
FUZZIFICATION: Anti-Fuzzing Techniques

Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan,

Kyu Hyung Lee*, Taesoo Kim

*

1

Fuzzing Discovers Many Vulnerabilities

2

Fuzzing Discovers Many Vulnerabilities

3

Testers Find Bugs with Fuzzing

Source

Compilation

Released

binary

Normal users

Testers

Detected

bugs

Compilation Distribution Fuzzing

4

But Attackers Also Find Bugs

Source

Compilation

Released

binary

Testers

Detected

bugs

Compilation Distribution Fuzzing

5

Attackers

Normal users

Our work: Make the Fuzzing Only Effective to the Testers

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

6

Normal users

?

Threat Model

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

7

Normal users

Threat Model

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

8

Normal users

Adversaries try to find vulnerabilities from fuzzing

Threat Model

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

9

Normal users

Adversaries only have a copy of fortified binary

Threat Model

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

10

Normal users

Adversaries know Fuzzification and try to nullify

Research Goals

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

11

Normal users

Research Goals

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

12

Normal users

Hinder Fuzzing Reduce the number of detected bugs

Research Goals

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

13

Normal users

Generic Affect most of the fuzzers

AFL

HonggFuzz

VUzzer

QSym

…

Research Goals

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

14

Normal users

Low overhead to normal user

High overhead to attackers
Overhead

Research Goals

Source

Fuzzification

Compilation

Fortified

binary

Binary Testers

Detected

bugs

Attackers

Compilation Distribution Fuzzing

15

Normal users

Fortified

binary

Resilient to the adversarial analysisResiliency

Why Existing Methods Are Not Applicable?

Method
Generic to

most fuzzers

Low

overhead

Resilient to

adversary

Packing or obfuscation O X O

16

Why Existing Methods Are Not Applicable?

Method
Generic to

most fuzzers

Low

overhead

Resilient to

adversary

Packing or obfuscation O X O

Bug injection O O X

17

Why Existing Methods Are Not Applicable?

Method
Generic to

most fuzzers

Low

overhead

Resilient to

adversary

Packing or obfuscation O X O

Bug injection O O X

Fuzzer detection X O X

18

Why Existing Methods Are Not Applicable?

Method
Generic to

most fuzzers

Low

overhead

Resilient to

adversary

Packing or obfuscation O X O

Bug injection O O X

Fuzzer detection X O X

Emulator detection X O X

19

Why Existing Methods Are Not Applicable?

Method
Generic to

most fuzzers

Low

overhead

Resilient to

adversary

Packing or obfuscation O X O

Bug injection O O X

Fuzzer detection X O X

Emulator detection X O X

Fuzzification O O O

20

Fuzzification Hinders Advanced Features

21

Parallel execution

Fork

server

• Fast execution

• Coverage-guidance

• Hybrid approach

H/W

feature

Fuzzification Hinders Advanced Features

22

• Fast execution

• Coverage-guidance

• Hybrid approach

Parallel execution

Fork

server

H/W

feature

SpeedBump

Fuzzification Hinders Advanced Features

23

Parallel execution

Fork

server

Coverage

• Fast execution

• Coverage-guidance

• Hybrid approach

H/W

feature

Fuzzification Hinders Advanced Features

24

• Fast execution

• Coverage-guidance

• Hybrid approach

Parallel execution

Fork

server

Coverage

H/W

feature

BranchTrap

Fuzzification Hinders Advanced Features

25

Symbolic

execution

Dynamic

taint

analysis

Queue

Parallel execution

Fork

server

Coverage

• Fast execution

• Coverage-guidance

• Hybrid approach

H/W

feature

Fuzzification Hinders Advanced Features

26

• Fast execution

• Coverage-guidance

• Hybrid approach Symbolic

execution

Dynamic

taint

analysis

Queue

Parallel execution

Fork

server

Coverage

H/W

feature Anti-Hybrid

SpeedBump: Selective Delay Injection

27

Basic block

SpeedBump: Selective Delay Injection

28

Basic block

Rarely visited path

Frequently visited path

• Identify frequently and
rarely visited paths

SpeedBump: Selective Delay Injection

29

1

2

Basic block

Rarely visited path

Frequently visited path

• Identify frequently and
rarely visited paths

• Inject delays from the most
rarely visited edges

SpeedBump: Selective Delay Injection

30

Basic block

Rarely visited path

Frequently visited path

• Why this is effective?

▫ User: follows common paths

▫ Attacker: searches for new paths

➔ Impact of delay is more
significant to attackers

1

2

SpeedBump: How to delay?

• Strawman: using sleep()

➔ trivially removed by adversary

31

SpeedBump: How to delay?

• Strawman: using sleep()

➔ trivially removed by adversary

• Counter to advanced adversary

▫ Use randomly generated code
➔ avoid static-pattern

32

SpeedBump: How to delay?

• Strawman: using sleep()

➔ trivially removed by adversary

• Counter to advanced adversary

▫ Use randomly generated code
➔ avoid static-pattern

▫ Impose control-flow and data-flow dependency
➔ avoid automated analysis

33

SpeedBump: Selective Delay Injection

34

int rarely_executed_code ()
{

return 0;
}

SpeedBump: Selective Delay Injection

35

int rarely_executed_code ()
{

return 0;
}

//define global variables
int global1 = 1;
int global2 = 2;

int rarely_executed_code ()
{

//inject delay function
int pass = 20;
global2 = func(pass);
return 0;

}

SpeedBump: Selective Delay Injection

36

int func(int p6) {
int local1[10];

// affect global1 variable
global1 = 45;
int local2 = global1;
for (int i = 0; i < 1000; i++)
// affect local1 variable
local1[i] = p6 + local2 + i;

// affect global2 variable
return local1[5];

}

int rarely_executed_code ()
{

return 0;
}

//define global variables
int global1 = 1;
int global2 = 2;

int rarely_executed_code ()
{

//inject delay function
int pass = 20;
global2 = func(pass);
return 0;

}

BranchTrap Hinders Coverage Management

37

• Fast execution

• Coverage-guidance

• Hybrid approach Symbolic

execution

Dynamic

taint

analysis

Queue

Parallel execution

Fork

server

Coverage

H/W

feature

BranchTrap#1: Fabricates Input-sensitive Paths

38

1

3

2

“AAAA”

Coverage #1

BranchTrap#1: Fabricates Input-sensitive Paths

39

1

3

2

“AAAA” “AAAB”

Coverage #1 Coverage #2

BranchTrap#1: Fabricates Input-sensitive Paths

40

1

3

2

“AAAA” “AAAB”

Coverage #1 Coverage #2

1

3

2

“AAAA”

Coverage #1

BranchTrap

BranchTrap#1: Fabricates Input-sensitive Paths

41

1

3

2

“AAAA” “AAAB”

Coverage #1 Coverage #2

1

3

2

“AAAA”

Coverage #1

“AAAB”

Coverage #2

BranchTrap

Func1 (arg1, arg2)

call Func1

next inst

Caller

Original

epilogue

pop rbp

pop r15

ret

42

BranchTrap#1: ROP-based Fake Paths Generation

BranchTrap#1: ROP-based Fake Paths Generation

Code

snippet 1

pop rbp

pop r15

ret

Code

snippet 2

pop rbp

pop r15

ret

…

call Func1

next inst

43

Original

epilogue

pop rbp

pop r15

ret
Code

snippet N

…

Func1 (arg1, arg2)

Caller

BranchTrap#1: ROP-based Fake Paths Generation

index = arg1 ^ arg2

Code

snippet 1

pop rbp

pop r15

ret

Code

snippet 2

pop rbp

pop r15

ret

Code

snippet N

…

…

call Func1

next inst

①
②

44

Original

epilogue

pop rbp

pop r15

ret

Func1 (arg1, arg2)

Caller

BranchTrap#1: ROP-based Fake Paths Generation

index = arg1 ^ arg2

Code

snippet 1

pop rbp

pop r15

ret

Code

snippet 2

pop rbp

pop r15

ret

…

jmp table [index]call Func1

next inst

①
②

③ ④

45

Original

epilogue

pop rbp

pop r15

ret
Code

snippet N

…

Func1 (arg1, arg2)

Caller

Code

snippet 1

pop rbp

pop r15

ret

Code

snippet 2

pop rbp

pop r15

ret

…

Code

snippet N

…

BranchTrap#1: ROP-based Fake Paths Generation

index = arg1 ^ arg2

jmp table [index]call Func1

next inst

①
②

③ ④

⑤

46

Original

epilogue

pop rbp

pop r15

ret

Func1 (arg1, arg2)

Caller

BranchTrap#2: Saturate Feedback State

47

1

3

2

• One-time visit makes effect

• BranchTrap:

▫ Saturates bitmap data

▫ Prevents coverage recording

AntiHybrid Hinders Hybrid Fuzzing

48

• Fast execution

• Coverage-guidance

• Hybrid approach Symbolic

execution

Dynamic

taint

analysis

Queue

Parallel execution

Fork

server

Coverage

H/W

feature

Challenge of Hybrid Fuzzing

49

• Dynamic taint analysis

▫ Expensive implicit flow

Transform explicit data-flow ➔ implicit data-flow

Challenge of Hybrid Fuzzing

50

• Dynamic taint analysis

▫ Expensive implicit flow

• Symbolic execution

▫ Path explosion

Transform explicit data-flow ➔ implicit data-flow

Introduce an arbitrary path explosions

AntiHybrid Avoids Dynamic Taint Analysis

• Transform explicit data-flow to implicit data-flow

51

char input = ‘a’;

char anti_dta;
if (input == 97)

anti_dta = ‘a’;

if (!strcmp(anti_dta, ‘a’))
{ … }

char input = ‘a’;

if (!strcmp(input, ‘a’))
{ … }

Unable to

taint

input

anti_dta

AntiHybrid Incurs Path Explosions

52

• Inject hash calculations into branches

if(a == 30)
{ … }

if(Hash(a) == 0x300df11)
{ … }

Path Explosion

Fuzzification Work-flow

Profile

Binary

Source

①RunValid/invlid

inputs

53

Fuzzification Work-flow

Profile

Binary

Source

② Inject

component

LLVM

IR

SpeedBump

BranchTrap

AntiHybrid

①RunValid/invlid

inputs

54

Fuzzification Work-flow

Profile

Binary

Source

② Inject

component

LLVM

IR

SpeedBump

BranchTrap

AntiHybrid Test run

①RunValid/invlid

inputs

55③Measure Overhead & Inject More Component

Fuzzification Work-flow

Profile

Binary

Source

② Inject

component

LLVM

IR

SpeedBump

BranchTrap

AntiHybrid Test run
④Release

fortified

binary

①RunValid/invlid

inputs

56③Measure Overhead & Inject More Component

Evaluation Summary

• Implementation

▫ 6,599 lines of Python and 758 lines of C++

• Evaluation questions:

▫ Effective in “Reducing discovered paths and bugs?”

▫ Effective on “Various fuzzers?

▫ Impose “Low overhead” to the normal user?

57

Reduced the Discovered Coverage By 71%

BranchTrap

58

No Fuzzification

All Fuzzifications

AntiHybrid

SpeedBump

D
is

c
o
v
e
re

d
 P

a
th

s

* Fuzzing result on AFL-QEMU

objdump (binutils)

Reduced the Discovered Coverage By 71%

59* Fuzzing result on AFL-QEMU

Other binaries

Fuzzification is Effective on Various Fuzzers

Fuzzer Result

AFL (QEMU) 74%

HonggFuzz (PT) 61%

QSym (AFL-QEMU) 80%

Average 71%

60

Reduced code coverage

Reduced the Discovered Bugs

Fuzzer Result

AFL (QEMU) 88%

HonggFuzz (PT) 98%

QSym (AFL-QEMU) 94%

Average 93%

61

Fuzzer Result

Vuzzer 56%

QSym (AFL-QEMU) 78%

Average 67%

binutils v2.3.0 LAVA-M dataset

File size & CPU Overheads

Overhead Result

File Size 1.4MB (62.1%)

CPU Overhead 3.7%

* Both overheads are configurable

62

binutils v2.3.0

Overhead Result

File Size 1.3MB (5.4%)

CPU Overhead 0.73%

Real-world applications (e.g., GUI)

Discussion

• Best-effort protections against adversarial analysis

• Complementary to other defense techniques

▫ Not hiding all vulnerabilities

▫ But introducing significant cost on attacker

63

Comparison: Fuzzification vs. AntiFuzz

Component Fuzzification AntiFuzz

Delay execution ● (+ cold path) ●

Fake coverage ● (randomized return) ● (fake code)

Saturate coverage ● ○

Prevent crash ○ ●

Anti-hybrid ● (+ anti-DTA) ●

Countermeasures ◐ ○
64

Conclusion

• SpeedBump: Inject delays and only affects attackers

• BranchTrap: Insert input-sensitive branches

• AntiHybrid: Hinder hybrid fuzzing techniques

65

Make the fuzzing only effective to the testers

https://github.com/sslab-gatech/fuzzification

https://github.com/sslab-gatech/fuzzification

