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Contemporary Data Center Characteristics

e Optimized network — microsecond round-trip time
e Moving from 10/25 Gbps to 100/200 Gbps network

e Software running in servers induce high latency:

> 66% of the inter-rack latency [1]

> 81% of the intra-rack latency [1]

[1] Network requirements for resource disaggregation, OSDI’16



https://dl.acm.org/citation.cfm?id=3026897
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Thesis Statement

System abstractions and optimizations are needed at different
levels of the software stack, from the software services running
in the user space and the kernel to the software running on
SmartNICs, to reduce the latency and improve the throughput
of current data-center applications.
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Taming Application Latency- Thesis

e Xps - Extensible Protocol Stack:

> Abstraction in kernel and user-space protocol stacks, and SmartNICs

> Reduces Redis latency by up to 73.3%
e LATR - Lazy Translation Coherence:

> Kernel mechanism for free operations, page migration and swapping

> Reduces Apache latency by up to 26.1%



Taming Application Latency - Thesis

e Dyad - Untangling Logically-Coupled Consensus:

> Abstraction in SmartNIC for consensus

> Reduces timestamp server latency by up to 79%



Dyad: Untangling
Logically-Coupled Consensus



Motivation - Consensus Algorithms
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Consensus Algorithms

e (Consensus Algorithms:

> Provides high availability by state machine replication
> Keeps data consistent - linearizable
> Consensus algorithms:

B Multi-Paxos/Viewstamp Replication (VR)

B Raft and Zookeeper Atomic Broadcast (ZAB)
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Consensus Algorithms - Applications
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[ Distributed Services }

> Timestamp Servers
> Key-value stores

> Database
>
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Dyad: Untangling Logically-Coupled Consensus

e Background
e Overview
e Design and Evaluation

e (Conclusion
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Consensus — VR Data Operation

NS 3. Ordered execution
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Consensus — ZAB or Raft Data Operatlon

Client | request ] response
| = |
Replica 1/, , ' exec() Disk
Leader | | ]
propose TCP % ack
. é 1 Disk
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| % commit
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Replicas 1in a Data Center

Replica 1 - Leader Replica2 Replica3
I,'I Application I,'I Application I,'I Application
Consensus Consensus Consensus
BSD socket | Linux epoll BSD socket | Linux epoll BSD socket | Linux epoll

Client Requests

Data Center
Network (us RTT)
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Loglcally Coupled Consensus

Application

Consensus

BSD socket | Linux epoll

Replica

Network

[1] Understanding PCle performance for end host, SIGCOMM’18
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https://dl.acm.org/citation.cfm?id=3230560

Consensus — VR Data Operation
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Consensus — Direct Cost of Latency

Client 1 Ordering 2. Replication 3. Ordered execution
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| ! System Direct
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Consensus — Indirect Cost of Latency

Client 4 1 Orderlng 2. Replication . " 3. Ordered executlon \
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Consensus Latency - Increasing Replicas

A Consensus latency > End-to-end latency
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750 /
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Consensus Operations

e Data Operation:
> (ritical path for handling a client request
e C(Control Operations:

> Recovery — application recovery after failure
> View Change — new replicas joining/leaving the group, new leader

> Heartbeats — health status messages exchanged across replicas

23



Cost of Consensus - Summary

e [Every client request has high consensus overhead
e Consensus algorithms share resources with application

e C(Consensus overhead increases with increasing replicas

24



Consensus - Existing Research

e Network approaches:
>
Rely on Network Guarantees

e Hardware approach:

>

Logically Coupled Consensus

>

Sts

CS
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Dyad: Untangling Logically-Coupled Consensus

e Background
e Overview
e Design and Evaluation

e C(Conclusion
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Loglcally Coupled Consensus
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Dyad: Untanghng Logically- Coupled Consensus

Application 4
1
Consensus - Control :
. : Host
.| BSDsocket | Linux epoll | |
Replica *
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Consensus — Data

Network
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Dyad: Untangling Loglcally Coupled Consensus

______________________________________

Application

Consensus

BSD socket | Linux epoll

Loglcally Coupled Consensus

i ‘ Consensus — Data \ 5

Application

Consensus - Control

BSD socket | Linux epoll

PCle

Dyad Consensus
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Dyad: Classifying Consensus Operations

Data Operation - SmartNIC:

> (ritical path for handling a client request

Control Operations - Host:
> Recovery — application recovery after failure
> View Change — new replicas joining/leaving the group, new leader

> Heartbeats — health status messages exchanged across replicas
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Dyad: Untangling Logically-Coupled Consensus

e Background
e Overview
e Design and Evaluation

e (Conclusion
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Replica
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Dyad Viewstamp Rephcatlon (VR)
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Client
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Dyad — Direct Cost
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Dyad — Indlrect Cost
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Dyad: SmartNIC Primitives

e Hardware Filtering:

> Specify packet format in domain-specific language (P4)
> Filter messages based on the header and payload

> Filters are applied to messages coming from the network and the host
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Dyad: SmartNIC Primitives

e Packet Processing:
> Filtered messages invoke request/consensus/response handlers
> Handlers drop/forward/modify a packet

> (Generate new packets
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Dyad: SmartNIC Primitives

e N\ ) y-
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Dyad Leader Data Operatlons

1. Orderlng 2. Replication 3, Ol e o
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Dyad: Ordering on Leader SmartNIC

PCIe
................................................................. Ordered Leg
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Dyad: Replication on Leader SmartNIC
tPCIe @ Request 1
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Dyad: Reordered Consensus Message
tPCIe @ Request not sent to host
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Dyad: Reordered Consensus Message

t pcle Y@ Request

P ——N—————m_—M l &2 Ordered Log -
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Dyad: Response and Commit
@ Response l tPCIC

. ) : 1
[eader i !Response Handler! *r ,4 ,* i
SmartNIC \
- Consensus - Data | { 3’ } { 3 }
@Response tNetwork @ Commit
Client Replica
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Dyad: Timestamp Server with 5 replicas

== VR == VR-batching == Dyad-leader

2000

1500

[ ~2 Million messages ]

- processed on the NIC
5
500 /
——
0
25 50 75 100 125 150

Packets Per Second (PPS * 1K)

> Reduce latency by up to 76%, Improves throughput by 5.8x
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Dyad Replica Data Operatlons

1. Orderlng 2. Replication 3, Ol e o
request : '

Client /
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Dyad: Ordering on Replica SmartNIC
e Ordering and Logging:

> Logs ordered by the sequence number in prepare message
> Prepare message are processed and dropped on the SmartNIC
e Ordered Execution:

> Commit messages forwarded to the host processor

> The request is appended to the commit message by SmartNIC
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Dyad:

t PCle
e Ordered Log-.

Replica
SmartNIC '

Logging on Replica SmartNIC
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Dyad: Ordered Execution on the Replica
tPCIe @ Commit 1

Ordered Log -

gnLnit Handler]¢ @ 211

Replica |
SmartNIC '

Commit 1
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Dyad: Timestamp Server with 5 replicas

== VR == VR-batching == Dyad-leader == Dyad-all

2000
1500
m
=,
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Packets Per Second (PPS * 1K)

> Reduce latency by 30 us



Dyad: Consensus Latency

System Consensus % reduction
latency (ps)

VR 350 N/A
VR-batching 409 N/A
Dyad-Leader 48 86%

Dyad-All 17 95%

Timestamp server - 5 replicas
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Dyad: CPU Usage Timestamp Server

== VR-leader == VR-replica Dyad-leader == Dyad-replica

100
75

50

CPU Usage

25

25 50 75 100 125 150

Packets Per Second (PPS * 1K)

> Reduce CPU usage by up to 70% on the leader
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Replica

Consensus - Control

Dyad Control Operatlons

Application 4

BSD socket | Linux epoll
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Dyad Application Fallures

( N . .
92% catastrophic ; Ap 1
failure - due to
software [1] | Consenfus ®Control
\. v,

Replica

BSD socket | Linux epoll

PCle (" Fail-stop failure )

Consensus — Data
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[1] Simple Testing Can Prevent Most Critical Failures, OSDI’14
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https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Dyad: Detectmg Apphcatlon Failures

Replica

Application | 4
Cotsensus - Conlrol

BSD I;ocket Linwl epoll '

Request|<= — = =~ | Response

Host RTT

Consensus — Data

Network

55



Dyad: Detecting Application Failures

e Measure host RTT for each request
e Computed weighted average of host RTTs
e Dectect failure - response not within host RTT threshold
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Application Recovery - VR

_____________________________________________________________________________________________

- ~ - ~ -
s ~ ’ ~ s
N N

Application Application Restart Application

C*sensus \ Consens‘
BSD socke’t Linux epoll BSD s« depoll BSD socket | Linux epoll

Client Requests
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Dyad: Application Recovery

e Recovery using logs on SmartNIC

® [wo stage recovery:

> Recover logs from the SmartNIC

> Recover remaining logs from other replicas
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Dyad: Application Recovery

== Dyad-all == VR-baseline

1
0.75 g

0.5

o

5 10 15 20 25

[ 400MB of data received ]

Normalized Throughput

Time (seconds)

> Dyad reduces recovery time by up to 67%
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Replica

Dyad SmartNIC Failure

Application

Consensus - Control

BSD socket | Linux epoll

Network
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Dyad System Failure

8% - hardware Application
faults, misconfigs [1]

Cansensus - Control

Replica

Network

[1] Simple Testing Can Prevent Most Critical Failures, OSDI’14
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https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Dyad: System Recovery
e SmartNIC Failure:

> Detected on the host using heartbeat/client messages
> Existing VR recovery: fetch remaining logs from other replicas

e System Failure:

> Existing VR recovery: fetch logs from other replicas

> Dyad supports logging to disk from host (Raft)
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Dyad: Reliable Connection

e Dyad Supports Raft:

> Using TCP connection to replicas
> TCP stack specifically decode Raft headers and payload

> Host application logs client commands to disk for persistence
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Latency (ps)

800

600

400

200

Dyad: Raft Latency

Raft Dyad Raft

> Improves latency by up to 62%
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Dyad: Ease of Use

e Memcached:

> Enable consensus for Memcached
m ~100 lines of code for data operations on replica

> Evaluate impact on latency and throughput
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Dyad: Memcached Throughput

125000
100000
75000

50000

Operations Per Second

25000

0

Memcached Dyad-all-Memcached

> Provides consensus with ~7% reduction in throughput



Dyad: Memcached Latency

200
150

100

Latency (ps)

50

0

Memcached Dyad-all-Memcached

> Provides consensus with ~16% increase 1n latency
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Dyad: Untangling Logically-Coupled Consensus

e Motivation

e Background

e Overview

e Design and Evaluation

e Conclusion
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Dyad: Conclusion

SmartNIC abstraction for consensus
Data operations performed on the SmartNIC
Control operations performed on the Host

Enables consensus as a service on SmartNICs
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Thesis: Conclusion

e Xps - Extensible Protocol Stack:
> Abstraction in kernel, user space, and SmartNIC

e Latr - lazy TLB shootdown:

> Kernel mechanism for TLB shootdown

System abstractions and optimizations are needed at different
levels of the software stack to reduce the latency and improve
the throughput of current data-center applications.
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Thank you!
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Redis comparison with Arrakis

300000
200000

100000

Operations Per Second

0

Linux Xps-Linux mTCP Xps-mTCP Arrakis IX Zygos
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Latr - Apache



Latency (Milli seconds)

Latr - Apache latency

B Apache [ Latr-Apache
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User-Space Stacks



User Space: Protocol processing

Systems Latency (us) Mitigation
mTCP ~23 Batching
IX ~12 Batching

Arrakis ~2.6 -6.3 None
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VR: IX batching with 3 Replicas

Latency (ps)

== VR == VR-batching == Dyad-leader == Dyad-all == IX- batching

1500

1000

500

25 50 75 100 125 1:

Packets Per Second (PPS * 1K) -



Context Switch



Context Switch

VR - Leader Context Switch

60000
40000

20000

S 10 15 20

Packets Per Second (PPS)
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Dyad - Parallelism



Dyad: Application Parallelism
e Without SmartNIC:

> Sequence numbers are available in prepareok message

> Multi-thread execution by using the sequence number
e Dyad:

> Request are ordered without containing the sequence number

> SmartNIC appends the sequence number to the client request
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Dyad:

2000

1500

1000

Latency(ps)

500

Parallelism Timestamp Server

== Dyad-leader == Dyad-all == Dyad-parallel

r/ /

50 100 150 200 250 300

Packets Per Second (PPS * 1K)

> Improves throughput by up to 2.1x
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Reading Logs



Latency (ms)

Dyad: Log Read Throughput

B 1 Thread B 4 threads 8 threads W 16 threads

80000
60000
40000

20000

; - o =

128 512 1024

Log Size (MB)

Log read throughput ~256 MB with 16 threads
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Direct Cost Formula



Cost of Consensus - Direct and Indirect

Leader prepare

n n—1
Latencygirect = %TT +(n-1)«TX + 5 *x RX

Replicas prepare

"

Consensus overhead increases with increasing
replicas

— -

n-—1

Latenclindirect = *xRX+(n—-1)xTX

Replicas commit

- (n — 1) * RX + tprocessing 88



VR Recovery Data Transfer



Application Recovery - VR data transfer

Replicas Log Size Data transferred
(MB) (MB)
3 100 200
5 100 400

7 100 600
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False Positives RTT



Dyad:

False positive

False Positives with Timestamp Server

4

1 2 3

RTT Threshold ( * RTT)

> RTT=~96 us
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SmartNIC - Netronome



SmartNIC: Memory Hierarchy and Latency
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Recovery Example



Dyad - Recovery Phasel

Replical-Leader Replicaz Replicad
I,'I Application I," Application Restart I," Application
Consensus M | Consensus
BSD socket | Linux epoll BSD socket L1+x epoll BSD socket | Linux epoll

Client Requests

Data Center
Network (us RTT)
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Dyad - Recovery Phase?2

_______________________________

-
-’

Application

Consensus

BSD socket | Linux epoll

Client Requests

-
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_______________________________

Application

Consensus

BSD s¢cket | Linpx epoll
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_______________________________

Application

Consensus
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Raft - Logging to Disk



Dyad: Raft Latency with disk logging

1000
750

500

Latency (ps)

250

Raft Dyad Raft

> Improves latency by up to 46%
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Dyad - Future Work



Dyad: Future Work

e [ogging to disk from SmartNIC:

> Possible with NVMe over fabric

> Possible over PCle? - ARM, FPGA, or NPU
e Optimize request handling:

> Sending parsed requests to host
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