Taming Latency In
Data Center Applications

Ph.D. Detfense of Dissertation

Mohan Kumar Advisor: Taesoo Kim



Motivation: Importance of Latency

Speed Matters for Google Web Search

Jake Brutlag

Google, Inc.

Jine 22 2009
DOI1:10.1145/3015146

T h e C O ST Of La Te ﬂ Cy Microsecond-scale I/0 means tension

L AaA AAar TR 07— 1 i - hahwuwaan narfarmmanna and neadinadivik

'Latency Cr1t1c:al In Data Center Apphcatlons

reTa|I g|anT found ThaT every 100ms of latency cost them 1
same fime, a study by Tabb Group revealed that a broker ¢ AttaCk Of
S4 million in revenues per millisecond if its electronic tradi =
5ms behind the competition. the Klller
|
Although low-latency connectivity has become more com M d
Amazon, Tabb and others began this conversation about | Icrosecon S

ago, low latency is still a critical element of business succe

~rarcticrallhs A fFAra~nAanAa ~rAanAliician thnat All cArmaRA~niTAc thacAa AAavie il AriAarviti—=A

b Nt e e A bt et

A AN s A e e e



Data Center Applications

Key-value Stores Web Servers

& redis . e

Distributed Services |45
=

m Apache ZooKeeper™
Q Cloud Spanner




Contemporary Data Center Characteristics

e Optimized network — microsecond round-trip time
e Moving from 10/25 Gbps to 100/200 Gbps network

e Software running in servers induce high latency:

> 66% of the inter-rack latency [1]

> 81% of the intra-rack latency [1]

[1] Network requirements for resource disaggregation, OSDI’16



https://dl.acm.org/citation.cfm?id=3026897

Data Center Applications - Server Latency

| Protocol stack - 80% overhead | ”
[ TLB shootdown - 30% overhead ]
Key-value Stores Web Servers

& redis § e
[ Consensus - }
82% overhead
Distributed Services
=
ix Apache ZooKeeper™
Q Cloud Spanner a




Thesis Statement

System abstractions and optimizations are needed at different
levels of the software stack, from the software services running
in the user space and the kernel to the software running on
SmartNICs, to reduce the latency and improve the throughput
of current data-center applications.



Data Center Applications - Server Latency

[ Protocol stack - Xps ] ”
| TLB shootdown - LATR |
Key-value Stores Web Servers

efed's Preevay E
Consensus - }
Dvyad
Dlstrlbuted Services
- 4

]
Ix Apache ZooKeeper™




Taming Application Latency- Thesis

e Xps - Extensible Protocol Stack:

> Abstraction in kernel and user-space protocol stacks, and SmartNICs

> Reduces Redis latency by up to 73.3%
e LATR - Lazy Translation Coherence:

> Kernel mechanism for free operations, page migration and swapping

> Reduces Apache latency by up to 26.1%



Taming Application Latency - Thesis

e Dyad - Untangling Logically-Coupled Consensus:

> Abstraction in SmartNIC for consensus

> Reduces timestamp server latency by up to 79%



Dyad: Untangling
Logically-Coupled Consensus



Motivation - Consensus Algorithms

The Amazon Outage N Pe rSpeCtIV( FACT #1: THE EFFECTS OF DOWNTIME ARE EXPENSIVE.

Inevitable, ~ """ — s were used
. . . iecially with
The most recent Ama The average total cost of unplanned application downtime per |ications
Instead, ClO.com colu e
. RGN DUSY actle Wi 1 el M || NP0 DOl o W ] 5 [ AR )

Failures are inevitable and expensive

DDDDD

An endless stream of twe per hour.

last week's Amazon Web

as an indictment of publi

work at other cloud prov The average cost of a critical application failure per hour is
shortcomings. Still others -
$500,000 to $1 million.

have to be sure to hamm

neaantiations iust ta enail

11



Consensus Algorithms

e (Consensus Algorithms:

> Provides high availability by state machine replication
> Keeps data consistent - linearizable
> Consensus algorithms:

B Multi-Paxos/Viewstamp Replication (VR)

B Raft and Zookeeper Atomic Broadcast (ZAB)

12



Consensus Algorithms - Applications

V g

[ Distributed Services }

> Timestamp Servers
> Key-value stores

> Database
>

Lock managers n
4 / ! i »

13



Dyad: Untangling Logically-Coupled Consensus

e Background
e Overview
e Design and Evaluation

e (Conclusion

14



Consensus — VR Data Operation

NS 3. Ordered execution

Client 5" request : ] response
| = |
Replica 1/ | exec()

Leader | : j
i pre%pare pré}pareok

Replica 2 1 :
| j commit

Replica 3:\\ ;

Consensus

Application

15



Consensus — ZAB or Raft Data Operatlon

Client | request ] response
| = |
Replica 1/, , ' exec() Disk
Leader | | ]
propose TCP % ack
. é 1 Disk
Replica 2! 1 —
| % commit
Replica 3:\\ 3 j)@

1 Orderlng 2. Replication

3 Ordered execution

Consensus

Application

16



Replicas 1in a Data Center

Replica 1 - Leader Replica2 Replica3
I,'I Application I,'I Application I,'I Application
Consensus Consensus Consensus
BSD socket | Linux epoll BSD socket | Linux epoll BSD socket | Linux epoll

Client Requests

Data Center
Network (us RTT)

17



Loglcally Coupled Consensus

Application

Consensus

BSD socket | Linux epoll

Replica

Network

[1] Understanding PCle performance for end host, SIGCOMM’18

18


https://dl.acm.org/citation.cfm?id=3230560

Consensus — VR Data Operation

/1. Ordering : 2, Replication . 3. Ordered execution

Client !" Ylj“ " ! / response

Leaderi

| prepare
: prepareok

Replica 1! : > |
i /commit\ l
Replica 2 3 > |

~~~~~~~

OPCle W Protocol processing [ Context switch [l Application ! ~11 ps

19



Consensus — Direct Cost of Latency

Client 1 Ordering 2. Replication 3. Ordered execution
| :
| ! System Direct
Leaderé VR 67 us
. pléepare !
Replica 1 pre:pareok >
Replica 2 ’ >

OPCle [ Protocol processing [l Context switch [l Application

20



Consensus — Indirect Cost of Latency

Client 4 1 Orderlng 2. Replication . " 3. Ordered executlon \
cn | g ] reques request

Svstem | Direct | Indirect

Consensus - high system overhead due to
dlreet and indirect cost

/ commlt\ !
Replica 2

OPCle [ Protocol processing [l Context switch [l Application

21



Consensus Latency - Increasing Replicas

A Consensus latency > End-to-end latency

1000

750 /
Consensus latency 1s up to 82% of the

end-to-end latency

_—
250

0

3 S 7

#Replicas

22



Consensus Operations

e Data Operation:
> (ritical path for handling a client request
e C(Control Operations:

> Recovery — application recovery after failure
> View Change — new replicas joining/leaving the group, new leader

> Heartbeats — health status messages exchanged across replicas

23



Cost of Consensus - Summary

e [Every client request has high consensus overhead
e Consensus algorithms share resources with application

e C(Consensus overhead increases with increasing replicas

24



Consensus - Existing Research

e Network approaches:
>
Rely on Network Guarantees

e Hardware approach:

>

Logically Coupled Consensus

>

Sts

CS

25



Dyad: Untangling Logically-Coupled Consensus

e Background
e Overview
e Design and Evaluation

e C(Conclusion

26



Loglcally Coupled Consensus

Application f
Consensus - Control '
'H
: ost
BSD socket | Linux epoll :

Network

27



Dyad: Untanghng Logically- Coupled Consensus

Application 4
1
Consensus - Control :
. : Host
.| BSDsocket | Linux epoll | |
Replica *

PCle

Consensus — Data

Network

28



Dyad: Untangling Loglcally Coupled Consensus

______________________________________

Application

Consensus

BSD socket | Linux epoll

Loglcally Coupled Consensus

i ‘ Consensus — Data \ 5

Application

Consensus - Control

BSD socket | Linux epoll

PCle

Dyad Consensus

29



Dyad: Classifying Consensus Operations

Data Operation - SmartNIC:

> (ritical path for handling a client request

Control Operations - Host:
> Recovery — application recovery after failure
> View Change — new replicas joining/leaving the group, new leader

> Heartbeats — health status messages exchanged across replicas

30



Dyad: Untangling Logically-Coupled Consensus

e Background
e Overview
e Design and Evaluation

e (Conclusion

31



Replica

Consensus — Data

Dyad Data Operatlons

Application 4

|

Consensus - Control :
Host

BSD socket | Linux epoll

PCle

Network

32



Dyad Viewstamp Rephcatlon (VR)

1. Orderlng 2. Replication ;" %, @ sreanion

. >

Client § | request : response :

: to host ;

. | 2B e 0.lps |

Replica 1/ | s 1.7 ps 3 us -

Leader i
Replica 2!

Replica 31\\

OPCle [ Protocol processing W Context switch [l Application [} SmartNIC .



Client

Replica 1/

Leader

Replica 2!

Replica 31\\

Dyad — Direct Cost

3. Ordered execution _

1 Ordermg 2. Replication

to host
1.7 us

2.6 us

System | Direct Indirect

VR 67 us 85 us

Dyad 12.8 us

©l 9% Reduction  81%

~o ==

B SmartNIC

34



Dyad — Indlrect Cost

1. Orderlng 2. Replication 3 Ordered execution

C lient > |

l
|
!
i
}

0.1 us

-— e -1 | Curctnm MNivant Tndivant

Direct and indirect cost reduced by Dyad

- % Reduction | 81% 92%
i commit 1.5 s i
Repllca 3 P,':

ey asaaerane

OPCle [ Protocol processing W Context switch [l Application [} SmartNIC e



Dyad: SmartNIC Primitives

e Hardware Filtering:

> Specify packet format in domain-specific language (P4)
> Filter messages based on the header and payload

> Filters are applied to messages coming from the network and the host

36



Dyad: SmartNIC Primitives

e Packet Processing:
> Filtered messages invoke request/consensus/response handlers
> Handlers drop/forward/modify a packet

> (Generate new packets

37



Dyad: SmartNIC Primitives

e N\ ) y-

5 Ingress  {—/  Handlers N Egress
H/W filter 2 H/W filter

(P4) Memory (P4)

AN J

)

t tNetwork l

38



Dyad Leader Data Operatlons

1. Orderlng 2. Replication 3, Ol e o
request : '

Client

Leaderi

Replica 1!

Replica 2:\\

OPCle [ Protocol processing W Context switch [l Application [} SmartNIC .



Dyad: Ordering on Leader SmartNIC

PCIe
................................................................. Ordered Leg
| -2 1
[ eader i | Request Handler | *r
SmartNIC ’ * '
. Consensus - Data { 2.3 } { 23 } ;
Regl?est tNetwork ¢@)¢ Prepare 2

Client Replica
@ Assign sequence number and Log 4



Dyad: Replication on Leader SmartNIC
tPCIe @ Request 1

s i Ordered-Log--\
201 |
Leader | ge’pfre Handler]¢ @ e
SmartNIC ' { ’ ‘* -
= Consensus - Data { 2, 3} { s }
tNetwork
Prepareok 1

Replica 2
@ Majority prepareok for request 1



Dyad: Reordered Consensus Message
tPCIe @ Request not sent to host

O H  h Ordered Log -
211
Leader | ge’pfre Handler]¢ @ 2
SmartNIC ' oo
[ Consensus - Data { 3’ } {2*3 }
tNetwork
Prepareok 2
Replica 2

@ Majority prepareok for request 2



Dyad: Reordered Consensus Message

t pcle Y@ Request

P ——N—————m_—M l &2 Ordered Log -
S|
Leader | ge’pfre Handler]¢ @ 2
SmartNIC ' oo
[ Consensus - Data { 3’ } { *3 }
tNetwork
Prepareok 1

Replica 2
@ Majority prepareok for request 1



Dyad: Response and Commit
@ Response l tPCIC

. ) : 1
[eader i !Response Handler! *r ,4 ,* i
SmartNIC \
- Consensus - Data | { 3’ } { 3 }
@Response tNetwork @ Commit
Client Replica

@ Update log meta-data



Dyad: Timestamp Server with 5 replicas

== VR == VR-batching == Dyad-leader

2000

1500

[ ~2 Million messages ]

- processed on the NIC
5
500 /
——
0
25 50 75 100 125 150

Packets Per Second (PPS * 1K)

> Reduce latency by up to 76%, Improves throughput by 5.8x

45



Dyad Replica Data Operatlons

1. Orderlng 2. Replication 3, Ol e o
request : '

Client /
| to host

Leaderi

Replica 1!

Replica 2:\\

OPCle [ Protocol processing W Context switch [l Application [} SmartNIC 6



Dyad: Ordering on Replica SmartNIC
e Ordering and Logging:

> Logs ordered by the sequence number in prepare message
> Prepare message are processed and dropped on the SmartNIC
e Ordered Execution:

> Commit messages forwarded to the host processor

> The request is appended to the commit message by SmartNIC

47



Dyad:

t PCle
e Ordered Log-.

Replica
SmartNIC '

Logging on Replica SmartNIC

@ —
;refﬁ'e Handler | 1211

{ Consensus - Data \

Pre[g?e 2 tNetwork (3) Prepareok 2
Leader Leader

@ Log request using sequence number



Dyad: Ordered Execution on the Replica
tPCIe @ Commit 1

Ordered Log -

gnLnit Handler]¢ @ 211

Replica |
SmartNIC '

Commit 1

{ Cons

ensus - Data

Leader

@ Verify order of received commit

49



Dyad: Timestamp Server with 5 replicas

== VR == VR-batching == Dyad-leader == Dyad-all

2000
1500
m
=,
N’
2 1000
=
2
<
-]
500
==—-—/f
0
25 50 75 100 125 150

Packets Per Second (PPS * 1K)

> Reduce latency by 30 us



Dyad: Consensus Latency

System Consensus % reduction
latency (ps)

VR 350 N/A
VR-batching 409 N/A
Dyad-Leader 48 86%

Dyad-All 17 95%

Timestamp server - 5 replicas

51



Dyad: CPU Usage Timestamp Server

== VR-leader == VR-replica Dyad-leader == Dyad-replica

100
75

50

CPU Usage

25

25 50 75 100 125 150

Packets Per Second (PPS * 1K)

> Reduce CPU usage by up to 70% on the leader

52



Replica

Consensus - Control

Dyad Control Operatlons

Application 4

BSD socket | Linux epoll

PCle

Consensus — Data

Network

53



Dyad Application Fallures

( N . .
92% catastrophic ; Ap 1
failure - due to
software [1] | Consenfus ®Control
\. v,

Replica

BSD socket | Linux epoll

PCle (" Fail-stop failure )

Consensus — Data

Network

[1] Simple Testing Can Prevent Most Critical Failures, OSDI’14

54


https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Dyad: Detectmg Apphcatlon Failures

Replica

Application | 4
Cotsensus - Conlrol

BSD I;ocket Linwl epoll '

Request|<= — = =~ | Response

Host RTT

Consensus — Data

Network

55



Dyad: Detecting Application Failures

e Measure host RTT for each request
e Computed weighted average of host RTTs
e Dectect failure - response not within host RTT threshold

56



Application Recovery - VR

_____________________________________________________________________________________________

- ~ - ~ -
s ~ ’ ~ s
N N

Application Application Restart Application

C*sensus \ Consens‘
BSD socke’t Linux epoll BSD s« depoll BSD socket | Linux epoll

Client Requests

57



Dyad: Application Recovery

e Recovery using logs on SmartNIC

® [wo stage recovery:

> Recover logs from the SmartNIC

> Recover remaining logs from other replicas

58



Dyad: Application Recovery

== Dyad-all == VR-baseline

1
0.75 g

0.5

o

5 10 15 20 25

[ 400MB of data received ]

Normalized Throughput

Time (seconds)

> Dyad reduces recovery time by up to 67%

59



Replica

Dyad SmartNIC Failure

Application

Consensus - Control

BSD socket | Linux epoll

Network

60



Dyad System Failure

8% - hardware Application
faults, misconfigs [1]

Cansensus - Control

Replica

Network

[1] Simple Testing Can Prevent Most Critical Failures, OSDI’14

61


https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Dyad: System Recovery
e SmartNIC Failure:

> Detected on the host using heartbeat/client messages
> Existing VR recovery: fetch remaining logs from other replicas

e System Failure:

> Existing VR recovery: fetch logs from other replicas

> Dyad supports logging to disk from host (Raft)

62



Dyad: Reliable Connection

e Dyad Supports Raft:

> Using TCP connection to replicas
> TCP stack specifically decode Raft headers and payload

> Host application logs client commands to disk for persistence

63



Latency (ps)

800

600

400

200

Dyad: Raft Latency

Raft Dyad Raft

> Improves latency by up to 62%

64



Dyad: Ease of Use

e Memcached:

> Enable consensus for Memcached
m ~100 lines of code for data operations on replica

> Evaluate impact on latency and throughput

65



Dyad: Memcached Throughput

125000
100000
75000

50000

Operations Per Second

25000

0

Memcached Dyad-all-Memcached

> Provides consensus with ~7% reduction in throughput



Dyad: Memcached Latency

200
150

100

Latency (ps)

50

0

Memcached Dyad-all-Memcached

> Provides consensus with ~16% increase 1n latency

67



Dyad: Untangling Logically-Coupled Consensus

e Motivation

e Background

e Overview

e Design and Evaluation

e Conclusion

68



Dyad: Conclusion

SmartNIC abstraction for consensus
Data operations performed on the SmartNIC
Control operations performed on the Host

Enables consensus as a service on SmartNICs

69



Thesis: Conclusion

e Xps - Extensible Protocol Stack:
> Abstraction in kernel, user space, and SmartNIC

e Latr - lazy TLB shootdown:

> Kernel mechanism for TLB shootdown

System abstractions and optimizations are needed at different
levels of the software stack to reduce the latency and improve
the throughput of current data-center applications.

70



Thank you!



Backup Slides



Arrakis



Redis comparison with Arrakis

300000
200000

100000

Operations Per Second

0

Linux Xps-Linux mTCP Xps-mTCP Arrakis IX Zygos
74



Latr - Apache



Latency (Milli seconds)

Latr - Apache latency

B Apache [ Latr-Apache

76



User-Space Stacks



User Space: Protocol processing

Systems Latency (us) Mitigation
mTCP ~23 Batching
IX ~12 Batching

Arrakis ~2.6 -6.3 None

78



VR: IX batching with 3 Replicas

Latency (ps)

== VR == VR-batching == Dyad-leader == Dyad-all == IX- batching

1500

1000

500

25 50 75 100 125 1:

Packets Per Second (PPS * 1K) -



Context Switch



Context Switch

VR - Leader Context Switch

60000
40000

20000

S 10 15 20

Packets Per Second (PPS)

81



Dyad - Parallelism



Dyad: Application Parallelism
e Without SmartNIC:

> Sequence numbers are available in prepareok message

> Multi-thread execution by using the sequence number
e Dyad:

> Request are ordered without containing the sequence number

> SmartNIC appends the sequence number to the client request

83



Dyad:

2000

1500

1000

Latency(ps)

500

Parallelism Timestamp Server

== Dyad-leader == Dyad-all == Dyad-parallel

r/ /

50 100 150 200 250 300

Packets Per Second (PPS * 1K)

> Improves throughput by up to 2.1x

84



Reading Logs



Latency (ms)

Dyad: Log Read Throughput

B 1 Thread B 4 threads 8 threads W 16 threads

80000
60000
40000

20000

; - o =

128 512 1024

Log Size (MB)

Log read throughput ~256 MB with 16 threads

86



Direct Cost Formula



Cost of Consensus - Direct and Indirect

Leader prepare

n n—1
Latencygirect = %TT +(n-1)«TX + 5 *x RX

Replicas prepare

"

Consensus overhead increases with increasing
replicas

— -

n-—1

Latenclindirect = *xRX+(n—-1)xTX

Replicas commit

- (n — 1) * RX + tprocessing 88



VR Recovery Data Transfer



Application Recovery - VR data transfer

Replicas Log Size Data transferred
(MB) (MB)
3 100 200
5 100 400

7 100 600

90



False Positives RTT



Dyad:

False positive

False Positives with Timestamp Server

4

1 2 3

RTT Threshold ( * RTT)

> RTT=~96 us

92



SmartNIC - Netronome



SmartNIC: Memory Hierarchy and Latency

EMEM _ N}
threaded :
IMEM | -
threaded ' Soo
T, : !
l:l'\crleal\c?ed::‘l 180 250
: .
in OCM‘E(‘ ; 'OO
20 So
LOCAL g
MEM 1
'3
o 100 200 200 400 S0

/ CyCLES 94



Recovery Example



Dyad - Recovery Phasel

Replical-Leader Replicaz Replicad
I,'I Application I," Application Restart I," Application
Consensus M | Consensus
BSD socket | Linux epoll BSD socket L1+x epoll BSD socket | Linux epoll

Client Requests

Data Center
Network (us RTT)

96



Dyad - Recovery Phase?2

_______________________________

-
-’

Application

Consensus

BSD socket | Linux epoll

Client Requests

-
-’

_______________________________

Application

Consensus

BSD s¢cket | Linpx epoll

-
-’

_______________________________

Application

Consensus

BSD socket | Linux epoll

1

\ ]
\

3 1

AY
AN
\\
S . |3|:2|1
1~ 141

97



Raft - Logging to Disk



Dyad: Raft Latency with disk logging

1000
750

500

Latency (ps)

250

Raft Dyad Raft

> Improves latency by up to 46%

99



Dyad - Future Work



Dyad: Future Work

e [ogging to disk from SmartNIC:

> Possible with NVMe over fabric

> Possible over PCle? - ARM, FPGA, or NPU
e Optimize request handling:

> Sending parsed requests to host

101



