. However, compared to the

timestamp sever, the put operation takes longer processing time on the replicas which is

evident in DYAD-all performance. i.e., DYAD-all reduces the latency by up to 10% which

shows that replica’s contribution to end-to-end latency.

102



200

400

600

800

1000

1200

1400

1600

1800

2000

0K 20K 40K 60K 80K 100K 120K

Key-value store - 7 nodes

L
at

en
cy

(µ
s)

Messages/sec

VR
VR batching
DYAD-leader

DYAD-all

Figure 5.12: 99th percentile latency as a function of throughput for a 7-node testbed deployment of
VR protocol running on the CPU vs the SmartNIC for a key-value store. DYAD-leader increases the
throughput by up to 7.3x and reduces the latency by up to 87% for 17K PPS. In addition, DYAD-all
reduces the latency by another 3% for 17K PPS.
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Figure 5.13: The 99th percentile and average latency of a key-value store with increasing number of
replicas. DYAD-leader improves the tail and average latency by up to 80%. DYAD-all reduces the
latency by another 20µs.

We evaluate the throughput and latency of key-value store using DYAD with five and

seven replicas. The performance of the baseline key-value reduces drastically with increased

number of replicas which is due to increased number of messages. DYAD improves the

throughput by 5.3x for a five-node setup and the latency by up to 79% compared to the

baseline. And with the seven-node setup, DYAD improves throughput by up to 7.3x and the

latency by up to 87% compared to the baseline. With five and seven replicas, the number of

messages handled on the SmartNIC is 2 and 3 Million respectively.

The 99th percentile and average latency of the key-value store with increasing replicas is

shown in Figure 5.13. Both the 99th and 50th percentile latency increase by up to 71% and

62% respectively for the baseline. DYAD reduces both the 99th and 50th percentile latency

by up to 80%, and sustains the lower latency with increasing number of nodes

Increasing clients. We evaluate the timestamp server running on DYAD with increasing
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Figure 5.14: The 99th percentile latency of a timestamp server with increasing connections. DYAD-
leader improves the tail latency by up to 62% and DYAD-all reduces the tail latency by another
4%.

number of clients and with three replica nodes. Figure 5.14 shows the 99th percentile latency

with increasing client connections. The cost of handling more client connections increases

linearly in the baseline due to decoding the five-tuple connection identifier and hash lookup

on the host processors. With DYAD, the message decoding is done in SmartNIC hardware,

using P4, which reduces the cost of identifying the five-tuple needed for connection lookup.

DYAD-leader reduces the 99th percentile latency by up to 62% and DYAD-all further reduces

the 99th percentile latency by up to 4%. In addition, DYAD sustains the lower latency with

increasing number of connections.

CPU usage. We evaluate the CPU usage of the timestamp server running on DYAD to the

VR implementation on the host. Figure 5.15 shows the throughput vs % CPU usage on

the host processor. The baseline VR reaches 100% CPU usage with 36K PPS which limits

the total throughput. In baseline VR, most of the time is spent of service context switches

which is 300K on the leader and 200K on the replicas. Kernel-bypass mechanisms such

as DPDK do not help in reducing the CPU usage because of their poll-mode drivers which

runs always at 100%. DYAD reduces the CPU usage by up to 62% for handling 36K PPS by

only handling the service messages on the host processor. With DYAD, the host CPU usage

only increases with increasing number of client requests.

Raft latency. In addition to evaluating the latency of VR protocol with timestamp server

and key-value store, we evaluate the latency of timestamp server with Raft protocol which

is shown in Figure 5.16. We evaluate Raft with in-memory logging where the replicas
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Figure 5.16: 99th percentile latency of Raft consensus executed on the host vs the SmartNIC. DYAD

improves Raft latency by up to 61%.

communicate using TCP protocol. DYAD improves Raft latency by up to 61% by handling

the consensus messages on the SmartNIC. The latency improvement is attributed to running

the TCP protocol on the SmartNIC which reduces the end-to-end latency of 64 byte TCP

ping-pong messages by up to 50%. In addition, the other benefits observed in VR protocol

such as handling more client connections, increased number are replicas, are applicable to

Raft.

5.5.2 Service parallelism

DYAD enables service parallelism by the SmartNIC subsystem appending logical timestamp

to the client requests. We evaluate the throughput vs latency of timestamp server with

parallelism, and compare DYAD-all-parallelism to DYAD-leader and DYAD-all. With 3

service threads processing the client requests, DYAD-all-parallelism improves throughput

by up to 2.19x compared to DYAD-leader. The latency of DYAD parallelism is 15µs

greater than the latency of DYAD-all because of the synchronization needed with the atomic

operations. However, the client request are read in parallel from all the threads having the
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next client request ready to execute before the current request is processed. By having the

next request ready, DYAD-parallelism avoids the read latency incurred after processing the

current request. In addition, compared to baseline VR, DYAD improves the throughput by

up to 8.3x and the latency by up to 68.5%.
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Figure 5.17: 99th percentile latency as a function of throughput for a 3-node testbed deployment of
VR protocol running on the SmartNIC with parallelism for a time-stamp server. Parallel execution
leveraging the logical timestamp improves the throughput of timestamp server by up to 2.19x.

5.5.3 Fault tolerance

We evaluate DYAD’s effectiveness of identifying service failures on the SmartNIC with

different multiples of RTT values. First, we measure the adaptive RTT by timestamping

the operations on the SmartNIC. Table 5.5 shows the breakdown of the end-to-end latency

including the RTT calculated on the SmartNIC with different number of replicas. The

results, which includes the time on wire, show that the DYAD-leader reduces the latency of

consensus operation to 52µs, and DYAD-all reduces the latency of consensus by another

36µs. The latency of service processing on the host, which includes the PCIe and DMA

latency, is up to 98µs. We use the calculated RTT from the host to set the threshold for

identifying service failures without false positives.

The fault tolerance threshold is set to multiples of the RTT values, and evaluated to

detect the false positives. We send million client requests and identify the false positives

that detect service failure when the timestamp server is still running. Figure 5.18 shows the

outliers that are detected as false positives with the respective configured threshold. With a
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Table 5.5: Breakdown of the end-to-end latency for a timestamp server. In DYAD-leader, the latency
of consensus operation is up to 52µs, and DYAD-all reduces the latency of consensus by another
36µs. The latency of service processing on the host is up to 41µs, and the rest of the time is sent in
client processing and network latency which is up to 42µs.

System Nodes Consensus Host Other Total - 99th

DYAD-Leader
3 45µs 95µs 53µs 193µs
5 48µs 98µs 51µs 197µs
7 52µs 93µs 54µs 199µs

DYAD-All
3 16µs 95µs 53µs 164µs
5 17µs 98µs 51µs 166µs
7 16µs 93µs 54µs 163µs
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Figure 5.18: Number of false positives with various multiples of RTT values. Multiples below five
result in false positives.

multiple less than five, the system identifies false positives where there are requests that are

outliers whose response is received after the threshold. The reason for such outliers could be

the first packet that triggers an interrupt, whereas the rest of the packets are received using

the polling mode in the Linux kernel. Such false positives are not seen with multiples higher

than five.

5.5.4 Recovery

We evaluate service recovery by using the ordered logs available on the SmartNIC. First,

we evaluate the latency of reading the logs from the SmartNIC using the PCIe interface.

Figure 5.19 shows the PCIe read latency with varying log sizes. The read throughput of

a single threaded log reader is only 16 MB. However, the results show that the PCIe read

throughput increased linearly with increasing number of threads. DYAD shards the logs and

issues a multi-threaded read operation with each thread reading an independent shard. In our

system with 16 cores, multi-threaded read increases the throughput by up to 256 MB/s. On a
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system with higher core count, the read throughput can be further improved by increasing the

thread count. In addition, the log read operation is performed before recovering/starting the

service. So, the service performance is not impacted by the multi-threaded read operation.
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Figure 5.19: Latency of reading log entries from the SmartNIC over the PCIe interface for increasing
log entries. A single thread PCIe throughput is 16 MB/s, which is increased to 256 MB/s with 16
threads.

We next evaluate the entire service recovery time that includes reading the logs from the

SmartNIC, service running the recovery routine, and the finally syncing with all the replicas.

We evaluate the time-taken for recovery using 1000K logs on the SmartNIC by terminating

and restarting the service immediately. Figure 5.20 shows the normalized throughput over a

30 second window where the service is terminated and restarted. DYAD recovers the logs in

800 ms, and service recovers with the logs in 5 ms. The DYAD library strips the network

(Ethernet, IP, and UDP) headers that were logged on the SmartNIC, and provides only the

client request payload to the service. The total recovery time includes the process spawn

time when the service is restarted.
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Figure 5.20: Recovering timeserver after service failure. The service around 800 ms to recover the
logs from the SmartNIC, and around 5 ms to recover the service from the logs.
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5.6 Chapter Summary

We introduced DYAD, which provides a physically isolated consensus by leveraging SmartNICs

available in data centers. By physical isolation, DYAD eliminates the consensus component

from competing for system resources with the service which improves the service perfor-

mance. Apart from the normal-case consensus, DYAD provides mechanism to recover the

service using the ordered logs after a software failure, and provides fault tolerance to detect

service and SmartNIC failures. We demonstrated the benefits of DYAD with services such

as timeserver and key-value store which shows that it improves the the throughput and tail

latency by up to 8.2x and 90% respectively. In addition, DYAD reduces the CPU usage by

up 62% by processing only the client request on the host processors.
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CHAPTER 6

DISCUSSION

The previous chapters (§3, §4, §5) focused on three lower level mechanisms that reduce

latency: XPS that reduces the protocol stack overhead, LATR that reduces the TLB shoot-

down overhead, and DYAD that reduces the consensus algorithm overhead. However in

the previous chapters, we detailed and analyzed the importance of these mechanisms in

isolation. In this chapter, we analyze the impact of latency when the three mechanisms are

used in tandem. In addition, we finally summarize the lessons learned while working on this

dissertation.

6.1 Lower level mechanisms in tandem

In this section, we analyze services such as web servers, log sequencers, and lock managers

that benefit from a combination of the three mechanisms detailed in this dissertation. We

will discuss the use cases for these services where more than one mechanism is useful.

6.1.1 Web Servers

With web servers [113], we analyze the applicability of XPS and LATR mechanisms to

reduce the service latency. Web servers process HTTP GET methods by serving them from

the files available in the system. For serving such files, web servers map the corresponding

files into memory, send the response using the mapped files, and then munmap the file, which

triggers a TLB shootdown for every HTTP request. In addition to serving HTTP requests,

web servers filters and block HTTP methods that are not supported in their system which

protect them from L7 DDoS attacks. For example, a Nginx web server that is configured

to server HTTP GET methods is also configured to block HTTP POST methods, which

prevents the sophisticated L7 attacks using HTTP POST methods. In such a case, the HTTP
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GET methods should be served with less TLB shootdown overhead. In addition, the HTTP

POST methods should be blocked with less system overhead.

In web servers, the mechanisms developed in LATR can be used to reduce the TLB

shootdown overhead for serving HTTP GET methods, and the mechanism developed

in XPS can be used to reduce the system overhead for blocking HTTP POST methods.

LATR reduces the latency of serving HTTP GET methods by eliminating the synchronous

shootdown overhead which is up to 16µs in a 2 socket machine. In addition, the DDoS

filtering and blocking can be implemented using XPS fast patch on SmartNIC which reduces

the system overhead for blocking HTTP POST methods. XPS slow path is processing

the HTTP GET methods using the existing socket interface, which is optimized by LATR.

Throughput and latency of the HTTP GET method can be improved further (compared to

using the mechanisms in isolation) because the CPU is only available for processing GET

methods (POST methods are dropped on the SmartNIC by using XPS fastpath) and the

latency incurred due to TLB shootdown is reduced by LATR.

6.1.2 Log sequencers

Log sequencer is used in distributed services, such as CORFU [147], to assign a 64-bit

token that provides a unique entry in a distributed log. The performance of a log sequencer

is important for the performance of services such as CORFU. Fault tolerance for a log

sequencer is provided using consensus algorithms such as VR.

XPS and DYAD mechanisms together can provide the performance improvement for log

sequencers. DYAD can be used to implement the consensus algorithm for the log sequencer,

and XPS fast path can be used to implement the sequencer functionality. With such an

implementation, the service’s latency with consensus can be reduced approximately to 20µs

with a 3 three node replica. In a log sequencer where the service’s functionality is simple,

the host processor need not be used for executing any operation.

111



6.1.3 Distributed lock services

Distributed lock services, such as Zookeeper [17] and Google Chubby [16], provides lock

service to other services such as Google File System (GFS) [148] and Bigtable [149].

Distributed lock services are replicated using consensus algorithms such as Paxos and

Zookeeper Atomic Broadcast (ZAB). Write operations to the lock service are replicated

using a consensus algorithm. The lock service stores the lock entries in the host memory

which increases with the number of lock entries.

DYAD and LATR can provide the performance improvements for distributed lock services.

DYAD’s hardware filtering and processing mechanism can filter the write operations and

execute the consensus operations on the SmartNIC. The write requests are forwarded to the

host processor for storing them on the host memory. In memory constrained environments,

using containers or virtual machines, page swap is triggered when the number of entries in

the lock manager increases. LATR’s lazy mechanism can reduces the TLB shootdown cost,

in such memory constrained environment, when the page swap operation triggers a TLB

shootdown.

6.2 Case study

In this section, we demonstrate the impact of these three lower-level mechanism with

Memcached, a key-value store.

6.2.1 Memcached

Memcached is an in-memory key-value store which supports read (GET) and write (SET)

operations. In key-value stores, the GET operations are latency critical operations and the

GET operations are not latency critical. In real-world deployments, GET operations are

more frequent than SET operations. For example, the ETC workload in Facebook, using

Memcached as the key-value store, has a GET/SET ratio of 30:1 [118, 120]. In addition to the
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Figure 6.1: Demonstration of Memcached that uses XPS fastpath for the GET operations, uses DYAD

consensus component for the SET operations and the SET operations are sent to the service running on
the host after consensus, and LATR kernel provides lazy TLB shootdown for page-swap operation.

service operations, the operating system performs operations such as page swapping and

migration which triggers TLB shootdown.

The GET operations are handled using XPS’ fast path in the SmartNIC, which handles the

GET request using the GET handler on the SmartNIC and sends a response using the handler

data. The SET operations are handled by DYAD consensus, which filters the SET requests

and executes the consensus operations on the SmartNIC. After the majority of replicas

respond, the SET requests are sent to the host processor where Memcached executes the

SET operations. The set operations executed on the host processor increases the memory

used by Memcached which triggers the page-swap operation. The LATR kernel running

on the host processor provides the lazy shootdown mechanism for Memcached reducing

the TLB shootdown overhead. Figure 6.1 shows Memcached with XPS, DYAD, and LATR

mechanisms.

Evaluation. We evaluated Memcached using INFINISWAP [15] that uses remote memory

as the swap device. The evaluation setup is provisioned with two NIC cards, where the

client messages are processed using the Netronome SmartNIC and swapping is done over

the other RDMA NIC card. In addition, we constrain the service inside an lxc container on

the host processor and set the soft-memory limit of the container to about half of the services

working set to induce swapping via kswapd. We run the memaslap benchmark with 80%
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Figure 6.2: Throughput and 99th percentile latency of 80% GET and 20% SET operations. The GET
operations throughput and latency is improved by 102% and 47%, respectively. The SET operations
throughput and latency is improved by 89% and 21%, respectively.

Gets and 20% Sets, where the Gets are handled in XPS fast path in SmartNIC and the Sets

are first handled by DYAD (as shown in Figure 6.1). After consensus, the SET operations

are executed on the host processor which triggers the page swap operation in the LATR

kernel (as shown in Figure 6.1). The performance improvement of GET operation is due to

the XPS fast path operations running closer to I/O devices. The performance improvement

of SET operation (shown in Figure 6.2) is due to three reasons, the fast consensus operation

provided by DYAD, the lazy TLB shootdown provided by LATR, and the advantage of slow

path provided by XPS.

6.3 Lessons learned

We next present a summary of general lessons we learned while working on this dissertation.

6.3.1 The need for disaggregating the functionality of services

Single machines are built as distributed systems containing various compute elements,

such as GPUs, smarter NICs, and smarter NVMe, which shows that compute elements are
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disaggregated over the PCIe interface. In a conceptual way, various computing devices

are connected over the PCIe bus in a single machine [95]. However, current system

services are developed as a monolithic entity running on the host processor. Research

approaches have accelerated such services to run on many-core accelerators, such as GPUs

and FPGAs [92]. In our process of reducing the latency of services, we stumbled upon the

fact that disaggregating (breaking down) services into parts that leverage different compute

device is important in future architectures. For example, XPS executing Redis reads on the

SmartNIC and the write on the host processor. Similarly, DYAD executing consensus data

operations on the SmartNIC and the control operations on the host processor. With multiple

processing elements in a single machine, breaking a general service such as key-value store

into micro-service which run on different processing elements is an important direction.

In addition, the generic micro services could be combined to provide other services. For

example, the consensus micro service running on the SmartNIC can be composed and used

by various services such as key-value stores, databases, lock managers, and timestamp

servers. We learned that breaking such monolithic functionality needs both the knowledge

about the service and the system architecture.

Service redesign and placement. Service redesign is required to leverage the various

compute elements available in a single machine. Identifying and placing the operations

on different compute elements is a challenge. During the process of building XPS, we

overcame this challenge by identifying the latency sensitive operations and placing them

closer to the I/O devices. Though, we reused the service running on the host processor for

other operations. Programming languages, such as P4 and eBPF, enable breaking down

the service into operations and placing such operations transparently on various compute

elements or even on the host processor.

Data consistency of operations. Placing various operations of a service on different

computing elements is one part of the challenge, the data consistency provided to the entire

service is another part of the challenge. When operations are performed on different compute
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elements, consistency of the data provided by the entire service should not be sacrificed.

In most cases, similar to distributed systems, eventual consistency is an easier consistency

model to provide. However, services need strict consistency models than eventual which

is important to provide. For example, research approaches try to reduce the performance

difference between eventual and strong consistency in geo-distributed services [150], which

is also important and applicable in a single system. We learned that design principles,

drawn from computer architectures, such as write back and write through caches enable

developing the needed consistency models in the system. XPS data operations in the kernel

and SmartNIC (§3.2.4 and §3.2.5), where the data is isolated from the service, shows that

consistency can be provided when operations are executed on different processing elements.

6.3.2 Impact of cross-layer optimization

Abstractions provide generality and simplicity to develop services that can run on various

operating systems and hardware. However, software abstractions, such as the POSIX and

VFS layer, induce high latency due to the indirections they create. For example, every file

system access should traverse the VFS layer which adds additional system overhead.

In the initial stage of our research, we first focused on implementing an efficient protocol

stack which reduces latency. In the process, we figured out that optimizing POSIX interface

that interacts with the user-space is much more important than the protocol stack. For

example, the socket interface developed in even a state-of-the-art user-space protocol stack

incurs high overhead similar to the kernel protocol stack [25]. An approach that we learned,

in the process, is the impact of cross-layer optimization, that allows a service to execute

operations in a lower layer (closer to the protocol stack). Cross layer optimization is not a

new idea [8, 9, 27], Ashs [8] and Plexus [27] provide mechanisms to reduce the software

layering overheads in protocol stacks which are not available in current operating systems.

However, such mechanism are useful in the era of optimizing micro-second latency. XPS’

fast path is inspired from Ashs and Plexus, however XPS provides a generalized and practical
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mechanism compared to the other systems. Instead of strictly adhering to the POSIX or

VFS interface, cross-layer optimization enhances such interface to reduce their indirection

overhead.

Similar to the POSIX and VFS interface, the Linux Application Binary Interface (ABI)

enforces certain strict guarantees that an operating system should provide. For example,

in an munmap system call, the ABI enforces synchronous TLB shootdown which imposes

latency of up to 80µs. A cross-layer optimization to relax such strict ABI and develop lazy

mechanism reduces the latency of munmap operation drastically. Similar to POSIX and VFS

interface, the Linux ABI enforced latency can be overcome with cross-layer optimizations.

In summary, we learned the following from cross-layer optimizations:

• The layered protocol stack in the kernel and user-space have clear interfaces which

enables cross-layer optimization. For example, the TCP protocol layer has an interface

which forwards packets to the socket layer (POSIX), which enabled running service

logic (L7) immediately.

• The ABI restrictions could be overcome by introducing new flags in system call

interfaces, such as mmap and munmap, that provide lazy mechanisms. Such a new

interface enables providing lazy mechanisms to other system call interfaces such as

mprotect.

6.3.3 The importance of low-level mechanisms with fast I/O devices

Low level system operations, such as synchronization, scheduling, page swapping and

migrations, need to operate at lower latency to catch up with the fast I/O devices. For exam-

ple, instead of swapping pages to disk, recent research systems, such as INFINISWAP [15],

advocate for the usage of remote memory using Infiniband RDMA, which reduces the tail

latency of page swapping by up to 61x. Due to the reduced remote paging latency, the

TLB shootdowns needed for swapping become an important contributor to the cost of page

swapping (contributing up to 18% for a Memcached workload using INFINISWAP).
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The above example shows the shift in paradigm (With RDMA, NVM, and NVMe) where

the low-level operations, which were not the major contributors with older I/O devices,

are currently the major contributors to latency. Similar results were seen with 100 Gbps

NIC cards, where the packet processing overhead in software should be reduced to few

nanoseconds to saturate such NIC cards. With our experiments, we learned the impact of

such lower-level mechanisms that become the major contributors of latency and the need for

optimizing such lower-level mechanisms.

Hardware support. As discussed in this dissertation, hardware support is important for

reducing latency in new I/O devices. We learned about two possible direction: first, the

software utilizes the hardware efficiently (LATR) and second, the most important direction is

software (DYAD and XPS) defining the direction for hardware optimizations that improves

system service latency. For example, in DYAD, the latency of consensus operations can be

further improved by reducing the memory access latency in SmartNICs. Similarly, XPS

fast path will benefit from SmartNIC optimizations that provide fast remote memory access

from the host processors.

118



CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation covers three lower level mechanisms that help in reducing the latency of

system services. We summarize key contributions before briefly discussing future work.

7.1 Conclusion

Server network bandwidth is growing rapidly from 10/25 Gbps to 100/200 Gbps, and even

400 Gbps will become a reality soon. However, the compute power in modern processors is

not growing fast enough to handle these large network bandwidth. In addition, the lower

layer mechanisms used in modern systems are not efficient enough for handling these large

network traffic. We address the inefficiencies in the lower layer mechanisms through the

research presented in this dissertation.

We started with showing the inefficiencies in current protocol stacks, and their overheads

on current system services such as Redis and Nginx. To address the protocol stack overhead,

we presented an extensible protocol stack, XPS, that allows an application to specify its

latency-sensitive operations and to execute them inside the kernel, user-space protocol stacks

and smart NICs, providing higher throughput and lower tail latency by avoiding the socket

interface. For all other operations, XPS retains the popular, well-understood socket interface.

XPS’ approach is practical: rather than proposing a new OS or removing the socket interface

completely, our goal is to provide stack extensions for latency-sensitive operations and use

the existing socket layer for all other operations.

Our evaluation showed XPS’ benefits for real-world system services, such as caching

in a key value store, filtering and blocking HTTP requests in a web server, and processing

messages in distributed systems: XPS improves their throughput and tail latency by up to 4x

and 82%.
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Next, we showed the inefficiencies in a synchronous TLB shootdown and their impact of

web servers such as Apache. To address the synchronous TLB shootdown overhead, we pre-

sented LATR—lazy TLB coherence—a software-based TLB shootdown mechanism that can

alleviate the overhead of the synchronous TLB shootdown mechanism in existing operating

systems. By handling the TLB coherence in a lazy fashion, LATR avoided expensive IPIs

which are required for delivering a shootdown signal to remote cores, and the performance

overhead of associated interrupt handlers. Therefore, virtual memory operations, such as

free, page migration, and page swapping operations, can benefit significantly from LATR’s

mechanism. For example, LATR improves the latency of munmap() by 70.8% on a 2-socket

machine, a widely used configuration in modern data centers.

Real-world, performance-critical system services such as web servers can also benefit

from LATR: without any application-level changes, LATR improves Apache by 59.9%

compared to Linux, and by 37.9% compared to ABIS, a highly optimized, state-of-the-art

TLB coherence technique. In addition, LATR improves Apache latency by up to 26.1%

Finally, we showed the overhead of consensus algorithm on distributed services such

as time-stamp server and key-value stores. To overcome the overheads of a consensus

algorithm, DYAD untangles the tightly coupled consensus mechanism from the application

by physically isolating them, allowing the high-overhead consensus component to run

on the SmartNIC and the application to run on the host processor. By physical isolation,

DYAD eliminates the consensus component from competing for system resources with

the application which improves the application performance. Apart from the normal-case

consensus, DYAD provides mechanism to recover the application using the ordered logs

after a software failure, and provides fault-tolerance to detect application and SmartNIC

failures.

DYAD evaluation with three, five and seven replicas showed that it improves the through-

put and tail latency of distributed services, such as timestamp server and key-value store, by

up to 8.2x and 90% respectively. In addition, DYAD reduces the CPU usage by up 62% by
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processing only the client request on the host processors.

This dissertation provides hard evidence about the inefficiencies in lower-level mech-

anisms, such as protocol stack, TLB shootdown, and consensus algorithms, that increase

the latency of system services. In addition, this dissertation demonstrates how innovative

operations such as lazy shootdown, extensible protocol stack, and untangling consensus, ad-

dress the inefficient implementation of lower-level mechanism and they improve the latency

of system services.

7.2 Future work

With the end of Dennard scaling, the compute power in modern processors is not growing

fast enough to handle the 100/200 Gbps of traffic generated in next-generation data centers.

As presented in this dissertation, to handle such large volume of data, efficient lower-

level mechanisms both in software and hardware are needed to reduce the overhead of

system services in data centers. The insights gathered from this dissertation work provides

suggestions for promising future directions.

Low-level mechanisms in virtualized environments. Addressing the software overheads

in virtualized environments is challenging due to the various indirections used in these

environments. For example, the VM exits triggered due to operations such as a synchronous

TLB shootdown incurs high overhead compared to a baremetal environment. Similarly, even

the overhead of an asynchronous TLB shootdown mechanism is significant due to the VM

exits incurred. Apart from the TLB shootdown, protocol stacks in VMs incur significant

overheads due to the scheduling overheads incurred on VMs, which can be addressed by pro-

viding protocol as a service in the hypervisor. In addition, system services running on VMs

need abstractions to leverage future hardware technologies, such as programmable switches

and SmartNICs, which will reduce the overhead incurred in virtualized environments.

Improving lower-layer mechanisms with hardware. Hardware changes enable software

mechanisms to further reduce the latency of system service. Improving the latency of mem-
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ory accesses helps lower level mechanisms such as a lazy TLB shootdown and consensus

algorithms. For example, LATR could benefit from the availability of a global coherent

scratchpad memory which will further reduce the TLB shootdown latency. Similarly, such

a memory access in SmartNICs will further reduce (from 17µs provided by DYAD) the

latency of consensus algorithms. In addition, leveraging hardware features such as Intel’s

cache allocation technology (CAT) is an interesting direction to reduce the latency incurred

due to memory accesses. In summary, building efficient lower level mechanisms coupled

with hardware optimizations will further reduce latency of system services.

Latency of operating system operations. In addition to the mechanisms analyzed in

this dissertation, other mechanisms in operating system operations, such as context switch,

meta-data allocation, lock contention, induce high and unpredictable latency in system

services in data centers. In particular, the context-switch overhead in the operating system is

the reason for unpredictable latency in data centers [80]. Similarly, the meta-data allocation

overhead (SKB in Linux) induces high latency to packet processing in the kernel. In addition,

traditional inter-core communication mechanism using IPI limits the latency of operating

system operations spanning across large number of cores. The above overheads are some of

the reasons that impact the latency of services in micro-seconds scale, and which presents

an opportunity for further improvement.

We open sourced LATR (https://github.com/sslab-gatech/latr) which enables

further research using our software artifact . In addition, we will open source the remaining

software artifacts which will enable future research detailed in this dissertation.
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