SOSP™19

Finding Semantic Bugs in File Systems
with an Extensible Fuzzing Framework

Seulbae Kim, Meng Xu”, Sanidhya Kashyap®, Jungyeon Yoon, Wen Xu, Taesoo Kim

Georgialnsitute
off Technclog)y

* On the job market

Demonstration

Fuzzing F2FS in Linux v5.0-rc7 for crash consistency
Result at the end of the talk!

Question: Can file systems be bug-free?

Can file systems be bug-free?

® Code base is massive

torvalds / linux

<> Code Pull requests 300 Projects 0 Security

History for linux / fs / ext4 History for linux / fs / btrfs History for linux / fs / xfs

Can file systems be bug-free? Not likely

® Code base is massive

L torvalds / linux

<> Code Pull requests 300 Projects 0 Security
39 KLoC 98 KLoC 94 KLoC
History for linux / fs] ext4 History for linux / fs /|btrfs History for linux / fs| xfs

+ common VFS layer (53 KLoC)!

Can file systems be bug-free? Not likely

® Code base is massive and evolving

] torvalds / linux

<> Code Pull requests 300 Projects 0 Security
39 KLoC 98 KLoC 94 KLoC
History for linux / fs | ext4 History for linux / fs /|btrfs History for linux / fs| xfs
Commits on Sep 29, 2019 Commits on Oct 23, 2019 Commits on Oct 15, 2019
Merge branch 'entropy’ .- Merge tag ‘for-5.4-rc4-tag’ of git://git.k xfs: change the seconds fields in xfs_bulks
m torvalds committed 23 days ago m torvalds committed 2 hours ago © djwong committed 8 days ago
Revert "Revert "ext4: make __ext4 (Commits on Oct 9, 2019

Commits on Oct 17, 2019

M torvalds committed 24 days ago
Btrfs: check for the full sync flag while I Ats; miove ol torextent node logging/m

| D Brian Foster authored and djwong commiti
e ssamisp 2, A0 m fdmanana authored and kdave committ: 4 J 9

Can file systems be bug-free? Not likely

® Code base is massive and evolving

torvalds / linux

<> Code Pull requests 300 Projects 0 Security
39 KLoC 98 KLoC 94 KLoC
History for linux / fs] ext4 History for linux / fs /|btrfs History for linux / fs |/ xfs
Commits on Sep 29, 2019 Commits on Oct 23, 2019 Commits on Oct 15, 2019

ilk

100+ ext4, Btrfs, XFS bugs were reported in 2019

P OTIaiT T OUSICT auuiorca arnra ajwoTrty ol

UMMM UTT O o1, 2UTT

@ fdmanana authored and kdave committ

File system bugs are devastating

® Bugs and effects

A Data loss / corruption

A Unexpected runtime error

A Incorrect result

A DoS / Privilege escalation

& Crash consistency bug

& Specification violation

IR

Previous approaches to find FS bugs

Regression Model Verified .
. . . Fuzzing
Testing Checking File System
FiSC (OSDI’'04) FSCQ SOSP'15
Linux Test Project | eXplode (OSDI'06) Veedrasil (OSDI’16) Syzkaller (Google)
xfstests Juxta (SOSP’15) DgFgSCr(;SI (SOSP’17) kAFL (Security’17)
fsck Ferrite (ASPLOS’16) SFSCQ (OSDI’18) Janus (S&P’19)
B3 (OSDI'18) ()

Previous approaches to find FS bugs

Regression Model Verified .
. . . Fuzzing
Testing Checking File System
FisC (OSDrod) FscQ SOSP’15
Linux Test Project | eXplode (OSDI'06) Veedrasil (OSDI’16) Syzkaller (Google)
xfstests Juxta (SOSP’15) DgFgSCr(;SI (SOSP’17) kAFL (Security’17)
fsck Ferrite (ASPLOS’16) SFSCQ (OSDI’18) Janus (S&P’19)
83 (0SDI'18) ()
Only test

known cases

10

Previous approaches to find FS bugs

Regression Model Verified .
. . . Fuzzing
Testing Checking File System
FiSC (OSDI’'04) FscQ SOSP’'15
Linux Test Project | eXplode (OSDI'06) Veedrasil (OSDI’16) Syzkaller (Google)
xfstests Juxta (SOSP’15) DgFiCr(;SI (SOSP’17) kAFL (Security’17)
fsck Ferrite (ASPLOS’16) SFSCQ (OSDI’18) Janus (S&P’19)
B3 (OSDI’'18) ()
Only test High false positive

known cases

Limited to known
test cases

11

Previous approaches to find FS bugs

Regression Model Verified .
. . . Fuzzing
Testing Checking File System
FiSC (OSDI'04) ,
Linux Test Project | eXplode (OSDI’06) $SCS‘ ' (f)(;SDIID’llg)) Syzkaller (Google)
xfstests Juxta (SOSP’15) DgFiCr(;SI (SOSP’17 kAFL (Security’17)
fsck Ferrite (ASPLOS’16) SFSCQ (OSDI’18) Janus (S&P’19)
B3 (OSDI'18) ()
High fal iti
Only test 'gh Taise positive Large unverified parts

known cases

Limited to known
test cases

(buggy)

12

Previous approaches to find FS bugs

Regression Model Verified .
. . . Fuzzing
Testing Checking File System
FISC (0OSDI'04) ,
Linux Test Project | eXplode (OSDI'06) $SCS‘ ' (f)(;SDIID’llg) Syzkaller (Google)
xfstests Juxta (SOSP’15) Dgng Crgs' (sosp'17) KAFL (Security’17)
fsck Ferrite (ASPLOS’16) SFSCQ (OSDI’18) Janus (S&P’19)
B3 (OSDI’18) ()
High fal iti
Only test 'gh Taise positive Large unverified parts

known cases

Limited to known
test cases

(buggy)

13

Our approach: Fuzzing file systems

® Feedback-driven fuzzing is a complementary solution
2 Produces effective test cases on-the-fly
= Proven to be scalable in practice

e Known file system fuzzers
o VM-based kernel fuzzers
m KAFL (Security’17), Syzkaller (Google)

o LibOS-based fuzzer
m Janus (S&P’19) - our previous work!

14

Our approach: Fuzzing file systems

e Feedback-driven fuzzing is a complementary solution

Janus discovered 90 memory-safety bugs

from file systems in 2018 (<

o
_rTI—rU'\TTI—I_I‘ITW‘yJ\._lll TULLCT I
o VM-based kernel fuzzers
m KAFL (Security’17), Syzkaller (Google)

o LibOS-based fuzzer
m Janus (S&P’19) - our previous work!

15

Our approach: Fuzzing file systems

e Feedback-driven fuzzing is a complementary solution

Janus discovered 90 memory-safety bugs

from file systems in 2018 (<

._I'TI_I'U'WI_I_I_I'I'W_YJ\.\.III TUZLCIT J
o VM-based kernel fuzzers

However, existing file system fuzzers ,
focus only on memory-safety bugs (=

16

File system bugs in various flavors

e Memory-safety bugs

(focus of existing fuzzers)

*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.”

FAST'13

17

File system bugs in various flavors

e Memory-safety bugs

(focus of existing fuzzers)

e Semantic bugs
o Crash consistency bug
o Specification violation
o Logic bug
O

*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.”

FAST'13

18

File system bugs in various flavors

e Memory-safety bugs

(focus of existing fuzzers)

e Semantic bugs

We'd like to take advantage of fuzzing
for finding semantic bugs

*Reference: Lu, Lanyue, et al. “A study of Linux file system evolution.”
FAST’13

19

Challenge: Semantic bugs are harder to detect

e Keyidea in fuzzing: “Crashes” are feedback to fuzzers

Fuzzing for memory-safety bugs

Target
FUZZER program

Challenge: Semantic bugs are harder to detect

e Keyidea in fuzzing: “Crashes” are feedback to fuzzers

Fuzzing for memory-safety bugs

input Target
FUZZER orogram

Challenge: Semantic bugs are harder to detect

e Keyidea in fuzzing: “Crashes” are feedback to fuzzers

Fuzzing for memory-safety bugs

input Target
FUZZER orogram

if BUG, crash

Challenge: Semantic bugs are harder to detect

e Keyidea in fuzzing: “Crashes” are feedback to fuzzers

Fuzzing for memory-safety bugs

input Target
FUZZER orogram

feedback if BUG, crash
(e.g., SIGSEGV)

Detected!

Challenge: Semantic bugs are harder to detect

® Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

Fuzzing for semantic bugs

Fuzzing for memory-safety bugs

FUZZER

input

Target
program

feedback
(e.g., SIGSEGV)

Detected!

if BUG, crash

(e.g., spec. violation)

FUZZER

Target
program

24

Challenge: Semantic bugs are harder to detect

® Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

Fuzzing for semantic bugs

Fuzzing for memory-safety bugs

FUZZER

input

Target
program

feedback
(e.g., SIGSEGV)

Detected!

if BUG, crash

(e.g., spec. violation)

FUZZER

input

Target
program

25

Challenge: Semantic bugs are harder to detect

® Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

Fuzzing for semantic bugs

Fuzzing for memory-safety bugs (e.g., spec. violation)

input Target input Target
FUZZER orogram FUZZER orogram
. ? if BUG, function returns
feedback TBUG, crash ° a wrong value internally
(e.g., SIGSEGV)
Detected!

26

Challenge: Semantic bugs are harder to detect

® Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

Fuzzing for semantic bugs

Fuzzing for memory-safety bugs (e.g., spec. violation)

input Target input Target
FUZZER orogram FUZZER orogram
. ? if BUG, function returns
feedback TBUG, crash ° a wrong value internally
(e.g., SIGSEGV)
/
Detected! Not detected /(=

27

Challenge: Semantic bugs are harder to detect

® Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

Fuzzing for semantic bugs

Fuzzing for memory-safety bugs

FUZZER

input

Target

program

feedback

(e.g., SIGSEGV)

Detected!

if BUG, crash

(e.g., spec. violation)

input
FUZZER
!
feedback L
/
Detected /=

Target
program

if BUG, function returns
a wrong value internally

28

Challenge: Semantic bugs are harder to detect

® Problem: Semantic bugs fail SILENTLY (i.e., no feedback)

Fuzzing for memory-safety bugs

FUZZER

Fuzzing for semantic bugs
(e.g., spec. violation)

feedback if BUG, crash

Target
program

input Target input
program FUZZER
T | if BUG, function returns

a wrong value internally

Accurate checker for each bug type
needs to be integrated to fuzzing!

29

Proposed solution: Hydra

A turnkey solution for
file system fuzzing

30

HYDRA overview (high-level)

Input generator

.| Test case

_/—

LibOS-based
Test Executor

Checker

—— BUG!

M FeedbaCk W

31

HYDRA overview - Input generator

AFL variant*

Input generator

Test case

_/—

Feedback

Ve

LibOS-based
Test Executor

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

Checker

—— BUG!

P ——

32

HYDRA overview - Test case

AFL variant*

Input generator

FS image
+

System calls

Test case

J

Feedback

Ve

LibOS-based
Test Executor

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

Checker

—— BUG!

P ——

33

HYDRA overview - LibOS-based test executor

AFL variant*

Input generator

FS image
+
System calls

Test case

Mount img,
exec syscalls

/

Feedback ﬁ

LibOS-based
Test Executor

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

Checker

—— BUG!

A

34

HYDRA overview - Checker

AFL variant*

Input generator

FS image
+
System calls

Test case

Mount img,
exec syscalls

LibOS-based

_/—

Test Executor

Check for bug

Checker

— BUG!

s

Feedback ﬁ

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

35

HYDRA overview - Feedback

AFL variant*

Input generator

FS image
+
System calls

Test case

Mount img,
exec syscalls

/

LibOS-based
Test Executor

Check for bug

Feedback

- FS-specific code coverage
- Checker-defined signal

* Fuzzing File Systems via Two-Dimensional Input Space Exploration - IEEE S&P 2019

Checker

—— BUG!

36

Hydra framework takes care of

- Automated input space exploration

- Test execution

- Incorporation of checkers, ...

.| Test case

Input generator

/

LibOS-based
Test Executor

Checker

— BUG!

M Feedback W

37

In the meantime.. a tester can

- Develop and plug-in
a specialized bug checker

| Test case R LibOS-based R Checker BUG!
Test Executor
/

Input generator

M FeedbaCk W

38

Separation of concern!

- Develop and plug-in
a specialized bug checker

| Test case R LIbOS-based - Checker BUGI
Test Executor
_/—

Input generator

Developers may focus solely on describing the
bugs of their own interests

39

Hydra is extensible!

e Through pluggable checkers

.| Test case

Input generator

-~

~

Crash consistency bug

Consistency checker
e.g., SymC3

_/—

Feedback

In-house developed checker

LibOS-based
Test Executor

Spec. Violation

POSIX checker
e.g., SibylFS

Existing oracle, with few lines for integration

In-kernel checker, used as is

Logic bug
S I
I Built-in FS checks |
b e e e J

Memory safety bug

Address sanitizer
e.g., KASAN

— BUG!

N\)

40

Hydra is extensible!

e Through pluggable checkers

.| Test case

Input generator

N

/

LibOS-based
Test Executor

-~

~

Crash consistency bug

[

Consistency checker
e.g., SymC3

Spec. Violation

POSIX checker
e.g.,

.

Logic bug

Built-in FS checks |

— BUG!

Readily extensible to other types of bugs by
plugging in relevant checkers

I In-kernel checker, used as is

G

/

41

Hydra in action

Finding crash consistency bug
utilizing SymC3 checker with Hydra

42

Hydra in action - Crash consistency testing

e SymC3: Symbolically evaluate crashing states

(i.e., keeping in-memory and on-disk states, like real FS implementation)
o Input :alist of system calls, initial state
o Output: a list of legitimate post-crash states

43

Hydra in action - Crash consistency testing

e SymC3: Symbolically evaluate crashing states

(i.e., keeping in-memory and on-disk states, like real FS implementation)
o Input :alist of system calls, initial state
o Output: a list of legitimate post-crash states

e Checking errors:

Test
case

44

Hydra in action - Crash consistency testing

e SymC3: Symbolically evaluate crashing states

(i.e., keeping in-memory and on-disk states, like real FS implementation)
: a list of system calls, initial state

o Input

o Output: a list of legitimate post-crash states

e Checking errors:

Test
case

LibOS
Executor

execute v: Crash-recovered

& crash concrete state

45

Hydra in action - Crash consistency testing

e SymC3: Symbolically evaluate crashing states

(i.e., keeping in-memory and on-disk states, like real FS implementation)
o Input :alist of system calls, initial state

o Output: a list of legitimate post-crash states

e Checking errors:

execute

LibOS
Executor
Test
case
SymC3

& crash

emulate

_ 7: Crash-recovered

concrete state

X Set of legit. states
{statel, state2, ...}

(states contain symbols)

46

Hydra in action - Crash consistency testing

e SymC3: Symbolically evaluate crashing states

(i.e., keeping in-memory and on-disk states, like real FS implementation)

o Input

o Output: a list of legitimate post-crash states

e Checking errors:

Test
case

LibOS
Executor

execute

SymC3

& crash

emulate

: a list of system calls, initial state

_ 7: Crash-recovered

concrete state

X Set of legit. states
{statel, state2, ...}

(states contain symbols)

True

Not bug

47

Hydra in action - Fuzzer-generated test case

® Simplest test case (but it was a real bug in F2FS!)

mkdir “A” 0775
sync

chmod “A” 0600
fsync “A”

A W N R

48

Hydra in action - Initial emulator states

A wnNn R

Tree In-memory On-disk

io | . if.dents=[.] if.dents=[.]

mkdir “A” 0775
sync
chmod “A” 0600

ccn Initial states in the
fsync “A

emulator

Snapshots

Store possible
inode hierarchy

io

49

Hydra in action - Emulation of test case

1 mkdir “A” @775

Tree

io

i Snapshots

io

il [A

In-memory On-disk
if.dents=[., A] if.dents=[.]
il.dents=[.]

il.mode =[0775]

new inode created
in memory

i0
Store new

tree-snapshot
il (A 50

Hydra in action - Emulation of test case

1
2

mkdir “A” 0775
sync

Tree

io

il |A

In-memory On-disk

if.dents=[., A] if.dents=[., A]
il.dents=[.] il.dents=[.]

il.mode =[0775]

il.mode =[0775]

All metadata flushed to disk

i Snapshots

io

io

il

Hydra in action - Emulation of test case

1
2
3

mkdir “A” 0775
sync
chmod “A” 0600

Tree

io

il |A

In-memory On-disk

if.dents=[., A]

if.dents=[., A]

il.dents=[.] il.dents=[.]
il.mode =[0775,0600] il.mode =[0775]

New metadata is written
History of metadata changes

is maintained

i Snapshots

io

io

il

Hydra in action - Emulation of test case

H W R

mkdir “A” 0775
sync

chmod “A” 0600
fsync “A”

Tree

io

il |A

In-memory On-disk

if.dents=[., A]

if.dents=[., A]

il.dents=[.] il.dents=[.]

il.mode =[0600]

mm) il.mode =[0600]

il’s metadata flushed to disk

i Snapshots

io

io

il

Hydra in action - End of test case emulation

A W N R

mkdir “A” 0775
sync

chmod “A” 0600
fsync “A”

Tree In-memory On-disk

io if.dents=[., A] if.dents=[., A]
il.dents=[.] il.dents=[.]
il.mode =[0600] il.mode =[0600]

il |A

Enumerate legitimate post-crash states

io

i Snapshots

io

il

Hydra in action - Enumerating legitimate states

Snapshots
[SO] [S1] In-memory On-disk
if.dents=[., A] i if.dents=[., A]
) il.dents=[.] il.dents=[.]
10 | . i il.mode =[0600] ! il.mode =[0600]
io ! !

il [A

Hydra in action - Enumerating legitimate states

1. Check validity of snapshots

Snapshots
[50] [s1]
io
il

Drop SO (il is persisted)

In-memory

if.dents=[., A]
il.dents=[.]
il.mode =[0600]

On-disk

if.dents=[., A]

il.dents=[.]
Tt mode—={06907—

./A must exist!

56

Hydra in action - Enumerating legitimate states

1. Check validity of snapshots

Snapshots
[50] [S1] In-memory On-disk
if.dents=[., A] i if.dents=[., A]
) i il.dents=[.] i | il.dents=[.]
10 | . i il.mode =[0600] ! |il.mode =[0600]
il [A
S1is valid

(does not violate persisted state)

Hydra in action - Enumerating legitimate states

2. Generate possible crash states from valid snapshots

On-disk

if.dents=[., A]
il.dents=[.]
il.mode =[06680]

Snapshots
[50] [S1] In-memory
i io.dents=[., A] i
. il.dents=[.] i
10 | . \\\i\\ il.mode =[0600]
il | [Post-crash state 1]
i® - name: .
il - name: ./A
mode: 0600

58

Hydra in action - Bug checking

3.

Check if the set of legitimate states X has crashed state y as a member

-~

)
[Post-crash state 1]
i® - name: .

il - name: ./A
mode: 0600

\

?

Crashed F2FS image from Executor ()
$ cd mnt_point
$ stat A

Access: (0775/drwxrwxr-x)

59

Hydra in action - Bug found

3. Check if the set of legitimate states X has crashed state y as a member

)y

[Post-crash state 1] Crashed F2FS image from Executor (y)
}0 - hame: . $ cd mnt_point
il - name: ./A EB $ stat A

mode: 0600 Access: (0775/drwxrwxr-x)

None of the states have A’s mode as 0775.
This is a bug! (reported and patched)

60

Evaluation

Effectiveness and performance
as a fuzzing framework

61

Evaluation - Hydra is effective

e Hydra found 36 new semantic bugs (+ 33 memory errors)
o including a crash consistency bug in FSCQ, a verified file system

File System Crash Consistency Logic Bugs Spec. Violation
(checker) (SymC3) (In-kernel checks) (SibylIFS)
ext4 1 0 1
Btrfs 4 7 2
F2FS 3 16 1
FSCQ 1 - _

Total 9 23 4

Evaluation - Hydra is effective

e Hydra found 36 new semantic bugs (+ 33 memory errors)
o including a crash consistency bug in FSCQ, a verified file system

File System Crash Consistency Logic Bugs Spec. Violation
(checker) (SymC3) (In-kernel checks) (SibylIFS)
ext4 1 0 1
Btrfs 4 7 2
F2FS 3

Bug: dir is lost upon crash, if another file is truncated
FSCQ 1 Dev: “ftruncate was broken, and used an
unverified helper function”

Total 9

63

Evaluation - Hydra quickly explores input space

e Performance of Hydra’s state exploration with checkers

110
100

90 Logic bugs
80 (102.8 exec/sec)
70

60
50
40
30
20
10

0

Memory safety
(98.4 exec/sec)

Crash consistency
(11.4 exec/sec)

POSIX conformance
(4.5 exec/sec)

Throughput (exec/sec)

0 0.01 1 100 10000

Checker overhead (ms) o

Evaluation - Hydra quickly explores input space

e Faster than VM-based kernel fuzzing

110
100

90 Logic bugs
80 (102.8 exec/sec)
70

60
50
40
30
20
10

0

Memory safety
(98.4 exec/sec)

Crash consistency
(11.4 exec/sec)

POSIX conformance

(4.5 exec/sec) VM-based approach
(0.7 exec/sec)

/

0 0.01 1 100 10000

Throughput (exec/sec)

Checker overhead (ms) 65

Evaluation - Hydra generates better test cases

e ext4 code coverage of Hydra vs kernel fuzzers

10000

7500 !/

5000

Hydra

Syzkaller

2500

kAFL

0 2 4 6 8 10 12

Code coverage (12 hours) 66

Evaluation - Hydra generates better test cases

e Hydra reaches more code paths

10000
Hydra A
7500 I/ U1 .6x
Syzkaller
5000
8.7x
2500
kAFL -
0
0 2 4 6 8 10 12

Code coverage (12 hours) 67

Evaluation - Hydra test cases vs B3 test suite

® B3 generates test cases by enumerating FS operations
o Limits input space with bounds (e.g., #ops <= 3)

7000

Hydra
6000
B3
5000
’ (used up all B3 test cases)
4000
3000
2000
1000
0
0 2 4 6 8 10 12

Code coverage (12 hours)

Evaluation - Hydra test cases vs B3 test suite

® B3 generates test cases by enumerating FS operations

O

7000
6000
5000
4000
3000
2000
1000

0

Limits input space with bounds (e.g., #ops <= 3)

Hydra
y > Hydra generates test cases on-the-fly
B3

’ (used up all B3 test cases)

> B3’s enumerated test cases explore less code

2 4 6 8 10 12

Code coverage (12 hours)

69

Evaluation - Hydra test cases vs B3 test suite

® B3 generates test cases by enumerating FS operations
o Limits input space with bounds (e.g., #ops <= 3)

7000 Hydra
6000 > Hydra generates test cases on-the-fly

B3 ,
5000 > B3’s enumerated test cases explore less code
(used up all B3 test cases)
4000
3000

B3 missed all of the crash consistency bugs
found by Hydra & SymC3

PO T TO Y ST URY | == T e

70

Summary

e Hydra is an extensible fuzzing framework for one-stop testing

on multiple aspects of file systems
o Open-sourced at https://github.com/sslab-gatech/hydra

71

https://github.com/sslab-gatech/hydra

Summary

e Hydra is an extensible fuzzing framework for one-stop testing
on multiple aspects of file systems
o Open-sourced at https://github.com/sslab-gatech/hydra

® Discovered hard-to-detect semantic bugs (& memory bugs)
o 9 crash consistency bugs (1 in verified file system, FSCQ)

o 4 POSIX violations, 23 Logic bugs, and 33 memory bugs

72

https://github.com/sslab-gatech/hydra

Summary

e Hydra is an extensible fuzzing framework for one-stop testing
on multiple aspects of file systems
o Open-sourced at https://github.com/sslab-gatech/hydra

® Discovered hard-to-detect semantic bugs (& memory bugs)
o 9 crash consistency bugs (1 in verified file system, FSCQ)

o 4 POSIX violations, 23 Logic bugs, and 33 memory bugs

e Further extensions as future work
o More bug checkers, e.g., data race checker
o Support for distributed file systems

73

https://github.com/sslab-gatech/hydra

Demonstration - fuzzing for 10 mins

Wait, the fuzzing result?

Thank you!

Q&A

This research is supported by
ETI_\.I Google

Electronics and Telecommunications Faculty Research Awards
Research Institute

