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Abstract—With the wide deployment of security mechanisms such as Address Space Layout Randomization (ASLR), memory
disclosures have become a prerequisite for critical memory-corruption attacks (e.g., code-reuse attack)—adversaries are forced to exploit
memory disclosures to circumvent ASLR as the first step. As a result, the security threats of memory disclosures are now significantly
aggravated—they break not only data confidentiality but also the effectiveness of security mechanisms. In this paper, we propose a
general detection methodology and develop a system to stop memory disclosures. We observe that memory disclosures are not root
causes but rather consequences of a variety of hard-to-detect program errors such as memory corruption and uninitialized read. We thus
propose a replicated execution–based methodology to generally detect memory disclosures, regardless of their causes. We realize this
methodology with BUDDY: By seamlessly maintaining two identical running instances of a target program and diversifying only its target
data, BUDDY can accurately detects memory disclosures of the data, as doing so will result in the two instances outputting different
values. Extensive evaluation results show that BUDDY is reliable and efficient while stopping real memory disclosures such as the
Heartbleed leak.

Index Terms—Memory disclosure, diversification, replicated execution, N-version system, code-reuse attack
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1 INTRODUCTION

MODERN systems widely deploy randomization-based
security mechanisms such as Address Space Layout

Randomization (ASLR) to prevent a variety of attacks (e.g.,
code-reuse and privilege escalation attacks). These attacks
generally require overwriting a code or data pointer with an
address of unintended code or data pieces. Doing so requires
attackers to know both the address of the pointer and the
address of unintended code or data pieces, whereby both
of them are randomized by ASLR. ASLR promises to stop
such attacks by making these addresses unpredictable. The
effectiveness of ASLR however completely relies on the confi-
dentiality of the randomized addresses which are ubiquitous
in memory. In practice, ASLR is weak because of memory
disclosures. Attackers have commonly exploited memory
disclosures to reveal the randomized address to circumvent
ASLR and then to launch the subsequent attacks. For ex-
ample, recently proposed advanced code reuse attacks [1],
[2], [3], [4] all disclose a randomized code or data pointer to
bypass ASLR and then launch code-reuse attacks. In addition,
memory disclosures directly result in the loss of sensitive
data such as private keys. For example, the HeartBleed [5]
vulnerability allowed attackers to remotely read protected
memory from an estimated 24-55% of popular HTTPS sites.
More critically, according to vulnerability databases [6], the
number of memory disclosures is increasing in general. As a
result, memory disclosures are posing a critical threat to our
systems.

A memory disclosure occurs when two events take
place sequentially: (1) an unintended memory read (e.g.,
uninitialized memory read and out-of-bound read) and (2)
a disclosure of the read data to the external world. The first
event is the problematic operation which reads some data
that is not supposed to be read, and the second event is the
condition to form a memory disclosure. Since unintended

reads can be caused by various program errors such as
memory corruption, uninitialized read, missing check, race
condition, etc., a memory disclosure is not the root cause but
rather a consequence of these problems.

Recent research has attempted to detect and defend
against memory disclosures of specific data or caused by
specific program errors. In particular, Readactor [7], ASLR-
Guard [8], and TASR [9] transform or track code pointers
to prevent them from being leaked. SeCage [10] protects
private keys by storing them in an isolated memory region.
Memory safety techniques (e.g., SoftBound [11], CETS [12],
MemorySanitizer [13] and AddressSanitizer [14]) provide a
strong protection by detecting and preventing memory errors
which can cause memory disclosures. Unfortunately, these
protection techniques all suffer from several shortcomings.
Root causes such as integer overflow, buffer overflow, and
race condition are hard to detect in complex system soft-
ware. While dynamic detection suffers from coverage and
efficiency issues, static detection is not precise because of
problems like aliasing. Runtime defense mechanisms against
these problems however impose significant performance
overhead. Data-protecting techniques instead protect only
a very limited set of data. For example, the aforementioned
protections focus on code pointers or secret key only but
leave other critical data like data pointers unprotected. More
importantly, prior techniques mostly employ code analysis
and instrumentation techniques, which is an inherent lim-
itation in handling dynamic code (i.e., code generated by
just-in-time compilation) which is commonly used in system
software such as Berkeley Packet Filter in OS kernels and the
Google V8 JavaScript engine. In general, preventing memory
disclosures is very challenging. End-to-end data protection
techniques (e.g., code-pointer protection) suffer from false
negative and extensibility, while program-error prevention
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techniques (e.g., memory safety techniques) suffer from high
performance overhead, generality, and deployment issues.

In this paper, we propose a general detection methodol-
ogy and develop a new system to stop memory disclosures in
a principled and practical manner. Since memory disclosures
are consequences of a number of program errors, the most
intuitive way to detect memory disclosures is to check if the
outgoing data contains any target data (i.e., to-be-protected
data) such as randomized addresses. However, such a check
is hard because the forms of target data may change along the
process execution, and thus we cannot tell if a value is being
disclosed or not. Instead of solving this problem directly,
we transform memory disclosure detection into a general
equivalence-check problem. The rationale behind the idea is
that by seamlessly maintaining two running instances and
diversifying only the target data, we can always detect any
disclosure of such data because the disclosure will always
result in the two instances outputting different values. This
way, we are able to capture any memory disclosure without
the need of tracking the propagation of the target data or
analyzing complicated code. To realize this methodology,
we develop a replicated execution–based system, namely
BUDDY. In BUDDY, a target process is replicated into two
buddy instances which are well synchronized in such a way
that they act as a single instance from the perspective of
external attackers. The only difference between the buddy
instances is the diversified target data such as randomized
addresses. To avoid false positives, we (1) synchronize these
buddy instances by thoroughly virtualizing syscalls, virtual
syscalls, and instructions that may return different values (i.e.,
non-deterministic sources) to the buddy instances, and (2)
only synchronize buddy instances and detect divergence at
I/O write: BUDDY reports memory disclosures only when the
disclosed data actually leaves OS. This way, the false positive
issues caused by data structure padding [15] are eliminated.
With this design, in principle, BUDDY can completely (i.e., no
false negatives) and accurately (i.e., no false positive) detect
any memory disclosure without the need to identify or track
the data in memory, which can be error-prone and expensive.
Although BUDDY focuses on detecting memory disclosures,
it is efficient enough to be used as a runtime prevention tool.

The diversification in BUDDY is a key challenge, which
must preserve semantics and trigger divergences upon
memory disclosures. To develop effective diversification
schemes, we first develop a formal model and define two
properties that a diversification scheme should satisfy. As
examples, we then develop two diversification schemes on
top of BUDDY to comprehensively detect memory disclosures
caused by various memory errors. Specifically, we first
use partitioned address randomization to detect memory
disclosures caused by absolute address-based over-reads.
The partitioned address randomization scheme ensures that
the address spaces for buddy instances are non-overlapping
and randomization enabled. This scheme is similar to the
addresss space partitioning scheme [16] but improved with
self-randomization that mitigates asymmetrical attacks as dis-
cussed in §7. With this scheme, any absolute address-based
over-read will always result in one instance crashing, thus
triggering detectable divergences. Further, to detect memory
disclosures caused by relative address-based over-reads,
we develop the random padding scheme which introduces

paddings with random values among both stack frames and
heap objects. Whenever such an over-read occurs, different
data values will be obtained; therefore, leaking them will
also trigger the divergence detection of BUDDY. BUDDY is a
general platform, and more diversification schemes can be
applied to detect memory disclosures. For example, to detect
memory disclosures caused by temporal memory errors
(e.g., use-after-free), we can apply the diversification scheme
from Diehard [17] which allocates objects in a random
address so that an uninitialized value or a defined value
after free will likely differ in buddy instances; disclosing
the value will trigger the divergence detection of BUDDY.
Applying all these schemes on top of BUDDY, we are able
to comprehensively detect memory disclosures caused by
various of memory errors.

BUDDY-based data leak detection has multiple important
advantages. First, it is general. That is, no matter what the
root cause is, BUDDY detects memory disclosures when they
actually occur. Second, the error-prone and expensive data
tracking are completely avoided. That is, BUDDY detects
memory disclosures at the point when the diversified data is
actually leaked through I/O by remote attackers. Third, in
principle, BUDDY-based detection can detect leaks without
false negatives. That is, as long as the returned data from the
buddy processes contains any diversified data, they must
be different; otherwise, the leak is not meaningful for the
attacker to infer the data. Note that, although BUDDY double-
executes the user-space code (kernel code and drivers are
executed only once), its performance overhead is amortized
with multi-core CPU that is commonly deployed in modern
computers. As shown in §6, BUDDY only imposes a small
performance overhead.

Although BUDDY leverages the n-version approach [18],
its goal is not to build an enhanced n-version system, instead it
aims to use the n-version approach to achieve a new security goal—
stopping memory disclosures. To this end, we have proposed
multiple new mechanisms such as semantic-preserving
and divergence-triggering diversification. We differentiate
BUDDY from many previous n-version systems [16], [17],
[19], [20], [21], [22], [23], [24] that were mainly designed
to detect intrusions or errors. First, since intrusion or error
may happen at any point during execution, these n-version
systems (e.g., n-variant systems [16]) have to intercept and
synchronize all syscalls. A fundamental problem with such
a design is that synchronizing every syscall is expensive
because of the frequent waiting and notifying between
variants. More seriously, synchronizing every syscall may
cause false positives. For example, divergent data caused by
uninitialized memory (it is common due to data structure
padding [15]) should not be treated as a leak if it does
not leave the OS through I/O write. ReMon [25] improves
the efficiency by eliminating the synchronizations of non-
sensitive syscalls; however, it does not provide divergence-
triggering diversification for detecting memory disclosures
that are based on relative addresses. BUDDY detects memory
disclosures with a single synchronization point—I/O write
(i.e., file write and socket write) and thus minimizes perfor-
mance overhead and false positives. Second, BUDDY employs
two diversification schemes based on a formal model to
reliably detect memory disclosures caused by memory errors.

We have implemented BUDDY on the Linux 64-bit plat-
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form. BUDDY mainly consists of (1) diversifiers that diversify
target programs in a semantic-preserving and divergence-
triggering manner, (2) a kernel space coordinator that virtu-
alizes and synchronizes syscalls, (3) a user space coordinator
that virtualizes and synchronizes virtual syscalls and instruc-
tions, (4) a controller that prepares both coordinators, starts
and monitors the buddy instances. We have evaluated the
performance of BUDDY with the SPEC CPU2006 benchmarks
and multiple server programs, including Apache web server,
Nginx web server, OpenSSL, PHP, Lighttpd, and Orzhttpd.
For effectiveness evaluation, we have evaluated BUDDY
against a set of real memory disclosure attacks such as the
HeartBleed attack. The evaluation results show that BUDDY
can effectively prevent all tested memory disclosures. Since
BUDDY is a 2-variant system that runs user-space code in
parallel, for a single-core processor, BUDDY may incur a
performance overhead of more than 100%. However, with
a multi-core processor, BUDDY’s performance overhead is
small: 2.3% on the SPEC benchmarks and around 4% on
web server programs. Moreover, the diversification schemes
introduce an additional 2.8% overhead. Even in the scenario
where the CPU is highly loaded already (e.g., 99% CPU
usage), BUDDY introduces a performance overhead of only
8.3% on the SPEC benchmarks.

In summary, our work makes the following contributions:
• We propose a detection methodology for memory dis-

closures. No matter what the cause is, the detection
generally captures memory disclosures when they actu-
ally occur. The expensive and error-prone data-tracking
process is avoided.

• We develop BUDDY, a system that realizes the detection
methodology. Its core is an efficient replicated execution
engine that employs the adaptive ring buffer-based coor-
dination mechanism and a single-point synchronization
mechanism.

• We develop a formal model for diversification and then
design two diversification schemes to stop memory
disclosures caused by memory errors.

1.1 Threat Model and Problem Scope

In this paper, we focus on preventing remote attacks that
require memory disclosures to circumvent ASLR or steal
sensitive data. After memory disclosures, the attacker may
further launch subsequent attacks such as code-reuse attack.
We assume the hardware and OS kernel as our trusted
computing base (TCB), so attacks that target the hardware
(e.g., cold boot attack [26]) and the kernel are excluded. Since
there are many ways to acquire data of a program locally (e.g.,
by directly reading /proc/pid/mem and cache side-channels),
we do not consider attacks with privileged code execution
abilities. Complementarily, researchers have proposed a
significant number of approaches to detecting and preventing
side-channel attacks, such as cache partitioning [27], cache
and timing randomization [28], and system abnormal-pattern
detection [29]. Instead, BUDDY focuses on preventing high-
volume memory disclosures caused by memory errors, such
as HeartBleed [5].

For the target program, we assume it may contain one or
more vulnerabilities that can be exploited to disclose memory.
While safe system programming languages such as Rust are

available, most existing server and system programs are
still written in unsafe languages, suffering from memory-
disclosure vulnerabilities. We also do not limit the types
of vulnerabilities (except side-channels); they can be buffer
overreads, format strings, reading uninitialized memory, etc.
We assume the source code of the target program is available
so that we can recompile it to enforce the diversification. For
defense mechanisms, we assume that the target program
is PIE-enabled (position-independent-executable) and the
underlying operating system enables both ASLR and DEP
(i.e., no code injection attack). Finally, we assume that the
processor is multi-core.

In the rest of paper, we compare BUDDY with related
work (§2, describe the design of BUDDY in §4 and its
implementation in §5, provide the security analysis of BUDDY
and present evaluation results in §6. Finally, we discuss
limitations of BUDDY in §7 and conclude in §8.

2 RELATED WORK

Address Protection. Readactor [7], Binary Stirring [34],
and ASLR-Guard [8] prevent code address leaks by either
decoupling the code pointer and code address so that leaking
the code pointers does not directly reveal the address of
code, or hiding the code pointers by isolation. None of these
approaches can protect data pointers that are protected by
BUDDY. PointGuard [35] uses a single key to XOR all pointers,
which is vulnerable to chosen-plaintext attacks [8]. BUDDY
does not suffer from these issues.

To mitigate the impact of address leak, many proposed
approaches [34], [36], [37], [38] improved ASLR in granularity.
These fine-grained randomizations have been shown to be
vulnerable to memory disclosure attacks [4]. Several re-
randomization approaches [9], [39], [40] have been proposed
to improve ASLR in frequency. OS-ASR [39] requires kernel
modification. TASR [9] does not re-randomizes data sections.
A general problem with such re-randomization approaches is
the significant performance overhead. In comparison, BUDDY
is a general memory disclosure detection system that stops
leaks of both code and data addresses, and beyond.
N-Version and Multi-Execution. Many systems leverage
n-version or multi-execution techniques to achieve security
or privacy goals. Table 1 summarizes differences between
BUDDY and representative n-version and multi-execution
systems. Specifically, n-variant systems [16] an DCL [30] focus
on preventing control flow hijacking attacks via replicated
execution with partitioned address space. Both impose a
significant performance overhead because they synchronize
all syscalls. Varan [19] is an efficient and general n-version
execution framework. It does not aim to stop attacks, thus
does not strictly synchronize syscalls, allowing asymmetri-
cal attacks [30]. TightLip [31] and Shadow execution [32]
use multi-execution to prevent privacy leaks. In particular,
TightLip triggers parallel execution only when pre-defined
private data is accessed. It cannot support programs having
control flows dependent on inputs. Shadow execution [32]
achieves shadow execution at virtual-machine level, which
dramatically enlarges the TCB and increases the performance
overhead. ReMon [25], MvArmor [22], and LDX [23] improve
the efficiency of replicated execution. However, ReMon [25]
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System Synchronization Multi-execute False Overhead Kernel Addr. Over- Defeat

strict/loose target report (SPEC) (latency) change leak read ROP

N-variant [16] strict sync all syscalls user-space high N/A 17.8% Yes ✗ ✗ ✓
Varan [19] loose sync all syscalls user-space low 14.2% 2.4% No ✗ ✗ ✗
DCL [30] strict sync most syscalls user-space high 6.37% N/A No ✗ ✗ ✓
TightLip [31] strict sync all syscalls user-space high N/A 5% <1K ✓ ✗ ✗
Shadow Exe. [32] strict sync all inputs user-s./VM high N/A >100% VM ✓ ✗ ✗
ReMon [25] strict sync sensitive syscalls user-space low 3.1% 2.4% 97 ✓ ✗ ✓
MvArmor [22] strict sync syscalls user-space low 9% 55% Yes ✓ heap ✓
LDX [23] loose sync outputs user-space high 4.7% N/A No ✓ ✗ ✓
Detile [33] strict sync interpreter user-space low N/A 17% No ✓ ✗ ✓

BUDDY strict sync I/O write user-space low 2.34% 4% 600 ✓ ✓ ✓

TABLE 1: Comparison with representative n-version or multi-execution systems. Defeat ROP shows if the system can prevent
code-reuse attacks. Kernel change shows if it changes OS kernel or virtual machine. For some cases, the number of line of added
kernel code is available.

currently does not detect memory disclosures caused by out-
of-bound reads based on relative addresses. MvArmor [22]
cannot detect out-of-bound reads resulted from the stack,
and its performance overhead is still significant. LDX [23]
mutates inputs to detect divergences, which cannot detect
out-of-bound overread. In contrast, BUDDY can efficiently
and generally detect various memory disclosures by properly
enforcing new diversification schemes. Detile [33] detects
only address leaks in the scripting environment. Since it
has to instrument call and return bytecodes in interpreter,
which are executed frequently, it imposes a performance
overhead of 17%. Secure multi-execution [41] is an approach
for controlling illegal information flows from sensitive inputs
instead of detecting memory disclosures. Its main idea is
execute a program multiple times, once for each security
level with inputs and outputs assigned to the same level,
thus achieving non-interference. Ochoa et al. [42] discussed a
similar idea of using multi-execution to prevent memory
disclosures with the diversification of random canaries.
However, they did not implement such a system. BUDDY is
a efficient system equipped with diversification schmes with
the divergence property (§4.1.1).

BUDDY leverages the concept of n-version programming
for a new goal—detecting memory disclosures, and employs
a set of new techniques to adapt the new scenario. We
differentiate BUDDY from traditional n-version or multi-
execution systems in some important aspects. In general,
all traditional n-version systems have to synchronize all
syscalls to achieve the security—they have to use lockstep to
strictly synchronize both instances at each syscall; otherwise,
attacks can succeed in the faster instance. Such design has
two main issues: (1) performance overhead, waiting and
notifying for lockstep at each syscall is expensive; (2) false
positives, some internal divergences are normal and should
not be reported as memory disclosures. Unlike traditional
n-version systems, BUDDY reports divergence only at I/O
write—when the protected data actually leaves the process.
This design choice minimizes the performance overhead
and false positives. To faithfully detect memory disclosures,
we further develop a formal model and two schemes for
diversification so that BUDDY can generally detect memory
disclosures in a principled manner.
Memory Corruption Preventions. Memory errors can be
exploited to leak data. Many memory safety approaches [11],
[12], [17], [43], [44] provide a strong protection against a

broad range of memory errors (e.g., out-of-bound read/write
and use-after free). Memory safety approaches usually im-
pose a significant performance overhead. For example, even
the recent hardware-accelerated memory safety approach
WatchdogLite [43] imposes a 29% performance overhead on
the SPEC Benchmarks. More importantly, memory safety
approaches cannot always prevent information leaks. For
example, they usually do not prevent information leaks
caused by uninitialized reads [15].

3 THE BUDDY APPROACH

Instance 1 Instance 2

data

pointer

Virtualization

Input

Output (only if output=output')

Output'

Sync. and Leak detection

Output

data'

pointer'

Fig. 1: Overview of the BUDDY approach. BUDDY first diversifies
the target program in a fine-grained manner, and then virtualizes
all virtualizing points and strictly synchronizes at I/O write to
detect any divergence in outgoing data. For example, If pointer
and pointer′ are disclosed, BUDDY is able to detect it at socket
write because they are not equal.

A memory disclosure occurs when unintendedly read
data is sent to the external world. We observe that memory
disclosures are consequences of a number of hard-to-detect
program errors. Therefore, a general and intuitive way to
detect memory disclosures is to check whether the outgoing
data contains any target data. However, this is impractical
because we do not know how the target data looks like—
data may be computed and transformed into other forms
during the execution. To solve this problem, we propose
the replicated execution–based detection. We transform the
detection problem into an equivalence-check problem by
seamlessly maintaining two identical instances of a target
process and diversifying only the target data. We can always
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detect any disclosure of such data because the disclosure will
always result in the two instances outputting different values.
This way, we are able to generally capture any memory
disclosures without the need of tracking the propagation of
the target data.

Figure 1 illustrates how BUDDY works: BUDDY first
diversifies the target program in a way that semantics are pre-
served and memory disclosures will be detected when they
are triggered. The diversification schemes ensure that reading
the target data in these buddy instances through memory
errors will get different values. When the target program is
about to run, BUDDY then launches two identical instances
(processes). Now let us consider a concrete scenario where
the attacker sends a malicious payload to disclose the target
data. BUDDY duplicates and sends the payload (input) to
both instances. To make sure both instances exhibit the same
semantics during payload processing, all syscalls, virtual
syscalls, and instructions that may return different results
(i.e., non-determinisms) are virtualized to always return the
same value to both instances. After processing the attacker’s
payload, both instances generate the corresponding outputs
and write them to the socket. At this moment, by hooking
I/O write syscalls, BUDDY captures the data to be sent out
and compares their contents. If both outputs are the same,
BUDDY continues the write operation (but only performs
it once); otherwise, a divergence is detected, and BUDDY
indicates that the target data is being disclosed.

Based on the above scenario, to achieve memory disclo-
sure detection, BUDDY needs to include the following three
parts: (1) diversification schemes that diversify the target data
but will not break program semantics, (2) virtualization of
buddy instances, which properly intercepts external inputs
and non-determinisms to ensure that they always return
the same value, and (3) disclosure detection that captures
divergences at I/O write.

4 DESIGN

In this section, we present the design of the three key
components of BUDDY: instance diversification, coordination
of buddy instances, and memory disclosure detection.

4.1 Semantic-Preserving and Divergence-Triggering Di-
versification
In order to diversify buddy instances in a principled manner,
we first develop a formal model, based on which, we then
design two diversification schemes.

4.1.1 Formalization of BUDDY

BUDDY aims to detect attacks that exploit memory errors
to disclose memory data. At high level, BUDDY maintains
two identical instances (i.e., buddy instances), P and P ′,
for an original process Po, and diversifies the target data
in the two buddy instances. BUDDY detects disclosures by
monitoring divergences when the diversified data values are
disclosed through some points such as I/O write. This way,
the expensive and error-prone data-flow tracking is avoided.
In this section, we present the formal model of BUDDY.

We first define detecting points: [D0, D1, D2, ...]. In
BUDDY, detecting points trigger detection for memory disclo-
sures. Examples of detecting points include I/O write system

calls. We then view an execution of a process as a potentially
infinite sequence of states: [S0, S1, S2, ...]. In BUDDY, at
detecting point i, we have a pair of states for the two buddy
instances: <Si, S′

i>. Therefore, for detecting points from 0 to
i, the execution of the two buddy instances is represented
as: [<S0, S′

0>, <S1, S′
1>, <S2, S′

2>, ...]. Note that the sequence
of states at detecting points is a subset of the whole state
sequence of a process.

States of buddy instances in each state pair are semanti-
cally equivalent. However, BUDDY diversifies non-semantic
attributes such as memory layout (we assume the semantics
of a process are independent from memory layout) in
the two buddy instances. Besides semantic equivalence,
the BUDDY system also maintains the mapping from the
states (i.e., <Si, S′

i>) of buddy instances P and P ′ to the
state (i.e., So,i) of original process Po through mapping
function Map(), at detecting point i. The original process
has a transition function To, and the two buddy instances
have transition functions T and T ′, respectively. All these
transition functions take an input and a state at a detecting
point, and then produce the state at next detecting point.
Note that we will ensure that the state at the last detecting
point represents the last state of a process execution for an
input.
The equivalence property under normal execution. Under
normal execution (i.e., no memory disclosure), we have the
following induction:

Map(S0) = Map(S′
0) = So,0. (1)

∀0 ≤ i ≤ N, ∀I ∈ Normal inputs :
Map(T (Si, I)) = Map(T ′(S′

i, I)) = To(So,i, I).
(2)

The above equations shows the following property, namely
equivalence property, under normal execution when we
assume that the two buddy instances are synchronized at
each detecting point.

• Equation 1 shows that both two buddy instances are in
the equivalent initial states that can be mapped to the
state of the original process.

• Equation 2 shows that, given an input, the transition
functions in both two buddy instances preserve mapped
equivalence at each detecting point.

• Since the last detecting point is the end of the execution,
Equation 2 also shows that both instances produce the
same outputs as the original process, ensuring semantic
equivalence.

The divergence property under memory disclosures. We
assume that the initial states of buddy instances are not
under attack, so Equation 1 is always satisfied. However,
whenever an attacker discloses some memory data, we
need to ensure a property, namely divergence property,
so that Equation 2 is not satisfied. Formula 3 shows that
if some memory disclosures occur during transition right
after detection point i, the states at detection point i + 1,
Si+1 and S′

i+1, must differ. With the divergence property, we
detect memory disclosures in this way: Whenever the states
of the two buddy instances are not equivalent, we know
there is a memory disclosure attack.

∀0 ≤ i ≤ N, ∀I ∈ Inputs :
T (Si, I)) or T

′(S′
i, I)) ∈ Memory disclosures

=⇒ Map(Si+1) ̸= Map(S′
i+1).

(3)
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4.1.2 Diversification Schemes

BUDDY detects memory disclosures by catching divergences
in outgoing data, which requires that the target data is
diversified. Diversification should be performed in a non-
interference manner to satisfy the equivalence property,
i.e., during normal execution, the diversification should
not break the semantics of the target program or cause
any difference in outputs. Further, the diversification
scheme should also satisfy the divergence property, i.e.,
any memory disclosures can be detected. Diversifying
the target data itself is ideal to memory disclosure de-
tection. However, since program semantics often depends
on data, diversifying data will likely change program
semantics, dissatisfying the equivalence property. In this
work, we design diversification schemes that do not di-
versify the target data but, in most cases, satisfy both the
equivalence property and the divergence property. Specif-
ically, the partitioned address randomization scheme de-
tects any over-reads that are based on an absolute address.
The random padding scheme detects continuous over-reads
that are based on a relative address. When an over-read is
offset-based (i.e., skipping some data), the random padding
scheme provides probabilistic detection. To detect mem-
ory disclosures caused by temporal memory errors (e.g.,
use-after-free), we borrow the diversification scheme from
Diehard [17], which allocates objects in random addresses.
Note that, BUDDY is a general system; more diversification
schemes can be applied to achieve other security properties.
Partitioned Address Randomization. Inspired by
address space partitioning [16], we develop the
partitioned address randomization to detect absolute
address-based over-reads. Note that this scheme is similar
to address space partitioning [16]; the only difference is its
self-randomization that mitigates asymmetrical attacks [30].
Specifically, we first equally partition the available address
space into two non-overlapping sub-spaces. The two buddy
instances are then loaded into the sub-spaces, respectively.
We further retrofit the loader (ld.so) to ensure that memory
layout randomization is also enforced separately in each
sub-space.

Equivalence property. The position-independent code
(PIC) or position-independent executable (PIE) technique
in modern compilers already allows us to map the process
memory into a random address, so our partition address
randomization is non-interference. That is, it satisfies the
equivalence property.

Divergence property. Since the sub-spaces are non-
overlapping, we ensure that any absolute address-based
over-read will result in one instance crashing, and we
can detect it. Therefore, such a scheme also satisfies the
divergence property.
Random Padding Scheme. To detect memory disclosures
caused by relative address-based over-reads, we propose the
random padding scheme. The design of the random padding
scheme is based on our observation that an relative address-
based over-read will get different values if we append
different paddings to the target data in the buddy instances
so that BUDDY can detect divergences when the overread
data are disclosed. Figure 2 shows the design of the scheme:
in one instance, the padding consists of an 8-byte random

value and a 24-byte undefined memory (i.e., a placeholder);
in the other, the padding consists of an 8-byte random value
and an 8-byte undefined memory. The size of the padding
is set to either 32 or 16, in order to conform to the data
alignment requirement. The sizes of the padding in two
buddy instances are set to be different so that an offset-
based over-read (i.e., discontinuous over-read) will also get
different values.

For stack, the padding is inserted between stack frames
(right after return address). The x86_64 calling convention
passes the first six parameters through registers, but the
remaining ones are still passed through stack. As such, we
also need to update all the parameter-accessing instructions
by patching their offsets. For heap, the padding is inserted
between the metadata (i.e., head of the object) and the actual
object memory. The padding can be enforced in a finer-
grained manner (e.g., field level) with compiler supports;
however, it will incur more performance overhead. We
currently choose object-level and stack-frame-level padding
for a better performance.

Instance 1 Instance 2

return address

local variable

24-bytes junk over
read

8-bytes pad

heap object

over
read

Stack Heap

Instance 1 Instance 2

8-bytes pad

24-bytes junk

return address

local variable

8-bytes junk

8-bytes pad'
8-bytes pad'

heap object

8-bytes junk

Fig. 2: The random padding scheme for stack and heap objects.
A random value is inserted between any two stack frames or
heap objects. The size difference between placeholders ensures
different offsets.

Equivalence property. Similar to the partitioned address
randomization scheme, our random padding scheme does
not change the original semantics of a program. Instead,
it only changes the memory layout of objects in stack and
heap, and updates the offsets in instructions to ensure proper
accesses. Therefore, the equivalence property holds in the
random padding scheme.

Divergence property. Continuous over-reads will always
read the inserted padding bytes. Since we guarantee that the
padding bytes in the two buddy instances have different
values, such over-reads will always get different values.
Therefore, whether the divergence property is satisfied
depends on the computation between the over-read and the
next detecting point. If the computation is a deterministic,
one-to-one function (such as in the Heartbleed attack [5]), we
can guarantee that the outputs from the two buddy instances
at the next detecting point must be divergent, and thus the
divergence property is satisfied. However, if the computation
is non-deterministic or n-to-one function, it is possible that
the outputs are the same at the next detecting point. In
this case, the divergence property is probabilistic. As for
offset-based over-reads, we cannot guarantee the divergence
property because such over-reads may skip the inserted
padding bytes and junk bytes. Whether the read data differs
depends on the values of the target data. If the target data
is random, the read data has a probability of 2N − 1 out of
2N to differ, where N is the number of read bits. However, if
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the target data is a sequence of a repeating bytes, attackers
may read the same value at the diversified offsets, bypassing
the scheme. Such a case is not common for secret data such
as encryption keys and randomized address of ASLR.

4.2 Coordination of BUDDY Instances
The goals of coordination are to ensure that (1) the buddy in-
stances always receive the same inputs and (2) any operation
that has an external impact to the program is executed only
once. This way, we ensure that BUDDY behaves as a single
entity to attackers, and whenever an divergence is detected,
we conclude with confidence that memory disclosures occur.
Virtualizing Points. We need to virtualize the execution
of BUDDY for two reasons: (1) the two buddy instances are
maintained to be identical except the intentionally enforced
diversity (e.g., randomized memory layout), so all non-
deterministic operations should be virtualized to return
same values; (2) BUDDY replicates the execution for only
user space, so non-user-space operations such as kernel
space operations should also be virtualized to return same
values to the two buddy instances. In this work, we use
the term virtualizing point to refer to a syscall, a virtual
syscall, or an instruction that may return non-deterministic
values (e.g., RDRAND instruction) or different values (e.g.,
open syscall) to the buddy instances, or have observable
external effect (e.g., write syscall). In BUDDY, we ensure
virtualizing points always return the same values to the
buddy instances, except memory-layout-related ones such
as mmap. Please note that identifying all virtualizing points
is not a new problem, which has been handled by all n-
version systems [16], [17], [19], [45]. Similar to these previous
systems, we also conservatively include most syscalls, all
virtual syscalls, and non-deterministic instructions as the
virtualizing point set.
Intercepting Virtualizing Points. To coordinate a virtu-
alizing point, we need to intercept it first so as to insert
the virtualization logic. There are two requirements for
intercepting virtualizing points. First, the interception must
be reliable so that the attacker cannot bypass it. Second,
since many operations may be frequently executed (e.g.,
getpid and I/O operations), the interception must be efficient.
To satisfy both requirements, our interception employs
different approaches to intercept syscalls, virtual syscalls, and
instructions. For syscalls, we choose to temporarily patch the
syscall table using a kernel module. This way, extra context
switches can be avoided to improve performance. For virtual
syscalls, we choose to patch the GOTPLT table that contains
the entries to these virtual syscalls. For non-deterministic
instructions such as RDTSC and RDRAND, we replace them with
an one-byte interrupt instruction (e.g., INT3) which allows us
to perform virtualization by handling the interrupt.
The Adaptive Ring Buffer Coordination. Traditional n-
version systems perform coordination in a fully synchronized
manner (i.e., lockstep), which introduces significant overhead.
For example, for Apache web server, because of frequent
CPU swap, the fully synchronized approach can impose a
performance overhead of over 50%. To solve this problem, we
borrow the ring buffer idea from Varan [19] and RBNB [46].
Specifically, one of the buddy instances is assigned as the
leader instance, and the other is assigned as the follower

Shared memory

Save result
(non-I/O write)

Fetch result
(non-I/O write)

outgoing
data

I/O write I/O write
=?

Adaptive
Ring
Buffer

Lock for 
sync.

Send data if equal; 
otherwise, trap the execution

Leader

outgoing
data'

Follower

Fig. 3: The adaptive ring buffer-based virtualization. Normal
virtualizing points are virtualized in a ring buffer manner.
However, upon I/O write, BUDDY locks the ring buffer and
strictly synchronizes to detect memory disclosures.

instance. The leader instance performs the actual operation
and stores the results in a shared memory, while the follower
just retrieves the results without actually performing the
operation. In this way, from the perspective of the buddy
instances themselves, they are independent instances; but
from the perspective of an external entity (e.g., the attacker),
they are a single instance. Because the leader does not need
to wait for the follower, the performance overhead is much
lower. In order to prevent memory disclosures, we further
enforce synchronization to I/O write operations and check
for divergences in the outgoing data.

To implement our coordination scheme, we designed the
adaptive ring buffer-based virtualization mechanism (Figure 3).
The ring buffer has a configurable but fixed amount of
slots shared by both the leader and follower. Each slot
consists of an arguments holder and a result holder. For
virtualizing points other than I/O write, the leader performs
the operation and puts the result in the result holder of a ring
buffer slot; and when the follower reaches the same execution
point, it picks up the result without actually performing the
operation. Please note that because both buddy instances
are exactly the same, any divergence in the syscall sequence
will also be a sign of attack and will result in termination.
For I/O writes, the leader puts the content in the arguments
holder and waits for the follower; and when the follower
reaches the same execution points, it compares its own output
arguments with the leader’s and informs the leader of the
result. If the outgoing data is the same, then the leader
performs the operation and puts the result in the ring buffer;
otherwise, the operations is aborted. It is also worth noting
that because syscalls are handled in the kernel space, BUDDY
utilizes two ring buffers, one for user space coordination (i.e.,
virtual syscalls and instructions) and the other for syscall
coordination. Attackers cannot modify the ring buffer in
kernel space. For the ring buffer in user space, because it is
mapped into randomized (and different) addresses in the
buddy instances, and memory addresses are protected by
BUDDY, attackers cannot modify the data in shared memory
either.
Multi-processing/threading support. Thread interleaving
is another important source of non-determinism for multi-
threaded programs. Divergences in thread interleaving in the
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two instances will result in “benign” behavior divergences
(e.g., divergent I/O write system calls) in the replicated
execution, causing false postives in detecting memory dis-
closures. To completely resolve this issue, synchronizing all
shared resource/memory accesses is necessary to ensure
that the leader and follower have consistent views on shared
resource/memory. In other words, the follower should follow
exactly the same order of shared data accesses as the leader.
However, such a total order synchronization can hardly be
achieved without a high performance overhead or special
hardware support, as evidenced in the deterministic multi-
threading (DMT) [47], [48], an orthogonal domain to BUDDY.
The state-of-the-art mechanism for synchronizing multi-
threaded variants was proposed by Volckaert et al. [49].
Their mechanism records, in the leader instance, system
calls operating on shared resources and synchronization-
variables (e.g., locks and condition variables) accesses, and
enforces them to be executed in the same order in the follower
instance. This way, this mechanism can eliminate divergences
caused by multithreading.

In BUDDY, similar to Varan [19] and the system-call
synchronization part of [49], we implement a lightweight (but
potentially incomplete) support for multi-threaded programs.
At a high level, BUDDY assigns each pair of leader-follower
processes/threads of the buddy instances to the same execu-
tion group; and each execution group has its own ring buffer
to synchronize system calls. Forking/cloning is monitored to
maintain execution groups: when the leader instance forks
a process/thread, the child process/thread automatically
becomes the leader process of the new execution group; and
the forked process of the follower instance automatically
becomes the follower process in the new execution group.
Note that if the follower does not fork, it is a divergence in
syscall sequence and will be detected by BUDDY.

BUDDY does not further synchronize accesses to
synchronization-variables in threads as in [49]. In fact, as also
mentioned in [49], for daemon-like programs (e.g., a majority
of server programs such as Apache, Nginx, sshd), BUDDY’s
lightweight solution is sufficient to eliminate the syscall
sequence deviations caused by non-deterministic schedulers
because, for those programs, each thread/process is highly
independent of others and hardly or never access shared
memory. We have also verified that BUDDY does not raise
false alerts when synchronizing the aforementioned daemon
server programs (§6).

4.3 Memory Disclosure Detection

Once all the virtualizing points are virtualized, BUDDY
strictly synchronizes I/O write (e.g., local file write and
socket write) and performs a quick comparison on the
outgoing data to accurately detect memory disclosures. In
particular, for arguments of non-pointer type (e.g., size of the
buffer), we compare their values; and for pointers, because
their values have been randomized by ASLR, we compare
the content of the buffers they point to. Note that if one of the
buddy instances crashes, or the syscall sequence is different,
BUDDY also treats them as divergences.

5 IMPLEMENTATION

We implemented BUDDY on 64-bit Linux, which consists
of diversifiers, a kernel space coordinator, a user space
coordinator, and an instance controller.

5.1 Diversifiers

Partitioned address randomizer. The partitioned address
randomizer has two tasks: partitioning the address space into
two sub-spaces and randomizing memory layout of instances
in their own sub-spaces. We implemented the randomizer by
customizing the dynamic linker (i.e., ld.so). The only modifi-
cation we made to the dynamic linker is instrumenting the
call to the mmap syscall. We modify the mmap call to ensure that
it always maps the memory to a random address in the parti-
tioned sub-spaces. In default 64-bit Linux systems, ASLR has
28-bit randomness entropy; the randomized base address is
of the form 0x7f???????000, where ? bits are randomized. In
our partitioned address randomizer, we partition the address
space into two ranges: <0x7f0000000000, 0x7f7ffffff000>
and <0x7f7ffffff000, 0x7ffffffff000>, and randomize the
memory layout of buddy instances in the two ranges by
specifying a legitimate and random base address to mmap.
Random padding diversifier. We insert random paddings
among stack frames and heap objects. For stack random
padding, if source code of the target program is avail-
able, we can leverage compilers to insert padding spaces
and update offsets in parameter-accessing instructions. In
current implementation, we modify the GNU assembler.
Such implementation has the potential to support COTS
binaries as long as the disassembly is complete and reassem-
bleable [50]. Specifically, the program is compiled with flags
-pie -fPIC -O2 -fno-omit-frame-pointer. We first identify
function prologues with the .cfi_startproc label, and return
instructions. At function prologue, we create the padding:
subtracting RSP and setting random value with the value
of register RIP, which is obtained with the LEA instruction.
Before return instructions, we restore the stack. The repz ret
instruction (equivalent to nop; ret;) is used to improve the
AMD processor performance; we also treat it as a return. If a
function contains a tail call, we do not enforce padding for
it. Parameter-accessing instructions are identified through
the pattern “offset(%rbp).” If -fno-omit-frame-pointer is
not specified during compilation, we can instead use the
pattern “offset(%rsp).” However, in this case we need to
further analyze the value of offset to differentiate parameter-
accessing instructions from local variable–accessing instruc-
tions based on the boundary of the stack frame. We then
update offset by increasing its value by either 32 or 16,
depending on which instance it is in. For heap object, we use
LD_PRELOAD to intercept heap allocation functions. After that,
we enlarge the size of the object by 32 or 16, and insert the
random value after the metadata of the object. Note that such
implementation does not detect internal overreads across
objects in the same allocation.

5.2 Kernel Space Coordinator
The kernel space coordinator is implemented as a Linux
kernel module. It is responsible for virtualizing syscalls,
synchronizing I/O writes, and performing detection. Syscall
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interception is done through standard syscall table patching,
i.e., replacing the original syscall handlers with our callbacks.
I/O write system calls. Any operation that may “send”
memory to the external should be intercepted for divergence
checks. These operations can be roughly classified into three
categories. (1) I/O write system calls: They are high-volume
and the most common operations for disclosing memory
to the external. (2) Mapped-memory write operations: A
common example is memory-mapped I/O write in which
no system call is required for writing. (3) Implicit disclosure
channels: Disclosed memory data is used as observable side
information such as file pathnames. Current implementation
of BUDDY covers only the first category. Nine system calls
(send, sendto, sendmsg, sendmmsg, write, writev, pwrite64,
pwritev, and pwritev2) are currently intercepted for diver-
gence checks. To include the second category, we will have
to analyze the code of the target program to identify mapped
memory (e.g., through mmap with parameters PROT_WRITE and
a file descriptor) that is accessible to the external and all
writes to these memory regions. These writes should also
be intercepted for divergence checks. The third category
implicitly disclose memory through side information that
is observable to external, e.g., using the disclosed memory
data as a pathname to create a file. Such memory disclosures
are hard to exploit without hijacking the data flow. Common
implicit channels such as pathnames should be included for
divergence checks; however, it is hard to include all cases,
which is a limitation of BUDDY.
Syscall filtering. Since BUDDY patches the syscall table at
kernel space, syscalls from all processes will be redirected to
our callbacks. To quickly differentiate the BUDDY processes
from other processes, we implemented a PID-based process
filtering scheme. The kernel space coordinator holds a
hashtable with PID as keys and variant control bock (vcb)
as values. A vcb holds critical information about the BUDDY
processes, such as the address of the ring buffer, whether the
process is leader or follower, etc. Upon program launch, the
instance controller first informs the kernel space coordinator
of the PIDs of the buddy processes. Upon task fork, the
newly created task is automatically added to the hashtable;
and upon task exit, the corresponding hashtable entry is
removed. By looking up the hashtable, we could reliably
distinguish whether the entered process is a BUDDY process
or not.

5.2.1 User Space Coordinator

The user space coordinator is implemented as a shared
library, which is preloaded into both buddy instances upon
program start-up. The user space coordinator is responsible
for intercepting and virtualizing virtual syscalls and instruc-
tions. Interception is implemented as depicted in §4.2. Two
special cases are (1) getpid() becomes a virtual syscall after
its first call, so we also need to intercept through patching
the GOTPLT table; (2) to intercept RDTSC, instead of rewriting
the binary, we trap for RDTSC by making timestamp counter
non-readable (i.e., prctl(PR_SET_TSC, PR_TSC_SIGSEGV, 0,
0, 0) ).
Ring buffer for synchronization. The ring buffers in
the user space must be explicitly created in the shared
memory and mapped (using mmap) into both instances. The

logic of creating and mapping this shared memory is also
implemented in the shared library.

5.2.2 Instance Controller
The instance controller program is responsible for starting,
monitoring, terminating, and restarting the buddy instances.
It first informs the kernel space coordinator of the incoming
buddy processes and then sets the LD_PRELOAD environment
variable to the shared library. It then forks two children
processes and uses execve to launch the target program in
each forked process. After that, the instance controller pauses
and waits for status change of the buddy instances. In case
any of the buddy processes is killed, the instance controller
is waken up, prints alerts and executes corrective actions (e.g.
restart the system) according to policy specified by users.

6 EVALUATION

In this section, we extensively evaluate the robustness,
security, and performance of BUDDY.
Experiment setup. All experiments were conducted on an
eight-core server machine with a 3.60 GHz Intel Xeon E5-
1620 CPU and 64 GB RAM running 64-bit Ubuntu 14.04
LTS with 3.13.0-63-generic Linux kernel. For evaluation on
web servers, we dedicate a remote machine as the client
and use it to simulate client requests as well as measure the
request roundtrip time and data transfer rate. Server and
client machines are connected in a university-level LAN. All
the tested programs are compiled with optimization level
-O2 with flags -pie -fPIC -fno-omit-frame-pointer.

6.1 Robustness
There are two goals of robustness evaluation: (1) to empir-
ically validate the completeness of the set of virtualizing
points in practice; (2) to validate that BUDDY does not cause
any error. In particular, we ran BUDDY on the SPEC CPU2006
benchmarks and popular server programs, including Apache
web server (configured to include PHP module and use
OpenSSL), Nginx web server, Lighttpd, and Orzhttpd. For
server programs, we wget the homepages of top 100 websites
by Alexa [51], which contain HTML and embedded scripts.
We then configured the servers to host them. After that, we
ran ApacheBench [52] to iteratively access these web pages
with various concurrencies (i.e., concurrent connections =
1, 64, and 256). In our experiments, we did not observe
any error; worker processes of server programs did not
crash; outputs with and without BUDDY (i.e., temporally)
were always identical, and outgoing data of the buddy
instances did not trigger any divergence (except one case).
The only inconsistency case we observed was a false positive
in OpenSSL. Specifically, the SSLeay implementation of
OpenSSL uses an uninitialized buffer that may contain
unspecified values as an additional source of entropy for
pseudo random number generation. As a result, nonce in the
SSL handshake will be different in the buddy instances. We
argue that, since reading uninitialized memory is classified
as a type of memory error [53], it is insecure and should
be avoided at best. After compiling OpenSSL with the
-DPURIFY flag (not using uninitialized buffers as a source of
randomness), BUDDY functions correctly without any false
positive.
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Fig. 4: Performance of SPEC benchmarks when CPU is in various load levels. CPU usage is controlled by stress-ng. When CPU is
highly-loaded (99% usage), BUDDY imposes an average performance overhead of 8.3%. Numbers are measured over all cores.

6.2 Security

BUDDY is secure because: (1) in principle, if any “leaked”
data is useful for the attacker to infer the randomized address,
it must be differential; otherwise, it does not contain mean-
ingful entropy. (2) unlike encryption-based approaches [35],
[54] whose security depends on the confidentiality of the
key used for encryption, BUDDY is a keyless system. The
security of BUDDY does not rely on keeping any secret keys.
We validate the security of BUDDY by testing it against in-
the-wild memory disclosure attacks. In this experiment, we
enable both the partitioned address randomization scheme
and the random padding scheme.

Direct address leak. Data-oriented exploits [55] showed
that a format string vulnerability in Orzhttpd 1 could be
exploited to leak the randomized addresses in the GOTPLT
table. We reproduced the exploit in the same way— a data
pointer used to retrieve the HTTP protocol version string
is changed to point to the address of GOTPLT table. When
the server responds to client, the content of GOTPLT table is
sent to client. We applied BUDDY to Orzhttpd and tested the
leak. The result shows that the leak is reliably detected when
the randomized addresses in GOTPLT table are written into
socket.

Crash-based address leak. Blind ROP [56] showed that
ASLR can be bypassed within a few minutes. Its core idea is
to leverage a simple stack buffer overflow vulnerability to
overwrite the return address with guessed value byte by byte,
and based on whether the worker process crashes or not, it
can get 1-bit information each time. We ran the BROP attack2

against Nginx-1.4.0 with BUDDY applied. Again, the result
shows that BUDDY is also able to detect Blind ROP attack
because this attack cannot succeed in both buddy instances.
When one instance reaches the point of socket write, the
other one crashes, so BUDDY is able to detect this divergence.

HeartBleed Leak. The over-read vulnerability (caused by
memcpy) was exploited for the HeartBleed attack – leaking
sensitive data. This attack can leak up to 64KB each time. To
test BUDDY with this attack, we downloaded the vulnerable
openssl-1.0.1a and obtained the existing exploit3. We then
enforced the random padding scheme to this OpenSSL and
ran the exploit against it. It turns out the exploit is always

1. http://code.google.com/p/orzhttpd/source/detail?r=141
2. http://www.scs.stanford.edu/brop/
3. https://www.exploit-db.com/exploits/32998/

detected because the over-read always obtain different
values.

6.3 Performance of the BUDDY Framework

In this section, we first measure the performance of BUDDY
with the partitioned address randomization scheme enabled.
We then evaluate the performance of the random padding
scheme. Note that all performance numbers are measured
over a pair of buddy instances, not an individual instance. The
baseline performance is measured based on the unpatched
kernel without loading our kernel module.
SPEC Benchmarks. We first tested the performance of
BUDDY with the SPEC2006 benchmarks. We evaluated all C
and C++ benchmarks and the results are the average number
over 10 executions.

Performance on lightly loaded system. The performance
overhead (geo-mean) of BUDDY is 2.34% when there is
no additional load on the system. Table 5 shows details.
For comparison, CFI approaches typically impose 2-10%
performance overhead and they do not protect attacks against
data pointers. BUDDY is even slightly more efficient than
Readactor [7] that protects code pointer only and requires
hardware assistance. BUDDY is significantly more efficient
than previous n-version systems. We believe the performance
gain is from the fact that BUDDY synchronizes only I/O write.

Performance on heavily loaded system. The above ex-
periment is performed on an unsaturated CPU. Since BUDDY
double-executes the user-space code of target program, it is
important to understand how BUDDY performs when the
system is already heavily loaded. To get such performance
results, we used stress-ng4 to control the CPU usage
so that it ranges from 2% (lowest load) to 99% (highest
load, to finish the execution of benchmarks, we cannot
set CPU usage to 100%). After setting the CPU usages,
we ran SPEC benchmarks with and without BUDDY, and
then computed the runtime overhead introduced by BUDDY.
BUDDY imposes a runtime overhead of 8.3% when CPU is
highly loaded (i.e., CPU usage=99%). The detailed results are
shown in Figure 4. The low overhead on SPEC benchmarks
indicates that BUDDY is also a practical solution in protecting
CPU intensive programs.

Performance impact on other processes. The PID-based
process filtering scheme used in BUDDY requires that syscalls
from all processes running will be first hooked by the BUDDY

4. http://kernel.ubuntu.com/~cking/stress-ng/
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Level c = 1 c = 16 c = 64 c = 256

Worker Orig. BUDDY (%) Orig. BUDDY (%) Orig. BUDDY (%) Orig. BUDDY (%) Ave.

p=1 16.2 17.2 (6.4%) 15.2 16.8 (10.6%) 14.5 16.1 (10.6%) 13.6 14.8 (9.0%) 9.2%
p=2 15.5 17.2 (10.5%) 10.1 10.5 (3.8%) 9.8 10.7 (9.2%) 9.7 10.4 (6.4%) 7.5%
p=3 16.2 16.6 (2.2%) 9.7 9.7 (0.1%) 9.5 9.7 (2.3%) 9.4 9.7 (2.4%) 1.7%
p=4 15.9 17.1 (7.9%) 9.8 10.0 (2.4%) 9.5 9.7 (1.9%) 10.5 11.0 (5.0%) 4.3%
p=5 17.1 17.4 (1.6%) 9.4 9.5 (0.3%) 9.7 9.8 (1.2%) 10.6 11.2 (4.7%) 2.0%
p=6 16.1 17.4 (8.1%) 9.3 9.7 (4.1%) 9.7 9.8 (1.8%) 10.7 11.8 (10.8%) 6.2%
p=7 15.2 16.7 (9.7%) 9.2 9.5 (3.5%) 9.8 10.1 (2.2%) 11.2 12.3 (10.5%) 6.5%
p=8 16.6 16.6 (0.0%) 9.4 10.1 (7.7%) 10.6 10.9 (2.5%) 12.4 13.1 (5.9%) 4.0%

Geomean 4.4% 2.1% 2.9% 6.2% 3.6%

TABLE 2: Overhead of processing time (ms) per request incurred to Apache httpd under BUDDY with various numbers of worker
processes and workloads. s=1MB.

Level c = 1 c = 16 c = 64 c = 256

Server Orig. BUDDY (%) Orig. BUDDY (%) Orig. BUDDY (%) Orig. BUDDY (%) Ave.

Apache 63.0 58.3 (7.4%) 102.4 100.0 (2.4%) 105.1 103.2 (1.8%) 95.6 91.0 (4.7%) 4.1%
Nginx 64.0 60.7 (6.5%) 55.2 52.7 (4.6%) 52.6 51.1 (2.8%) 31.6 30.1 (4.7%) 4.7%
Lighttpd 63.3 60.3 (4.8%) 58.1 54.9 (5.5%) 59.2 54.8 (7.5%) 40.3 37.6 (6.8%) 6.2%
PHP 64.9 64.7 (0.3%) 58.7 54.2 (7.7%) 44.5 42.9 (3.6%) 28.2 26.9 (4.5%) 4.0%

Geomean 2.9% 4.6% 3.4% 5.1% 3.9%

TABLE 3: Slowdown of number of requests per second incurred to popular web servers with and without BUDDY under various
workloads. p=4, s=1MB.

Level s = 1KB s = 256KB s = 1MB s = 16MB

Server Orig. BUDDY (%) Orig. BUDDY (%) Orig. BUDDY (%) Orig. BUDDY (%) Ave.

Apache 2.3 2.2 (3.4%) 78.7 71.8 (8.7%) 102.4 100.0 (2.4%) 111.1 105.1 (5.3%) 5.0%
Nginx 2.8 2.6 (5.3%) 17.2 17.0 (1.4%) 55.2 52.7 (4.6%) 96.5 90.1 (6.6%) 4.5%
Lighttpd 3.3 3.0 (6.6%) 17.4 16.9 (3.4%) 58.1 54.9 (5.5%) 105.6 99.1 (6.2%) 5.4%
PHP 2.4 2.2 (6.9%) 17.3 16.4 (5.6%) 58.7 54.2 (7.7%) 93.1 91.3 (1.9%) 5.5%

Geomean 5.4% 3.9% 4.7% 4.5% 4.6%

TABLE 4: Overhead of rate of data transfer (MB/s) incurred to popular web servers with and without BUDDY when serving various
sizes of resource. p=4, c=16.

Programs Baseline BUDDY (%) +RandPad (%)

perlbench 3.53 3.64 (3.1%) 3.65 (3.4%)
bzip2 4.37 4.42 (1.1%) 4.42 (1.1%)
gcc 0.928 0.947 (2.0%) 0.979 (5.5%)
mcf 2.11 2.32 (10.0%) 2.39 (13.3%)
milc 4.03 5.03 (24.8%) 5.12 (27.0%)
namd 8.87 8.88 (0.1%) 8.93 (0.7%)
gobmk 13.2 13.6 (3.0%) 13.7 (3.8%)
dealII 10.7 10.8 (0.9%) 11.4 (6.5%)
soplex 0.242 0.288 (19.0%) 0.288 (19.0%)
povray 0.424 0.431 (1.7%) 0.441 (4.0%)
hmmer 2.00 2.01 (0.5%) 2.02 (1.0%)
sjeng 2.95 2.99 (1.4%) 3.09 (4.7%)
libquantum 0.0355 0.0399 (12.4%) 0.0413 (16.3%)
h264ref 9.30 9.33 (0.3%) 9.57 (2.9%)
lbm 1.69 1.93 (14.2%) 1.93 (14.2%)
omnetpp 0.307 0.308 (0.3%) 0.318 (3.6%)
astar 7.17 7.21 (0.6%) 7.32 (2.1%)
sphinx 1.06 1.13 (6.6%) 1.14 (7.5%)
xalancbmk 0.0564 0.0653 (15.8%) 0.0676 (19.9%)

Geomean (s) 2.34% 5.16%

TABLE 5: Performance evaluation of BUDDY on the SPEC2006
benchmarks

kernel module for PID checking in order to filter out non-
BUDDY-protected processes. This instrumentation adds on
overhead on almost all syscall execution paths which might
negatively impact the performance of all other processes.
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Fig. 5: Overhead of BUDDY on other processes in the system
(i.e., processes not protected under BUDDY). On average, The
BUDDY kernel module imposes an overhead of less than 1%.

To evaluate this overhead, we measure the performance
of the SPEC benchmarks with and without loading the
BUDDY kernel module and report the overhead in Figure 5.
The results show that on average, BUDDY adds less than
1% overhead to SPEC programs with the worst case a bit
higher than 2% (program milc). We believe this is a tolerable
overhead for the overall system.

Web Benchmarks. Since we are focusing on remote attacks,
we believe the performance of BUDDY for web server
programs is more representative for practical deployment.
For web servers, we simulate various scenarios by combining
the following three parameters: (1) number of worker pro-
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Fig. 6: Micro-benchmarks on syscall execution. A negative overhead could only happen to the follower instance.

cesses (denoted by p); (2) number of concurrent connections
(denoted by c); (3) size of requested file (denoted by s).

Note that since the experiments are conducted on an
eight-core machine, we evaluated the cases with number of
worker processes from p=1 to p=8. The size variable s has
values of 1KB, 256KB, 1MB and 16MB, to simulate the cases
when requested resource is metadata, HTML/Javascript file,
images or large files, respectively. In terms of concurrency
level, c=1 means the requests are always processed sequen-
tially. Since web server is not CPU intensive, we used c=256
to simulate a saturated load condition (i.e., when c=256, our
Gigabit Ethernet I/O is already saturated). To reduce noise,
experiment with each setting is repeated 10 times.

Given that many server programs use multi-
processing/threading to boost performance as well as
their capability to handle concurrent requests, our first
experiment measured the performance of Apache httpd with
different numbers of worker processes and different numbers of
concurrent connections. Table 2 shows the average processing
time of Apache httpd with different configurations. BUDDY
introduces an overhead of 0.04% - 10.79%, which indicates
that BUDDY is capable of handling multi-process programs
efficiently. When the server is in the simulated saturated
condition (i.e., c=256), BUDDY introduces an average
performance overhead of 6.83%.

To show that BUDDY can also be applied to other
server programs, we evaluated the performance of BUDDY
with different server programs, including Nginx (multi-
processing server), Lighttpd, and PHP embedded server
(single-threaded servers). In this experiment, we set the
number of worker process to 4 (the default number by
Apache) for both Apache httpd and Nginx. To measure the
impact of different concurrency level, we fixed the size to 1MB.
The results of this experiment show is shown in Table 3, and
the average overhead is less than 8%. To measure the impact
of different file size, we set the concurrency to 16. Table 4
shows that the average overhead is also less than 8%. Based
on these results, we believe that BUDDY is a practical tool for
protecting server programs.

Microbenchmarks on Syscalls. We used RDTSC (interception
of RDTSC and alert for divergence are temporarily disabled)
to get the CPU cycles to accurately measure the cost of
syscall virtualization. We tested the SPEC2006 benchmarks
and server programs (Apache httpd, Nginx, Lighttpd and
PHP embedded web server) to generate a profile of syscall
performance. We measured the actual CPU cycles elapsed
in (1) the syscall execution without BUDDY; (2) the syscall
execution in leader instance; (3) the syscall execution in
follower instance. Among all the executed syscalls, we se-
lected 12 most popular syscalls (Figure 6). The first 9 syscalls
are virtualization-only syscalls, hence are executed by leader

without waiting for follower’s arrival; while the last 3 syscalls
are synchronized. The results (normalized to the overhead
over normal execution) showed that: (1) for virtualization-
only syscalls, the execution time for the leader instance
is longer (for updating the ring buffer) with an average
overhead of 68%; but the execution time for the follower
instance is often faster than normal execution with an average
reduction of 39%. (2) kernel level virtualization is usually
faster than virtualizing virtual syscalls like gettimeofday and
time at user level. (3) for syscalls that needs synchronization,
the execution time for both leader process and follower
process increases, with average overhead of 227% and 231%,
respectively.
Memory consumption. Since BUDDY double-executes the
user-space code, the memory consumed by the user-space of
the target program can be doubled. Code segments are the
same in both buddy instances so can enjoy the Copy-on-Write
mechanism. Therefore, only the memory of user-space data
segments is doubled. Moreover, the instance controller also
consumes some memory; however, its memory consumption
is constant—independent on the memory usage of target
program.

6.3.1 Performance of Random Padding Scheme
At last, we measured the performance of the random padding
scheme. Since it only inserts instructions that will not trap
into kernel, we use the CPU intensive SPEC benchmarks to
test its performance overhead. All the test setting are the
same as in §6.3, and the results are also shown in Table 5.
In addition to the overhead introduced by the BUDDY
framework, the random padding scheme further incurs a
runtime overhead of 2.8%, which is small.

7 DISCUSSION

Hardware resource consumption. The low performance
overhead of BUDDY benefits a lot from multi-core processors.
Since BUDDY double-executes user-space code, the perfor-
mance overhead can be more than 100% on a single-core
processor, which is an obvious limitation of BUDDY. As such,
a multi-core processor is recommended to enjoy the security
and efficiency provided by BUDDY. Given that most devices
are equipped with processor with increased number of CPU
and size of cache, we believe BUDDY is beneficial to users
who give priority to security and privacy.
Possible attacks. The possible attacks [30] against BUDDY
are (1) control attacks against one instance, (2) memory
overwriting one instance to unify the divergences, and (3)
compromising the monitor of BUDDY to disable divergence
checks. Attack (1) needs to first leak randomized address of
the instance to launch meaningful control attacks, which is
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however prevented by BUDDY. Attack (2) needs to overwrite
the memory in the first instance to match the diversified mem-
ory in the second instance, which requires information leak
of the memory in the second instance. Such an information
leak is also hard because of BUDDY’s protection. In BUDDY,
we assume the hardware and the OS kernel are trusted. To
launch attack (3), attackers need to exploit vulnerabilities in
the monitor of BUDDY, which is possible in practice.
Supporting script environments. The detection mechanism
of BUDDY is general—two instances are virtualized to act as
a single one, and outgoing data is checked for divergence.
The primary steps to implement a BUDDY system are to (1)
clearly define the boundary between internal and external;
(2) identify virtualizing points so that external behaviors
of two instances (e.g., user interaction) can be virtualized
to be performing as a single entity. (3) clearly define and
monitor the leaking channels. Therefore, it is possible to
extend BUDDY to support script environments such as the
JavaScript engine in browsers. The challenges, however, lie in
the facts that the current architecture of browsers do not have
a clear boundary and there are excessive leaking channels,
especially in JIT (just-in-time compilation) mode. Specifically,
because the JITed code is in the same process address space
as the browser, it may read any memory address. So to
prevent attacks from scripts, we either need to disable JIT or
check every memory read; but either way will introduce a
significant performance overhead.

8 CONCLUSION

Memory disclosures break not only the confidentiality of
secret data but also the effectiveness of security mechanisms
such as ASLR. Unfortunately, we still lack a general and
practical detection or defense mechanism. In this paper,
we have proposed a general methodology for detecting
memory disclosures and developed BUDDY to realize the
methodology. BUDDY enforces semantic-preserving and
divergence-triggering diversification to the target program,
and maintains two running instances (one original and the
other one diversified). Any memory disclosure will result in
the two instances outputting different data values, triggering
the divergence detection. No matter what the cause is
and how data is propagated (even through dynamically
generated code), BUDDY can generally detect a memory
disclosure without the need of performing the error-prone
and expensive data-flow tracking. Extensive evaluation
results show that BUDDY can effectively stop real memory
disclosures (e.g., HeartBleed) with a small performance
overhead on multi-core processors.
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