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Abstract
This paper presents multi-version read-log-update (MV-RLU),
an extension of the read-log-update (RLU) synchronization
mechanism. While RLU has many merits including an in-
tuitive programming model and excellent performance for
read-mostly workloads, we observed that the performance
of RLU significantly drops in workloads with more write op-
erations. The core problem is that RLU manages only two
versions. To overcome such limitation, we extend RLU to sup-
port multi-versioning and propose new techniques to make
multi-versioning efficient. At the core of MV-RLU design is
concurrent autonomous garbage collection, which prevents
reclaiming invisible versions being a bottleneck, and reduces
the version traversal overhead—the main overhead of multi-
version design. We extensively evaluate MV-RLU with the
state-of-the-art synchronization mechanisms, including RCU,
RLU, software transactional memory (STM), and lock-free
approaches, on concurrent data structures and real-world
applications (database concurrency control and in-memory
key-value store). Our evaluation shows that MV-RLU signif-
icantly outperforms other techniques for a wide range of
workloads with varying contention levels and data-set size.

CCS Concepts • Computing methodologies Concur-
rent algorithms.

Keywords multi-version; concurrency control; garbage col-
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1 Introduction
Synchronization mechanisms are an essential building block
for designing any concurrent applications. Applications such
as operating systems [4, 7–9], storage systems [37], network
stacks [24, 53], and database systems [59], rely heavily on
synchronization mechanisms, as they are integral to the
performance of these applications. However, designing ap-
plications using synchronization mechanisms (refer Table 1)
is challenging; for instance, a single scalability bottleneck
can result in a performance collapse with increasing core
count [7, 24, 48, 53, 59]. Moreover, scaling them is becoming
even more difficult because of two reasons: 1) The increase
in unprecedented levels of hardware parallelism by virtue
of recent advances of manycore processors. For instance,
a recently released AMD [57, 58], ARM [22, 63], and Xeon
servers [11] can be equipped with up to at most 1,000 hard-
ware threads.1 2) With such many cores, a small, yet critical
serial section can easily become a scalability bottleneck as
per the reasoning of Amdahl’s Law.
Although, there have been significant research efforts to

design scalable synchronization mechanisms, they either do
not scale [17, 18], only support certain types of workloads [3,
42, 45, 55], or are difficult to use [45]. Figure 1 shows the
performance of hash tables for a read-dominant workload
with 1,000 elements. Unfortunately, none of the existing
approaches scale beyond 100 cores and each approach suffers
from different bottlenecks and limitations, as summarized
in Table 1.

Current state-of-the-art work can be broadly categorized
into linearizable and non-linearizable approaches. Lineariz-
able approaches include lock-based, lock-free, delegation-
style, and software transactional memory (STM) approaches.
Lock-based approaches suffer from limited parallelism due
to the mutual-exclusive nature of locking [30]. Lock-free ap-
proaches provide higher parallelism but they suffer from
cache-line bouncing (e.g., frequent compare-and-swap re-
tries) for memory hot spots and have additional memory

1 In this paper, we interchangeably use a logical core, core, and hardware
thread.
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Figure 1. Performance comparison of concurrent hash tables hav-
ing 1,000 elements with a load factor 1. Hash table access follows
80–20 Pareto distribution with 10% update. None of the existing
approaches scale beyond 100 cores, except MV-RLU. Refer the setup
detail in §6.

reclamation overhead [43, 45, 47]. Delegation and combin-
ing approaches use single thread execution to reduce the
cost of synchronization, such as cache-line bouncing, but
the single-thread execution itself becomes a bottleneck, es-
pecially during long running workloads (e.g., look up a large
hash table) [55]. STM provides excellent programmability but
its centralized metadata management (e.g., lock table) often
becomes a scalability bottleneck [17].
In non-linearizable category, read-copy-update (RCU) ap-

proach is catered towards read-mostly workloads [45]. RCU
provides excellent performance for read-mostly workloads
because a writer does not block readers, while modifying an
object. Due to its excellent performance, several sub-systems
heavily rely on RCU in the Linux kernel [44] and even in user-
space applications [12, 21]. However, RCU programming is
notoriously difficult because all the changes need to properly
use single pointer update [42]. To mitigate this issue, read-
log-update (RLU) [42] extends the RCU framework to ease
concurrent programming. RLU allows read-only traversals,
while supporting multiple updates by internally maintain-
ing copies of multiple objects in a per-thread log, which is
similar to the reader-writer programming model. RLU im-
proves programmability in two ways. Firstly, it allows atomic
multi-pointer updates which simplifies the design of many
concurrent data structures like doubly linked list and tree.
Secondly, because every reader gets a consistent snapshot of
the data-structure protected by RLU, it removes the need of
data structure specific pre-commit validation step required
bymost lock-free data structures. Despite its ease of program-
ming, RLU shows limited scalability. For example, Figure 1
shows the scalability of the hash table benchmark with 10%
updates, in which RLU’s scalability starts degrading after
28 cores, and at 448 cores, it is more than 20× slower than
RCU, which uses a spinlock to coordinate multiple writers.
The reason for such performance is that RLU maintains only
two versions of an object, which is a dual-version concur-
rency control (DVCC) scheme or a restricted form of multi-
version concurrency control (MVCC). When a writer tries to

Time

T1

T2

T3 try_lock(b)[ ]
[ ]try_lock(a)
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(a) RLU
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T3 try_lock(b)[ ]
[ ]try_lock(a)

[ ]try_lock(a)[ ]

(b) MV- RLU

quiescent state

NOTE. [ ]: start and end of a critical section

Figure 2. Because RLU maintains only up to two versions of an
object, thread T2’s try_lock(a) call, which actually tries to create
a third version of a, is blocked until a quiescent state is detected
and the old a is reclaimed (marked in red). However, MV-RLU imme-
diately creates a third version so T2 can proceed without blocking.

modify an object that already has two versions, it has to
synchronously wait for all prior threads to leave the “RLU
critical section” to reclaim one version (see Figure 2). This
takes up to 99.6% of CPU time at 448 cores in Figure 1. In
other words, DVCC significantly hinders concurrency.
In this paper, we propose Multi-Version Read-Log-Update

(MV-RLU), an extension of the RLU framework that supports
multiple versions for better scalability in terms of through-
put. Upon write-write conflict, unlike RLU, MV-RLU avoids
synchronous waiting for object reclamation by utilizing other
existing versions of a given object. MV-RLU uses timestamp
ordering to see a consistent snapshot of objects; a thread
chooses the correct version of an object using commit times-
tamps of a version (when the version was committed) and its
local timestamp (when a thread starts a critical section). This
is a well-known approach in multi-version concurrency con-
trol (MVCC) database systems [13, 34, 38, 52]. However, it is
still challenging to design scalable synchronization frame-
works based on MVCC such that they include the following:
1) a scalable global timestamp allocation scheme; 2) reduced
memory stalls in version management, and 3) a scalable
garbage collection (GC) mechanism. In addition, while pro-
viding multi-versioning, MV-RLU preserves the programming
model of RLU, which allows atomic multi-pointer update.
Hence, this results in easier concurrent programming model
in comparison to RCU.

In this work, we make the following contributions:
• Concurrent programming framework:Wepresent
MV-RLU, an extension of RLU with multi-versioning,
which enables designing multi-version-enabled con-
current data structures easily.

• Avoid RLU overhead:We decouple the synchronous
garbage collection (or log reclamation) from the grace
period detection, as well as adopt scalable timestamp
allocation [33]—two big issues in RLU.
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Approach Algorithm Parallelism Linearizable Programming Amplification †

Main Performance OverheadRR RW WW Difficulty Read Write

Lock mutex × × × ✓ medium 1 1 lack of parallelism
rwlock • × × ✓ medium 1 1 limited parallelism

Lock-free Harris list [25] • • △ ✓ high 1 1 cacheline bouncing; memory reclamation

Delegation-style ffwd [55] × × × ✓ low 1 1 single-threaded execution of a critical section
NR [6] • × × ✓ low 1 # NUMA limited parallelism

STM
SwissTM [18] • ▲ △ ✓ lowest 2 2 centralized metadata management (e.g., lock table)
STO [31] • ▲ △ ✓ low 2 2 high amplification ratio

RCU-style
RCU [43] • • × - high 1 1 single writer
RLU [42] • • △ - medium 1 2 synchronous log writing (rlu_synchronize)
MV-RLU • • △ - medium 1 1+1/V version chain traversal

NOTE. ×: no parallelism •: full parallelism ▲: read-write conflict for the same data △: write-write conflict for the same data V: number of versions at GC

Table 1. High-level comparison of synchronization mechanisms. Each mechanism has a unique design goal, strategy to scale, and target class
of workloads. For example, lock-free maximizes parallelism for performance while delegation/combining utilizes single thread execution to
minimize synchronization costs; the primary goal of transactional memory is ease-of-programming; RCU and RLU are designed for read-mostly
workloads. In MV-RLU, we extend RLU for write-heavy workloads using multi-versioning, while maintaining the optimal performance of RLU
for read-mostly workloads along with its intuitive programming model, which is similar to readers-writer locking. † Amplification is defined
by the ratio of the actual reads (or writes) from the memory to the reads (or writes) requested from an application. The amplification of STM
approaches is 2 because reads and writes should be buffered and logged for atomic transactions.

• Scalable garbage collection:We propose concurrent
garbage collection to achieve high performance under
write-intensive workloads—one of the primary limita-
tions of MVCC-based designs.

• Workload-agnostic garbage collection:Wealso pro-
pose an autonomous garbage collection algorithm that
does not require workload-specific manual tuning, by
maintaining a balance between chain traversal and
garb-age collection deferring.

• Application:We extensively evaluate and analyze
MV-RLU with concurrent data structures (list, hash ta-
ble, and tree). We further apply MV-RLU to a key-value
store [36] and a database benchmark [65] to compare
concurrency control schemes. Nearly all cases with
various read-write ratios, skewness, and data set sizes,
MV-RLU shows the best (or second best) performance
among other state-of-the-art techniques and scales
well up to 448 cores.

• We will open source MV-RLU including the core frame-
work and relevant benchmarks for the community to
reproduce and build upon our results.

2 Overview of MV-RLU
2.1 Programming Model
MV-RLU follows the programming model of RLU, which re-
sembles readers-writer locking. Each critical section begins
by read_lock and ends by read_unlock. Before modifying
an object, a thread locks an object using try_lock. Unlike
readers-writer lock, there is no lock or unlock. Thus, on
try_lock failure, a thread should abort and re-enter the crit-
ical section by calling read_lock. MV-RLU automates this

process by managing the per-object lock with additional
metadata, while guaranteeing that a thread will observe a
consistent snapshot of objects. Moreover, object metadata is
hidden from users, as MV-RLU provides its own API, such as
alloc, free, dereference, assign_ptr, and cmp_ptr.
The benefit of MV-RLU programming model is that it can

act as a drop-in replacement for RCU and RLU. Moreover, the
readers-writer lock style model is familiar to ordinary users
and many fine-grained locking techniques are applicable
to MV-RLU. For example, in Figure 3, thread T3 uses a well-
known hand-over-hand locking [30] to insert node e after
d. It first locks node c and d to prevent a race condition
between removing node d and inserting node e.2 In addition,
we extend the API with try_lock_const, which allows a
thread to lock an object that it does not intend to modify
(node c), as an optimization.

2.2 Multi-Versioning
While MV-RLU uses a lock-based programming model, it also
relies on multi-versioning (MVCC) with timestamp ordering.
We chose to utilize MVCC because it further enables disjoint-
data access parallelism, as it is only restricted when two
threads try to modify the same data (i.e., write-write conflict).
Hence, MVCC can further improve scalability.

In MV-RLU, an object consists of onemaster object and zero
or more copy objects, as shown in Figure 3. A master object,

2 Note that hand-over-hand locking is required only in update operations
(e.g., insert, remove). For read operations (e.g., list traversal), hand-over-
hand locking or data-structure specific validation steps, which are required
in fine-grained locking, are not necessary because MV-RLU provides a con-
sistent snapshot of the data structure to readers.
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T1 … local-ts == 10
T1 … 
T1 ► dereference(a) → a 

T3 … local-ts == 50
T3 … if (try_lock_const(c) && (p=try_lock(d))
T3 ►     assign_ptr(&p→next, e);

T2 … local-ts == 40
T2 … 
T2 ► dereference(a) → a´ 

Figure 3. Illustrative snapshot of concurrent operations in the MV-RLU-based linked list.▶ denotes where a thread executes. At time 30, node
b is removed, then the next of node a’, whose commit-ts is 30, points to node c. A thread gets a local timestamp (local-ts) at the beginning
of a MV-RLU critical section (read_lock) and uses it to choose the newest object committed before entering the critical section (commit-ts).
For instance, thread T1’s dereferencing node a returns a, which is the oldest among node a’s versions. However, T2’s dereferencing node a
returns a’. Thus, T1 traverses node b, while T2 does not, as T1 and T2 start before and after the removal of node b, respectively. To modify
data in MV-RLU, a thread first tries to acquire the given object’s lock. MV-RLU copies its newest object and returns its pointer upon success.
For example, T3 wants to insert a new node e. It first locks nodes c and d with the hand-over-hand locking technique [30]. While it sets the
next of d” to e, the new node e is not yet visible, until T3 commits its write set (a set of modified objects in a critical section) at the end of
its critical section. Upon commit, T3 moves its pending object d” (p-pending) to the head of version chain (p-copy) and sets the commit
timestamp of d” (commit-ts) to allow node e to be visible. Finally, when no threads access node b (i.e., in quiescent states), MV-RLU reclaims
it.

which is allocated using alloc, whereas copy objects are cre-
ated when a thread successfully locks an object (try_lock).
A copy object is a pending version (p-pending) and is moved
to the version chain (p-copy) only when the thread commits
(read_unlock). In MV-RLU, all threads are guaranteed to have
a consistent view of the objects; MV-RLU achieves this consis-
tency via timestamp ordering. A thread entering the system
is assigned a timestamp (local-ts) and it chooses the cor-
rect version of the object by comparing its local-ts with
the commit-ts of an object. For example, thread T1 traverses
node b, while T2 does not observe it as T1 and T2 start before
and after the removal of node b, respectively. Moreover, each
thread maintains a per-thread circular log to store copy ob-
jects. It maintains a write set of all copy objects in the same
critical section that will be atomically committed at the end.
Upon abort, it rewinds the log tail to discard all copy objects
in the write set and unlock all objects in the write set.

2.3 Garbage Collection
MV-RLU creates a new version, whenever a thread modifies
an object. It also safely reclaims an object, only when the
object becomes invisible to threads entering critical section
and has no existing references. For example, in Figure 3, it is
not safe to reclaim node b until T1 exits its critical section.
MV-RLU uses a grace period detection technique like RLU to
find safely reclaimable versions. Unlike RLU, MV-RLU decou-
ples synchronous grace period detection from garbage collec-
tion by moving the the synchronous detection off the critical
path. To this end, a background thread, called gp-detector,
detects grace period periodically or on-demand. We propose
a concurrent autonomous garbage collection scheme, in which
each thread reclaims its own log space. This design prevents
garbage collection from becoming a scalability bottleneck.

In addition, MV-RLU automatically decides when to trigger
garbage collection without workload-specific manual tuning
by considering write back and version traversal overhead.

2.4 Consistency Guarantee
MV-RLU satisfies snapshot isolation, in which a thread ob-
serves a consistent snapshot of objects [5]. Snapshot isola-
tion has been widely adopted by major database systems
because it allows better performance than stricter consis-
tency levels [62]. However, it is not serializable as it permits
write skew anomaly [5]. Write skew anomaly occurs if two
threads concurrently read overlapping objects, concurrently
make disjoint writes, and finally concurrently commit, in
which both of them do not see writes performed by the
other. Modern MVCC database systems [13, 38, 54] have
an additional validation phase upon commit to detect write
skew anomalies and guarantee serializability by aborting
such transactions at the expense of maintaining and vali-
dating read sets. Under MV-RLU, a programmer can make
an MV-RLU critical section serializable by locking read-only
objects (try_lock_const) to generate a write-write conflict.
One example is inserting and removing an element to/from
a singly-linked list. As shown in Figure 3, it is possible to
serialize insert and remove operations, by using hand-over-
hand locking, i.e., lock node c which is read-only, to prevent
node d from getting deleted in the middle of operation.

3 Design of MV-RLU
3.1 Design Goals
We design MV-RLU with three main goals: First, MV-RLU
should be scalable to a wider range of workloads (e.g., read-
mostly and write-intensive workloads), while maintiaining
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programmability it inherits from RLU. Prior works are opti-
mized for a narrow scope of workloads for example, RLU and
RCU are designed for read-mostly workloads while delegation
and combining is applicable to synchronization dominant
workloads. These restrictions severely limit their use. Sec-
ond, MV-RLU should scale with increasing core count (> 100).
This is critical because servers and virtual machines with
more than 100 cores are now a norm [11, 57, 63]. Finally, the
performance of MV-RLU should be optimal even for smaller
core counts because previous studies [46] have shown that
many systems improve scalability at the cost of lower core
performance. These design goals have complex interactions,
thereby leading to no optimal system satisfying all these
goals, which we achieve with MV-RLU.

3.2 Version Representation
The alloc function creates an object (called master object),
along with its header. The header has two pointers: p-copy
is the head of a version chain and p-pending points to the
uncommitted version of the master object, if any. A version
chain is a singly linked list, which links different versions
of the same master object (called copy object) via p-older.
Readers will most likely read the most recent version of an
object. Therefore, to make the common case for reads faster,
version chain is ordered from newest to oldest version to pre-
vent expensive version chain traversal. In the commit phase,
a writer thread moves the uncommitted version (p-pending)
to the head of the version chain (p-copy) and hence preserves
the newest to oldest invariant of the version chain.
The per-thread circular log stores copy objects. Copy ob-

jects commited in the same critical section are grouped into
a write set. Each write set has a write set header that holds its
commit timestamp (commit-ts). Copy objects also have an
object header, which stores commit timestamp (commit-ts)
of the copy object. It is the same as the commit-ts of its write
set and is duplicated to reduce memory accesses during ver-
sion traversal (dereference). Initially, the commit-ts of a
copy header and a write set header are∞. If the commit-ts
of a copy header is∞, then we use the commit-ts of its write
set. This is necessary because all copy objects should be visi-
ble at the same time during the commit phase (see §3.5). The
header also stores the commit timestamp of the last commit-
ted version of the same master object (older-ts), which we
use for version chain traversal.

3.3 Reading an Object
Reading an object (dereference) is finding a correct ver-
sion by traversing the version chain. On entry into a critical
section (read_lock), a thread first sets its local timestamp
(local-ts) to the current hardware clock. Then, it traverses
the version chain and finds the first copy object, whose com-
mit timestamp (commit-ts) is smaller than the thread’s local
timestamp. If the version chain is empty or there are no copy

object with commit-ts less than or equal to the thread’s
local-ts, then the thread reads the master object.

3.4 Writing an Object
To modify an object, a writer tries locking the master object
with try_lock. On failure (i.e., p-pending , NULL), the writer
aborts and then retries. To maintain the newest-to-oldest
ordering, MV-RLU applies a write-latest-version-only rule. It
aborts if the writer’s local-ts is less than the commit-ts
of the latest copy object at the head of the version chain. If
the aforementioned conditions are met, the writer creates a
header for the copy object in its log and tries to atomically
install it to p-pending using a compare-and-swap (CAS) oper-
ation. On success, writer appends the new version to the it’s
current write set and returns new version’s pointer to the
caller.

3.5 Commit a Write Set
read_unlock denotes the exit of the MV-RLU critical section,
which commits the thread’s write set if it exists. To make
the entire write set atomically visible, we first move the
pending objects (p-pending) to the head of a version chain
(p-copy). We then update the commit timestamp (commit-ts)
of the write set to the current hardware clock. This is the
linearization point of the commit operation, as all new copy
objects have a commit-ts and are now visible to new readers
(see §3.2). Finally, we update the commit-ts in header of
copy-objects and set the p-pending of the corresponding
master-object to NULL, which unlocks objects.

3.6 Abort a Critical Section
On failure of a try_lock call (§3.4), we abort that correspond-
ing thread, which unlocks the master object in its uncom-
mitted write set by updating the p-pending to NULL. Finally,
we free the log space by rolling back the tail pointer of the
log to the beginning of the write set of the thread which was
aborted.

3.7 Garbage Collection
Garbage collection is critical because its performance bounds
the write performance in MV-RLU. There are three key chal-
lenges to garbage collection: 1) finding safe reclaimable ver-
sions, 2) avoiding garbage collection being a bottleneck, 3)
deciding when to trigger garbage collection
Finding safe reclaimable objects. We use a RCU-style
grace period detection algorithm to decide whether an ob-
ject is safe to reclaim or not. We delegate the grace period
detection to a special thread: gp-detector, which detects
each grace period expiration. With this approach, we decou-
ple quiescent state detection and thread operation. Decou-
pling is important because, in RLU, even for read-intensive
workload (e.g., 10% write in Figure 1) quiescent state detec-
tion becomes a scalability bottleneck, as a thread running
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rlu_synchronize has to wait for other threads to finish their
critical sections.
An object is obsolete if it has a newer version. When all

threads reading an obsolete object exit the critical section,
then it becomes invisible and is safe to reclaim. We use grace
periods to determine if threads are reading an obsolete object.
A copy object is safe to reclaim if one grace period has elapsed
since it became obsolete. A noteworthy point is that we can-
not reclaim copy objects, which are the latest versions of the
master object, because they are visible to all threads. Unfor-
tunately, this increases the dereference cost, as readers will
have to access the version chain to get the correct version of
the object. To reduce this cost, we write back the latest copy
object to the master object and then reclaim the copy object.
Thus, we safely reclaim the latest copy object, by first writing
back to the master object after at least one grace period since
the creation of the copy object, and later reclaiming it after
another grace period (see §4.2 for correctness).
Concurrent garbage collection. To avoid one thread from
becoming a performance bottleneck, we devise a concurrent
garbage collection algorithm. Every thread checks whether
it should garbage collect its log at the MV-RLU critical section
boundary (read_lock, read_unlock, abort). If a thread re-
quires garbage collection, it indicates gp-detector to broad-
cast the begin timestamp of the latest detected grace period
(graceperiod-ts) to each thread. When threads receive the
timestamp, they perform garbage collection of their own
logs, by removing all copy objects that have commit-ts less
than the second-to-last broadcasted graceperiod-ts (i.e.,
two elapsed grace periods) and write back copy objects to
their master if they are the latest version and their commit-ts
is less than the last broadcasted graceperiod-ts (i.e., one
grace period has elapsed). This scheme has optimal perfor-
mance because grace period detection becomes asynchro-
nous and garbage collection is concurrent. The communi-
cation between gp-detector and MV-RLU threads is merely
accessing shared memory. Moreover, each thread reclaim-
ing its own log not only ensures cache locality, but also is
hardware prefetcher friendly [32], thereby avoiding cache
thrashing and cross-NUMA memory accesses. To prevent
two or more threads writing copy objects back to the master
at the same time, we add a reclamation barrier, which pre-
vents triggering of the new garbage collection routine before
the last garbage collection is completed. To ensure liveness of
the system, we have to guarantee the termination of garbage
collection routine. Liveness can be an issue if a thread takes
longer time across MV-RLU boundary, causing entire garbage
collection to wait at the reclamation barrier, which we pre-
vent by allowing the gp-detector thread to reclaim the log
of a thread if it did not initiate garbage collection.
Autonomous garbage collection. The optimal time to
trigger garbage collection depends on workload characteris-
tics, such as read-write ratio and write skew. There are two

conflicting goals for garbage collection: On one hand, it is
better to defer garbage collection as much as possible until
there is almost no space left in a per-thread log because we
can save write-back costs from the newest copy to a mas-
ter object (i.e., larger V in Table 1 is better). On the other
hand, it is better to reclaim logs as early as possible because
we can reduce version traversal overhead by writing back
the newest copy object and pruning the version chain. To
deal with these conflicting goals, our autonomous garbage
collection scheme decides when to trigger garbage collec-
tion considering both log space utilization and version chain
traversal overhead.
Our design has two conditional triggers for garbage col-

lection we call watermarks. The first is a capacity watermark,
which triggers garbage collection when the log space is insuf-
ficient; and a dereference watermark, which triggers garbage
collection when the access ratio of copy objects to master
objects is high. Since we do not want threads to block be-
cause of the lack of log space (called high watermark), we
define a low watermark for the log space with a goal to trig-
ger garbage collection early enough to avoid thread block-
ing at high watermark. This design is autonomous as we
do not need manual tuning for different workloads as they
change the frequency of garbage collection automatically,
based on the workload behavior. For example, in the case of
write-heavy and skewed workload, the capacity water mark
triggers garbage collection, whereas in read-mostly and uni-
form workloads, the dereference watermark triggers garbage
collection. Moreover, the calculation of these watermarks
do not require any synchronization among threads, thereby
leading to almost negligible overhead.

3.8 Freeing an Object
To free a master object, first the object must be locked using
try_lock method which prevents any concurrent update
to the object. Then, the object can be freed using the free
method. Internally, since it might not be safe to deallocate
the object immediately, free puts the object in a free list.
Also, to prevent any further update of freed object, objects
in the free list are not unlocked after commit (read_unlock).
After two grace periods since adding the object to free list,
the object memory is deallocated.

3.9 Timestamp Allocation
Prior works [33, 34, 38, 59, 65] have shown that timestamp
allocation is a major bottleneck in MVCC-based designs. To
alleviate this issue, we use a hardware clock (RDTSCP in x86
architecture) for timestamp allocation. However, hardware
clocks can have a constant skew between them which can
lead to incorrect ordering. We avoid this inconsistency by
using the ORDO primitive [33], which provides the notion
of a globally synchronized clock by calculating the maxi-
mum uncertainty window (called ORDO_BOUNDARY) among

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

784



CPU clocks and uses it to compare timestamps. Only times-
tamps with difference more than ORDO_BOUNDARY can be or-
dered non-ambiguously. To remove the ambiguity in order-
ing, we add ORDO_BOUNDARY to the timestampwhen allocating
commit-ts to a copy object (i.e., new_time API in ORDO) and
subtract ORDO_BOUNDARY from the timestampwhen allocating
for garbage collection. Also, try_lock fails when the differ-
ence between local-ts of writer and the last commit-ts of
an object to be locked is less than the ORDO_BOUNDARY. See §4.3
for correctness.

4 Correctness of MV-RLU
4.1 Definitions

• Grace period. An interval in which every thread in
the system has been outside the critical section.

• Latest copy object. The newest version of a master
object. It is at the head of a version chain.

• Obsolete object. An object that has become invisible
to new readers because of the presence of a newer
version.

4.2 Garbage Collection
Lemma 1. An obsolete copy-object is safe for reclamation if
one grace period has elapsed since it became obsolete.

Proof. We cannot immediately reclaim an obsolete copy-
object, as other threads may be reading it. However, on de-
tecting a grace period, we can reclaim the obsolete copy
because there is no old references to that copy. □

Lemma 2. It is safe to write back a copy-object to its master
object if one grace period has elapsed since its creation.

Proof. After creating a copy-object, its master object becomes
obsolete. From Lemma 1, the master object has now no ref-
erences after the lapse of one grace period. Hence, it is safe
to write back the copy-object to the master object. □

Lemma 3. It is safe to reclaim the latest copy-object after
two grace periods since its creation, if it is written back to the
master object after the first grace period.

Proof. From Lemma 2, it is safe to write back the latest copy
after the first grace period, which makes the latest copy
obsolete. From Lemma 1, it is safe to reclaim the latest copy
after another grace period. Since after grace period detection,
a latest copy object can turn into an obsolete copy object,
we reclaim all objects after two grace periods. □

Theorem 1. MV-RLU garbage collection removes objects that
are invisible to readers.

Proof. MV-RLU garbage collector removes object only after
two grace periods and writes back latest copy object after
the first grace period. From Lemma 1, 2, and 3, we claim that
the garbage collection of MV-RLU removes objects that are
invisible to readers. □

4.3 Timestamp Allocation
Theorem 2. Clock skew among physical clocks do not affect
the snapshot of a reader.

Proof. ORDO_BOUNDARY is greater than or equal to the maxi-
mum clock difference between clocks with the smallest and
the largest skew in the system. When assigning commit-ts,
we add ORDO_BOUNDARY to the commit-ts (i.e., new_time in
ORDO) to prevent threads with smaller clock-skew, reading
objects committed by threads with larger clock-skew after a
critical section has begun. We reduce the grace period times-
tamp by ORDO_BOUNDARY, to prevent reclamation of objects
that are still visible to threads with smaller clock-skew. □

4.4 Isolation Guarantee
MV-RLU has the following invariants:

Invariant 1. dereference ensures that a reader cannot see
objects newer than its local-ts.

Theorem 3. MV-RLU provides snapshot isolation.

Proof. MV-RLU provides snapshot isolation if it always pro-
vides a consistent snapshot of data structures to every reader.
Threads in MV-RLU modify objects (both copy and master)
during writes and garbage collection. Hence, we show that
the snapshot remains unaffected by these operations.

• Two threads cannot write to same object at the same
time, as only one thread holds the lock to the object.

• Uncommitted copy objects have commit-ts of∞. From
Invariant 1, these objects are not visible to reader.
Hence, writes do not affect the snapshot of readers.

• Both write back and garbage collection do not affect
the snapshot of reader. [1]

• Clock skew among CPU clocks does not affect the
snapshot of readers. [2]

• A Reclamation barrier ensures that a garbage collec-
tion routine cannot start until the last routine has
ended, which prevents write-backs by two threads
to the same master.

Thus, MV-RLU provides snapshot isolation. □

5 Implementation
We implemented MV-RLU in C comprising of 2,250 lines of
code.3 We made several implementation-level optimizations.
For instance, we implemented per-thread logging using a
circular array, which enables memory access during log recla-
mation to be sequential and hardware prefetcher friendly.
In addition, we avoid false cache-line sharing by aligning
copy objects to cache-line size. Our current implementation
statically allocates the log and is prone to blocking if the log
frequently crosses the high watermark. Fortunately, we did
3 We wrote MV-RLU from scratch without reusing RLU code because it
required significant code changes to add multi-versioning to RLU and im-
plement our optimizations.
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not observe such scenarios in our evaluation and hence we
did not implement dynamic resizing of each threads log.

In MV-RLU, the most performance critical code is derefer-
ence and its first step of distinguishing whether a given
address points to a master object or a copy-object. We re-
quire this because the version chain traversal starts from the
master object. To distinguish an object type without access-
ing its header, we maintain copy objects and master objects
in different address spaces.4 By doing so, a thread can dis-
tinguish object’s type without reading its header, thereby
reducing memory access. Since accessing object headers for
type information is a common case, there is a noticeable
improvement in performance (see §6.3).

6 Evaluation
We evaluate MV-RLU by answering the following questions:

• Does MV-RLU achieve high scalability across several
data structures under varying contention levels with
varying intensity and data set size? (§6.2)

• What is the impact of our proposed approaches on
MV-RLU? (§6.3)

• What is its impact on real-world workloads? (§6.4)

6.1 Experimental Setup

Evaluation platform. We use a 448-core, 337 GB, Intel
Xeon Platinum 8180 CPU (2.5GHz) for our evaluation. It com-
prises of eight NUMA sockets with 28 cores (hyperthreaded
56 cores) per socket. We use jemalloc for scalable memory
allocation on Linux 4.17.3.
Configuration. We configure per-thread log size to 512
KB, high and low capacity watermarks, and dereference
watermark to 75%, 50%, and 50% of the log capacity, re-
spectively. We compare MV-RLU with several state-of-the-
art approaches: RCU [43], RLU [42], RLU-ORDO (i.e., RLU us-
ing ORDO timestamp), Versioned-programming [67], Swis-
sTM [18], Harris-Michael linked list [25], and predicate-RCU
(PRCU) for Citrus tree [1, 7]. For RLU, we only present results
for its non-deferring version because we did not observe any
noticeable differences in results with or without RLU defer-
ring. For all other algorithms, we use default parameters.
Workloads. We evaluate three data structures and two real-
world applications. The data structures include a linked list,
hash table, and binary search tree. For real-world applica-
tions, we use DBx1000 [65] and KyotoCabinet [36]. For all
workloads, we ran three types of workloads: 1) read-mostly
(98% read and 2% update), 2) read-intensive (80% read and 20%
update), and 3) write-intensive (20% read and 80% update).

4In user-space, we allocate log space from a mmap-ed region. In kernel space,
we use kmalloc for a master object and vmalloc for log space, so copy objects
are located between VMALLOC_START and VMALLOC_END.

6.2 Concurrent Data Structures
We first compare the scalability of three concurrent data
structures (§6.2.1). Then we analyze MV-RLU behavior with
different data set sizes (§6.2.2) and vary contention levels
with different skewness of access (§6.2.3).

6.2.1 Performance and Scalability
.
Linked list. We compare MV-RLUwith RCU, RLU, RLU-ORDO,
Versioned Programming, and SwissTM with 10,000 (10K)
items. The first row of Figure 4 shows that MV-RLU out-
performs all synchronization mechanisms because of multi-
versioning coupled with efficient garbage collection. RCU
does not scalewith increasing update ratio because rlu_sync-
hronize becomes a bottleneck. In the case of a read mostly
workload, RCU is scalable only up to 56 threads (on 2 NUMA
nodes), then its scalability gradually degrades asmore threads
start to contend on the write operation, which is also evident
in read- and write-intensive workloads. RLU shows better
scalability than RCU because it allows concurrent write oper-
ations except for the case when two writers want to modify
the same object. However, in the case of read- and write-
intensive workloads with higher update ratios, its perfor-
mance is saturated after 56 threads because of the frequent
synchronous log reclamation, as evident in Figure 2. RLU-
ORDO generally performs better than RLU because it avoids
the global clock being a bottleneck.
Versioned-programming supports multiple versions like

MV-RLU. It’s scalability trend is similar to MV-RLU, but it is up
to 24% slower than MV-RLU in all cases. Unlike MV-RLU, all
committed, uncommitted, and aborted versions are part of
the version chain, which results in expensive version chain
traversal. This overhead hampers scalability, as a thread
spends 79% of CPU time to obtain the correct version of
an object at 224 threads for the read-intensive workload.
In the case of SwissTM, we show results only up to 140
threads because it crashes after 140 threads [16]. For the
read-mostly workload, SwissTM scales up to 28 threads and
then its performance is saturated. As update ratio increases,
SwissTM shows significantly worse performance because of
frequent read-write and write-write conflicts. Wewill further
analyze its abort ratio under high contention in §6.2.3.
Hash table. We create a hash table with 1,000 buckets,
with each bucket pointing to a singly linked list. The hash
table is initialized with 10,000 items. For each operation, we
first find a bucket corresponding to the key using a hash
function then access the desired key from the linked list in
the bucket. The second row of Figure 4 shows the results of
hash table performance for three types of workloads. For all
three workloads, MV-RLU shows near linear scalability up to
448 threads and it is 652× faster than others for read- and
write-intensive workloads. In particular, MV-RLU performs
best in read- and write-intensive workloads. On the other
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hand, for read-mostly workload, RCU performs best because
RCU hash table uses a per-bucket lock for writes to allow for
more parallelism than linked list. However, as update ratio
increases, the fine-grained locking for concurrent writers
becomes a bottleneck, which we observe after 392 cores in
the read-mostly workload for RCU. Moreover, at 448 cores,
71% of CPU time is spent in lock acquisition for the write-
mostly scenario. RLU performs the worst, as after every write
it calls the rlu_synchronize function which blocks the caller
thread. Moreover, the writeback defer optimization and RLU-
ORDO do not improves its scalability because the chances of
writer-writer conflicts and rlu_synchronize cost increases
with increasing thread count.

HP-Harris is a hash table where each bucket points to a
lock free linked list. The lock free linked list uses hazard
pointers [47] for safe memory reclamation. It performs well
for read-mostly workloads but performs poorly for higher
write ratios. To understand the low throughput, we per-
formed Perf [41] analysis of HP-Harris hash table at 448
threads for write-intensive workload. The analysis indicates
that memory barrier in object derefernce which is required
by hazard pointers is the performance bottleneck.
Binary Search Tree. We implement a binary search tree
(BST) implementation using MV-RLU, which is similar to the
one using RLU, which we compare the RLU, RLU-ORDO, RCU,

Versioned-Programming, and Citrus trees with predicate
RCU. Citrus tree with predicate RCU is an optimized version
of Citrus tree, which reduces the number of threads waiting
during an rcu_synchronize call using data structure specific
predicates [1, 7]. Even in this case, MV-RLU outperforms oth-
ers for all varying workloads. For the read-mostly workload,
RCU shows the best performance up to 224 threads, however
the performance drops sharply when the number of physical
cores (224) exceeds, due high overhead of rcu_synchronize
function call which is required to safely delete a node. RLU
shows scalability only up to 28 threads, but later suffers from
the rlu_synchronize bottleneck. RLU-ORDO shows slightly
higher performance than RLU but still shows similar perfor-
mance trends. Versioned-programming only scales up to 28
threads. Beyond that, allocating a logical timestamp becomes
the performance bottleneck, which is different from the one
we observed in the linked-list case because the critical sec-
tion of the tree data-structure is smaller. Since the allocation
of epochs is closely coupled with writer-writer conflict de-
tection, physical clocks cannot be used as logical timestamps
in Versioned programming without significantly modifying
the algorithm.
Analysis on abort ratio. To understand why MV-RLU per-
forms better than RLU and SwissTM, where a transaction can
abort, we further analyzed their abort ratios for the linked
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list and hash table in Figure 5. The abort ratio of MV-RLU is
very low (0-2.3%) because it allows to have more than two
versions unlike RLU and it does not abort upon read-write
conflict unlike SwissTM. The abort ratio of RLU increases
significantly as the write ratio and the number of threads
increase. It shows the limitation of synchronous reclamation
strictly maintaining only two versions. SwissTM shows even
higher abort ration than RLU because it also aborts upon
read-write conflict to guarantee linearizability.

6.2.2 Data Set Size
.

To understand the behavior of MV-RLU with various data
set size, we compare the performance of a hash table with 1K,
10K, 50K items. Load factor of each hash table is configured to
1, 10, 10, respectively, which means that as the hash table size
increases, the chance of write-write conflict decreases but the
length of the critical section becomes longer. Figure 6 shows
performance results for the read-intensive workloads with
uniform random access. MV-RLU shows excellent scalability
in all cases. On the other hand, RCU nearly scales linearly
until 28 threads for 1K and 10K, respectively. For 50K items,
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RCU scales beyond 224 threads, because of the decrease in
contention on the bucket lock. RLU and HP-Harris schemes
scale poorly even for large size of the hash table. In particu-
lar, while RLU has lower chance of write-write conflict that
incurs rlu_synchronize, the longer critical section in larger
hash tables increases the length of the rlu_synchronize op-
eration.

6.2.3 Contention
.
We evaluate the scalability of MV-RLU for the hash table

benchmark with skewed access by relying on the Zipf dis-
tribution generator [2]. We use a hash table with 10K items
with a load factor 10 for read-mostly, read-intensive, and
write-intensive workloads. We run these workloads with 336
threads and vary the Zipf theta value. Figure 7 clearly shows
the benefit of multi-versioning in MV-RLU. The performance
of MV-RLU is nearly constant regardless of sknewness and
write intensity. We also comfirm that performance trends
are same with other core counts including 448 cores. Even in
some cases the performance increases with higher skewness
due to increased cache-locality. However, the performance
of other approaches, RCU, RLU, and HP-Harris, are funda-
mentally bounded by the write intensity of the workloads.

6.3 Factor Analysis
To understand how our design choices affect performance,
we incrementally add MV-RLU features to RLU and run bench-
marks for read-mostly, read-intensive and write-intensive
workloads.
+ ORDO. For high update workloads, frequent updates to
global clocks create large cache coherence traffic that become
the scalability bottleneck. ORDO, based on the hardware
clock, improves the scalability by 1.6× times.
+ Multi-versioning. We added multi-versioning to RLU
with a single garbage collection thread to reclaim invisible
versions. This scheme showed 2.3× improvement in read-
mostly case because multi-versioning decouples the grace
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period detection from operations. However, it suffers in the
case of write-intensive workload because a single garbage
collection thread becomes the scalability bottleneck.
+ Concurrent GC. Concurrent self-log reclamation im-
proves the scalability in write-intensive workload by 1.8×,
as it avoids the garbage collection bottleneck.
+AutonomousGC: capacitywatermark. Starting garbage
collection before log becomes full improves the performance
in read-intensive and write-intensive case but not in read-
mostly case, as few objects are created.
+AutonomousGC: defererencewatermark. Adding our
dereference watermark improves the performance in read-
intensive case by 1.8×, thereby making MV-RLU garbage col-
lection autonomous, as it works well for various types of
workloads.
MV-RLU. The final MV-RLU implementation shows 1.8×, 2×
and 3.5× throughput improvement as compared to base-RLU,
showing design choices in MV-RLU complement each other
and scale efficiently for various types of workloads.

6.4 Applications

DBx1000. DBx1000 benchmark compares scalability of dif-
ferent concurrency control mechanisms in databases. We
add MV-RLU as a multi-version concurrency control mecha-
nism in DBx1000 to compare scalabilty of our design against
other MVCC and OCC designs such as TicToc (OCC) [66],
Silo (OCC) [59] and Hekaton (MVCC) [13]. We protect every
transaction by read_lock and read_unlock. To add head-
ers required for MVCC, we use MV-RLU alloc API to allo-
cate records, and we update a record using try_lock, which
creates a new version of that record, which are later com-
mitted atomically at the end of the read_unlock. We used
the YCSB [10] workload to benchmark the throughput for
2%, 20% and 80% update rates and Zipf-theta value of 0.7.
MV-RLU shows scalability similar to other OCC mechanisms
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and much better performance than Hekaton, which is bot-
tlenecked by the global clock and garbage collection.
KyotoCabinet. KyotoCabinet Cache DB [36] is a popular
in-memory key-value store written in C++. The KyotoCab-
inet is internally divided into slots. Each slot is further di-
vided into buckets and each bucket points to a binary search
tree. To synchronize database operation, KyotoCabinet uses
a global readers-writer lock, which is a known scalability
bottleneck [14]. In addition to the global readers-writer lock,
there is a per-slot lock to synchronize accesses to each slot.
We followed the implementation details described in RLU to
eliminate the global reader-writer lock from KyotoCabinet
using MV-RLU. Note that MV-RLU is a drop-in replacement of
RLU. Access to the database is protected by read_lock and
read_unlock. Writers are synchronized using per-slot lock
to prevent aborts for a fair comparison with RLU. We initial-
ized the database with 1 GB of data and then measured the
throughput for 2% and 20% update ratio. Figure 10 shows the
performance of original, RLU-based, and MV-RLU-based Ky-
otoCabinet. Clearly, MV-RLU shows the best scalability with
increasing threads. However, with a large thread count, per-
slot locking becomes a performance bottleneck, which we
used for fair comparison with RLU. We expect that MV-RLU
can scale better if we adopt a design that does not use per-slot
locking.
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7 Discussion and Limitations
One of the limitations of MV-RLU is its weaker consistency
guarantee: snapshot isolation, which might restrict its use
in some applications that requires a stronger consistency
guarantee, such as serializability or linearizability. However,
the profound adoption of RCU in the Linux kernel, and sev-
eral database systems, such as Oracle [51], have shown that
linearizability is not a necessity. Moreover, if necessary, a
developer can make MV-RLU serializable by locking nodes
(other than the one being modified) using try_lock_const
to prevent write skew. For example, we can serialize linked
list data structures with MV-RLU by locking the predeces-
sor of the node being modified. The aforementioned exam-
ples also corroborates our view that snapshot isolation is a
practical choice for better performance than having stricter
consistency levels. It will be an interesting future research
direction to improve the consistency level of MV-RLU with
additional validation and further scale its performance. An-
other limitation is that MV-RLU does not guarantee individual
thread level progress, i.e., a thread having a longer critical
section that needs to lock contending objects can starve.
However, since MV-RLU aborts only upon write-write con-
flict, we expect that such starvation is less problematic than
other approaches (e.g., STM) which aborts even in read-write
conflicts.

8 Related Work
In-memory database system. Most in-memory database
systems designed adopt either an Optimistic Concurrency
Control (OCC) [35, 59, 61, 66] or Multi-Version Concurrency
Control (MVCC) [13, 34, 38]. OCC is essentially a single-
version concurrency control so it works well under low con-
tention. However, under high contention the performance
of OCC degrades significantly with high a abort ratio due to
the lack of versions [34, 38, 65]. Recent in-memory database
systems, such as Hekaton [13], ERMIA [34], and Cicada [38],
adopt MVCC.While there are some common challenges with
MV-RLU to optimize MVCC database systems, such as times-
tamp allocation, version storage, garbage collection [64],
those techniques are tightly coupled with the internal design
and semantics of database systems. In contrast, the key inno-
vation of this paper is not supporting MVCC, but rather how
to do it in a generalized way to performantly support any
given data structure. Also, we believe some of our proposed
techniques, especially concurrent autonomous garbage col-
lection scheme, can be adopted by database systems.
Software transactional memory. Despite that there have
been a lot of research efforts on software transactional mem-
ory (STM) [15, 18, 20, 26, 29, 31, 39, 49, 50, 56], STM ap-
proaches have not been widely adopted due to poor per-
formance and scalability [17]. One main reason is the high
STM runtime overhead to transparently support transactions

and guarantee the strictest consistency level, linearizabil-
ity. While there has been several efforts to mitigate such
overheads, the overhead of managing and accessing STM
metadata (e.g., lock table) is high. While both STM and
MV-RLU aim to ease development of concurrent data struc-
tures, we made practical design choices for performance;
MV-RLU adopts multi-versioning with snapshot isolation and
provides a familiar lock-based programming model for ease-
of-programming.
Synchronization framework for CDS. Recently, several
synchronization frameworks [3, 6, 19, 23, 27, 28, 40, 55, 60,
67] were proposed to easily convert sequential (or lock-
based) data structures to concurrent data structures. This
eases the burden of developing new concurrent data struc-
tures. Combining [19, 27] and delegation [40, 55] approaches
essentially perform single-thread execution to reduce syn-
chronization overhead so their performance is bounded by
single core performance. NR [6] transforms a sequential data
structure to a NUMA-aware concurrent data structure. It
uses flat combining [27] and a shared operational log to
synchronize per-NUMA replicas. Unlike typical combining
and delegation approaches, NR allows multiple readers to
access a replica but restricts readers from accessing repli-
cas that are currently held by writers (replaying log back to
its replica). In comparison with these approaches, MV-RLU
provides a higher concurrency due to MVCC. Versioned
programming [67] is the most similar work with MV-RLU.
Like MV-RLU, it converts a pointer-based data structure to
a MVCC-enabled data structure supporting snapshot isola-
tion and composability. However, its details including pro-
gramming model, locking scheme, version traversal, commit
protocol, and garbage collection are significantly different.

9 Conclusion
MV-RLU is a synchronization mechanism that extends RLU
using mutli-versioning, while preserving the benefits of RLU
like multi-pointer update, a simple & intuitive programming
model, and good performance for read-mostly workloads.
MV-RLU alleviates problems such as high contention of global
clock (using a hardware clock-based timestamp); slow read
performance with an autonomous garbage collector design,
and slow garbage collection with a concurrent garbage col-
lector design that are ubiquitous to most MVCC designs. As
a result, MV-RLU outperforms other synchronization mecha-
nisms in several workloads and shows unmatched scalability
even in write-intensive workloads.
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