MV-RLU:
Scaling Read-Log-Update with Multi-Versioning
Jaeho Kim, Ajit Mathew, Sanidhya Kashyap†
Madhava Krishnan Ramanathan, Changwoo Min

 †

1

Core count continues to rise….

2

2

Synchronization mechanisms are essential
 A single scalability bottleneck in synchronization mechanism can result in a performance collapse with increasing core count [Boyd-Wickizer,2010]

3

Scalability of program depends on scalability of underlying synchronization mechanism

Synchronization mechanisms are essential building blocks of today’s application. Researchers at MIT have shown that a single scalability bottleneck of synchronization mechanism can cause performace collapse at high core count. Hence it can be said that scalability of a program depends on the underlying synchronization algorithm, This make search for new scalable SM an interesting problem
3

Can synchronization mechanisms scale at high core count?
4

Ideal
Scaling

Saturation

Let us consider a microbenchmark of concurrent lockfree hash table with 10% updates with 1k elements. Here the throuput is shown in the y axis in MOPS and threads in the x axis. Ideally the performance should show linear scaling. But the performance of lock free hash table saturates at about 120 core. The reason for this saturation is non scalable garbage collection
4

Concurrent Hash table (10% Update)

Lock Free	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.3572012500000001	20.849710949999999	40.633053050000001	70.254562000000007	126.8929131	228.03707919999999	280.6004021	285.2777825	259.54796520000002	253.91316509999999	245.13495359999999	238.316113	248.0296233	243.27838510000001	244.5911748	252.18639899999999	RCU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.8028130500000001	21.546156	42.015476999999997	72.656373200000004	118.457211	162.23188300000001	181.17509580000001	169.7441255	205.91299739999999	202.8650432	212.92488560000001	229.4097041	210.7815933	205.66179320000001	219.1648118	191.65851240000001	RLU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.3664987999999996	16.806100000000001	27.153630549999999	33.159667200000001	36.182538600000001	16.954156300000001	11.8432738	8.695422649999	9994	9.0656190399999996	6.5059670000000001	4.7569900000000001	4.4096149999999996	1.9847485	1.7822119999999999	3.9020584999999999	8.9563398000000003	MV-RLU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	4.3272000000000004	16.230274600000001	33.982543399999997	57.716769999999997	100.734488	195.53492600000001	293.88291400000003	387.82032049999998	497.93240939999998	586.18098380000004	678.29905670000005	760.64026149999995	864.57866000000001	1061.0264890000001	1059.2173560000001	1274.3853750000001	Threads

Million Operations/s

Read Copy Update (RCU)
 Widely used in Linux kernel
 Readers never block
 Multi-pointer update is difficult

5
A

B

C

B’

B

Read-Log-Update (RLU) [Matveev’15]
 Readers do not block
 Allow multi-pointer update
 Key idea: Use global clock and per thread log to make updates atomically visible
6

An improvement over RCU is RLU or read log update. In RLU readers do not block but RLU provides better programmability as it allows multi-pointer updates. It is able to do so ..
6

Even RCU and RLU does not scale

Saturation
Performance Collapse
7

Even non linearizable algorithms like RCU which is highly used in linux kernel does not scale and it’s performance saturates at about 100 cores. RLU which is similar to RCU in that it provides synchronization free reads and better programmability through multi-pointer update shows performance collapse at moderately high core count. Since RLU has excellent properties making it scalable is an interesting problem
7

Concurrent Hash table (10% Update)

Lock Free	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.3572012500000001	20.849710949999999	40.633053050000001	70.254562000000007	126.8929131	228.03707919999999	280.6004021	285.2777825	259.54796520000002	253.91316509999999	245.13495359999999	238.316113	248.0296233	243.27838510000001	244.5911748	252.18639899999999	RCU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.8028130500000001	21.546156	42.015476999999997	72.656373200000004	118.457211	162.23188300000001	181.17509580000001	169.7441255	205.91299739999999	202.8650432	212.92488560000001	229.4097041	210.7815933	205.66179320000001	219.1648118	191.65851240000001	RLU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.3664987999999996	16.806100000000001	27.153630549999999	33.159667200000001	36.182538600000001	16.954156300000001	11.8432738	8.6954226499999994	9.0656190399999996	6.5059670000000001	4.7569900000000001	4.4096149999999996	1.9847485	1.7822119999999999	3.9020584999999999	8.9563398000000003	MV-RLU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	4.3272000000000004	16.230274600000001	33.982543399999997	57.716769999999997	100.734488	195.53492600000001	293.88291400000003	387.82032049999998	497.93240939999998	586.18098380000004	678.29905670000005	760.64026149999995	864.57866000000001	1061.0264890000001	1059.2173560000001	1274.3853750000001	Threads

Million Operations/s

Why does not RLU scale?
A

B

C

D

B’

Per thread version log

Waiting
Reclaim!
Synchronous waiting due to restriction on number of versions per object is bottleneck in RLU design
8
Legend
Object
Version of Object
Header

To understand why RLU does not scale let us consider a RLU based concurrent linked list. A thread modifies node B which in turn creates a new version of B. Then another thread tries to modify B but is not allowed to proceed because RLU restricts the number of simultaneous versions of an object to two. So the second thread has to reclaim the older version of object B for which it will wait for rlu threads to exit the critical section. This synchronous waiting
8

How to scale RLU?
9

Problem:
Restriction in number of versions causes synchronous waiting
Solution:
Remove restriction on number of version == Multi-Versioning

Scaling RLU through
 Multi-Versioning
Multi-Version Read-Log-Update (MV-RLU)
Allows multiple version to exists at same time
Removes synchronous waiting from critical path
 Scaling Multi-versioning
Scalable Timestamp allocation
Concurrent and autonomous garbage collection
MV-RLU shows 4-8x performance improvement with KyotoCabinet
10

Outline
 Background
 Design
 Overview
 Reads/Writes in MV-RLU
 Isolation
 Garbage Collection
 Evaluation
 Conclusion
11

Design: Overview
A
A’’
(55)
A’
(25)
Master Object
Copy Object
Copy Object

Per thread version log
Per thread version log

Version Chain
12
Commit Timestamp

In MVRLU, object which we call master object can have zero or more versions which we call copy object. Copy objects store the timestamp of when they were created. Copy objects also store the pointer of the next older version creating a version chain. Copy objects are stored in the per version thread log of the thread that created it. Master object store the head of the version chain.
12

Updates in MV-RLU
A

B

C

D

B’’
(55)

Per thread version log
B’
(25)

Per thread version log

No synchronous waiting
13

To understand how MVRLU prevent synchronous waiting let us see how updates are done in MV-RLU. Consider a MVRLU based concurrent linked list. A threads udates node B which creates a new copy object of B with timestamp 25. Another thread then updates B, which creates another copy object. Because MVRLU does not restrict the number of versions of an object, the second thread does not need to synchronize with other reader/writer threads in the critical section.
13

Reads in MV-RLU
A

B

C

D

B’’
(55)

Per thread version log
B’
(25)

Per thread version log

14

read clock > version commit timestamp

35 < 55
35 > 25
read clock = 35

Reader note the global clock at start of critical section

Since MV-RLU supports multiple version of the same data, reads are slightly more involved. When a reader enters a critical section, it reads the global clock to get a read clock. Then it traverses the version chain to find the first node which statisfies the propert read clock is less than version timestamp.
14

Writers never abort readers
 Default Isolation: Snapshot Isolation
 Every reader gets consistent snapshot of data structure
 Can cause write skew anomaly
 Can be made serializable by locking extra nodes
 For eg: locking current and previous nodes in linked list
15

In MVRLU, every reader will read a consistent snapshot of the data structure. Hence the default isolation level of MVRLU is Snapshot isolation. But snapshot isolation can cause write skew. But this can be avoided by locking extra nodes. For eg in a linked list, locking the predecessor of the node being modified can prevent write skew. For this MVRLU provides a special API try_lock_const(). It should be noted that writers never abort readers in MVRLU leading to high performance.
15

Memory is limited!
16

Log Full!
 Garbage Collection is needed
 Reclaim obsolete version
 Should be scalable

Per Thread Log
Used
Thread 1

16

Challenges to garbage collection
 How to detect obsolete versions in a scalable manner?
 Reference counting, hazard pointer do not scale well.
 How to reclaim obsolete versions?
 Single thread is insufficient, GC should be multi-threaded
 When to trigger garbage collection?
 Eager: Triggering too often wastes CPU cycles
 Lazy: Increases version chain traversal cost.

17

Detecting obsolete version
 Quiescent State based Reclamation (QSBR)
 Grace Period: Time interval between which each thread has been outside critical section at least once
 Grace Period detection is delegated to a special thread
18

Reclaiming Obsolete version
 Concurrent Reclamation
 Every thread reclaims it’s own log
 Cache friendly
 Scales with increasing number of threads

19

Triggering Garbage Collection
 Ideally, triggers should be workload agnostic
 Two conditional Trigger or Watermark
 Capacity Watermark
 Dereference Watermark
20

Writers block when log is full
21

Start GC.
I will wait

Per Thread Log
Used
Thread 1

In mv-rlu, when writers performs updates, it uses log space and eventually the log will be full after which the thread will wait for garbage collection to reclaim log space.
21

Thread 1
Writers block when log is full
22

Start GC.
I will wait

Log about to get full. Start GC
Capacity Watermark
Per Thread Log
Used
Thread 1

Instead, if the thread triggers garbage collection when the log utilization crosses a certain threshold, it can continue doing useful work and hopefully, GC can reclaim log space before the log fills up. This threshold is called capacity water mark.
22

Prevent log from filling up using capacity watermark
 Writers block when log is full
 To prevent blocking, start GC when log is almost full
 Capacity Watermark
 Trigger GC when a thread’s log is about to get full
 Works well in write heavy workload
23

23

GC Example

Per Thread Log:
Used
Grace period detector thread

I need GC
Okay! Here is the last GP
Capacity Watermark

Done
Done
zzz…
24
Thread 1
Thread 2
Thread 3

24

 Capacity watermark will not be triggered in read mostly workload
Capacity Watermark is not sufficient
25
A

B

C

D

A’

Master Object
Copy Object

Capacity watermark is not sufficient as it will not be triggered in read mostly workload which is a problem. To understand how, let us consider a linked list protected by MV-RLU. If no objects have a version then reader just read the master object to traverse the linked list. But if any object has a version chain, then reader needs to access the version chain to traverse the list.
25

Capacity Watermark is not sufficient
 Capacity watermark will not be triggered in read mostly workload
26
A

B

C

D

A’

B’

C’

D’

Garbage
Collection
Master Object
Copy Object

Pointer Chasing slows down read performance

In worst case, if most objects have a version, then every object read will require access to version chain. This pointer chasing slows down read performance. To alleviate this, we writeback copy object to master object during garbage collection cycle.
26

Capacity Watermark is not sufficient
 Capacity watermark will not be triggered in read mostly workload
27
A’

B’

C’

D’

A’

B’

C’

D’

Dereference watermark to reduce pointer chasing
 Readers check if they are accessing version chain too often
 If yes, trigger GC.

28
Combination of capacity watermark and dereference water mark makes GC trigger workload agnostic

So to reduce pointer chasing by triggerin garbage collection to do writeback, we use dereference water mark. Readers check if they are accessing version chain too often.
28

More detail
 Scalable timestamp allocation
 Version Management
 Proof of correctness
 Implementation details
29

Outline
 Background
 Design
 Evaluation
 Conclusion
30

Evaluation Question
 Does MV-RLU scale?
 What is the impact of our proposed approaches?
 What is its impact on real-world workloads?
31

Evaluation Platform
 8 socket, 448 core server
 Intel Xeon Platinum 8180
 337 GB Memory
 Linux 4.17.3
32

Microbenchmark
33
150x speedup over RLU
(Higher is better)
1K element, load factor: 1

33

Concurrent Hash table (10% Update)

Lock Free	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.3572012500000001	20.849710949999999	40.633053050000001	70.254562000000007	126.8929131	228.03707919999999	280.6004021	285.2777825	259.54796520000002	253.91316509999999	245.13495359999999	238.316113	248.0296233	243.27838510000001	244.5911748	252.18639899999999	RCU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.8028130500000001	21.546156	42.015476999999997	72.656373200000004	118.457211	162.23188300000001	181.17509580000001	169.7441255	205.91299739999999	202.8650432	212.92488560000001	229.4097041	210.7815933	205.66179320000001	219.1648118	191.65851240000001	RLU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	5.3664987999999996	16.806100000000001	27.153630549999999	33.159667200000001	36.182538600000001	16.954156300000001	11.8432738	8.6954226499999994	9.0656190399999996	6.5059670000000001	4.7569900000000001	4.4096149999999996	1.9847485	1.7822119999999999	3.9020584999999999	8.9563398000000003	MV-RLU	1	4	8	14	28	56	84	112	140	168	196	224	280	336	392	448	4.3272000000000004	16.230274600000001	33.982543399999997	57.716769999999997	100.734488	195.53492600000001	293.88291400000003	387.82032049999998	497.93240939999998	586.18098380000004	678.29905670000005	760.64026149999995	864.57866000000001	1061.0264890000001	1059.2173560000001	1274.3853750000001	Threads

Million Operations/s

Factor Analysis
34
Million Operations Per Second
2x
2x
4x
GC is bottleneck

20% Update

 RLU	 +Scalable TS	 +multi-version	 +concurrent GC	 +capacity WM	 +deref WM	 MV-RLU	0.57816999999999996	0.53622499999999995	1.2238	1.095202	1.2214909	1.2788701	1.3098031000000001	

80% Update

RLU	 +Scalable TS	 +multi-version	 +concurrent GC	 +capacity WM	 +deref WM	MV-RLU	0.371	0.504	0.62977000000000005	1.1304784000000001	1.2668173	1.252305	1.3973960000000001	

2% Update

 RLU	 +Scalable TS	 +multi-version	 +concurrent GC	 +capacity WM	 +deref WM	 MV-RLU	1.704812	1.7226250000000001	3.5442900000000002	1.7722456	1.881772	3.2501500000000001	3.2609607	

Key Value Benchmark
35
8x speedup over RLU

KyotoCabinet: Update(2%)

RLU	1	2	4	8	12	16	20	24	32	40	48	56	64	128	192	224	280	336	2.2799999999999998	2.4700000000000002	5.2	9.0299999999999994	13.1	15.4	18.100000000000001	20	23.6	25.2	27.4	27.9	28.3	19.100000000000001	13.9	14.5	11.1	7.67	Vanilla	1	2	4	8	12	16	20	24	32	40	48	56	64	128	192	224	280	336	3.15	2.02	3.17	2.42	2.44	2.34	2.31	2.34	2.2799999999999998	2.4	2.38	2.44	2.4300000000000002	2.1	1.95	2.0099999999999998	2.02	1.63	MV-RLU	1	2	4	8	12	16	20	24	32	40	48	56	64	128	192	224	280	336	1.94	2.21	5.73	9.43	15	17.399999999999999	21.1	23.1	32.700000000000003	31.7	39.1	43.8	49.5	63.9	72.5	69.5	63	64.099999999999994	Threads

Million Operations/s

Conclusion
 MV-RLU: Scaling RLU through Multi-Versioning
 Multi-Versioning removes synchronous waiting
 Concurrent and autonomous garbage collection
 MV-RLU show unparallel performance for a variety of benchmark.
36
https://github.com/cosmoss-vt/mv-rlu

Multi-pointer update
37

A

B

C

D

B’
(∞)

Per thread version log

D’
(∞)

B’
(55)

D’
(55)

Snapshot Isolation
 MVRLU Serializable Snapshot Isolation
 SSI works well for any application which can tolerate stale read
 RCU is widely used which means lot of application for MV-RLU
38

Log size
 Memory in computer systems is increasing
 Persistent memory can increase total main memory significantly
 Log size is a tuning parameter.
39

image2.png

image3.png

image4.png

image5.png

image6.jpg

image7.jpg

image8.png

image9.jpg

image10.jpg

image11.png

image12.svg

image13.png

image14.svg

image15.png

image16.png

