
Taming Latency In
Data Center Applications

Ph.D. Defense of Dissertation

Mohan Kumar Advisor: Taesoo Kim

1

Motivation: Importance of Latency

2

Latency Critical In Data Center Applications

Data Center Applications

Key-value Stores Web Servers

Distributed Services

3

● Optimized network – microsecond round-trip time

● Moving from 10/25 Gbps to 100/200 Gbps network

● Software running in servers induce high latency:

➢ 66% of the inter-rack latency [1]

➢ 81% of the intra-rack latency [1]

Contemporary Data Center Characteristics

4
[1] Network requirements for resource disaggregation, OSDI’16

https://dl.acm.org/citation.cfm?id=3026897

Data Center Applications - Server Latency

Key-value Stores Web Servers

Distributed Services

5

Protocol stack - 80% overhead
TLB shootdown - 30% overhead

Consensus -
82% overhead

System abstractions and optimizations are needed at different
levels of the software stack, from the software services running
in the user space and the kernel to the software running on
SmartNICs, to reduce the latency and improve the throughput
of current data-center applications.

Thesis Statement

6

Data Center Applications - Server Latency

Key-value Stores Web Servers

Distributed Services

7

Protocol stack - 80% overhead
TLB shootdown - 30% overhead

Consensus -
82% overhead

Protocol stack - Xps
TLB shootdown - LATR

Consensus -
Dyad

● Xps - Extensible Protocol Stack:

➢ Abstraction in kernel and user-space protocol stacks, and SmartNICs

➢ Reduces Redis latency by up to 73.3%

● LATR - Lazy Translation Coherence:

➢ Kernel mechanism for free operations, page migration and swapping

➢ Reduces Apache latency by up to 26.1%

8

Taming Application Latency- Thesis

● Dyad - Untangling Logically-Coupled Consensus:

➢ Abstraction in SmartNIC for consensus

➢ Reduces timestamp server latency by up to 79%

9

Taming Application Latency - Thesis

Dyad: Untangling
Logically-Coupled Consensus

10

Motivation - Consensus Algorithms

11

Failures are inevitable and expensive

● Consensus Algorithms:

➢ Provides high availability by state machine replication

➢ Keeps data consistent - linearizable

➢ Consensus algorithms:

■ Multi-Paxos/Viewstamp Replication (VR)

■ Raft and Zookeeper Atomic Broadcast (ZAB)

Consensus Algorithms

12

Consensus Algorithms - Applications

➢ Timestamp Servers
➢ Key-value stores
➢ Database
➢ Lock managers

13

Distributed Services

● Background

● Overview

● Design and Evaluation

● Conclusion

Dyad: Untangling Logically-Coupled Consensus

14

Consensus – VR Data Operation

Replica 1/
Leader

Replica 2

Replica 3

Client request response

prepare prepareok

exec()

1. Ordering 2. Replication

ApplicationConsensus

3. Ordered execution

15

commit

Consensus – ZAB or Raft Data Operation

Replica 2

Replica 3

Client request response

commit

exec()

1. Ordering 2. Replication

ApplicationConsensus

3. Ordered execution

16

propose TCP ack

Disk

Disk

Disk

Replica 1/
Leader

Replicas in a Data Center

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Data Center
Network (μs RTT)

Replica 1 - Leader Replica 2 Replica 3

Client Requests

17

Logically-Coupled Consensus

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

Host

PCIe

Network

Replica

~0.8 μs [1]

~10 μs

18 [1] Understanding PCIe performance for end host, SIGCOMM’18

https://dl.acm.org/citation.cfm?id=3230560

Leader

Replica 1

Replica 2

Client request response

prepare
prepareok

commit

1. Ordering 2. Replication 3. Ordered execution

Consensus – VR Data Operation

19
PCIe Protocol processing Context switch Application ~11 μs

Consensus – Direct Cost of Latency

Leader

Replica 1

Replica 2

Client

prepare
prepareok

1. Ordering 2. Replication 3. Ordered execution

20
PCIe Protocol processing Context switch Application

System Direct

VR 67 μs

Consensus – Indirect Cost of Latency

Leader

Replica 1

Replica 2

Client

prepareok

1. Ordering 2. Replication 3. Ordered execution

21
PCIe Protocol processing Context switch Application

request request

commit

System Direct Indirect

VR 62 μs 85 μsConsensus - high system overhead due to
direct and indirect cost

Consensus Latency - Increasing Replicas

22

Consensus latency is up to 82% of the
end-to-end latency

● Data Operation:

➢ Critical path for handling a client request

● Control Operations:

➢ Recovery – application recovery after failure

➢ View Change – new replicas joining/leaving the group, new leader

➢ Heartbeats – health status messages exchanged across replicas

Consensus Operations

23

● Every client request has high consensus overhead

● Consensus algorithms share resources with application

● Consensus overhead increases with increasing replicas

Cost of Consensus - Summary

24

● Network approaches:

➢ NoPaxos, Speculative Paxos - relies on network to order requests

➢ NetPaxos - proposal to execute paxos in programmable switches

● Hardware approach:

➢ Logically coupled consensus in hardware (FPGA)

➢ Application is limited by the resources available on FPGA

Consensus - Existing Research

Rely on Network Guarantees

Logically Coupled Consensus
25

● Background

● Overview

● Design and Evaluation

● Conclusion

Dyad: Untangling Logically-Coupled Consensus

26

Logically-Coupled Consensus

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

Host

PCIe

Network
27

Consensus - Control

Protocol Processing

Application

BSD socket Linux epoll
Host

PCIe

Network

Replica

SmartNIC
Consensus – Data

Dyad: Untangling Logically-Coupled Consensus

Consensus - Control

28

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

29

Dyad: Untangling Logically-Coupled Consensus

Logically-Coupled Consensus

Protocol Processing

Application

BSD socket Linux epoll

PCIe

SmartNIC
Consensus – Data

Consensus - Control

Dyad Consensus

● Data Operation - SmartNIC:

➢ Critical path for handling a client request

● Control Operations - Host:

➢ Recovery – application recovery after failure

➢ View Change – new replicas joining/leaving the group, new leader

➢ Heartbeats – health status messages exchanged across replicas

Dyad: Classifying Consensus Operations

30

● Background

● Overview

● Design and Evaluation

● Conclusion

Dyad: Untangling Logically-Coupled Consensus

31

Protocol Processing

Application

BSD socket Linux epoll
Host

PCIe

Network

Replica

SmartNIC
Consensus – Data

Dyad: Data Operations

Consensus - Control

32

Replica 2

Replica 3

Client request response

prepare
prepareok

1. Ordering 2. Replication 3. Ordered execution

Dyad – Viewstamp Replication (VR)

33
PCIe Protocol processing Context switch Application SmartNIC

to host2.6 μs
3.5 μs 1.7 μs 3 μs

3 μs

0.1 μs

3 μs commit

1.5 μs

1.5 μs

Replica 1/
Leader

Replica 2

Replica 3

Client

prepare
prepareok

1. Ordering 2. Replication 3. Ordered execution

Dyad – Direct Cost

34SmartNIC

to host2.6 μs
3.5 μs

3 μs

1.7 μs

System Direct Indirect

VR 67 μs 85 μs

Dyad 12.8 μs

% Reduction 81%

Replica 1/
Leader

Replica 2

Replica 3

Client

prepareok

1. Ordering 2. Replication 3. Ordered execution

Dyad – Indirect Cost

35
PCIe Protocol processing Context switch Application SmartNIC

3 μs
0.1 μs

commit

1.5 μs

1.5 μs

System Direct Indirect

VR 62 μs 85 μs

Dyad 12.7 μs 6.1 μs

% Reduction 81% 92%

Replica 1/
Leader
Direct and indirect cost reduced by Dyad

● Hardware Filtering:

➢ Specify packet format in domain-specific language (P4)

➢ Filter messages based on the header and payload

➢ Filters are applied to messages coming from the network and the host

Dyad: SmartNIC Primitives

36

● Packet Processing:

➢ Filtered messages invoke request/consensus/response handlers

➢ Handlers drop/forward/modify a packet

➢ Generate new packets

Dyad: SmartNIC Primitives

37

PCIe

Network

Dyad: SmartNIC Primitives

38

Ingress
H/W filter

(P4)

C Handlers

Memory

Egress
H/W filter

(P4)

Leader

Replica 1

Replica 2

Client request response

prepare
prepareok

1. Ordering 2. Replication 3. Ordered execution

Dyad - Leader Data Operations

39
PCIe Protocol processing Context switch Application SmartNIC

to host

commit

Consensus - Data

PCIe

Network

Leader
SmartNIC

Dyad: Ordering on Leader SmartNIC

Request Handler

Request

1

Prepare 2

Assign sequence number and Log 40

2

Ordered Log

2, 3 2, 3

Client Replica

Consensus - Data

PCIe

Network

Leader
SmartNIC

Dyad: Replication on Leader SmartNIC

Prepare Handler

Prepareok 1

Ordered Log

1

Request 1

Majority prepareok for request 1
41

2

2, 3 2, 33

Replica 2

Consensus - Data

PCIe

Network

Leader
SmartNIC

Dyad: Reordered Consensus Message

Prepare Handler

Prepareok 2

Ordered Log

1

Request not sent to host

Majority prepareok for request 2
42

2

2, 3 2, 33

Replica 2

Consensus - Data

PCIe

Network

Leader
SmartNIC

Dyad: Reordered Consensus Message

Prepare Handler

Prepareok 1

Ordered Log

1

Request
1 & 2

Majority prepareok for request 1
43

2

3 2, 33

Replica 2

Consensus - Data

PCIe

Network

Leader
SmartNIC

Dyad: Response and Commit

Response Handler 1

Response

44

CommitResponse

Ordered Log

2

Update log meta-data

3 3

Client Replica

Dyad: Timestamp Server with 5 replicas

➢ Reduce latency by up to 76%, Improves throughput by 5.8x
45

~2 Million messages
processed on the NIC

Leader

Replica 1

Replica 2

Client request response

prepare
prepareok

1. Ordering 2. Replication 3. Ordered execution

Dyad – Replica Data Operations

46
PCIe Protocol processing Context switch Application SmartNIC

to host

commit

● Ordering and Logging:

➢ Logs ordered by the sequence number in prepare message

➢ Prepare message are processed and dropped on the SmartNIC

● Ordered Execution:

➢ Commit messages forwarded to the host processor

➢ The request is appended to the commit message by SmartNIC

Dyad: Ordering on Replica SmartNIC

47

Consensus - Data

PCIe

Network

Replica
SmartNIC

Dyad: Logging on Replica SmartNIC

Prepare Handler

Prepare 2

1

Prepareok 2

Log request using sequence number 48

2

Ordered Log

Leader Leader

Consensus - Data

PCIe

Network

Replica
SmartNIC

Dyad: Ordered Execution on the Replica

Commit Handler

Commit 1

Ordered Log

1

Commit 1

Verify order of received commit
49

2

Leader

Dyad: Timestamp Server with 5 replicas

➢ Reduce latency by 30 μs 50

Dyad: Consensus Latency

System Consensus
latency (μs)

% reduction

VR 350 N/A

VR-batching 409 N/A

Dyad-Leader 48 86%

Dyad-All 17 95%

Timestamp server - 5 replicas

51

Dyad: CPU Usage Timestamp Server

52
➢ Reduce CPU usage by up to 70% on the leader

Protocol Processing

Application

BSD socket Linux epoll
Host

PCIe

Network

Replica

SmartNIC
Consensus – Data

Dyad: Control Operations

Consensus - Control

53

Protocol Processing

Application

BSD socket Linux epoll
Host

PCIe

Network

Replica

SmartNIC
Consensus – Data

Dyad: Application Failures

Consensus - Control

54

92% catastrophic
failure - due to

software [1]

[1] Simple Testing Can Prevent Most Critical Failures, OSDI’14

Fail-stop failure

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Protocol Processing

Application

BSD socket Linux epoll
Host

Network

Replica

SmartNIC
Consensus – Data

Dyad: Detecting Application Failures

Consensus - Control

ResponseRequest Host RTT

55

● Measure host RTT for each request

● Computed weighted average of host RTTs

● Detect failure - response not within host RTT threshold

Dyad: Detecting Application Failures

56

Application Recovery - VR

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Data Center
Network (μs RTT)

Replica 1 - Leader Replica 2 Replica 3

Client Requests

Application Restart

Log Transfer

57

● Recovery using logs on SmartNIC

● Two stage recovery:

➢ Recover logs from the SmartNIC

➢ Recover remaining logs from other replicas

Dyad: Application Recovery

58

Dyad: Application Recovery

59
➢ Dyad reduces recovery time by up to 67%

400MB of data received

Protocol Processing

Application

BSD socket Linux epoll
Host

PCIe

Network

Replica

SmartNIC
Consensus – Data

Dyad: SmartNIC Failure

Consensus - Control

60

Protocol Processing

Application

BSD socket Linux epoll
Host

PCIe

Network

Replica

SmartNIC
Consensus – Data

Dyad: System Failure

Consensus - Control

61

8% - hardware
faults, misconfigs [1]

[1] Simple Testing Can Prevent Most Critical Failures, OSDI’14

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

● SmartNIC Failure:

➢ Detected on the host using heartbeat/client messages

➢ Existing VR recovery: fetch remaining logs from other replicas

● System Failure:

➢ Existing VR recovery: fetch logs from other replicas

➢ Dyad supports logging to disk from host (Raft)

Dyad: System Recovery

62

● Dyad Supports Raft:

➢ Using TCP connection to replicas

➢ TCP stack specifically decode Raft headers and payload

➢ Host application logs client commands to disk for persistence

Dyad: Reliable Connection

63

Dyad: Raft Latency

➢ Improves latency by up to 62%
64

● Memcached:

➢ Enable consensus for Memcached

■ ~100 lines of code for data operations on replica

➢ Evaluate impact on latency and throughput

Dyad: Ease of Use

65

Dyad: Memcached Throughput

66
➢ Provides consensus with ~7% reduction in throughput

Dyad: Memcached Latency

67
➢ Provides consensus with ~16% increase in latency

● Motivation

● Background

● Overview

● Design and Evaluation

● Conclusion

Dyad: Untangling Logically-Coupled Consensus

68

● SmartNIC abstraction for consensus

● Data operations performed on the SmartNIC

● Control operations performed on the Host

● Enables consensus as a service on SmartNICs

Dyad: Conclusion

69

● Xps - Extensible Protocol Stack:

➢ Abstraction in kernel, user space, and SmartNIC

● Latr - lazy TLB shootdown:

➢ Kernel mechanism for TLB shootdown

Thesis: Conclusion

70

System abstractions and optimizations are needed at different
levels of the software stack to reduce the latency and improve
the throughput of current data-center applications.

Thank you!

71

Backup Slides

72

Arrakis

73

Redis comparison with Arrakis

74

Latr - Apache

75

Latr - Apache latency

76

User-Space Stacks

77

User Space: Protocol processing

Systems Latency (μs) Mitigation
mTCP ~ 23 Batching

IX ~12 Batching

Arrakis ~2.6 - 6.3 None

78

VR: IX batching with 3 Replicas

79

Context Switch

80

VR - Leader Context Switch

81

Dyad - Parallelism

82

● Without SmartNIC:

➢ Sequence numbers are available in prepareok message

➢ Multi-thread execution by using the sequence number

● Dyad:

➢ Request are ordered without containing the sequence number

➢ SmartNIC appends the sequence number to the client request

Dyad: Application Parallelism

83

Dyad: Parallelism Timestamp Server

➢ Improves throughput by up to 2.1x
84

Reading Logs

85

Dyad: Log Read Throughput

➢ Log read throughput ~256 MB with 16 threads 86

Direct Cost Formula

87

Cost of Consensus - Direct and Indirect

Consensus overhead increases with increasing
replicas

88

VR Recovery Data Transfer

89

Application Recovery - VR data transfer

Replicas Log Size
(MB)

Data transferred
(MB)

3 100 200

5 100 400

7 100 600

90

False Positives RTT

91

Dyad: False Positives with Timestamp Server

➢ RTT = ~96 μs 92

SmartNIC - Netronome

93

SmartNIC: Memory Hierarchy and Latency

94

Recovery Example

95

Dyad - Recovery Phase1

Consensus

Protocol Processing

Application

BSD socket Linux epoll

SmartNIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

SmartNIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

SmartNIC

PCIe

Data Center
Network (μs RTT)

Replica 1 - Leader Replica 2 Replica 3

Client Requests

Application Restart

96

2 1 2 12 1 33

1, 2

Dyad - Recovery Phase2

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Consensus

Protocol Processing

Application

BSD socket Linux epoll

NIC

PCIe

Data Center
Network (μs RTT)

Replica 1 - Leader Replica 2 Replica 3

Client Requests

Application Restart

Log Transfer

97

2 13 2 13

Consensus

Protocol Processing

BSD socket Linux epoll

NIC

PCIe

Application

2 13

Log Transfer

33

Raft - Logging to Disk

98

Dyad: Raft Latency with disk logging

99
➢ Improves latency by up to 46%

Dyad - Future Work

100

● Logging to disk from SmartNIC:

➢ Possible with NVMe over fabric

➢ Possible over PCIe? - ARM, FPGA, or NPU

● Optimize request handling:

➢ Sending parsed requests to host

Dyad: Future Work

101

