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Abstract
We propose Latr—lazy TLB coherence—a software-based
TLB shootdown mechanism that can alleviate the overhead
of the synchronous TLB shootdown mechanism in existing
operating systems. By handling the TLB coherence in a lazy
fashion, Latr can avoid expensive IPIs which are required for
delivering a shootdown signal to remote cores, and the per-
formance overhead of associated interrupt handlers. There-
fore, virtual memory operations, such as free and page migra-

tion operations, can benefit significantly from Latr’s mecha-
nism. For example, Latr improves the latency of munmap() by
70.8% on a 2-socket machine, a widely used configuration in
modern data centers. Real-world, performance-critical appli-
cations such as web servers can also benefit from Latr: with-
out any application-level changes, Latr improves Apache by
59.9% compared to Linux, and by 37.9% compared to ABIS, a
highly optimized, state-of-the-art TLB coherence technique.

CCS Concepts • Software and its engineering → Op-
erating systems; Memory management; Virtual mem-
ory;

Keywords TLB; Translation Coherence; Asynchrony.

1 Introduction
Translation lookaside buffers (TLBs) are frequently accessed
per-core caches that store recently used virtual-to-physical
address mappings. TLBs enable fast virtual address transla-
tion that is critical for application performance. Since TLBs
are per-core caches, TLB entries should be kept coherent
with their corresponding page table entries. The lack of hard-
ware support for TLB coherence implies that software should
provide the necessary coherence. In most existing systems,
∗Joint first authors
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Figure 1. The performance and TLB shootdowns for Apache with
Linux and Latr. Latr improves Apache’s performance of serv-
ing 10 KB static web pages by 59.9%; it removes the cost of TLB
shootdowns from the critical path and handles 46.3% more TLB
shootdowns.

system software such as an operating system (OS) maintains
the TLB coherence with the page table.
To provide TLB coherence, an OS performs a TLB shoot-

down, which is a mechanism to invalidate stale TLB entries
on remote cores. TLB shootdowns are triggered by various
virtual memory operations that modify page table entries,
such as freeing pages (unmap()), pagemigration [20, 44], page
permission changes (mprotect()), deduplication [49, 63],
compaction [19], and Copy-on-Write operations (CoW).

Unfortunately, the existing TLB shootdown mechanism is
very expensive—a shootdown takes up to 80 µs for 120 cores
with 8 sockets and 6 µs for 16 cores with 2 sockets that is a
widely used configuration in modern data centers [43]. This
is mainly because most existing systems use expensive inter-
processor interrupts (IPIs) 1 to deliver a TLB shootdown:
e.g., an IPI takes up to 6.6 µs for 120 cores with 8 sockets
and 2.7 µs for 16 cores with 2 sockets. Even worse, current
TLB shootdown mechanisms handle invalidation in a syn-
chronous manner. That is, a core initiating a TLB shootdown
first sends IPIs to all remote cores and then waits for their
acknowledgments, while the corresponding IPI interrupt
handlers on the remote cores complete the invalidation of a
TLB entry (see §2.1 for details).

Such an expensive TLB shootdown severely affects the
overall performance of applications that frequently trigger
memory management operations that change the page ta-
ble [2, 62], such as web servers like Apache [4] and data
analytic engines like MapReduce [25, 52]. For example, a typ-
ical Apache workload serving small static web pages or files
1IPIs are the mechanism used in x86 to communicate with different cores.
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does not scale beyond six cores with the current TLB shoot-
down mechanism in Linux (see Figure 1). Once alleviated by
our new mechanism, Apache can handle 46.3% more TLB
shootdowns and thus improve its throughput by 59.9%. More
importantly, it is all possible without any application-level
modifications.
To solve this problem, there have been two broad cate-

gories of research, namely, hardware- and software-based ap-
proaches. Hardware-based approaches strive to provide TLB
cache coherence in hardware (see §2.2), but require expensive
hardware modifications and introduce additional verifica-
tion challenges to the microarchitecture, which is known
to be bug-prone [3, 22, 24, 40, 53, 55, 61]. Software-based
approaches, on the other hand (see §2.3), focus on reducing
the number of necessary IPIs to be sent, either by batching
TLB invalidations (e.g., identifying the sharing cores [2]), or
using alternative mechanisms instead of IPIs (e.g., message
passing [10]). However, current software-based approaches
still handle TLB shootdowns synchronously and do not erad-
icate the overheads associated with the TLB shootdown. It
means that, even with a message-passing alternative [10], a
core initiating a TLB shootdown should wait for acknowl-
edgments from participating remote cores. A synchronous
TLB-shootdown mechanism increases the latency by several
micro-seconds for certain virtual address operations, which
is known to a culprit that contributes to the tail latency of
some critical services in data centers [9].

To solve this inherent synchronous behavior of TLB shoot-
downs, we propose a software-based, lazy shootdown mech-
anism, called Latr, that can asynchronously maintain TLB
coherence. The key idea of Latr is to use lazy memory recla-

mation and lazy page table unmap to perform an asynchro-
nous TLB shootdown. By handling TLB shootdowns in a
lazy fashion, Latr can eliminate the performance overheads
associated with IPI mechanisms as well as the waiting time
for acknowledgments from remote cores. In addition, as a
software mechanism, Latr is readily implementable in com-
modity OSes. In fact, as a proof-of-concept, we implement
Latr in Linux 4.10.
We enumerate in Table 1 the operations in which a lazy

TLB shootdown is possible. For free operations, such as
munmap() and madvise()2, lazy memory reclamation enables
a lazy TLB shootdown. Similarly, a lazy TLB shootdown is
applicable tomigration operations, such as AutoNUMA page
migration, where page table entries can be lazily unmapped
to enable a lazy TLB shootdown. However, Latr’s lazy ap-
proach is not applicable to operations such as permission
changes, ownership changes, and remap (mremap()), where
the page table changes should be synchronously applied to
the entire system. Latr supports common operations, such
as free and migration, and improves real-world applications
such as Apache, Graph500, PBZIP2, and Metis. In addition,

2For example for the case of MADV_DONTNEED and MADV_FREE.

Classification Operations Lazy operation
possible

Free munmap(): unmap address range ✓
madvise(): free memory range ✓

Migration

AutoNUMA [20]: NUMA page migration ✓
Page swap: swap page to disk ✓
Deduplication [49, 63]: share similar pages ✓
Compaction [19]: physical pages defrag. ✓

Permission mprotect(): change page permission -

Ownership CoW: Copy on Write -

Remap mremap(): change physical address -

Table 1. Overview of virtual address operations and whether a lazy
TLB shootdown is possible. A lazy TLB shootdown is not possible
when PTE changes should be immediately applied to the entire
system for their correct behavior.

the proposed lazy migration approach can play a critical part
in emerging systems using heterogeneous memory where
pages are migrated to faster on-chip memory [14, 42, 44]
and in emerging disaggregated memory systems in data
centers where pages are swapped to remote memory using
RDMA [27, 36].
However, there are a few challenges in handling TLB co-

herence in a lazy manner. First and foremost, Latr should
guarantee the correctness of the new, lazy approach (i.e., how
does Latr ensure that stale entries do not have negative, or
adversarial impacts on the kernel and to applications?). We
laid out the correctness sketch in §4.2 and §4.3. Second, a lazy
TLB mechanism should make non-trivial design decisions:
how the shootdown information is communicated to the
remote cores without relying on IPIs, and when the remote
cores should invalidate their TLB entries (§4.1).
We developed Latr as a proof-of-concept in Linux 4.10,

and compared it with both Linux 4.10 and ABIS [2], a recent,
state-of-the-art approach to reduce the number of TLB shoot-
downs that can be complementary to Latr. Latr makes the
following contributions:
• Latr provides a lazy TLB shootdown for free opera-
tions using a lazy memory reclamation mechanism,
and for migration operations using a lazy page table
unmap mechanism.
• We also reason about why such lazy operations are
still correct for both free and migration operations in
commodity operating systems.
• We demonstrate Latr’s approach is effective on both
small (2 sockets, 16 cores) and large NUMA machines
(8 sockets, 120 cores) when running real-world ap-
plications (Apache, PARSEC, Graph500, PBZIP2, and
Metis). With a large NUMA machine, Latr reduces
the cost of munmap() by up to 66%. In addition, Latr
improves Apache’s performance by up to 37.9% com-
pared to ABIS and 59.9% compared to Linux.



2 Background and Motivation
2.1 Existing OS Designs
Most architectures, including x86, do not support TLB cache
coherence. The current x86 architecture allows two opera-
tions on TLBs: invalidating a TLB entry using the INVLPG
instruction and flushing all local TLB entries bywriting to the
CR3 register. However, both instructions provide control only
over the local, per-core TLB. To invalidate entries in remote
TLBs on other cores, a process known as TLB shootdown,
commodity OSes use an expensive, IPI-based mechanism.
IPIs are individually delivered to each remote cores via the
Advanced Programmable Interrupt Controller (APIC) [32]
as it does not support flexible multicast delivery [44].
Free operations. We analyze the existing handling of a free
operation (munmap()) in Linux, on a system with three cores
(as shown in Figure 2a). The OS receives an munmap() system
call from the application to remove a set of virtual addresses
on core C2 with the current process running on all existing
cores (C1, C2, and C3). The munmap() handler removes the
page table mappings for the set of virtual addresses and frees
the virtual addresses and physical pages associated with the
virtual addresses. In addition, C1 performs a local TLB in-
validation for the set of virtual addresses before initiating
an IPI (to C1 and C3) to perform the TLB shootdown. On
receipt of the interrupt, C1 and C3 perform a local TLB in-
validation in their IPI handlers and send an ACK to C2 by the
means of cache coherence. After receiving both ACKs from
C1 and C3, the munmap() handler on C2 finishes processing
the munmap() system call and returns control back to the ap-
plication. The same TLB shootdown mechanism is used for
all virtual address operations, though the page table changes
are different.
The TLB shootdown mechanism outlined above shows

three types of performance overheads: sending IPIs to remote
cores, which has an increased overhead on large NUMA
machines; handling interrupts on remote cores, which might
be delayed due to temporarily disabled interrupts; and the
wait time for ACKs on the initiating core.
AutoNUMApagemigration. AutoNUMA page migration
is a feature provided by Linux to migrate pages to the NUMA
node where they are being frequently accessed from, to avoid
costly cross-NUMA-domain accesses.

To identify pages that are predominantly used on a remote
NUMA node, the AutoNUMA background task periodically
scans a process’ address space and changes page table entries
which triggers frequent TLB shootdowns. After the TLB
shootdown for a specific virtual address, any subsequent
memory access to this virtual address triggers a page fault. If,
during this page fault, a page is accessed twice from a NUMA
node different from the current node the page resides on, the
pagewill bemigrated to the node accessing the page, pending
other factors such as enough free memory on the target node.
Figure 3a gives a high-level overview of this process in Linux
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(a) Page munmap design in Linux.
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Figure 2. An overview of the operations involved in unmapping a
page in both Linux and Latr. Latr removes the instantaneous TLB
shootdown from the critical path by executing it asynchronously.
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(a) AutoNUMA page migration in Linux.
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(b) AutoNUMA page migration in Latr.
Figure 3. AutoNUMA page migration in both Linux and Latr.
Latr removes the need for an immediate TLB shootdown when
sampling pages for NUMA migration.

(shown with a single page fault for simplicity). As explained
above, if the page is accessed from the same NUMA node, the
page migration is not performed even though the expensive
TLB shootdown (5.8%, with one 4 KB page, to 21.1%, with 512
4 KB pages, of the overall migration cost) was performed.

The goal of Latr is to provide a lazy mechanism for TLB
shootdowns during free and migration operations (summa-
rized in Table 1). With its lazy mechanism, Latr eliminates
three types of performance overheads associated with the
current TLB shootdown, namely, sending IPIs and waiting
for the ACKs in the initiating core, and handling interrupts in
the remote cores.

2.2 Hardware-based Approaches
Hardware-based research approaches provide cache coher-
ence to the TLB. UNITD [54], a scalable hardware-based
TLB coherence protocol, uses a bit on each TLB entry to
store sharing information, thereby eliminating the use of
IPIs. However, UNITD still resorts to broadcasts for invali-
dating shared mappings. Furthermore, UNITD adds a costly
content-addressable memory (CAM) to each TLB to per-
form reverse address translations when checking whether a



Properties DiDi Oskin et al. ARM TLBI UNITD HATRIC ABIS Barrelfish Linux Latr[62] [44] [5, 6, 47] [54] [64] [2] [10] [60]

Asynchronous approach - - - - - - - - ✓
Non-IPI-based approach ✓ - ✓ ✓ ✓ - ✓ - ✓
No remote core involvement ✓ ✓ ✓ ✓ ✓ - - - ✓
No hardware changes required - - - - - ✓ ✓ ✓ ✓

Table 2. Comparison between Latr and other approaches to TLB shootdowns.

page translation is present in a specific TLB, thereby greatly
increasing the TLB’s power consumption. HATRIC [64] is
a hardware mechanism similar to UNITD and piggybacks
translation coherence information using the existing cache
coherence protocols.
DiDi [62] employs a shared second-level TLB directory

to track which core caches which PTE. This allows efficient
TLB shootdowns, while DiDi also includes a dedicated per-
core mechanism that provides support for invalidating TLB
entries on remote cores without interrupting the instruction
stream they execute, thereby eliminating costly IPIs. Simi-
larly, other approaches provide microcode optimizations to
handle IPIs without remote core interventions [44]. Though
these approaches remove interrupts on remote cores, the
wait time on the core initiating the TLB shootdown is not
removed. Finally, these approaches require intrusive changes
to the micro-architecture, which adds additional verification
cost to ensure correctness [3, 22, 24, 40, 53, 55, 61].

2.3 Software-based Approaches
Commodity OSes, such as Linux and FreeBSD, implemented
a set of non-trivial software-base optimizations. For exam-
ple, Linux made two important optimizations for TLB shoot-
downs: 1) batched remote TLB invalidation [30], where mul-
tiple invalidation entries are batched together in one IPI, and
2) lazy TLB invalidation that balances between the overheads
of TLB flushes and TLB misses when a core becomes idle. It
is worth noting that Linux’s lazy invalidation mechanism
refers to lazily invalidating entries on the local TLB in idle

cores, which is different from Latr’s lazy mechanism that
lazily invalidates entries on remote cores. More specifically,
it works as follows: when a core becomes idle, the OS specu-
lates that the same process may get scheduled on the same
core, so it defers the invalidation of the local TLB to avoid
potential future TLB misses. However, if the idle core subse-
quently receives a TLB shootdown, the OS performs a full
TLB invalidation and indicates to the other cores not to send
further shootdown IPIs to this core while it remains idle.
Unfortunately, all these optimizations do not eliminate the
IPIs needed for TLB invalidation.

Barrelfish [10], a research multi-kernel OS, uses message
passing instead of IPIs to shoot down remote TLB entries.
Thus, it eliminates the interrupt handling on remote cores.
However, it still has to wait for the ACK from all remote
cores participating in the shootdown.We note that Barrelfish

thereby still takes a synchronous approach for TLB shoot-
downs. ABIS [2], a recent state-of-the-art research prototype
based on Linux, uses page table access bits to reduce the num-
ber of IPIs sent to remote cores by tracking the set of CPUs
sharing a page, which can be complementary to Latr. How-
ever, the operations in ABIS to track page sharing introduce
additional overheads.
We conclude that these hardware- and software-based

approaches for TLB shootdowns do not eliminate all TLB
shootdown overheads and are not easy to apply in current
systems due to their required hardware changes. Table 2
provides a comprehensive comparison of existing approaches
with Latr.

3 Overview
Latr proposes a lazy TLB shootdown approach for virtual
memory operations such as free (e.g., munmap() and mad-
vise()) and page migration (e.g., AutoNUMA page migra-
tion), as shown in Table 1. The key idea that drives Latr is
the delayed reuse of virtual and physical memory for free
operations. Currently, the immediate reuse of the virtual
and physical pages involved in a munmap() operation neces-
sitates an immediate TLB shootdown, e.g., via a mechanism
like inter-processor interrupts (IPIs). However, considering
the large virtual address space (248 bytes) and the amount
of RAM (64GB and more) available in current servers, not
reusing the virtual and physical pages immediately enables
an asynchronous TLB shootdown.
Support for free operations. Latr relies on the following
invariant for the correctness of free operations: virtual and
physical pages can be reused only after the associated TLB
entries have been cleared on all cores. To ensure that the
invariant holds for a free operation, Latr stores the virtual
and physical pages to be freed in a separate lazy-reclamation
list instead of adding them to the free pool immediately,
which avoids their immediate reuse across all cores. Latr
issues a local TLB invalidation for the TLB entries on the
current executing core. In addition, instead of sending IPIs
to the other participating cores, the state needed for the TLB
shootdown is recorded in per-core invalidation states (re-
ferred to as Latr states §4.1). During a context switch or
scheduler tick, the participating cores perform a local TLB
invalidation by sweeping the other cores’ Latr states via
regular memory reads. The context switch and scheduler
tick provide a periodic transition to the OS, which provides
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Figure 4. Overview of Latr’s interaction with the system and its
data structures. Latr uses per-CPU states ( 1 ) to identify the cores
included in a TLB shootdown. The states are made accessible to
remote cores via the cache coherence protocol ( 2 ) that remote
cores use to clear entries in their local TLB.

the opportunity to perform the state sweep and a TLB in-
validation. Since the TLB invalidation is performed during a
context switch or scheduler tick, the scheduler tick interval
(1ms in Linux x86) establishes an upper bound time limit for
a TLB shootdown. Based on this upper bound, Latr releases
the virtual and physical pages using a background thread
after a scheduler tick on the cores. As these scheduler ticks
are not synchronized across all the cores, Latr delays the
reclamation by twice the scheduler tick interval (2ms).
Support for page migration operations. In addition to
free operations, Latr’s lazy TLB shootdown mechanism is
applicable to page migration (e.g., AutoNUMA in Linux).
For AutoNUMA, lazily changing the page table enables a
lazy TLB shootdown. In Latr, the background task records
the Latr state without changing the page table immedi-
ately. During the scheduler tick, the first core that reads
the Latr state changes the page table, followed by local
TLB invalidation. The other cores that read the Latr state
during the scheduler tick, perform only the local TLB inval-
idation. The existing AutoNUMA page-fault handling and
page-migration algorithm handle page migration, which is
not modified by Latr. A similar algorithm can be used for
other migration operations such as page swapping, dedupli-
cation, and compaction. For example, with a least recently
used (LRU) based page swapping algorithm, the page table
unmap and swap operation can be performed lazily after
the last core has invalidated the TLB entry. Latr’s proposed
lazy AutoNUMA and page swap algorithms are important
for emerging systems with heterogeneous memory [44] and
disaggregated memory [27, 36].

4 Design
Using the idea introduced in §3, we describe the design of
Latr for x86-based Linux machines in detail. We first in-
troduce the states needed by Latr (referred to henceforth
as Latr states), and explain the TLB shootdown operation
using the Latr states. Using the Latr states component, we
describe the free operations (e.g., munmap() and madvise()
in §4.2) and migration operations (e.g., AutoNUMA in §4.3).
An overview of the Latr states is given in Figure 4.

4.1 Latr States
Latr saves the shootdown information in the Latr states,
which are used for asynchronous TLB invalidation. The Latr
states are a per-core cyclic lock-less queue (as shown in Fig-
ure 4), which is allocated from a contiguous memory region.
Each entry in the Latr states holds the following informa-
tion: the addresses start and end of the virtual address for the
TLB shootdown, a pointer to the mm_struct to identify the
current running process, a bitmask to identify the remote
CPUs involved, flags to identify the reason for the shoot-
down (e.g., to distinguish migration and free operations),
and an active flag. The CPU bitmask identifies the remote
cores on which the TLB invalidation should be performed for
a particular entry’s address. The active flag is used to identify
currently valid entries. To ensure ordering between memory
instructions, an entry is activated after setting all the fields
using an atomic instruction coupled with a memory barrier.
Storage overhead. In Latr, each core stores 64 Latr states.
The size of each state is 68 B, while all Latr states on a system
with 32 cores amount to 136 KB, occupying less than 1% of
the last-level caches (LLC) of recent processors (e.g., at least
16MB for an 8-core Intel CPU [33]). Even on an 8-socket, 192-
core machine, the total size of all Latr states grows to only
816 KB, which corresponds to less than 1.3% of the LLC [35].
State update. The core initiating the TLB shootdown sets all
fields of a Latr state, including the CPU bitmask. Currently,
Linux calculates the CPU bitmask for sending IPIs based on
the cores where the process is currently scheduled. Latr
uses the same logic to update the CPU bitmask in the state.
Since the states are inmemory, the state updates are available
to all other cores using the cache-coherence protocol. We
show an example in Figure 5, where CPU1 initiates the TLB
shootdown. It includes CPU2 and CPU5 in the bitmask, as
the process is currently scheduled on both these CPUs ( 1 ).
The state update in Latr eliminates the overhead of sending
IPIs waiting for the ACKs that present in Linux and existing
OSes.
Asynchronous remote shootdown. During a periodic in-
terval (scheduler tick or context switch), each core sweeps
the Latr states of all available cores. The state sweep opera-
tion checks the Latr states from all cores, taking advantage
of hardware prefetching since the states are allocated as con-
tiguous memory blocks. Using the active flag and the CPU
bitmask available in a Latr state, a core identifies states rel-
evant to itself and invalidates the TLB entries on the core. In
addition, after the TLB invalidation, the core removes itself
from the CPU bitmask of the respective state. During the
state sweep operation, each core updates the CPU bitmask
and the active flag using an atomic operation that eliminates
the need for locks. For example, in Figure 5, CPU2 and CPU5
invalidate their local TLB entries during the state sweep
operation before resetting the CPU bitmask in the state ( 2
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Figure 5. Example of the usage of a Latr state. CPU1 unmaps a
page ( 1 ) which is also present in CPU2 and CPU5. At the sched-
uler tick, all other CPUs will use the Latr state to determine if a
local TLB invalidation is needed and CPU2 ( 2 ) and CPU5 ( 3 ) will
invalidate their local TLB entry before resetting the Latr state to
be reclaimed.

and 3 ). In addition, CPU5, the last core performing the lo-
cal TLB invalidation, resets the active flag in the Latr state
( 3 ). By means of this lazy asynchronous shootdown, Latr
inherently provides batched TLB invalidation without using
IPIs. For example, similar to Linux where the entire TLB is
flushed if there are more than 33 TLB invalidations (i.e., half
the size of the L1 D-TLB), Latr flushes the entire TLB during
state sweep.
The Latr shootdown is performed during the scheduler

tick or a context switch, whichever event happens first. The
scheduler tick or context switch event provides an existing
transition mechanism in the current OS, which we leverage
for the state sweep and TLB invalidation. The Latr TLB
invalidation during a scheduler tick or a context switch elim-
inates the interrupt handling overheads associated with IPIs.
In addition, it reduces the cache pollution overhead resulting
from IPI interrupts (see Table 4).

4.2 Handling Free Operations
In this section, we analyze the handling of free operations
using the Latr states.
Lazy memory reclamation. A key part in the design of
Latr, as outlined in §3, is the lazy reclamation of both virtual
and physical pages. Latr establishes the following invari-

ant: during free operations, virtual or physical pages are
released only after associated TLB entries have been cleared.
In Latr, to honor this invariant, we explore the following re-
laxation: By allowing a delay (e.g., 2ms, twice the scheduler
tick interval as introduced in §3) before reclaiming virtual
and physical pages, we can remove both the reclamation of
memory and the need for a TLB shootdown from the critical
path of free operations such as munmap() and madvise().

Latr deletes the mappings from the page table entry (PTE)
during free operations; however, instead of freeing the virtual
and physical pages, Latr maintains the list of virtual and
physical pages to be freed lazily in the mm_struct. In addition,
Latr maintains a global list of mm_structs, synchronized
using a global spin lock, to identify the tasks participating
in a lazy reclamation. To ensure that the virtual address is

not reused, the lazy virtual address list is traversed during
any memory allocation, and the addresses in the lazy list
are not reused. Similarly, since the physical page reference
count is non-zero, Latr ensures that the physical pages are
not reused.
Handling munmap(). Using the lazy memory reclamation

and the Latr states, Latr removes the instantaneous shoot-
down from the critical path of free operations. Instead, on
execution of these operations, Latr simply records the states
to shootdown a set of virtual addresses (the state informa-
tion) but does not send an IPI immediately, as outlined in §4.1.
In the case where there are more shootdowns per interval
than there are per-core Latr states (i.e., 64 Latr states per
core), Latr issues IPIs as a fallback mechanism. Furthermore,
Latr’s lazy free operation introduces new race conditions
that Latr solves, these conditions are discussed in §4.4.
A detailed example of Latr handling an munmap() oper-

ation is shown in Figure 2b as a timeline. Core 2 executes
the munmap() system call resulting in a TLB invalidation fol-
lowed by core 2 saving the Latr state which includes the
cores 1 and 3 in the CPU bitmask. The munmap() execution
adds the page to the lazy free list. Due to the CPU bitmask,
core 1 and core 3 invalidate their local TLB entry during
their respective scheduler ticks (after 1ms) and reset their
respective CPU bitmask in the Latr state. Core 2 runs the
Latr background thread (after 2ms), and frees the virtual
and physical pages in the lazy list.
Lazy TLB shootdown correctness. The correctness of
Latr’s handling of TLB shootdowns for free operations re-
lies on the invariant introduced in §3: Virtual and physical
pages can only be reused after associated TLB entries have
been invalidated. To fulfill this invariant, Latr waits two
full cycles of TLB invalidations (i.e., two scheduler ticks and
2ms) to ensure that all associated entries have definitely
been invalidated by at least one scheduler tick.

4.3 Handling NUMA Migration
In addition to supporting free operations, Latr’s design also
provides a lazy mechanism for migration operations, such
as AutoNUMA page migration. We discuss the Latr mecha-
nism for AutoNUMA page migration in this section.

The current AutoNUMAdesign in Linux includes a remote
TLB shootdown (see §2.1), which accounts for up to 5.8–21.1%
(page count ranging from 1 to 512) of the overall time in the
case of a page migration. However, this TLB shootdown cost
is paid even if the page fault handling decides to not migrate
the page. Latr’s mechanism for AutoNUMA provides a lazy
TLB shootdown approach, eliminating the expensive TLB
shootdown operation.
Lazy page table change. For AutoNUMA, a key part of
Latr design is the lazy page table change after an interval
(1ms). Latr maintains an invariant that the pages are mi-
grated, after the interval, only after all cores performed a



TLB shootdown. Latr uses the state abstraction to maintain
this invariant and to perform the lazy page table change.
AutoNUMAmechanism. We illustrate the approach taken
with Latr in Figure 3b, which exemplifies Latr’s key design
change (shown with two cores on two different sockets):
When the AutoNUMA daemon decides to unmap a page
from the page table to test for a potential migration, Latr
records only this state into a Latr state instead of unmapping
the page immediately, delaying the TLB shootdown. This
state simply informs all cores to invalidate their local TLB for
the specified page at the next scheduler tick. Any memory
access before the scheduler tick can proceed without inter-
ruption. In addition to invalidating the local TLB entry, the
first core performs the page table unmap operation (shown
as “Clear PTE”) before invalidating its TLB entry. The page
unmap operation results in a page fault when the page is
next touched, resulting in a potential page migration, similar
to the existing design in Linux.

Latr removes the need for an instantaneous and costly
IPI while retaining the design of AutoNUMA. As Latr de-
lays the page table unmap operation until the next scheduler
tick (1ms), there is no additional overhead imposed on the
application. This design trades off the expensive IPI-based
TLB shootdown for additional waiting time until the next
scheduler tick (up to 1ms). Furthermore, Latr’s lazy migra-
tion introduces new race conditions; their handling in Latr
is discussed in section §4.4.

Figure 3b shows an example of the Latr mechanism used
in conjunction with the AutoNUMA page migration. The
AutoNUMA background daemon on core 2 adds a state to
the Latr states instead of unmapping the page from the page
table. This state includes the CPU bitmask of all the cores,
including core 1 and core 2. The scheduler tick on core 2
initiates the unmap operation (shown as “Clear PTE”) and
then invalidates its local TLB. The scheduler tick on core 1
only invalidates its local TLB. The next page access on core
1 triggers the page fault handler and subsequently the page
migration due to a page access from a different NUMA node.
Correctness for AutoNUMA migration. We show the
correctness of Latr’s AutoNUMA migration. Memory ac-
cesses during the interval (1ms) proceed normally. The first
core performing the TLB shootdown, after the interval, will
unmap the page from the page table. Memory accesses af-
ter the interval thus result in a page fault. If the page fault
handler migrates pages, Latr holding a lock until all cores
perform their local TLB invalidation ensures that parallel
writes are not allowed during the migration.

4.4 Latr Race Conditions
In this section, we discuss the possible race conditions in-
troduced by a lazy TLB shootdown and their handling with
Latr.

Reads before a TLB shootdown. For free operations, an
application error can result in reading already freed mem-
ory before the scheduler tick (1ms). On cores where the
respective TLB entry is not invalidated yet, Latr serves the
read from the old, not yet freed page. However, after the
Latr TLB shootdown during the scheduler tick, any further
reads will result in a page fault, which eventually results in
a segmentation fault.
Writes before a TLB shootdown. For free operations, an
application error can result when writing values to the un-
mapped memory before the scheduler tick (1ms). On cores
where the TLB entry is not invalidated yet, Latr allows
writes to the old page that is not yet freed. However, after
the scheduler tick interval, any further writes will result in a
page fault, which eventually results in a segmentation fault.
For both reads and writes, Latr does not prohibit appli-

cations to read or write to an unmapped page for a specific
interval (until the scheduler tick, up to 1ms) although this
application behavior is the result of an application error.
However, Latr prevents the consequences (e.g., page cor-
ruption) of these reads or writes to impact other processes
or the kernel by not releasing the physical pages before the
Latr TLB shootdown is complete.
AutoNUMA balancing. With Latr’s delayed page table
unmap operation for the case of AutoNUMA, there is a pos-
sibility that a page fault could occur on any core before the
page table unmap operation is complete, for example if a
page fault occurs simultaneously with the first core unmap-
ping the page from the page table. However, both the page
fault and the AutoNUMA page table unmap operation are
guarded by the mmap_sem semaphore, which ensures that the
unmap operation is completed before the page fault handler
can proceed. Similarly, the page fault is handled only after
all cores have performed the Latr TLB invalidation for the
AutoNUMA migration; otherwise, cores that have not inval-
idated their TLB entries yet could proceed in writing to the
page under migration. To avoid such a race condition, the
first core that performs the page table unmap releases the
mmap_sem only after all CPU bitmasks in the Latr state are
cleared, indicating that all cores have invalidated their TLB
entries. Thus, the next page fault can then trigger the NUMA
page migration.

4.5 Approach With and Without PCID
Process-context identifiers (PCIDs) are available in x86 to
allow a processor to cache TLB entries for multiple processes
and to preserve it across context switches. Latr’s lazy inval-
idation approach is applicable regardless of the OS’ use of
PCIDs. When PCIDs are not used (as Linux 4.10 elects to do),
invalidating TLB entries pertaining to the states during the
scheduler tick is important to remove stale entries within a
bounded time period (e.g., 1ms). During a context switch,
however, the TLB is flushed, eliminating the need for a Latr



Machine Type Commodity Large NUMAdata center [43]

Model E5-2630 v3 E7-8870 v2
Frequency 2.40GHz 2.30GHz
# Cores 16 120
Layout (cores × sockets) 8 × 2 15 × 8
RAM 128GB 768GB
LLC (size × sockets) 20MB× 2 30MB× 8
L1 D-TLB entries (per core) 64 64
L2 TLB entries (per core) 1024 512
Hyperthreading Disabled Disabled

Table 3. The two machine configurations used to evaluate Latr.

invalidation. In the case where PCIDs are being used, only
TLB entries matching the currently active PCID can be inval-
idated. Since the invalidation should be performed before the
PCID is changed, Latr’s TLB invalidation during a context
switch is mandatory. When using PCIDs, TLB invalidations
can be triggered only for the currently active PCID. When a
different PCID is active, Latr aborts migrations similar to a
case where AutoNUMA aborts a page migration if the page
fault does not indicate a remote socket accessing the page.

4.6 Large NUMA Machines
Latr eliminates the use of expensive IPIs to disseminate the
TLB shootdown information. Instead, Latr requires writing
the Latr states to memory, which implicitly propagate to
the LLCs of all sockets via the hardware cache coherence
protocol, making Latr highly scalable. The lazy approach
employed by Latr eliminates the synchronous TLB shoot-
down overhead, which amounts to up to 80 µs on an 8-socket
machine (as shown in Figure 7).

5 Implementation
We implemented the Latr prototype in 1,012 lines of code by
extending Linux 4.10. We modified the kernel’s TLB shoot-
down handler to save the Latr states instead of sending IPIs.
We extend the kernel’s munmap() and madvise() handlers to
perform the lazy memory reclamation, and the AutoNUMA
page table unmap handler to save the Latr states.
Lazy TLB shootdown. Latr’s lazy TLB shootdown is han-
dled in native_flush_tlb_others, in which sending of IPIs
is replaced with saving the corresponding Latr states. The
state sweep to invalidate the Latr states is handled in sched-
uler_tick and __schedule.
Lazy memory reclamation. The VMA and page pointers
are added to a lazy list in the mm_struct, and the mm_struct
is added to a global list. The background kernel thread frees
the VMA and page using remove_vma and free_pages, respec-
tively.
NUMA page migration. The function task_numa_work is
modified to not trigger the page table unmap via change_-
prot_numa. Instead, a handler saving the Latr state is in-
voked while, change_prot_numa is invoked later during the
scheduler_tick, along with the local TLB invalidation.
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Figure 6. The cost of an munmap() call for a single page with 1 to
16 cores in our microbenchmark. TLB shootdowns account for up
to 71.6% of the total time. Latr is able to improve the time taken
for munmap() by up to 70.8% with its asynchronous mechanism.

6 Evaluation
We implemented a proof-of-concept of Latr based on Linux
4.10. The baseline for the evaluation is Linux 4.10, while we
also compare a subset of cases against ABIS [2], which is
based on Linux 4.5. ABIS is a recent research prototype that
aims at reducing the number of IPIs sent by tracking the set
of cores sharing a page via the page table access bits [2].
Using this setup, we evaluate Latr by answering the fol-

lowing questions:
• Does Latr show benefits with microbenchmarks on
machines with a larger number of NUMA sockets?
• What are the benefits of Latr for applications with
heavy usage of free operations (introduced in Table 1)?
• What are the benefits of Latr in the context of Auto-
NUMA page migration?
• What is the impact of Latr for applications which
show few TLB shootdowns and what is the overhead
of Latr for memory usage and cache misses?

6.1 Experiment Setup
We evaluate Latr on two different machine setups, as shown
in Table 3. The primary evaluation target is the 2-socket, 16-
core machine, while we also show the impact of Latr on a
large NUMA machine with 8 sockets and 120 cores . We run
each benchmark five times and report the average results.
The machines are configured without support for trans-

parent huge pages, as this mechanism is known to increase
overheads and introduce additional variance to the bench-
mark results [38]. Furthermore, to reduce variance in the
results, all benchmarks are run on the physical cores only,
without hyperthreads.We furthermore deactivate Linux’s au-
tomatic balancing of memory pages between NUMA nodes,
AutoNUMA, unless specifically noted, as it might introduces
TLB shootdowns during the migration of a page (see §2.1).

6.2 Impact on Free Operations
First, we discuss the impact of Latr on operations cen-
tered around freeing virtual and physical addresses, such as
munmap() and madvise() (as introduced in Table 1).
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Figure 7. The cost of munmap() along with the cost for the TLB
shootdown for a single page in Linux compared to Latr on an
8-socket, 120-core machine. TLB shootdowns account for up to
69.3% of the overall cost, while Latr is able to improve the cost of
munmap() by up to 66.7%.

6.2.1 Microbenchmarks
To understand the scalability behavior of Latr in isolation,
we compare Latr to Linux while we exclude ABIS [2], as
its behavior matches Linux in a microbenchmark where all
cores actually access a shared page. We devise a microbench-
mark that shares a set of pages between a specified number of
cores. A subsequent call to munmap() on this set of pages will
then force a TLB shootdown on the participating cores. Each
data point is run 250,000 times. The microbenchmark records
the time taken for the call to munmap(), as well as the time
taken for the TLB shootdown, excluding other overheads,
e.g., the page table modifications and syscall overheads.
The results of this microbenchmark using one page on

our 2-socket, 16-core machine are shown in Figure 6 and
exemplify the overheads introduced by the TLB shootdown:
In the baseline Linux system, the TLB shootdowns contribute
up to 71.6% to the overall execution time of munmap(), while
a single munmap() call for 16 cores takes up to 8 µs. Latr on
the other hand is able to reduce almost all of this overhead
and improves the latency of munmap() by 70.8% by recording
only the Latr states on the critical path of munmap(). Latr
thus reduces the latency for munmap() to 2.4 µs for 16 cores.
Large NUMA machine. To investigate the behavior of
Latr and the baseline Linux on a large NUMA machine, we
run this microbenchmark on the 8-socket, 120-core machine
and show the results in Figure 7. These results show a drastic
increase in latency for munmap() on Linux when using more
than 45 cores (more than 3 sockets), as the IPI delivered
through the APIC needs two hops to reach the destination
CPU. At 120 cores, the latency for a single munmap() rises
to more than 120 µs, with the TLB shootdown accounting
for up to 82 µs or 69.3%. Latr on the other hand is able to
efficiently use the cache coherence protocol to complete the
munmap() operation in less than 40 µs on 120 cores, reducing
the latency by 66.7% compared to Linux, as Latr’s munmap()
does not rely on expensive IPIs and eliminates the ACK wait
time on the initiating core.
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Figure 8. The cost of munmap()with an increasing number of pages
along with the cost of the TLB shootdowns for Linux and Latr. For
a small number of pages, Latr shows improvements of up to 70.8%,
while the impact of the TLB shootdown diminishes with a larger
number of pages. At 512 pages, Latr still retains a 7.5% benefit over
Linux.

Increasing number of pages. We investigate the behav-
ior of Latr compared to Linux when using more than one
page; the results for up to 512 pages on 16 cores are shown
in Figure 8. The impact of the TLB shootdown diminishes
with a larger number of pages, as the overhead of clearing
TLB entries is amortized by more costly operations, such as
changing the page table. Furthermore, Linux elects to fully
flush the TLB when more than 32 pages are being invalidated
at once, which furthermore limits the maximum possible
overhead. Even though the impact of the TLB shootdown
reduces, Latr still improves the performance at 512 pages by
7.5%while showing larger benefits with fewer pages. Further-
more, applications can use huge pages (either 2MB or 1GB
pages on x86), either directly or via transparent huge pages
support in the OS [38], to mitigate the effects of unmapping
many pages at once.

6.2.2 Impact on Applications
We evaluate Latr by quantifying its impact on free opera-
tions with real-world applications, using both Apache and
the PARSEC [13] benchmark suite.
Apache webserver. We compare the requests per second
of Apache with Linux, ABIS [2], and Latr on the 2-socket,
16-core machine. We use the Wrk [29] HTTP request gen-
erator, using four threads with 400 connections each for 30
seconds, to send requests to Apache, which hosts a static,
10 KB webpage. Wrk and Apache run on the same machine
(to avoid the network stack becoming the bottleneck) but on
a distinct set of cores to isolate the two applications. This
configuration leaves up to 12 cores available for Apache. We
disable logging in Apache and use the default mpm_event
module to process requests. This module spawns a (small)
set of processes that in turn spawn many threads to handle
the requests. To serve an individual request, Apache mmap()s
the requested file to serve a request and munmap()s the file
after the request has been served. This behavior generates
many TLB shootdowns due to the frequent unmapping of
(potentially) shared pages. The results are shown in Figure 9
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Figure 9. The requests per second and shootdowns per second
of Apache using Latr, Linux and ABIS [2]. Latr shows a similar
performance as Linux for lower core counts while outperforming it
by 59.9% on 12 cores. ABIS initially shows overhead from frequent
unmapping, while Latr performs up to 37.9% better at 12 cores
than it.

and show both the requests per second served by Apache, as
well as the TLB shootdowns per second. Latr outperforms
Linux by up to 59.9% and ABIS by up to 37.9%. ABIS shows
a reduced performance on lower core counts (< 8 cores) be-
cause of the overhead of frequent changes to access bits
while outperforming Linux for larger core counts because of
the significantly reduced number of TLB shootdowns. Latr
outperforms both Linux and ABIS because of its efficient
asynchronous handling of TLB shootdowns, even though
the rate of shootdowns is up to 46% higher due to the in-
creased performance of Latr. Furthermore, Latr does not
need to use any fallback IPIs (see §4.2) during the execution
of this test.
Parsec application benchmark. We show the performan-
ce of Latr compared with Linux across a wider range of
PARSEC application benchmarks. The normalized runtime
(with respect to Linux) along with the TLB shootdowns per
second is shown in Figure 10. Latr shows improvements of
up to 9.6% on cases with a larger number of TLB shootdowns
(e.g., dedup) due to frequent calls to madvise() and shows
small improvements for most of the other benchmarks. The
reason for the small improvement for most benchmarks is
that Latr optimizes background operations of the system
such as reading files via mmap()/munmap(). For one bench-
mark, canneal, Latr shows a slight degradation of 1.7% due
to frequent context switches for this benchmark, which trig-
gers frequent state sweeps. Overall, Latr shows an improve-
ment of 1.5% on average over Linux across all PARSEC bench-
marks.

6.3 Impact on NUMA Migration
In contrast to previous benchmarks, we enable AutoNUMA
for the following experiments. We evaluate the im-
pact of Latr on AutoNUMA with a subset of applica-
tions (fluidanimate from PARSEC and ocean_cp from
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Figure 10. The normalized runtime and the rate of shootdowns
for the PARSEC benchmark suite, comparing Latr and the Linux
baseline using all 16 cores. Latr imposes at most a 1.7% percent
overhead while improving the runtime on average by 1.5% and by
up to 9.6% for dedup.
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Figure 11. Impact of NUMA balancing on the overall runtime as
well as the overall number of page migrations of Latr compared
to Linux on 16 cores. Latr performs up to 5.7% better, showing a
larger improvement with more page migrations.

the SPLASH-2x benchmark suite) that benefit from en-
abling NUMA memory balancing. Additionally, we evalu-
ate Latr with three real-world applications: Graph500 [31],
PBZIP2 [28], and Metis [17, 18, 41]. Graph500 is a graph ana-
lytics workload running a breadth-first search on a problem
of size 20. PBZIP2 allows compressing files in parallel and
in memory. We compress the Linux 4.10 tarball while split-
ting the input file among all processors. Finally, Metis is
a Map-Reduce framework optimized for a single-machine,
multi-core setup.
The results are given in Figure 11 and show the normal-

ized runtime of Latr compared to Linux, as well as the num-
ber of page migrations per second. The results show an im-
provement of up to 5.7% for the Graph500 benchmarks while
showing similar benefits on other benchmarks that show
a large number of migrations. On PBZIP2, Latr improves
only marginally compared with Linux, as for this application
other application-level overheads dominate the runtime. As
AutoNUMA migrates one page at a time, this result aligns
with the cost breakdown of a migration operation showing
a 5.8% (one 4KB page) to 21.1% (512 4 KB pages) overhead
for the TLB shootdown.
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Figure 12. The overhead imposed by Latr on applications with
few TLB shootdowns; subscripts indicate the number of cores. Latr
shows small overheads of up to 1.7% for one benchmark.

6.4 Overheads of Latr
We investigate the overheads imposed by Latr in three as-
pects: what is the memory overhead of Latr, how does Latr
impact applications with few TLB shootdowns, and how
does Latr impact the cache locality of applications?
Memory utilization. We perform an analysis based on
the microbenchmarks presented to show Latr’s overhead
in terms of memory utilization. In each time period (e.g.,
1ms), Latr shows an overhead of up to 21MB of physical
and virtual pages (for the case of 16 cores and 512 pages
per munmap() call). If fewer cores and pages are being used,
the overhead ranges from 3MB (for 2 cores sharing a single
page) to 1.5MB (for 16 cores sharing a single page). Using
more pages, the memory overhead stays bounded by 21MB,
as the overhead of page table modifications and related op-
erations dominates the cost of the TLB shootdown (as seen
in Figure 8). Considering the large virtual address space (248
bytes) and the amount of RAM (64GB and more) available
in current servers, the memory overhead is not high (smaller
than 0.03%) and is released back within a short time interval
(2ms).
Overhead on applications. We show the overhead im-
posed by Latr on real-world applications with few TLB
shootdowns in Figure 12. This focuses on applications be-
ing run only on a single core (two webservers: Nginx and
Apache) and a subset of PARSEC benchmarks which show
very few TLB shootdowns. Latr shows a maximum over-
head of 1.7% due to a larger number of context switches
while imposing a smaller overhead on other applications.
Latr is even able to improve the performance of some of
the benchmarks due to optimizing various background ac-
tivity in the system, as well as the general benefit of faster
unmapping and freeing of shared memory.
An interesting analysis is the percentage of LLC cache

misses for various applications and core counts. These re-
sults are shown in Table 4 and show that Latr improves cache
misses for a number of applications while only imposing a

Application Cache Misses Relative Change
Linux Latr

Apache1 6.08% 6.13% +0.84%
Apache6 1.60% 1.55% -3.27%
Apache12 1.23% 1.22% -1.32%

canneal16 80.51% 79.94% -0.71%
dedup16 18.33% 18.14% -1.09%
ferret16 48.02% 48.21% +0.38%
streamcluster16 95.42% 95.25% -0.18%
swaptions16 47.48% 47.23% -0.54%

Table 4. The ratio of L3 cache misses between Linux and Latr;
subscript indicates the number of cores the benchmark ran on. Latr
shows cache misses to be very close (or better) to the Linux baseline
due to the minimal cache footprint of Latr’s states.

Operation Time spent

Saving a Latr state 132.3 ns
Performing single state sweep with Latr 158.0 ns

Single TLB shootdown in Linux 1594.2 ns

Table 5. A breakdown of operations in Latr compared to Linux
when running the Apache benchmark. Latr reduces the time taken
for a single shootdown by up to 81.8% due to its asynchronous
mechanism.

maximum overhead of 0.8% on other cases. Latr’s improve-
ments in cache misses are due to the removed handling of IPI
interrupts on remote cores. These benefits outweigh the in-
creased cache utilization of the Latr states, which, however,
occupy only a small portion of the LLC of modern processors
(less than 1%, see §4.1).
Breakdown of operations. We show a breakdown of oper-
ations in Latr compared to Linux when running Apache on
12 cores in Table 5. This breakdown shows the two separate
phases of Latr: saving the Latr states on a per-core basis
as well as invalidating local TLB entries based on the other’s
Latr states. This breakdown only includes the time taken for
the TLB shootdown, excluding other effects such as modify-
ing the page table or the syscall overhead, allowing for a fair
comparison between Linux and Latr. Overall, Latr reduces
the time taken for the TLB shootdown by up to 81.8%.

7 Discussion
Hardware support. We identify a number of hardware el-
ements that could help to improve the performance of Latr.
First, the Latr states can be allocated using Intel’s cache
allocation technology (CAT) [34], which allows fine-grained
allocations in the LLC. This ensures that the Latr states
do not interfere with the applications’ cache usage. Second,
Latr could benefit from the availability of a globally coher-
ent scratchpad memory [1]. This would remove the need
for duplicating the states in the LLCs of each processor, and
simplify the lookup of states on remote cores. Furthermore,
such a hardware element would reduce the time taken to
access a Latr state and to perform the state sweep operation.



Free operation semantics. Latr changes the semantics of
free operations (munmap() and madvise()) by not freeing the
physical pages immediately. This changed behavior impacts
applications that unmap a page to force a page fault (e.g. to
detect use-after-frees). To avoid such impacts, Latr’s asyn-
chronous mechanism could be selectively enabled by includ-
ing a new flag in the API of free operations (e.g., munmap())
for existing OSes, such as Linux and FreeBSD.
Huge page support. Latr currently does not support trans-
parent huge pages. However, the Latr states could be ex-
tended with an additional flag to support a lazy TLB shoot-
down for transparent huge pages as well. Additionally, mem-
ory compaction, an important component for the transpar-
ent huge page mechanism, performs similar mechanism as
AutoNUMA’s page migration. This operation has high TLB
shootdown overheads, which can be optimized using Latr’s
AutoNUMA mechanism.
Latr’s impact on debuggability. With stock Linux on 120
cores, remote shootdowns could take up to 80 µs. During this
interval, reads and writes to pages will proceed on remote
cores that did not receive the IPI yet. This renders debugging
corruptions due to reads and writes during remote shoot-
downs difficult even in stock Linux. Similarly, Latr retains
the existing challenges to debug these kind of scenarios.
Tickless Kernel. Latr supports the lazy TLB shootdown
mechanism in tickless kernels [21]. In the Linux kernel, the
tickless (CONFIG_NO_HZ) configuration disables the scheduler
ticks on idle cores. In such tickless kernels, the idle core’s
id is not set in a Latr state’s CPU bitmask because none of
the processes are scheduled on the idle core. This eliminates
the need for a state sweep during a scheduler tick on the
idle core. In addition, when a core transitions from an idle
state to a running state, the existing, stale TLB entries are
removed by flushing the entire TLB.

8 Limitations
We identify the set of operations that can potentially bene-
fit from an asynchronous approach in Table 1. Latr’s lazy
approach is not applicable to operations such as permis-
sion changes (mprotect()), ownership changes (CoW), and
remap (mremap()), where the page table changes should be
synchronously applied to the entire system. Latr maintains
a limited number (64) of per-core Latr states and falls back
to the existing IPI mechanism when the Latr states are fully
occupied. Thus, Latr creates a trade-off between the number
of per-core Latr states and the cost of state sweeps. And
finally, Latr currently does not support transparent huge
pages.

9 Related Work
Hardware-based TLB shootdown. There have been a
number of approaches to handle the problem of TLB cache
coherence at the hardware layer [7, 44, 50, 51, 54, 62, 64].

These approaches, however, are only being adopted slowly
by hardware vendors, likely due to increased verification cost
as well as the potential bugs they introduce in TLB cache
coherence [3, 22, 24, 40, 53, 55, 61].
Software approaches. Similarly, there are a number of ap-
proaches in the OS [2, 8, 10, 15, 18, 45, 56, 57, 59] to optimize
TLB shootdowns. However, none of them eliminate the syn-
chronous TLB shootdown overhead. An alternative approach
for reducing TLB shootdown is that applications can inform
the OS on how memory is used or handle TLB flushes explic-
itly. Corey OS [16] avoids TLB shootdowns of private PTEs
by requiring the user applications to explicitly define shared
and private pages. Apart from this, FreeBSD uses versions
with process context identifiers (PCIDs) [26] to eliminate the
IPI operation. However, this approach invalidates all the TLB
entries by using a version-based mechanism, which induces
TLB misses.
Other TLB-related optimizations. SLL TLBs introduced
a shared last-level TLB [12, 39] and evaluated the benefit of
using a shared last-level TLB compared to a private second-
level TLB. However, their design still relies on IPI-based
coherency transactions. In addition, research approaches
showed that TLB misses are predictable and that inter-core
TLB cooperation and prefetching mechanisms can be applied
to improve TLB performance [46, 58]. However, this implies
that a TLB shootdown must also invalidate mappings in the
TLB prefetch buffers. In addition, other approaches improve
TLB misses, which is an orthogonal problem [11, 23, 37, 48].

10 Conclusion
We present Latr, a lazy software-based TLB shootdown
mechanism that is readily implementable in modern OSes,
for significant operations such as free and page migration,
without requiring hardware changes. In addition, the pro-
posed lazy migration approach can play a critical role in
emerging heterogeneous memory systems and in disaggre-
gated data centers. Latr reduces the cost of munmap() by
up to 70.8% on multi-socket machines while improving the
performance of applications like Apache by up to 59.9% com-
pared to Linux and 37.9% compared to ABIS.
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