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Fuzzing Discovers Many Vulnerabilities

00 CVEs in 50 Days: Fuzzing Adobe
Reader

december 122015 | Google's automated fuzz bot has found over
Research By: Yoav A .

9,000 bugs in the past two years
Google improves 055-Fuzz service, plans to invite new op
source projects to join.
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But Attackers Also Find Bugs
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Our work: Make the Fuzzing Only Effective to the Testers
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Adversaries try to find vulnerabillities from fuzzing
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Research Goals
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Research Goals
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Why Existing Methods Are Not Applicable?

Generic to Low Resilient to
Method
most fuzzers overhead adversary
Packing or obfuscation O X O

Bug injection
Fuzzer detection

Emulator detection
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Fuzzification Hinders Advanced Features
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Fuzzification Hinders Advanced Features
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Fuzzification Hinders Advanced Features
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SpeedBump: Selective Delay Injection




SpeedBump: Selective Delay Injection

* |dentify frequently and
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Q Basic block

fffffffffffffffffffff Rarely visited path
== [requently visited path
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SpeedBump: Selective Delay Injection

* |dentify frequently and
rarely visited paths

~

rarely visited edges

@ * Inject delays from the most

Q Basic block

fffffffffffffffffffff Rarely visited path
== [requently visited path




SpeedBump: Selective Delay Injection

* Why this Is effective?
= User: follows common paths
= Attacker: searches for new paths

=>» Impact of delay Is more
significant to attackers

Q Basic block

fffffffffffffffffffff Rarely visited path
== [requently visited path




SpeedBump: How to delay?

« Strawman: using sleep()
=> trivially removed by adversary
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« Strawman: using sleep()
=> trivially removed by adversary

» Counter to advanced adversary

= Use randomly generated code
=» avoid static-pattern
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SpeedBump: How to delay?

« Strawman: using sleep()
=> trivially removed by adversary

» Counter to advanced adversary

= Use randomly generated code
=» avoid static-pattern

= Impose control-flow and data-flow dependency
=» avoid automated analysis
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SpeedBump: Selective Delay Injection

int rarely_executed_code ()

{
}

return 0;

34



SpeedBump: Selective Delay Injection

int rarely_executed_code ()

{

return 0;

N

//define global vartiables
tnt globall = 1;
tnt global2 = 2;

int rarely_executed _code ()
{
//inject delay function
tnt pass = 20;
global2 = func(pass);
return 0;
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SpeedBump: Selective Delay Injection

int rarely_executed_code ()

{

return 0;

N

//define global vartiables
tnt globall = 1;
tnt global2 = 2;

int rarely_executed _code ()
{
//inject delay function
tnt pass = 20;

int func(int p6) {
int localll[10];

// affect globall vartiable

globall = 45;

int local2 = globall;

for (int 1 = 0; 1 < 1000; i1++)
// affect locall variable
locall[i] = p6 + local2 + i;

// affect global2 variable
return locall[5];

global2 = func(pass);
return 0;
}
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BranchTrap Hinders Coverage Management
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BranchTrap#1:. Fabricates Input-sensitive Paths
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BranchTrap#1:. Fabricates Input-sensitive Paths
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BranchTrap#1:. ROP-based Fake Paths Generation

Funcl (argl, arg2)

Caller

call Funcl

next inst
Original
epilogue
pop rbp
pop r15
ret
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BranchTrap#1:. ROP-based Fake Paths Generation
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BranchTrap#1:. ROP-based Fake Paths Generation
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BranchTrap#1:. ROP-based Fake Paths Generation
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BranchTrap#1:. ROP-based Fake Paths Generation

Funcl (argl, arg?2 code
7, ( 9 g ) snippet 1
pop rbp
D pop r15
@ | index = argl " arg2 ret
Caller
call Funcl © | imp table [index] N_ | & —T snci:;sg 2
next inst pop rbp
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Original ® ret
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BranchTrap#2: Saturate Feedback State

 One-time visit makes effect

* BranchTrap:
= Saturates bitmap data
s Prevents coverage recording
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AntiHybrid Hinders Hybrid Fuzzing
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Challenge of Hybrid Fuzzing

* Dynamic taint analysis
= Expensive implicit flow

Transform explicit data-flow =» implicit data-flow




Challenge of Hybrid Fuzzing

* Dynamic taint analysis
= Expensive implicit flow

Transform explicit data-flow =» implicit data-flow

* Symbolic execution
= Path explosion

Introduce an arbitrary path explosions



AntiHybrid Avoids Dynamic Taint Analysis

* Transform explicit data-flow to implicit data-flow

{ ’

char input = ‘a’;

if (!strcmp(input, ‘a’)) l

{ .1}
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taint
anti_dta
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char tnput = ‘a’;

g
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AntiHybrid Incurs Path Explosions

* Inject hash calculations into branches

if(a == 30)
{ .}

—

if( Hash(a)}==[@x3@@df11)}
{.

(

Path Explosion
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Fuzzification Work-flow
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Fuzzification Work-flow
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Fuzzification Work-flow
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Fuzzification Work-flow
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Evaluation Summary

* Implementation
= 6,599 lines of Python and 758 lines of C++

 Evaluation guestions:

= Effective In “Reducing discovered paths and bugs?”
» Effective on “Various fuzzers?
= Impose “Low overhead” to the normal user?



Reduced the Discovered Coverage By 71%
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Reduced the Discovered Coverage By 71%

Other binaries
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Fuzzification i1s Effective on Various Fuzzers

Fuzzer Result

AFL (QEMU) 74%

HonggFuzz (PT) 61% Reduced code coverage
QSym (AFL-QEMU) 80%

Average 71%



Reduced the Discovered Bugs

binutils v2.3.0 LAVA-M dataset
Fuzzer Result Fuzzer Result
AFL (QEMU) 88% Vuzzer 56%
HonggFuzz (PT) 98% QSym (AFL-QEMU) 8%
QSym (AFL-QEMU) 94% Average 67%

Average 93%



File size & CPU Overheads

binutils v2.3.0 Real-world applications (e.g., GUI)
Overhead Result Overhead Result
File Size 1.4MB (62.1%) File Size 1.3MB (5.4%)
CPU Overhead 3.7% CPU Overhead 0.73%

* Both overheads are configurable



Discussion

» Best-effort protections against adversarial analysis

 Complementary to other defense technigues

= Not hiding all vulnerabilities
= But introducing significant cost on attacker



Comparison: Fuzzification vs. AntiFuzz

Component Fuzzification AntiFuzz
Delay execution @® (+ cold path) ®
Fake coverage @® (randomized return) @ (fake code)
Saturate coverage o O
Prevent crash O ®
Anti-hybrid ® (+ anti-DTA) |
Countermeasures ) O



Conclusion

Make the fuzzing only effective to the testers

« SpeedBump: Inject delays and only affects attackers

 BranchTrap: Insert input-sensitive branches

* AntiHybrid: Hinder hybrid fuzzing technigues

https://github.com/sslab-gatech/fuzzification
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