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But Attackers Also Find Bugs
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Our work: Make the Fuzzing Only Effective to the Testers
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Threat Model
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Research Goals
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Why Existing Methods Are Not Applicable?

Method
Generic to

most fuzzers

Low

overhead

Resilient to

adversary

Packing or obfuscation O X O

Bug injection O O X

Fuzzer detection X O X

Emulator detection X O X

Fuzzification O O O
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SpeedBump: Selective Delay Injection
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Rarely visited path

Frequently visited path

• Identify frequently and 
rarely visited paths

• Inject delays from the most 
rarely visited edges



SpeedBump: Selective Delay Injection
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Basic block

Rarely visited path

Frequently visited path

• Why this is effective?

▫ User: follows common paths

▫ Attacker: searches for new paths

➔ Impact of delay is more 
significant to attackers

1
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SpeedBump: How to delay?

• Strawman: using sleep()  

➔ trivially removed by adversary
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SpeedBump: How to delay?

• Strawman: using sleep()  

➔ trivially removed by adversary

• Counter to advanced adversary

▫ Use randomly generated code  
➔ avoid static-pattern

▫ Impose control-flow and data-flow dependency
➔ avoid automated analysis
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SpeedBump: Selective Delay Injection
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int rarely_executed_code ()
{

return 0;
}

//define global variables
int global1 = 1;
int global2 = 2;

int rarely_executed_code ()
{

//inject delay function
int pass = 20;
global2 = func(pass);
return 0;

}



SpeedBump: Selective Delay Injection
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int func(int p6) {
int local1[10];

// affect global1 variable
global1 = 45; 
int local2 = global1;
for (int i = 0; i < 1000; i++)
// affect local1 variable
local1[i] = p6 + local2 + i;

// affect global2 variable
return local1[5];

}

int rarely_executed_code ()
{

return 0;
}

//define global variables
int global1 = 1;
int global2 = 2;

int rarely_executed_code ()
{

//inject delay function
int pass = 20;
global2 = func(pass);
return 0;

}



BranchTrap Hinders Coverage Management
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BranchTrap#1: Fabricates Input-sensitive Paths
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BranchTrap#1: ROP-based Fake Paths Generation
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BranchTrap#1: ROP-based Fake Paths Generation
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BranchTrap#2: Saturate Feedback State
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• One-time visit makes effect

• BranchTrap:

▫ Saturates bitmap data

▫ Prevents coverage recording



AntiHybrid Hinders Hybrid Fuzzing
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Challenge of Hybrid Fuzzing
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Challenge of Hybrid Fuzzing
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• Dynamic taint analysis

▫ Expensive implicit flow

• Symbolic execution

▫ Path explosion

Transform explicit data-flow ➔ implicit data-flow

Introduce an arbitrary path explosions



AntiHybrid Avoids Dynamic Taint Analysis

• Transform explicit data-flow to implicit data-flow
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char input = ‘a’;

char anti_dta;
if (input == 97)

anti_dta = ‘a’;

if (!strcmp(anti_dta, ‘a’)) 
{ … } 

char input = ‘a’;

if (!strcmp(input, ‘a’)) 
{ … } 

Unable to 

taint

input

anti_dta



AntiHybrid Incurs Path Explosions
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• Inject hash calculations into branches

if(a == 30) 
{ … } 

if(Hash(a) == 0x300df11) 
{ … } 

Path Explosion
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Evaluation Summary

• Implementation

▫ 6,599 lines of Python and 758 lines of C++  

• Evaluation questions:

▫ Effective in “Reducing discovered paths and bugs?”

▫ Effective on “Various fuzzers?

▫ Impose “Low overhead” to the normal user?
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Reduced the Discovered Coverage By 71%

BranchTrap
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No Fuzzification

All Fuzzifications
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* Fuzzing result on AFL-QEMU

objdump (binutils)



Reduced the Discovered Coverage By 71%

59* Fuzzing result on AFL-QEMU

Other binaries



Fuzzification is Effective on Various Fuzzers

Fuzzer Result

AFL (QEMU) 74%

HonggFuzz (PT) 61%

QSym (AFL-QEMU) 80%

Average 71%

60

Reduced code coverage



Reduced the Discovered Bugs

Fuzzer Result

AFL (QEMU) 88%

HonggFuzz (PT) 98%

QSym (AFL-QEMU) 94%

Average 93%
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Fuzzer Result

Vuzzer 56%

QSym (AFL-QEMU) 78%

Average 67%

binutils v2.3.0 LAVA-M dataset



File size & CPU Overheads

Overhead Result

File Size 1.4MB (62.1%)

CPU Overhead 3.7%

* Both overheads are configurable
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binutils v2.3.0

Overhead Result

File Size 1.3MB (5.4%)

CPU Overhead 0.73%

Real-world applications (e.g., GUI)



Discussion

• Best-effort protections against adversarial analysis

• Complementary to other defense techniques

▫ Not hiding all vulnerabilities

▫ But introducing significant cost on attacker

63



Comparison: Fuzzification vs. AntiFuzz

Component Fuzzification AntiFuzz

Delay execution ● (+ cold path) ●

Fake coverage ● (randomized return) ● (fake code)

Saturate coverage ● ○

Prevent crash ○ ●

Anti-hybrid ● (+ anti-DTA) ●

Countermeasures ◐ ○
64



Conclusion

• SpeedBump: Inject delays and only affects attackers

• BranchTrap: Insert input-sensitive branches

• AntiHybrid: Hinder hybrid fuzzing techniques
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Make the fuzzing only effective to the testers

https://github.com/sslab-gatech/fuzzification

https://github.com/sslab-gatech/fuzzification

