Scalable and Practical Locking
with Shuffling

Sanidhya Kashyap* Irina Calciu Xiaohe Cheng

Changwoo Min Taesoo Kim

Georgia - vmware w /8

*On the job market

Locks are critical for application performance

A typical performance graph on manycore machines (e.g., 192-core/8-socket)

9. 0.40M
5 0.35M

§O.3OM \

Q
%2}
~ 0.25M
(%]
c

S0.20M

a

8_0.15M

O

0.10M

0.05M
Y L KAk 5D AL o0 ,\7’6 ’\P‘D‘ ,\6% ,\9’7/ 3‘60‘

| # threads

Locks are critical for application performance

A typical performance graph on manycore machines (e.g., 192-core/8-socket)

20M
©
C
O 15M
(@]
(&)
wn
S~
2 10M
S Far from ideal
©
| -
s
o SM
oM oD
A\ 2 B X D " 96 10 M & (9 ™

threads

Future hardware further exacerbates the problem

/j Intel to Offer Socketed 56-core Cooper Lake

in tel Xeon Scalable in new Socket Compatible with Ice
Lake

by Dr. Ian Cutress on August 6, 2019 8:01 AM EST

AMD’s New 280W 64-Core Rome CPU: The EPYC

AMDZT iz

by Dr. Ian Cutress on September 18, 2019 9:15 AM EST

oM —0 ® —- & oS

5 B
A\ 2 B X D " 96 10 M & (9 ™

| # threads

Two dimensions of lock design/goals

1) High throughput
® In high thread count

® In single thread

@ In oversubscription

2) Minimal lock size

® Memory footprint

Minimize lock contentions
No penalty when not contended

Avoid bookkeeping overhead

Scales to millions of locks
(e.g., file inode)

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second

0.40M ®

0.35M
0.30M
0.25M
b-

0.20M
0.15M
0.10M

0.05M
Y K qk 3R 42 00 {1«0 ,\1\0« ,\q)% Xg’l«
threads

—— Stock

Setup: 192-core/8-socket machine

Performance crashes after 1 socket
Due to non-uniform memory access (NUMA)

\

Accessing local socket memory is faster than
the remote socket memory.

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second

0.40M
0.35M
0.30M
0.25M
0.20M
0.15M
0.10M

0.05M
Y K qk 3R 42 00 {1«0 ‘\’D«b‘ ,\Q,% ,\’g'la
threads

—— Stock

Setup: 192-core/8-socket machine

o

Performance crashes after 1 socket
Due to non-uniform memory access (NUMA)

\

Accessing local socket memory is faster than
the remote socket memory.

Socket-1 Socket-2
Memory Memory
LLC r< >> LLC

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second

1 socket
0.40M

0.35M
0.30M
0.25M
0.20M
0.15M
0.10M
0.05M

—— Stock

Setup: 192-core/8-socket machine

> 1 socket

e

threads

/)

-

A/

Yk gk a1 960,0\}0«&6%\’

Performance crashes after 1 socket

Due to non-uniform memory access (NUMA)

\

Accessing local socket memory is faster than
the remote socket memory.

NUMA also affects oversubscription

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second

0.40M
0.35M
0.30M
0.25M
0.20M
0.15M
0.10M
0.05M

1 socket > 1 socket _
e Performance crashes after 1 socket

K[\ Due to non-uniform memory access (NUMA)
/
-

Accessing local socket memory is faster than
the remote socket memory.

v e NUMA also affects oversubscription
Y K qk 3R 42 00 ,\}0 ’\P‘b‘ \6% X} o

threads

Prevent throughput crash after one socket

Existing research efforts

e Making locks NUMA-aware:
o Two level locks: per-socket and global

Global lock
o Generally hierarchical

“, S Socket lock

O o) A
© Require extra memory allocation

- Socket-1 Socket-2
o Do not care about single thread throughput ocket ocket

e Example: CST!

1. Scalable NUMA-aware Blocking Synchronization Primitives. ATC 2017. 10

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

1 socket >isocket [Olersibscribed | e Maintains throughput:

©
S 03sM Beyond one socket (high thread count)
()
& oM In oversubscribed case (384 threads)
o 025M =
C L]
S M e Poor single thread throughput
T 0.15M . L. .
& i Multiple atomic instructions
O 0.05M

1 2 4 24 48 72 96 120 144 168 192 384

threads
—— Stock CST

Setup: 192-core/8-socket machine
11

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

1 socket MSLF e Maintains throughput:
0.35M Beyond one socket (high thread count)

©
C
S
% oM In oversubscribed case (384 threads)
o 025M =
C L]
S M e Poor single thread throughput
o 0.15M
TR, Multiple atomic instructions
O 0.05M

1 2 4 24 48 72 96 120 144 168 192 384

threads
—— Stock CST

Setup: 192-core/8-socket machine
12

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

1 socket >isocket [Olersibscribed | e Maintains throughput:

©
S o3sum Beyond one socket (high thread count)
()
% oM In oversubscribed case (384 threads)
Z’ 0.25M =
S M e Poor single thread throughput
T 0.15M . L. .
TR, Multiple atomic instructions
O 0.05M

2 4 24 48 72 96 120 144 168 192 384

threads
—0— Stock CST

Setup: 192-core/8-socket machine
13

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second

0.40M

0.35M

0.30M

0.25M

0.20M

0.15M

0.10M

0.05M

1 socket > 1 socket _ o

\‘\'\M

2 4 24 48 72 96 120 144 168 192 384

threads

Maintains throughput:

Beyond one socket (high thread count)
In oversubscribed case (384 threads)

Poor single thread throughput
Multiple atomic instructions

Single thread matters in non-contended cases

14

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

o
£ 150 MB = .
£ ® CST has large memory footprint
E 100 ME Allocate socket structure and global lock
P
e Worst case: ~1 GB footprint out of 32 GB
£ soms o application’s memory
% =
192
threads

B Stock CST

15

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

& 1000 MB S .
£ & ® CST has large memory footprint
8 v Allocate socket structure and global lock
P
g BoolB Worst case: ~1 GB footprint out of 32 GB
) . .y
E - g application’s memory
S @
(@)
- oMB ,

192

threads

B Stock CST I Hierarchical lock

16

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

E 1000 MB 8 .

£ & e CST has large memory footprint

E b Allocate socket structure and global lock
P

g |SeoNe Worst case: ~1 GB footprint out of 32 GB
3 . .,

E - § application’s memory

5 00

5 -

0MB
192

Lock’s memory footprint affect its adoption

17

Two goals in our new lock

Ll) NUMA-aware lock with no memory overhead }

LZ) High throughput in both low/high thread count }

18

Key idea: Sort waiters on the fly

Observations:

[Hierarchical locks avoid NUMA by passing the lock within a socket }

[Queue—based locks already maintain a list of waiters }

19

Sort waiters on the fly using socket ID

A waiting queue

Head——

Socket ID (e.g, socket 0)

1

t1

shuffler: ¥ waiter's gnode:

17 Socket ID

20

Sort waiters on the fly using socket ID

Another waiter is in a different socket

Socket 3

o> —H(:H\\

t1 t2

17 Socket ID

shuffler: { waiter’'s gnode: —Hﬂ
tail

Sort waiters on the fly using socket ID

More waiters join

t1

t2 t3 t4

shuffler: ¥ waiter's gnode:

17 Socket ID

22

Sort waiters on the fly using socket ID

Shuffler (t1) sorts based on socket ID

R omo* loH!

t1 t2 t3 t4

shuffler: ¥ waiter's gnode:

17 Socket ID

23

Shuffling: Design methodology

[A waiter (shuffler ¥) reorders the queue of waiters
-~
3, SEa B =C o B 2C B ==C AL
t1 t2 t3 t4

® A waiter, otherwise spinning (i.e,. wasting), amortises the cost of lock ops
1) By reordering (e.g., lock orders)

2) By modifying waiters’ states (e.g., waking-up/sleeping)

— Shuffler computes NUMA-ness on the fly without using memory

24

Shuffling is generic!

25

Shuffling is generic!

A shuffler can modify the queue or a waiter’s state
with a defined function/policy!

|

26

Shuffling is generic!

A shuffler can modify the queue or a waiter’s state
with a defined function/policy!

4 7

Blocking lock: wake up a nearby sleeping waiter

. J

4)

RWlock: Group writers together

- J

27

Shuffling is generic!

A shuffler can modify the queue or a waiter’s state
with a defined function/policy!

4 7

Blocking lock: wake up a nearby sleeping waiter

. J

4)

RWlock: Group writers together

- J

Incorporate shuffling in lock design

28

SHFLLOCKS

Minimal footprint locks
that handle any thread contention

29

SHFLLOCKS

(" TAS(4B))
(test-and-set lock)

Queue tail (8B)
\(waiterslist) J

30

SHFLLOCKS

(

TAS (4B)

\

(test-and-set lock)

.

(waiters list)

Queue tail (8B)

J

® Decouples the lock holder and waiters

©)

©)

Lock holder holds the TAS lock
Waiters join the queue

31

SHFLLOCKS

(" TAS(4B))
(test-and-set lock)

\(waiterslist) J

& lock():

"h unlock():

Queue tail (8B) |

® Decouples the lock holder and waiters
o Lock holder holds the TAS lock
o Waiters join the queue

-

-

Try acquiring the TAS lock first; join the queue on failure

-

-

Unlock the TAS lock (reset the TAS word to 0)

32

SHFLLOCKS

(" TAS(4B))
(test-and-set lock)

Queue tail (8B)

__(waiters list)

> [TAS maintains single thread performance

33

SHFLLOCKS

(" TAS(4B))
(test-and-set lock)

Queue tail (8B)

\(waiterslist) J

-

TAS maintains single thread performance

-
-

e Waiters use shuffling to improve application throughput
o NUMA-awareness, efficient wake up strategy
o Utilizing Idle/CPU wasting waiters

Y Shuffling is off the critical path most of the time

e Maintain long-term fairness:
o Bound the number of shuffling rounds

)

34

NUMA-aware SHFLLOCK in action

t0

¢
[t0 (socket 0): lock()] | L)
| O—# I

U unlocked

shuffler: ¥ waiter's gnode:
& locked

17 Socket ID

35

NUMA-aware SHFLLOCK in action

t0

¢
t0 (socket 0): lock | t0
| odeoriont) | OQL{ | = ‘ oa—{ !

17 Socket ID

U unlocked

shuffler: ¥ waiter's gnode:

& locked

36

NUMA-aware SHFLLOCK in action

[Multiple threads join the queue]

U unlocked
& locked

t1

shuffler: ¥ waiter's gnode:

t2

t3 t4

17 Socket ID

37

NUMA-aware SHFLLOCK in action

[Shuffling in progress]

U unlocked
& locked

t1 starts the shuffling process

5-Cpg

H—o—> —Hc:H\\

et

shuffler: ¥ waiter's gnode:

t2

t3 t4

17 Socket ID

38

NUMA-aware SHFLLOCK in action

[Shuffling in progress]

U unlocked
& locked

tl groups t3

H-

-

shuffler: ¥ waiter's gnode:

t3

t2

t4

17 Socket ID

39

NUMA-aware SHFLLOCK in action

[Shuffling in progress]

U unlocked
& locked

t3 now becomes the shuffler

H-

-

shuffler: ¥ waiter's gnode:

t3

I

t2

t4

17 Socket ID

40

NUMA-aware SHFLLOCK in action

[Shuffling in progress]

U unlocked
& locked

t3 now becomes the shuffler

[

shuffler: ¥ waiter's gnode:

xﬁ—ill»
t3

t2

t4

17 Socket ID

41

NUMA-aware SHFLLOCK in action

[t0: unlock() }

U unlocked
& locked

lan

[

shuffler: ¥ waiter's gnode:

t3

t2

t4

17 Socket ID

42

NUMA-aware SHFLLOCK in action

Sl

[t0: unlock() }

U unlocked
& locked

t3

t2

t4

17 Socket ID

shuffler: ¥ waiter's gnode:

43

NUMA-aware SHFLLOCK in action

t1 acquires the lock via CAS

@ T‘ aSEae

[t0: unlock() }

U unlocked
& locked

shuffler: ¥ waiter's gnode:

/H—}»
t3

t2

t4

17 Socket ID

44

NUMA-aware SHFLLOCK in action

t1 &

[t0: unlock() }

U unlocked
& locked

t1 notifies t3 as a new queue head

- TN

X

5-Cng

[I/H—°|"

shuffler: ¥ waiter's gnode:

%
t3

I

t2

t4

17 Socket ID

45

NUMA-aware SHFLLOCK in action

t1 &

t1 &
[t0: unlock()] @)

U unlocked
& locked

[

xH—{Ih

t3

V

e

5-Cng

t3

shuffler: ¥ waiter's gnode:

t2

t4

17 Socket ID

46

Implementation

e Kernel space:

o Replaced all mutex and rwsem
o Modified slowpath of the gspinlock

® User space:
o Added to the LiTL library

® Please see our paper:
o Blocking lock: Wake up nearby shuffled waiters
o Readers-writer lock: Centralized rw-indicator + SHFLLOCK

https://github.com/sslab-gatech/shfllock

47

https://github.com/sslab-gatech/shfllock

Evaluation

® SHFLLOCK performance:
o Does shuffling maintains application’s throughput?
o What is the overall memory footprint?

Setup: 192-core/8-socket machine

48

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

1 socket
0.40M

0.35M
0.30M
0.25M
0.20M
0.15M

0.10M

Nas

o o N
Q= & & & o
v

\\’\‘\‘\NV-

0.05M

1 2 4 24 48 72 96 120 144 168 192 384

—_—— Stock

threads

CST ~ =—@— SHFLLOCK

® SHFLLOCKS maintain performance:

49

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M

0.35M

0.30M

0.25M

0.20M

0.15M

0.10M

0.05M

1

%‘ — ® SHFLLOCKS maintain performance:
\\\‘\‘\ e Beyond one socket
— o NUMA-aware shuffling
2 4 24 48 72 96 120 144 168 192 384
threads

—— Stock CST = SHFLLOCK

50

Operations / second

Locks performance: Throughput

(e.g.,

0.40M

0.35M

0.30M

0.25M

0.20M

0.15M

0.10M

0.05M

each thread creates a file, a serial operation, in a shared directory)

%‘ ® SHFLLOCKS maintain performance:

Q=

e Beyond one socket
o NUMA-aware shuffling

e Core oversubscription
o NUMA-aware + wakeup shuffling
1 2 4 24 48 72 96 120 144 168 19238

threads

—— Stock CST = SHFLLOCK

51

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

- N ® SHFLLOCKS maintain performance:

030 \'\‘\‘\.\‘\1 e Beyond one socket

o — o NUMA-aware shuffling

01 e Core oversubscription

o o NUMA-aware + wakeup shuffling

2 4 24 48 72 96 120 144 168 192 384

e Single thread
threads

o TAS acquire and release
—0— Stock CST =——@— SHFLLOCK

52

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

150 MB § .
£ ® SHFLLOCK has least memory footprint
o
§ — Reason: No extra auxiliary data structure
>
E > Stock: parking list structure + extra lock
£ sous - > CST: per-socket structure
v &
o
- s m
192
threads

N Stock CST I SHFLLOCK

53

Locks performance: Memory footprint
(e.g., each thread creates a file, a serial operation, in a shared directory)

150Me ® SHFLLOCK has least memory footprint

- 140

100 ME Reason: No extra auxiliary data structure

> Stock: parking list structure + extra lock

50 MB > (CST: per-socket structure
®
0 MB J

192
threads

Locks’ memory footprint

I Stock CST I SHFLLOCK

54

Case study: Exim mail server

It is fork intensive and stresses memory subsystem, file system and scheduler

Throughput Memory footprint

160K 25GB
o 10k Improves throughput by
S 120K 2682 up to 1.5x
< 100K 15GB é
3 80K «» Decreases memory
g 10GB © .
g oK S footprint up to 93%
S 40K “on

20K

0K J .—OGB

1 2 4 24 48 72 96 120 144 168 192 192
threads # threads

]
_. Stock CST - SHFLLOCK

55

Case study: Exim mail server

It is fork intensive and stresses memory subsystem, file system and scheduler

Throughput Memory footprint

160K 25GB
o 1K 1 Improves throughput by
S 120K 2682 up to 1.5x
< 100K 15GB é
3 80K «» Decreases memory
g 10GB © .
g oK S footprint up to 93%
S 40K “on

20K *

0K J 0GB

1 2 4 24 48 72 96 120 144 168 192 192
threads # threads

]
_. Stock CST - SHFLLOCK

Conclusion

® Current lock designs:
o Do not maintain best throughput with varying threads
o Have high memory footprint

e Shuffling: Reorder the list or modify a waiter’s state on the fly
o NUMA-awareness, waking up waiters

® SHFLLOCKS: Shuffling-based family of lock algorithms
o NUMA-aware minimal memory footprint locks
o Utilize waiters to amortize lock operations

57

Conclusion

® Current lock designs:
o Do not maintain best throughput with varying threads
o Have high memory footprint

e Shuffling: Reorder the list or modify a waiter’s state on the fly
o NUMA-awareness, waking up waiters

® SHFLLOCKS: Shuffling-based family of lock algorithms
o NUMA-aware minimal memory footprint locks
o Utilize waiters to amortize lock operations

Thank youl

58

