FUZZIFICATION: Anti-Fuzzing Techniques

Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan,
Kyu Hyung Lee*, Taesoo Kim

*
AN UNIVERSITY OF

,g GEORGIA

Fuzzing Discovers Many Vulnerabilities

00 CVEs in 50 Days: Fuzzing Adobe
Reader

December 12, 2018
Research By: Yoav Alon, Netanel Ben-5imon

Fuzzing Discovers Many Vulnerabilities

00 CVEs in 50 Days: Fuzzing Adobe
Reader

december 122015 | Google's automated fuzz bot has found over
Research By: Yoav A .

9,000 bugs in the past two years
Google improves 055-Fuzz service, plans to invite new op
source projects to join.

Testers Find Bugs with Fuzzing @

Detected
®_©O bugs
o
.-.
/ Normal users
N\
é » | Compilation | —» :)%? \
— Released u,
° binary / "‘—} AR AR
_________________ - 4
------------------ Testers

Compilation Distribution

But Attackers Also Find Bugs

:.; bugs

dh
/ Normal users
8
» | Compilation — L%? 7R R
\ Attackers

Source Re!eased
< binary

-
-~y __—___
~~-- _—————___—
T o

Testers

Compilation Distribution

Our work: Make the Fuzzing Only Effective to the Testers

e L
.-.
/ Normal users
L &
®
>

A — | — t
/ Fortified

binary Attackers

Source\
100

Compilation —> |

Binary Testers

—

Compilation Distribution

Threat Model

Detected
bugs
Fuzzification — :
- / e t >
Fortified
binary Attackers
Source\ P N
L 100 2N
Compilation —> s ’,},
Binary Testers

Compilation Distribution

Threat Model

Detected
o%'a bugs

dh
Fuzzification — i L%? \
Fortified
binary
Source\
100

Compilation —>

001
Binary Testers
Compilation Distribution

Adversaries try to find vulnerabillities from fuzzing

Threat Model

o o Detected
bugs
Fuzzification .

Source\ w, |
Compilation axﬁ ;‘ﬁ
R R

Binary Testers
Compilation Distribution

Adversaries only have a copy of fortified binary

Threat Model

Detected
bugs
’/1’/
Ve = ="
- Fortified
binary
Source\ w, |
. R AR
Compilation —> »,
R AR
Binary Testers
Compilation

Adversaries know Fuzzification and try to nullify

Research Goals

Detected
bugs
Fuzzification —
- / e t >
Fortified
binary Attackers
Source\ P N
L 100 2N
Compilation —> s ’,},
Binary Testers

Compilation Distribution

Research Goals

® Detected
.‘. bugs

Normal users
100
Fuzzification —> |01 \ t
Fortified
binary Attackers
Source\
100

X,
. I PO\ AR
Compilation —> losil — z,:‘ —_—> ggﬁg
Binary Testers
Compilation

Hinder Fuzzing Reduce the number of detected bugs

12

Research Goals

o o Detected
.‘. bugs

/ Normal users AEL
Fuzzification — L%? t HonggFuzz .
/ Sym M
Fortified S
binary Attackers VUzzer
Source T 1 x, (X
Y/
Compilation — L%? —> ',,’“ — > ;‘:H!ﬁ
’ R AR
Binary Testers

Compilatior Distribution

Generic Affect most of the fuzzers

Research Goals

Detected
‘&; bugs
: Normal user
Fuzzification — L%? t
/ Fortified
binary A ttackers
Source w, (x
Compilation —> 001 'f“ ;:;
Binary Testers
Compilation
Low overhead to normal user
Overhead

High overhead to attackers

14

Research Goals

Detected
bugs
-
Ve = ="
- Fortified
binary
Source\ w, |
. R AR
Compilation —> »,
R AR
Binary Testers
Compilation

Resiliency Resilient to the adversarial analysis

15

Why Existing Methods Are Not Applicable?

Generic to Low Resilient to

Method most fuzzers overhead adversary

Packing or obfuscation O X O

Why Existing Methods Are Not Applicable?

Generic to Low Resilient to
Method
most fuzzers overhead adversary
Packing or obfuscation O X O

Bug injection O O X

Why Existing Methods Are Not Applicable?

Generic to Low Resilient to
Method
most fuzzers overhead adversary
Packing or obfuscation O X O
Bug injection O O X

Fuzzer detection X O X

Why Existing Methods Are Not Applicable?

Generic to Low Resilient to
Method
most fuzzers overhead adversary
Packing or obfuscation O X O

Bug injection

O O X
Fuzzer detection X O X
X O X

Emulator detection

Why Existing Methods Are Not Applicable?

Generic to Low Resilient to
Method
most fuzzers overhead adversary
Packing or obfuscation O X O

Bug injection
Fuzzer detection

Emulator detection

O| X X O
O|]O0 O O
O| X X X

Fuzzification

Fuzzification Hinders Advanced Features

e Fast execution

Parallel execution

H/W
feature

Fork
server

21

Fuzzification Hinders Advanced Features

[SpeedBump}

Parallel execution

H/W
feature

Fork
server

22

Fuzzification Hinders Advanced Features

» Coverage-guidance

H/W
feature

Fork
server

Parallel execution -

=l=

~<
~
~
~
~
~
~
~
~
~~
~

-
-
-
-
-
-
-
-
-
-

Coverage

23

Fuzzification Hinders Advanced Features

. H/W
Coverage-gtidanee e

Fork
server

Parallel execution -

=l=

l l Coverage

{ BranchTrap J

24

Fuzzification Hinders Advanced Features

Parallel execution ™~

H/W
feature

execution

Fork
* Hybrid approach server ﬁ Symbolic
N
\

Dynamic

taint
analysis

Fuzzification Hinders Advanced Features

Coverage
~ IZEI ~~~~~~~]
\\\\\ a
Parallel execution ,/\\ __________ »

H/W
feature

execution

] Fork
+ Hybrid-appreach server Symbolic
\\

Dynamic

taint

analysis

SpeedBump: Selective Delay Injection

SpeedBump: Selective Delay Injection

* |dentify frequently and
rarely visited paths

Q Basic block

fffffffffffffffffffff Rarely visited path
== [requently visited path

28

SpeedBump: Selective Delay Injection

* |dentify frequently and
rarely visited paths

~

rarely visited edges

@ * Inject delays from the most

Q Basic block

fffffffffffffffffffff Rarely visited path
== [requently visited path

SpeedBump: Selective Delay Injection

* Why this Is effective?
= User: follows common paths
= Attacker: searches for new paths

=>» Impact of delay Is more
significant to attackers

Q Basic block

fffffffffffffffffffff Rarely visited path
== [requently visited path

SpeedBump: How to delay?

« Strawman: using sleep()
=> trivially removed by adversary

31

SpeedBump: How to delay?

« Strawman: using sleep()
=> trivially removed by adversary

» Counter to advanced adversary

= Use randomly generated code
=» avoid static-pattern

32

SpeedBump: How to delay?

« Strawman: using sleep()
=> trivially removed by adversary

» Counter to advanced adversary

= Use randomly generated code
=» avoid static-pattern

= Impose control-flow and data-flow dependency
=» avoid automated analysis

33

SpeedBump: Selective Delay Injection

int rarely_executed_code ()

{
}

return 0;

34

SpeedBump: Selective Delay Injection

int rarely_executed_code ()

{

return 0;

N

//define global vartiables
tnt globall = 1;
tnt global2 = 2;

int rarely_executed _code ()
{
//inject delay function
tnt pass = 20;
global2 = func(pass);
return 0;

35

SpeedBump: Selective Delay Injection

int rarely_executed_code ()

{

return 0;

N

//define global vartiables
tnt globall = 1;
tnt global2 = 2;

int rarely_executed _code ()
{
//inject delay function
tnt pass = 20;

int func(int p6) {
int localll[10];

// affect globall vartiable

globall = 45;

int local2 = globall;

for (int 1 = 0; 1 < 1000; i1++)
// affect locall variable
locall[i] = p6 + local2 + i;

// affect global2 variable
return locall[5];

global2 = func(pass);
return 0;
}

36

BranchTrap Hinders Coverage Management

. H/W
«Coverage-gudanee e

Fork
server

Parallel execution -

-
-
-
-
-
-
-
-
-
-

Coverage

Symbolic
execution

3

Dynamic
taint
analysis

BranchTrap#1:. Fabricates Input-sensitive Paths

“AAAA”

Coverage #1

nEEa"z

BranchTrap#1:. Fabricates Input-sensitive Paths

“AAAA” “AAAB”

Coverage #1 Coverage #2

o = R

BranchTrap#1:. Fabricates Input-sensitive Paths

% “AAAA”

Coverage #1

.

“AAAB”

Coverage #2

o ==

a

=

BranchTrap

—)

Coverage #1

=

=z

40

BranchTrap#1:. Fabricates Input-sensitive Paths

Coverage #1

.

“AAAB”

Coverage #2

o ==

a

=

BranchTrap

—)

% “AAAA”

Coverage #1

=

. =

“AAAB”

Coverage #2

o T

41

BranchTrap#1:. ROP-based Fake Paths Generation

Funcl (argl, arg2)

Caller

call Funcl

next inst
Original
epilogue
pop rbp
pop r15
ret

42

BranchTrap#1:. ROP-based Fake Paths Generation

Caller

Funcl (argl, arg2)

call Funcl
next inst

Original
epilogue

pop rbp
pop rl5
ret

-
-

-
-

— -
-

Code
snippet 1
pop rbp
pop r15
ret

Code
snippet 2
pop rbp
pop r15
ret

Code
snippet N

43

BranchTrap#1:. ROP-based Fake Paths Generation

@
Caller

call Funcl
next inst

/

;uncl (argl, arg?2)

@

index = argl " arg2

Code
snippet 1
pop rbp
pop r15
ret

Original
epilogue

pop rbp
pop rl5
ret

Code
snippet 2
pop rbp
pop r15
ret

Code
snippet N

44

BranchTrap#1:. ROP-based Fake Paths Generation

@
Caller

call Funcl
next inst

/

;uncl (argl, arg?2)

@

®

index = argl " arg2

jmp table [index]

S

Code
snippet 1
pop rbp
pop r15
ret

@& —T

Original
epilogue

pop rbp
pop rl5
ret

Code
snippet 2
pop rbp
pop r15
ret

Code
snippet N

45

BranchTrap#1:. ROP-based Fake Paths Generation

Funcl (argl, arg?2 code
7, (9 g) snippet 1
pop rbp
D pop r15
@ | index = argl " arg2 ret
Caller
call Funcl © | imp table [index] N_ | & —T snci:;sg 2
next inst pop rbp
pop r15
Original ® ret
epilogue
pop rbp
pop r15 Code
ret snippet N

46

BranchTrap#2: Saturate Feedback State

 One-time visit makes effect

* BranchTrap:
= Saturates bitmap data
s Prevents coverage recording

47

AntiHybrid Hinders Hybrid Fuzzing

H/W
feature

Fork

+ Hybrid-approach server

Parallel execution -

3

-
-
-
-
-
-
-
-
-
-

Coverage

Symbolic
execution

Dynamic
taint

analysis

48

Challenge of Hybrid Fuzzing

* Dynamic taint analysis
= Expensive implicit flow

Transform explicit data-flow =» implicit data-flow

Challenge of Hybrid Fuzzing

* Dynamic taint analysis
= Expensive implicit flow

Transform explicit data-flow =» implicit data-flow

* Symbolic execution
= Path explosion

Introduce an arbitrary path explosions

AntiHybrid Avoids Dynamic Taint Analysis

* Transform explicit data-flow to implicit data-flow

{ ’

char input = ‘a’;

if (!strcmp(input, ‘a’)) l

{ .1}
inpuy’é N\
Unable to

taint
anti_dta

{ ’

char tnput = ‘a’;

g
char anti_dta;
uf (tnput == 97)

{ ’

anti_dta = ‘a’;
-

J

if (!strcmp(anti_dta,

{ .}

lal))

AntiHybrid Incurs Path Explosions

* Inject hash calculations into branches

if(a == 30)
{ .}

—

if(Hash(a)}==[@x3@@df11)}
{.

(

Path Explosion

52

Fuzzification Work-flow

=8

Valid/invlid

inputs

Source

>

100
001

Binary

@Run
—_—

Profile

53

Fuzzification Work-flow

=8

Valid/invlid

inputs

Source

>

100] ©Run .
ool| —» Profile
Binary

>

@ Inject
component

SpeedBump
BranchTrap
AntiHybrid

54

Fuzzification Work-flow

=8

Valid/invlid @ORun
100 :
inputs > oo1|l —» Profile
Binary

Source

@ Inject
component o
— 03
100
001
Test run

>

T

(3®Measure Overhead & Inject More Component

Fuzzification Work-flow

alld/mvlld @ORun
100 :
inputs > oo1| —» Profile
Binary
Source
@ Inject
component peedBUMp
> S

blrancnirap
ANTURYDrIC

T

Oo,_i,sl m—)

001

Test run

(3®Measure Overhead & Inject More Component

100
001

@Release
fortified
binary

56

Evaluation Summary

* Implementation
= 6,599 lines of Python and 758 lines of C++

 Evaluation guestions:

= Effective In “Reducing discovered paths and bugs?”
» Effective on “Various fuzzers?
= Impose “Low overhead” to the normal user?

Reduced the Discovered Coverage By 71%

objdump (binutils . e

g J P () _— No Fuzzification
@ | | 30k
% 25k » BranchTrap
g 20k » AntiHybrid
N Ik » SpeedBump
= | | 10k
? S5k L

0k — All Fuzzifications

8 16 24 32 40 48 56 6472
Time (hours)

* Fuzzing result on AFL-QEMU

Reduced the Discovered Coverage By 71%

Other binaries

17 (a) libjpeg 10k (b) libpng 15k (¢) libtiff 30k (d) pere2
ok L 8k 12k |- if}t
Gk ok
bk 15k
“ dk Gk 10k
B 2k 3k sk
ﬂk_ 1 1 1 1 1 | | | J [“I. Uk n.k
8 16 24 32 40 48 56 6472 8 16 24 32 40 48 56 6472 8 16 24 32 40 48 56 6472 8 16 24 32 40 48 56 6472
20k — (e) readelfl 35k - (1) objdump 15k — (g) nm 10k — (h) objcopy
y 16K - 30k - ' 12k -
= 25k _
2 12k Wik Ok
= o 15k | o BEEEREREE O o
=4
- 10k
[IJTE VYTV VT TAP PV T PRV TPV TRV [PRVT VR S | 1Y |, i N T TR N N TR B ') 17 [
B 16 24 32 40 48 56 6472 B 16 24 32 40 48 56 6472 B 16 24 32 40 48 56 6472 B 16 24 32 40 48 56 6472
Time (hours) Time {hours) Time (hours) Time (hours)
—a— Original ——— AntiHybrid ——— BranchTrap —— SpeedBump —s— All

* Fuzzing result on AFL-QEMU 59

Fuzzification i1s Effective on Various Fuzzers

Fuzzer Result

AFL (QEMU) 74%

HonggFuzz (PT) 61% Reduced code coverage
QSym (AFL-QEMU) 80%

Average 71%

Reduced the Discovered Bugs

binutils v2.3.0 LAVA-M dataset
Fuzzer Result Fuzzer Result
AFL (QEMU) 88% Vuzzer 56%
HonggFuzz (PT) 98% QSym (AFL-QEMU) 8%
QSym (AFL-QEMU) 94% Average 67%

Average 93%

File size & CPU Overheads

binutils v2.3.0 Real-world applications (e.g., GUI)
Overhead Result Overhead Result
File Size 1.4MB (62.1%) File Size 1.3MB (5.4%)
CPU Overhead 3.7% CPU Overhead 0.73%

* Both overheads are configurable

Discussion

» Best-effort protections against adversarial analysis

 Complementary to other defense technigues

= Not hiding all vulnerabilities
= But introducing significant cost on attacker

Comparison: Fuzzification vs. AntiFuzz

Component Fuzzification AntiFuzz
Delay execution @® (+ cold path) ®
Fake coverage @® (randomized return) @ (fake code)
Saturate coverage o O
Prevent crash O ®
Anti-hybrid ® (+ anti-DTA) |
Countermeasures) O

Conclusion

Make the fuzzing only effective to the testers

« SpeedBump: Inject delays and only affects attackers

 BranchTrap: Insert input-sensitive branches

* AntiHybrid: Hinder hybrid fuzzing technigues

https://github.com/sslab-gatech/fuzzification

https://github.com/sslab-gatech/fuzzification

