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ABSTRACT

Timestamping is an essential building block for designing concur-
rency control mechanisms and concurrent data structures. Various
algorithms either employ physical timestamping, assuming that
they have access to synchronized clocks, or maintain a logical
clock with the help of atomic instructions. Unfortunately, these
approaches have two problems. First, hardware developers do not
guarantee that the available hardware clocks are exactly synchro-
nized, which they find difficult to achieve in practice. Second, the
atomic instructions are a deterrent to scalability resulting from
cache-line contention. This paper addresses these problems by
proposing and designing a scalable ordering primitive, called Ordo,
that relies on invariant hardware clocks. Ordo not only enables
the correct use of these clocks, by providing a notion of a global
hardware clock, but also frees various logical timestamp-based
algorithms from the burden of the software logical clock, while
trying to simplify their design. We use the Ordo primitive to re-
design 1) a concurrent data structure library that we apply on the
Linux kernel; 2) a synchronization mechanism for concurrent pro-
gramming; 3) two database concurrency control mechanisms; and
4) a clock-based software transactional memory algorithm. Our
evaluation shows that there is a possibility that the clocks are not
synchronized on two architectures (Intel and ARM) and that Ordo
generally improves the efficiency of several algorithms by 1.2–39.7×
on various architectures.
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1 INTRODUCTION

Ordering is fundamental to the design of any concurrent algorithm
whose purpose is to achieve varying levels of consistency. For var-
ious systems software, consistency depends on algorithms that
require linearizability [27] for the composability of a data struc-
ture [8, 44], concurrency control mechanisms for software transac-
tional memory (STM) [21], or serializability (or snapshot isolation)
for database transactions [36, 62, 67]. The notion of ordering not
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Figure 1: Throughput of read-log-update (RLU), a concur-

rency mechanism, on a hash table benchmark with 98%

reads and 2% writes. While the original version (RLU) main-

tains a global logical clock, RLUORDO is a redesign of RLU with

our proposed Ordo primitive.

only is limited to consistency, but also is applicable to either main-
taining the history of operations for logging [32, 39, 50, 64] or deter-
mining the quiescence period for memory reclamation [4, 44, 63].
Depending on the consistency requirement, ordering such as a log-
ical timestamping [21, 44], physical timestamping [4, 8, 18, 22, 57],
and data-driven versioning [37, 67] can be achieved in several ways.
The most common approach is to use a logical clock that is eas-
ier to maintain by software and is amenable to various ordering
requirements.

A logical clock, a favorable ordering approach, is one of the
prime scalability bottlenecks on large multicore and multisocket
machines [30, 52] because it is maintained via an atomic instruc-
tion that incurs cache-coherence traffic. Unfortunately, cache-line
contention caused by atomic instructions becomes the scalability
bottleneck, and it has become even more severe across the NUMA
boundary and in hyper-threaded scenarios [12, 20, 58]. For example,
a recently proposed synchronization mechanism for concurrent
programming, called RLU [44], gets saturated at eight cores for a
mere 2% of writes on massively parallel cores of Intel Xeon Phi
(Figure 1).1 Thus, maintaining a software clock is a deterrent to the
scalability of an application, which holds true for several concur-
rency control mechanisms for concurrent programming [21, 23]
and database transactions [36, 62]. To address this problem, various
approaches—ranging from batched-update [62] to local version-
ing [67] to completely share-nothing designs [9, 54]—have been put
into practice. However, these approaches have some side effects.
They either increase the abort rates for STM [7] and databases [62]
or complicate the design of the system software [9, 67, 69]. In addi-
tion, in the past decade, physical timestamping has been gaining

1Intel Xeon Phi has a slower processor, but has a higher memory bandwidth compared
with other Xeon-based processors.
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traction for designing scalable concurrent data structures [22, 25]
and a synchronization mechanism [8] for large multicore machines,
which assume that timestamp counters provided by the hardware
are synchronized.

In this paper, our goal is to address the problem of a scalable
timestamping primitive by employing invariant hardware clocks,
which current major processor architectures already support [3, 5,
29, 53]. An invariant clock has a unique property: It is monoton-
ically increasing and has a constant skew, regardless of dynamic
frequency and voltage scaling, and resets itself to zero whenever a
machine is reset (on receiving the RESET signal), which is ensured
by the processor vendors [5, 15, 43, 53]. However, assuming that all
invariant clocks in a machine are synchronized is incorrect because
processors do not receive the RESET signal at the same time, which
makes these clocks unusable. Thus, we cannot compare two clocks
with confidence when correctly designing any time-based concur-
rent algorithms. Moreover, we cannot exactly synchronize these
clocks because 1) the conventional clock algorithms [16, 40, 47]
provide only a time bound that can have a lot of overhead, and
2) the hardware vendors do not divulge any communication cost
that is required to establish strict time bounds for software clock
synchronization to work effectively.

The comparison of clocks with no confidence makes them unus-
able to correctly design a concurrent algorithm. Thus, to provide a
guarantee of correct use of these clocks, we propose a new prim-
itive, called Ordo, that embraces uncertainty when we compare
two clocks and provides an illusion of a globally synchronized hard-

ware clock in a single machine. However, the notion of a globally
synchronized hardware clock is only feasible if we can measure
the offset between clocks. Unfortunately, accurately measuring
this offset is difficult because hardware does not provide minimum
bounds for the message delivery [16, 40, 47]. To solve this problem,
we exploit the unique property of invariant clocks and empirically
define the uncertainty window by utilizing one-way-delay latency
among clocks.

Under the assumption of invariant clocks, Ordo provides an un-
certainty window that remains constant while a machine is running.
Thus, Ordo enables algorithms to become multicore friendly by
either replacing the software clock or correctly using a timestamp
with a minimal core-local computation for an ordering guarantee.
We find that various timestamp-based algorithms can be simplified
as well as benefit from our Ordo primitive, which has led us to
design a simple API. The only trick lies in handling the uncertainty
window, which we explain for both physical and logical timestamp-
based algorithms such as a concurrent data structure library, and
concurrency control algorithms for STM and databases. With our
Ordo primitive, we improve the scalability of various algorithms
and systems software (e.g., RLU, OCC, Hekaton, TL2, and process fork-
ing) up to 39.7× across four architectures: Intel Xeon and Xeon Phi,
AMD, and ARM, while maintaining equivalent performance in opti-
mized scenarios. Moreover, our version of the conventional OCC
algorithm outperforms the state-of-the-art algorithm by 24% in a
lightly contended case for the TPC-C workload.

In summary, this paper makes the following contributions:
• A Primitive.We design a scalable timestamping primitive,
called Ordo, that exposes a globally synchronized hardware

clock with an uncertainty window for various architectures
by using invariant hardware clocks.
• Correctness. We design an algorithm that calculates the
minimal offset along with its correctness, and a simple API
that almost all sets of algorithms can use.
• Applications.We applyOrdo to five concurrent algorithms
and evaluate their performance on various architectures up
to 256 hardware threads.

In the rest of the paper, we give a background and related prior
works about timestamping (§2); then we present the correctness
proof of the Ordo primitive (§3) and its applicability to various
algorithms (§4). Later, we present our implementation (§5) and
evaluate Ordo (§6). In the end, we discuss limitations and the
future work of Ordo (§7), and then we conclude (§8).

2 BACKGROUND AND MOTIVATION

We first discuss the importance of timestamping with respect to
prior research and briefly peruse invariant clocks provided by to-
day’s hardware.

2.1 Time: An Ingredient for Ordering

Timestamping, or versioning, is an essential tool to achieve or-
dering. Hence, on the basis of its applicability, we classify prior
research directions in two categories: logical clocks and physical
timestamping.
Logical clocks. Logical timestamping, or a software clock, is a
prime primitive for most concurrency mechanisms in the domain of
concurrent programming [4, 6, 7, 23, 28, 42, 44, 57] or database trans-
actions [36, 38, 62, 66, 67]. To achieve ordering, these applications
rely on atomic instructions, such as fetch_and_add [23, 28, 44, 60] or
compare_and_swap [21]. For example, software transactional mem-
ory (STM) [59] is an active area of research in which almost every
new design [28, 60] is dependent on time-based approaches [21, 55]
that use global clocks for simplifying the validation step while com-
mitting a transaction. As mentioned before, a global clock incurs
cache-line contention; thus, prior studies try to mitigate this con-
tention by applying various forms of heuristics [6, 7] or slowly
increasing timers [56], or having access to a synchronized hard-
ware clock [57]. Unfortunately, these approaches introduce false
aborts (heuristics) or are limited to specific hardware (synchronized
clocks). The use ofOrdo is inspired by prior studies that either used
synchronized clocks [56] or relied on specific property to achieve
causal ordering on a specific architecture such as Intel X86 [57].
However, Ordo assumes that it has access to only invariant times-
tamp counters with an uncertainty window, and we expose a set of
methods for the user to handle that uncertainty regardless of the
architecture. Similar to STM, RLU [44] is a lightweight synchroniza-
tion mechanism that is an alternative to RCU [46]. It also employs
a global clock that serializes writers and readers, and uses a defer-
based approach to mitigate contention. We show that even with
its defer-based approach, RLU suffers from the contention of the
software clock, which we address with the Ordo primitive.

Databases rely on timestamping for concurrency control [10,
11, 36, 38, 62] to ensure a serializable execution schedule. Among
concurrency control mechanisms, the optimistic approach is popu-
lar in practice [38, 62]. Yu et al. [66] evaluated the performance of
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various major concurrency control mechanisms and emphasized
that timestamp-based concurrency control mechanisms such as op-
timistic concurrency control (OCC) and multi-version concurrency
control mechanisms (MVCC) suffer from timestamp allocation with
increasing core count. Thus, various OCC-based systems have ex-
plored alternatives. For example, Silo [62] adopted a coarse-grain
timestamping and a lightweight OCC for transaction coordination
within an epoch. The lightweight OCC is a conservative form of the
original OCC protocol. Even though it achieves scalability, it does
not scale in highly contentious workloads [34] due to its limited
concurrency control. On the other hand, MVCC protocols still rely
on logical clocks for timestamp allocation and suffer scalability col-
lapse even in a read-only workload [66, 67]. Thus, Ordo overcomes
the timestamping issue for both OCC and MVCC and is easily extend-
able to other timestamp-based CC schemes (refer to §6.5). Our work
is inspired by the works of distributed transactions systems such
as those of Thor [2], which used loosely synchronized clocks for
concurrency control, and Spanner [18], which exposed the novel
TrueTime API with uncertainty at the scale of data centers to handle
externally consistent distributed transactions.
Physical timestamping. With the pervasiveness of multicore
machines, physical timestamp-based algorithms are gaining more
traction. For example, Oplog, an update-heavy data structure library,
removes contention from a global data structure by maintaining
a per-core log that appends operations in a temporal order [8].
Similarly, Dodds et al. [22] proposed a concurrent stack that scales
efficiently with the RDTSC counter. Likewise, quiescence mecha-
nisms have shown that clock-based reclamation [63] eschews the
overhead of the epoch-based reclamation scheme. In addition, Rec-
bulc [68] used core-local hardware timestamps to reduce the record-
ing overhead of synchronization events and determine global order-
ing among them. They used a statistical approach to determine the
skew between clocks, which is around 10 cycles for their machine.
Unfortunately, besides Recbulc, the primary concern with these
algorithms, is their assumption of access to synchronized clocks,
which is not true with any available hardware. On the contrary,
all clocks have constant skew and are monotonically increasing at
a constant rate, which our Ordo primitive leverages to provide a
globally synchronized clock onmodern commodity hardware. Thus,
with the help of our API, Ordo acts as a drop-in replacement for
these algorithms. The only tweak that these algorithms require is to
carefully handle the case of uncertainty that is present because of
these invariant clocks. The idea proposed by Recbulc is not applica-
ble in our scenario, as it still provides a statistical guarantee, which
we want to avoid for designing concurrent algorithms that want to
have the property of linearizability or serializability. Moreover, our
approach ensures the correct use of these clocks with the help of
one-way latency (§3).

2.2 A Primer on Hardware Clocks

While marking an operation, a physical clock provides an externally
consistent view of operations in both distributed andmulti-threaded
environments. Unfortunately, it is difficult to establish an ordering
between clocks because exactly synchronizing them is impossible

t1

t2 t3

t4
Ci

Cj

RTTi,j = (t4 - t1) - (t3 - t2)

θi,j = (t2 - t1) - RTTi,j / 2

Figure 2: A simple clock-synchronization approach [47] to

synchronize two clocks, ci and c j , that is used by various

distributed systems. However, this approach is ineffective

for synchronizing processor clocks because of the software

overhead that leads to more coarse granularity of the clock

synchronization protocol (in µs–ms) than the actual granu-

larity of these clocks (in ns).

in practice [1, 18, 40]. Thus, to rely on these clocks, various dis-
tributed systems loosely synchronize them with the help of clock
synchronization protocols [16, 40, 47, 61].

We observe a similar trend in multicore machines that provide
per-core or per-processor hardware clocks [3, 5, 29, 53]. For example,
all modern processor vendors such as Intel and AMD provide an
RDTSC counter, while Sparc and ARM have stick and cntvct counter,
respectively. These hardware clocks are invariant in nature, that
is, processor vendors guarantee that these clocks are monotonically
increasing at a constant rate,2 regardless of the processor speed and
its fluctuation, and they reset to zero whenever a processor receives
a RESET signal (i.e., reboots). To provide such an invariant property,
the current hardware always synchronizes these clocks from an
external clock on the motherboard [14, 15, 43]. This is required
because vendors guarantee that the clocks do not fluctuate even
if a processor goes to deep sleep states, which is always ensured
by the motherboard clock. However, vendors do no guarantee the
synchronization of clocks across a processor (socket) boundary in a
multicore machine [29], not even within a processor because there
is no guarantee that each processor can receive the broadcasted
RESET signal at the same instant either inside a socket or across
them. We further confirm this trend in an Intel and ARM machine
(refer to Figure 9 (a), (d)), in which one of the sockets has almost 4–
8× higher measured offset than from the other direction. In addition,
these hardware clocks do not provide the notion of real time.

These current invariant clocks are not reliable enough to design
concurrent algorithms. To use them with confidence, we need to
have a clock synchronization mechanism that provides constant
physical skew between clocks, or we measure our offset to syn-
chronize these clocks in software (refer to Figure 2). Unfortunately,
none of these approaches work because hardware vendors cannot
provide physical skew for every processor, and we cannot measure
using existing clock synchronization protocols (refer to Figure 2),
as software measurement induces overhead, in which the mea-
sured offset may be greater than the physical offset. Moreover,
synchronizing clocks is challenging because we should be able to
distinguish a few to tens of nano seconds difference in software
(refer to Table 1). Thus, synchronizing clocks will result in mis-
synchronized clocks, thereby leading to incorrect implementation
of algorithms. To reliably use them, we devise an approach that
2These clocks may increase at a different frequency than that of a processor.
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1 def get_time(): # Get timestamp without memory reordering
2 return hardware_timestamp() # Timestamp instruction
3
4 def cmp_time(time_t t1, time_t t2): # Compare two timestamps
5 if t1 > t2 + ORDO_BOUNDARY: # t1 > t2
6 return 1
7 elif t1 + ORDO_BOUNDARY < t2: # t1 < t2
8 return -1
9 return 0 # Uncertain
10
11 def new_time(time_t t): # New timestamp after ORDO_BOUNDARY
12 while cmp_time(new_t = get_time(), t) is not 1:
13 continue # pause for a while and retry
14 return new_t # new_t is greater than (t + ORDO_BOUNDARY)

Figure 3: Ordo clock API. The get_time() method returns

the current timestamp without reordering instructions.

embraces uncertainty by measuring a maximum possible offset that
is still small enough in practice to ensure the correctness of these
algorithms, which is contrary to existing clock synchronization
algorithms [16, 40, 47, 61] or statistically calculating skew between
them on a single machine [68].

3 ORDO: A SCALABLE ORDERING

PRIMITIVE

Ordo relies on invariant hardware clocks to provide an illusion
of a globally synchronized hardware clock with some uncertainty.
To provide such an illusion, Ordo exposes a simple API that al-
lows applications either to obtain a global timestamp or to order
events with some uncertainty. Thus, we introduce an approach to
measure the uncertainty window, followed by a proof to ensure its
correctness.

3.1 Embracing Uncertainty in Clock: Ordo API

Timestamp-based concurrent algorithms can reliably use an in-
variant clock if we define the uncertainty period. Moreover, such
algorithms are designed to execute on two or more cores/threads,
which require two important properties from invariant clocks: 1)
establishing a relation among two or more cores to compare events
and 2) providing a notion of a monotonically increasing globally
synchronized clock to order events in a single machine. Thus, we
propose Ordo, which provides a notion of a monotonically in-
creasing timestamp but also exposes an uncertainty window, called
ORDO_BOUNDARY, in which we are unsure of the ordering. To ease
the use of our Ordo primitive, we expose three simple methods
(Figure 3) for such algorithms:
• get_time() is the hardware-specific timestamping instruc-
tion that also takes care of the hardware-specific require-
ments such as instruction reordering.
• new_time(time_t t) returns a new timestamp at the granu-
larity of ORDO_BOUNDARY and is greater than t.
• cmp_time(time_t t1, time_t t2) establishes the precedence
relation between timestampswith the help of ORDO_BOUNDARY.
If the difference between t1 and t2 is within ORDO_BOUNDARY,
it returns 0, meaning that we are uncertain.

1 runs = 100000 # multiple runs to minimize overheads
2 shared_cacheline = {"clock": 0, "phase": INIT}
3
4 def remote_worker():
5 for i in range(runs):
6 while shared_cacheline["phase"] != READY:
7 read_fence() # flush load buffer
8 ATOMIC_WRITE(shared_cacheline["clock"], get_time())
9 barrier_wait() # synchronize with the local_worker
10
11 def local_worker():
12 min_offset = INFINITY
13 for i in range(runs):
14 shared_cacheline["clock"] = 0
15 shared_cacheline["phase"] = READY
16 while shared_cacheline["clock"] == 0:
17 read_fence() # flush load buffer
18 min_offset = min(min_offset, get_time() -
19 shared_cacheline["clock"])
20 barrier_wait() # synchronize and restart the process
21 return min_offset
22
23 def clock_offset(c0, c1):
24 run_on_core(remote_worker, c1)
25 return run_on_core(local_worker, c0)
26
27 def get_ordo_boundary(num_cpus):
28 global_offset = 0
29 for c0, c1 in combinations([0 ... num_cpus], 2):
30 global_offset = max(global_offset,
31 max(clock_offset(c0, c1),
32 clock_offset(c1, c0)))
33 return global_offset

Figure 4: Algorithm to calculate the ORDO_BOUNDARY: a system-

wide global offset.

3.2 Measuring Uncertainty between Clocks:

Calculating ORDO_BOUNDARY

Under the assumption of invariant clocks, the uncertainty win-
dow (or skew) between clocks is constant because both clocks
monotonically increase at the same rate but may receive a RESET
signal at different times. We define this uncertainty window as a
physical offset: ∆. A common approach to measure ∆ is to use a
clock-synchronization mechanism, in which a clock reads its value
and the value of other clocks, computes an offset, and then adjusts
its clock by the measured offset [19]. However, this measurement
introduces various errors, such as reading remote clocks and soft-
ware overheads, including network jitter. Thus, we cannot rely on
this method to define ORDO_BOUNDARY because 1) hardware vendors
do not provide minimum bounds on the message delivery; 2) the
algorithm is erroneous because of the uncertainty of the message
delivery [16, 40, 47];3 and 3) periodically using the clock synchro-
nization will waste CPU cycles, which will increase with core count.
Moreover, the measured offset can be either larger or smaller than
∆, which renders it unusable for concurrent algorithms.

3.2.1 Measuring global offset. Instead of synchronizing these
clocks among themselves, we exploit their unique invariant prop-
erty and empirically calculate a system-wide global offset, called
ORDO_BOUNDARY, which ensures that the measured offset between

3 Although clock synchronization algorithms are widely used in distributed systems
settings where multiple clocks are in use, they are also applicable in a single machine
with per-core clocks, and it maintains the notion of a global clock by synchronizing
itself with an outside clock over the network [47].
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Figure 5: Calculating offset (δi↔j ) using pairwise one-way-

delay latency between clocks (ci and cj ). ∆i j and ∆ji are the

physical offsets between ci and cj , and cj and ci , respec-

tively. δi j and δji are measured offsets with our approach.

Depending on physical and measured offsets, there are four

possible cases. Unlike existing clock-synchronization proto-

cols [16, 19, 40, 47]
3
that average the calculated latency based

on RTT (refer to Figure 2), we consider each direction sepa-

rately to measure the offset and consider only the direction

that is always greater the positive physical offset, such as

cases 1 and 4.

clocks is always greater than their physical offset. We define mea-

sured offset (δi j ) as a one-way-delay latency between clocks (ci to
cj ), and this measured offset (δ ) will be greater than the physical
offset because of the extra one-way-delay latency.

Figure 4 illustrates our algorithm to calculate the global offset
after calculating the correct pairwise offset for all clocks in a ma-
chine. We measure the offset between core ci and cj as follows:
ci atomically writes its timestamp value to the variable (line 8),
which notifies waiting cj (line 16). On receiving the notification, cj
reads its own timestamp (line 18) and then calculates the difference
(line 19), called δi j , and returns the value. The measured offset
has an extra error over the physical offset because δi j , between
cores ci and cj , also includes software overhead, interrupts, and
the coherence traffic. We reduce this error by calculating the offset
multiple times (line 1) and taking the minimum of all runs (line 19–
21). To define the correct offset between ci and cj , we calculate
offset from both ends (i.e., δi j and δji ) and choose their maximum
since we do not know which clock is ahead of the other (line 31).
After calculating pairwise offsets among all cores, we select the
maximum offset as the global offset, or ORDO_BOUNDARY, (line 30).
We take the maximum offset among all cores because it ensures that
any arbitrary core is guaranteed to see a new timestamp once the
ORDO_BOUNDARY window is over, which enables us to compare times-
tamps with confidence. Moreover, the calculated ORDO_BOUNDARY is
reasonably small because we use cache coherence as our message
delivery medium, which is the fastest means of communication
between cores.

3.2.2 Correctness of the measured offset. For invariant clocks to
be useful, our approach to calculate the ORDO_BOUNDARY must have
the following invariant:

The global measured offset is always greater than the maximum
physical offset between any cores.

We first state our assumptions and prove with a lemma and a theo-
rem that our algorithm (Figure 4) to calculate the global offset is
correct with respect to invariant clocks.

Assumptions. Our primary assumption is that clocks are invariant
and have a physical offset that remains constant until the machine
is reset. Moreover, the hardware’s external clock-synchronization
protocol maintains the monotonic increase of these clocks because
it guarantees an invariant clock [14, 15, 43], which is a reasonable
assumption for modern, mature many-core processors such as X86,
Sparc, and ARM. Hence, with the invariant timestamp property, the
physical offset, or skew, between clocks also remains constant.

Lemma. The maximum of calculated offsets from ci to cj and cj
to ci pairs (i.e., δi↔j = max(δi j ,δji )) is always greater than or equal

to the physical offset (i.e., ∆i j ).

Proof. For cores ci and cj :

δi j = |c j (t1) − ci (t0) | = |c j (t0 +T ) − ci (t0) | (1)

δji = |ci (t1) − c j (t0) | = |ci (t0 +T
′) − c j (t0) | (2)

δi j and δji denote the offset measured from ci to cj and cj to ci ,
respectively, and |∆i j | = |∆ji |. ci (t0) and c j (t0) denote the clock
value at a real time t0, which is a constant monotonically increasing
function with a defined timestamp frequency by the hardware. T
andT ′ are the recorded true time when they receive a message from
another core (Figure 4: line 16), which denotes the one-way-delay
latency in either direction (Figure 4: line 31). Depending on the
relation between clocks at time t (ci (t ) and c j (t )) and measured
offsets (δi j and δji ) from Equation 1 and 2, Figure 5 presents four
possible cases: 1 and 2 if c j (t ) ≥ ci (t ), and 3 and 4 if ci (t ) ≥
c j (t ). Let us consider a scenario in which c j (t ) ≥ ci (t ) representing
cases 1 and 2 and assume that we obtain case 2 . By contradiction,
case 2 is not possible because our algorithm adds an extra cost
of cache-line transfer (line 16) to measure the offset of constant
monotonically increasing clocks, which will always return case 1 ;
thus, δji is going to be greater than δi j . Since we do not knowwhich
clock is lagging, we calculate other possible scenarios, (ci (t ) ≥ c j (t ):
cases 3 and 4 ) so that we always obtain the maximum of two
measured offsets without any physical offset information (lines 31–
32). Thus, either case 1 or case 4 always guarantees that measured
offset is greater than the physical offset. □

Theorem. The global offset is the maximum of all the pairwise

measured offsets for each core.

Proof. δд = max(δi↔j ) = max(max(δi j ,δji )) | ∀i, j ∈ {0..N }.
N is the number of cores and δд is the ORDO_BOUNDARY. We extend
the lemma to all pairwise combinations of cores (refer to Figure 4
line 29) to obtain the maximum offset value among all cores. This
approach 1) establishes a relation among all cores such that if any
core wants to have a new timestamp, it can obtain such a value at the
expiration of ORDO_BOUNDARY and 2) also establishes an uncertainty
period at a global level in which we can definitely provide the
precedence relationship among two or more timestamps if all of
them have a difference of the global offset; otherwise, we mark
their comparison as uncertain if they fall in that offset window. □

4 ALGORITHMSWITH ORDOWITHOUT

UNCERTAINTY

With the Ordo API, an important question is how do we handle

the uncertainty exposed by the Ordo primitive while adopting it for
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Logical Timestamping: CC Algorithm

txn_read/write(txn):

    txn.timestamp = get_timestamp()

    # Add to read/write set

txn_commit(txn):

    lock_writeset(txn)

    commit_txn = get_new_timstamp()

    if validate_readset(txn, commit_txn) is True:

         commit_write_changes(txn, commit_txn)     

Physical Timestamping: oplog

op_log(op):

    local_log = get_local_log()

    thd.log.append([op, get_timestamp()])

op_synchronize(op):

    # Acquire per-object lock

    current_log = []

    for log in all_logs():

        # Add all op object to the current_log

    current_log.sort() # Sort via timestamp

    apply(current_log) # Apply all op objects

Figure 6: Pseudo-code of logical timestamping algorithms

used in STM [21, 55] and databases [10, 36, 62], and that of

physical timestamping used in Oplog [8].

timestamp-based algorithms?We answer this question by classifying
them into two categories:
• Physical to logical timestamping: Algorithms that rely on
logical timestamping or versioning (refer to Figure 6) will
require all three methods, but the most important one is the
cmp_time(), which provides the ordering between clocks to
ensure their correctness. By introducing the ORDO_BOUNDARY,
we now need to extend these algorithms to either defer or
wait to execute any further operations.
• Hardware timestamping: Algorithms that use physical times-
tamping [8, 22] can use new_time() method to access a glob-
ally synchronized clock to ensure their correctness under
invariant clocks.

4.1 Read-Log-Update (RLU)

RLU is an extension to the RCU framework that enables a semi-
automated method of concurrent read-only traversals with multiple
updates. It is inspired by STM [59] and maintains an object-level
write-log per thread, in which writers first lock the object and then
copy those objects to their own write log and manipulate them
locally without affecting the original structure. RLU adopts the RCU
barrier mechanism with a global clock-based logging mechanism [7,
21].

Figure 7 illustrates the pseudo-code of the functions of RLU that
use the global clock. We refer to the pseudo-code to explain its
workings, limitations, and our changes to the RLU design. RLUworks
as follows: All operations reference the global clock in the beginning
(line 2) and rely on it to dereference the shared objects (line 15).
For a write operation, each writer first dereferences the object and
copies it in its own log after locking the object. At the time of
commit (line 25), it increments the global clock (line 27), which
effectively splits the memory snapshot into the old and new one.
While old readers refer to the old snapshot that have smaller clock
values than the incremented global clock, the new readers read the
new snapshot that starts after the increment of the global clock
(lines 18 – 22). Later, after increasing the global clock, writers wait
for old readers to finish by executing the RCU-style quiescence
loop (lines 41 – 50), while new operations obtain new objects from
the writer log. As soon as the quiescence period is over, the writer
safely writes back the new objects from its own log to the shared
memory (line 31) and then releases the lock (line 32). In summary,
RLU has three scalability bottlenecks: 1) maintain and reference

1 # All operations acquire the lock
2 def rlu_reader_lock(ctx):
3 ctx.is_writer = False
4 ctx.run_count = ctx.run_count + 1 # Set active
5 memory_fence
6 - ctx.local_clock = global_clock # Record global clock
7 + ctx.local_clock = get_time() # Record Ordo global clock
8
9 def rlu_reader_unlock(ctx):
10 ctx.run_count = ctx.run_count + 1 # Set inactive
11 if ctx.is_writer is True:
12 rlu_commit_write_log(ctx) # Write updates
13 --------------------------------------------------------------
14 # Pointer dereference
15 def rlu_dereference(ctx, obj):
16 ptr_copy = get_copy(obj) # Get pointer copy
17 # Return object or object copy
18 other_ctx = get_ctx(thread_id) # check for stealing
19 - if other_ctx.write_clock <= ctx.local_clock:
20 + if cmp_time(ctx.local_clock, other_ctx.write_clock) == 1:
21 return ptr_copy # return ptr_copy (stolen)
22 return obj # no stealing, return the oject
23 --------------------------------------------------------------
24 # Memory commit
25 def rlu_commit_write_log(ctx):
26 - ctx.write_clock = global_clock + 1 # Enable stealing
27 - fetch_and_add(global_clock, 1) # Advance clock
28 + # Ordo clock with an extra ORDO_BOUNDARY for correctness
29 + ctx.write_clock = new_time(ctx.local_clock + ORDO_BOUNDARY)
30 rlu_synchronize(ctx) # Drain readers
31 rlu_writeback_write_log(ctx) # Safe to write back
32 rlu_unlock_write_log(ctx)
33 ctx.write_clock = INFINITY # Disable stealing
34 rlu_swap_write_logs(ctx) # Quiesce write logs
35 --------------------------------------------------------------
36 # Synchronize with all threads
37 def rlu_synchronize(ctx):
38 for thread_id in active_threads:
39 other = get_ctx(thread_id)
40 ctx.sync_cnts[thread_id] = other.run_cnt
41 for thread_id in active_threads:
42 while:
43 if ctx.sync_cnts[thread_id] & 0x1 != 0:
44 break # not active
45 other = get_ctx(thread_id)
46 if ctx.sync_cnts[thread_id] != other.run_cnt:
47 break # already progressed
48 - if ctx.writer_clock <= other.local_clock:
49 + if cmp_time(other.local_clock, ctx.writer_clock) == 1:
50 break # started afer me

Figure 7: RLU pseudo-code including our changes.

the global clock, which does not scale with increasing core count,
as shown in Figure 1; 2) lock/unlock operation on an object, and
3) copy an object for a write operation. RLU tries to mitigate the
first problem by employing a defer-based approach, but it comes
at the cost of extra memory utilization. The last two are design
choices that prefer programmability over the hand-crafted copy
management mechanism.

We address the scalability bottleneck of the global clock with the
Ordo primitive. Now, every read and write operation refers to the
global clock via get_time() (line 6), and relies on it to dereference
the object by comparing the timestamp for two contexts with the
cmp_time() method (line 7), which provides the same comparison
semantics before the modification (line 6). At the time of commit,
we demarcate between the old and new snapshot by obtaining a
new timestamp via the new_time() method (line 29), and later rely
on this timestamp to maintain the clock-based quiescence period
for readers that are still using the old snapshot (line 49). Note that
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we add an extra ORDO_BOUNDARY to correctly differentiate between
the old snapshot and the newer one, as we may obtain an incorrect
snapshot if one of the clocks has negative skew.

Our modification does not break the correctness of the RLU al-
gorithm, i.e., to always have a consistent memory snapshot in the
RLU protected section. In other words, at time t ′ > t ; because of
the constant monotonically increasing clock, the time obtained at
the commit time of the writer (line 29) is always greater than the
previous write timestamp, thereby keeping a protected RLU section
from seeing its concurrent overwrite. There can be an inconsis-
tency if a thread has just updated a value and another thread is
trying to steal the object while having a negative skew than the
committed thread’s clock. In this case, the reading thread may read
an old snapshot, which can have an inconsistent memory snap-
shot. Since RLU only supports only a single version, we address
this issue by adding an extra ORDO_BOUNDARY at the commit time,
which ensures that we have at least one ORDO_BOUNDARY difference
between or among threads. Moreover, our modification enforces
the invariant for writers in the following ways: 1) If a new writer
is able to steal the copy from the other writer (line 20), it still holds
the invariant; 2) If a new writer is unable to steal the copy of the
locked object (line 22), the old writer will quiesce while holding the
writer lock (line 37), which will force the new writer to abort and
retry because RLU does not allow writer-writer conflict. Note that
the RLU algorithm already takes care of the writer log quiescence
by maintaining two versions of logs, which are swapped to allow
stealing readers to use them (line 34).

4.2 Concurrency Control for Databases

Database systems serve highly concurrent transactions and queries,
with strong consistency guarantees by using concurrency control
(CC) schemes. Two main CC schemes are popular among state-of-
the-art database systems: optimistic concurrency control (OCC) and
multi-version concurrency control (MVCC). Both schemes use times-
tamps to decide global commit order without locking overhead [31].
Figure 6 presents the pseudo-code of CC algorithms.
OCC is a single CC scheme that consists of three phases: 1) read,
2) validation, and 3) write. In the first phase, a worker keeps foot-
prints of a transaction in local memory. At commit time, it acquires
locks on the write set. After that, it checks whether the transac-
tion violates serializability in the validation phase by assigning a
global commit timestamp to the transaction and validates both the
read and write set by comparing their timestamps with the commit
timestamp. After the validation phase, the worker enters the write
phase in which it makes its write set visible by overwriting original
tuples and releasing held locks. To address the problem of logical
timestamps in OCC [36], some state-of-the-art OCC schemes have mit-
igated the updates with either conservative read validation [35, 62]
or data-driven timestamping [67].

To show the impact of Ordo, we modify the first two phases—
read and validation phases—of the OCC algorithm [36]. In the read
phase, we assign the timestamp via new_time(), which guarantees
that the new timestamp will be greater than the previous one. The
validation scheme is the same as before, but the difference is that
get_time() provides the commit timestamp. The worker then uses
the commit timestamp to validate the read set by comparing it

with the recorded timestamp of both the read and write set. We
apply a conservative approach of aborting the transactions if two
timestamps fall within the ORDO_BOUNDARY in the validation step.
Two requirements ensure serializability: 1) obtain a new timestamp
that new_time() ensures, and 2) handle the uncertainty window, in
which we conservatively abort transactions, thereby resolving the
later-conflict check [2] to ensure the global ordering of transactions.
MVCC is another major category of CC schemes. Unlike other single-
version CC schemes, MVCC takes an append-only update approach
and maintains a version history, and uses timestamps to determine
which version of records to serve. MVCC avoids reader-writer con-
flicts by forwarding them to physically different versions, thereby
making this scheme more robust than OCC under high contention.
To support time traveling and deciding the commit order, MVCC
relies on logical timestamping, in the read and validation phase,
which leads to severe scalability collapse (4.1–31.1× in Figure 13)
due to the timestamp allocation with increasing core count [66].
We chose Hekaton as our example because it is the state-of-the-art
in-memory database system [38]. Although it supports multiple CC
levels with varying consistency guarantees, we focus on serializ-
able, optimistic MVCC mode. We first describe the workings of the
original algorithm and then introduce our modifications with the
Ordo primitive.
Hekaton has the same three phases as OCC and works as follows:

A worker in a transaction, reads the global clock at the beginning
of the transaction. During the read stage, a transaction reads only a
version when its begin timestamp falls between the begin and end
timestamps4 of the committed version. During update, a worker
immediately appends its version to the database. The version con-
sists of the transaction ID (TID) of the owner transaction marked
in the begin timestamp field. At commit, the transaction assigns a
commit timestamp to 1) determine the serialization order, 2) vali-
date the read/scan sets, and 3) iterate the write set to replace TIDs
installed in the begin timestamp field with that timestamp. Mean-
while, another transaction that encounters a TID-installed version
examines visibility with the begin and end timestamps of the owner
transaction.

We apply the Ordo primitive by first replacing the timestamp
allocation to use new_time method in the beginning and during
the commit phase of a transaction. As a result, this modification
introduces uncertainty to compare timestamps from different lo-
cal clocks during the visibility check. We substitute the compar-
ison with cmp_time() to ensure correctness. Thus, a worker pro-
ceeds only if the difference between timestamps is greater than the
ORDO_BOUNDARY that provides a definite precedence relation. Other-
wise, we either restart that transaction or force it to abort. However,
given the small size of ORDO_BOUNDARY, we expect the aborts caused
by this uncertainty to be rare. In terms of correctness, our approach
provides the same consistency guarantee as the original one, i.e.,
1) obtaining a unique timestamp, which new_time() ensures, and
2) maintaining the serial schedule, which is also maintained by
cmp_time(), that only, conservatively, commits the transaction that
has a precedence relation.

4Each version of records have begin timestamp, which indicates when the version
becomes valid, and an end timestamp, which denotes when the version becomes
invalid.
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4.3 Software Transactional Memory (TL2)

We choose TL2 [21], an ownership- and word-based STM algorithm
that employs timestamping for reducing the common-case overhead
of validation. TL2 works by ordering the update and access relative
to a global logical clock and checking the ownership record only
once, i.e., it validates all transactional reads at the time of commit.
The algorithm works as follows: 1) A transaction begins by storing
a global time value (start ). 2) For a transactional load, it first checks
whether an orec5 is unlocked and has no newer timestamp than
the start timestamp of that transaction; it then adds the orec to
its read set, and appends the address-value pair in the case of a
transactional write. 3) At the time of commit, it first acquires all of
the locks in the write set and then validates all elements of the read
set by comparing the timestamp of the orec with that of the start
timestamp of the transaction. If successful, the transaction writes
back the data and obtains a new timestamp, denoting the end of
the timestamp (end). It uses the end timestamp as a linearization
point, which it atomically writes in each orec of the write set (write
address) and also releases the lock. Here, end is guaranteed to be
greater than the start timestamp because a transaction atomically
increments the global clock, which ensures the linearizability of a
transactional update.

The basic requirement of the TL2 algorithm is that end should
be greater than start , which the Ordo primitive (new_time()) en-
sures. Moreover, two disjoint transactions can share the same times-
tamp [70]. Thus, by using the Ordo API, we modify the algorithm
as follows: We assign start with the value of new_time(), and use
new_time() to obtain a definite newer timestamp for the end vari-
able. Here, we again adopt a conservative approach of aborting
transactions if two timestamps fall in the ORDO_BOUNDARY, as this
can corrupt the memory or result in an undefined behavior of the
program [21]. Although we can even use timestamp extension to
remove aborts that occur during the read timestamp validation at
the beginning of a transactional read, it may not benefit us because
of the very small ORDO_BOUNDARY. Our modification ensures lineariz-
ability by 1) first providing an increasing timestamp via new_time()
that globally provides a new timestamp value and 2) always val-
idating the read set at the time of commit. In addition, we abort
transactions if two timestamps (read set timestamp and commit
timestamp) fall in the ORDO_BOUNDARY to remove uncertainty during
the validation phase. Similarly, while performing a transactional
load, we apply the same strategy to remove any inconsistencies.

4.4 Oplog: An Update-heavy Data Structures

Library

Besides logical timestamping, physical timestamping is becoming
common. In particular, there is an efficient implementation of a con-
current stack [22] and an update-heavy concurrency mechanism
(Oplog [8]), with the same commonality of performing operations
in a decentralized manner. We extend the Ordo primitive to Oplog.
It maintains a per-core log, which stores update operations in a
temporal order, and it applies logs on the centralized data structure
in a sorted temporal order during the read phase. To ensure the
correct temporal ordering across all per-core logs, Oplog requires a

5Orec is a ownership record, which either stores the identity of a lock holder or the
most recent unlocked timestamp.

system-wide synchronized clock to determine the ordering of oper-
ations.Wemodify Oplog to use the new_time()method, which has a
notion of a globally synchronized hardware clock while appending
operations to a per-core log and use cmp_time() to compare times-
tamps. Oplog ensures linearizability by relying on the system-wide
synchronized clock, which ensures that the obtained timestamps
are always in increasing order. Our modification guarantees lin-
earizability because new_time() exposes a globally synchronized
clock, which always provides a monotonically increasing times-
tamp that will always be greater than the previous value across
all invariant clocks. There is a possibility that two or more times-
tamps fall inside the ORDO_BOUNDARY during the merge phase, which
denotes concurrent update operations, which is also possible in
the original Oplog design. We address this problem by using the
same technique of the original Oplog design, which is to apply these
operations in an ascending order of the core id.

5 IMPLEMENTATION

Our library and micro benchmarks comprise 200 and 1,100 lines of
code (LoC), in C, respectively, which support architecture-specific
timers for different architectures. We modify various programs to
show the effectiveness of our Ordo primitive. We modify 50 LoC
in the RLU code base to support both the Ordo primitive and the
architecture-specific code for ARM. To specifically evaluate database
concurrency protocols, we choose DBx1000 [65] because it includes
all database CC algorithms. We modify 400 LoC to support both OCC
and Hekaton algorithms, including changes for the ARM architecture.
We use an x86 port of the TL2 algorithm [49], which we extend (25
LoC) using the Ordo API.

6 EVALUATION

We evaluate the effectiveness of the Ordo primitive by answering
the following key questions:
• How does an invariant hardware clock scale on various com-
modity architectures? (§6.1)
• What is the scalability characteristic of the Ordo primitive?
(§6.2)
• What is the impact of the Ordo primitive on algorithms that
rely on synchronized clocks? (§6.3)
• What is the impact of the Ordo primitive on version-based
algorithms? (§6.4, §6.5, §6.6)
• How does the ORDO_BOUNDARY affect the scalability of algo-
rithms? (§6.7)

Experimental setup. Table 1 lists the specifications of four ma-
chines, namely, a 120-core Intel Xeon (having two hyperthreads),
a 64-core Intel Xeon Phi (having four hyperthreads), a 32-core AMD,
and a 96-core ARMmachine. The first three machines have x86 archi-
tecture, out of which Xeon has a higher number of physical cores
and sockets, Phi has a higher degree of parallelism, and AMD is from
a different processor vendor. These three processors have invari-
ant hardware clocks in their specification. Moreover, we also use
a 96-core ARM machine, whose clock is different from existing ar-
chitectures. It supports a separate generic timer interface, which
exists as a separate entity inside a processor [5]. We evaluate the
scalability of clocks and algorithms up to the maximum number of
hardware threads in a machine.



A Scalable Ordering Primitive for Multicore Machines Eurosys’18, April 23–26, 2018, Porto, Portugal

Machine Cores SMT Speed Sockets Offset between clocks

(GHz) min (ns) max (ns)

Intel Xeon 120 2 2.4 8 70 276
Intel Xeon Phi 64 4 1.3 1 90 270
AMD 32 1 2.8 8 93 203
ARM 96 1 2.0 2 100 1,100

Table 1: Various machine configurations that we use in our

evaluation as well as the calculated offset between cores.

Whilemin is the minimum offset between cores,max is the

global offset, called ORDO_BOUNDARY (refer to Figure 4), which

we used, including up to the maximum hardware threads

(Cores∗SMT) in a machine.
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used by the Ordo primitive. (a) shows the cost of a single

timestamping instructionwhen it is executed by varying the

number of threads in parallel; (b) shows the number of per-

core generated timestamps in amicro secondwith atomic in-

crements (A) andwith new_time() (O), which generates times-

tamps at each ORDO_BOUNDARY.

6.1 Scalability of Invariant Hardware Clocks

We create a simple benchmark to measure the cost of hardware
timestamping instructions on various architectures. The benchmark
forks a process on each core and repeatedly issues the timestamp
instruction for a period of 10 seconds. Figure 8 shows the cost
of the timestamp instruction on four different architectures. We
observe that this cost remains constant up to the physical core count,
but increases with increasing hardware threads, which is evident
in Xeon and Phi. Still, it is comparable to an atomic instruction
operation in a medium contended case. One important point is that
ARM supports a scalable timer whose cost (11.5 ns) is equivalent to
that of Xeon (10.3 ns). In summary, the current hardware clocks

are a suitable foundation for mitigating contention problem of the
global clock with increasing core count, potentially together with
hyperthreads.

6.2 Evaluating Ordo Primitive

Figure 9 presents the measured offset (δi j ) for each pair-wise com-
bination of the cores (with SMT). The heatmap shows that the
measured offset between adjacent clocks inside a socket is the least
on every architecture. One important point is that all measured
offsets are positive. As of this writing, we never encountered a
single negative measured offset while measuring the offset in either
direction from any core over the course of the past two months.
This holds true with prior results [8, 57, 63] and illustrates that the
added one-way-delay latency is greater than the physical offset,
which always results in giving a positive measured offset in any
direction. For a certain set of sockets, we observe that the measured
offset, within that socket is less than the global offset. For example,
the fifth socket in the Xeonmachine has a maximum offset of 120 ns
compared with the global offset of 276 ns.

We can define the ORDO_BOUNDARY based on an application use in
which the application can choose the maximum offset of a subset
of cores or sockets inside a machine. But, they need to embed the
timestamp along with the core or thread id, which will shorten
the length of the timestamp variable and may not be advantageous
(§6.7). Therefore, we choose the global offset across all cores as
the ORDO_BOUNDARY for all of our experiments. Table 1 shows the
minimum and maximum measured offset for all of the evaluated
machines, with maximum offset being the ORDO_BOUNDARY. We cre-
ate a simple micro benchmark to show the impact of timestamp
generation by each core by using our new_time() and the atomic
increments. Figure 8 (b) shows the results of obtaining a new times-
tamp from a global clock, which is a representative of both physical
timestamping and read-only transactions. The Ordo-based times-
tamp generation remains almost constant up to the maximum core
count. It is 17.4–285.5× faster than the atomic increment at the
highest core count, thereby showing that transactions that use
logical timestamping will definitely improve their scalability with
increasing core count.

One key observation is that one of the sockets in both Xeon
(eighth socket: 105–119 cores) and ARM (second socket: 48–96 cores)
has a 4–8× higher measured offset when measured from a core
belonging to the other socket, even though the measured socket
bandwidth is constant for both architectures [41]. For example, the
measured offset from core 50 to core 0 is 1,100 ns but is only 100
ns from core 0 to core 50 for the ARM machine. We believe that
one of the sockets received the RESET signal later than the other
sockets in the machine, thereby showing that the clocks are not
synchronized. For Phi, we observe that most of the offset lies in the
window of 200 ns, but adjacent cores have the least offset.

6.3 Physical Timestamping: Oplog

For physical timestamping, we evaluate the impact of Oplog on
the Linux reverse map (rmap [45]), which records the page table
entries that map a physical page for every physical page, and it
is primarily used by fork(), exit(), mmap(), and mremap() system
calls. We modify the reverse mapping for both anonymous and file
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Both Xeon (a) and ARM (d) machines show that the one of the sockets has a 4–8× higher offset than the others. To confirm this,

we measured the bandwidth between the sockets, which is symmetric in both machines.
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rmaps in the Linux kernel [8]. We use Exim mail-server [26] on the
Xeon machine to evaluate the scalability of the rmap data structure.
Exim is a part of the Mosbench [13] benchmark suite; it is a process-
intensive application that listens to SMTP connections and forks a
new process for each connection, and a connection forks two more
processes to perform various file system operations in shared direc-
tories as well as on the files. Figure 10 shows the results of Exim on
the stock Linux (Vanilla) and our modifications that include kernel
versions with (OplogORDO) and without the Ordo primitive (Oplog).
The Oplog version directly reads the value from the unsynchronized
hardware clocks. The results show that Oplog does alleviate the
contention from the reverse mapping, which we observe after 60
cores, and the throughput of Exim increases by 1.9× at 240 cores.
The Oplog version is merely 4% faster than the OplogORDO approach
because Exim is now bottlenecked by the file system operations [48]
and zeroing of the pages at the time of forking after 105 cores. We
do not observe any huge difference between Oplog and OplogORDO
because a reverse mapping is updated only when a system call is
issued, which amortizes the cost ORDO_BOUNDARY window, besides
other virtual file system layer overhead [48].

6.4 Read Log Update

We evaluate the throughput of RLU for the hash table benchmark
and citrus tree benchmark across architectures. We report only the

numbers for the hash table benchmark, as we observe the same
improvement with RLUORDO (almost 2×) for the citrus tree benchmark,
involving complex update operations, across the architectures. The
hash table uses one linked list per bucket, and the key hashes into
the bucket and traverses the linked list for a read or write operation.
Figure 11 shows the throughput of the hash table with varying
update rates of 2% and 40% across the architectures, where RLU is
the original implementation and RLUORDO is the modified version.
The results show that RLUORDO outperforms the original version by
an average of 2.1× across the architectures for all update ratios at
the highest core.

Across architectures, the result for the starting number of cores
for RLU is better than for RLUORDO because 1) coherence traffic until
certain core counts (Xeon: within a socket, Phi: until 4 cores, ARM:
36 cores and AMD: 12 cores) assists the RLU protocol that has lower
abort rates than RLUORDO, and 2) RLUORDO has to always check for
the locks while dereferencing because the invariant clock does not
provide the semantic of fetch_and_add(). Thus, in the case of only
readers (100% reads), RLUORDO is 8% slower than RLU at the highest
core across the architectures, but even with a 2% update rate, it is
the atomic update that degrades the performance of RLU. On further
analysis, we find that the RLUORDO spends at most 20% less time in
the synchronize phase, which happens because of the decrease in
the cache-coherence traffic on higher core count across all archi-
tectures. Furthermore, our Ordo’s new_time() does not act as a
backoff mechanism. Figure 16 illustrates that even on varying the
ORDO_BOUNDARY boundary by 1/8×–8×, the scalability of RLU algo-
rithm changes by only ±3% while running on 1-core, 1-socket, and
8-sockets.

Overall, all multisocket machines show a similar scalability trend
after crossing the socket boundary and are saturated after a certain
core count because they are bottlenecked by the locking and cre-
ation of the object and its copy, which is more severe in the case of
ARM for crossing the NUMA boundary, as is evident after 48 cores.
In the case of Phi, there is no scalability collapse because it has
a higher memory bandwidth and slower processor speed, which
only saturates the throughput. However, as soon as we remove the
logical clock, the throughput increases by an average of 2× in each
case. Even though the cost of the timestamp instruction increases
with hyperthreads (3× at 256 threads), the throughput is almost
saturated because of the object copying and locking. Even with the
deferrals (refer to Figure 12), RLUORDO is at most 1.8× faster than the
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NUMA boundary.

base version, thereby illustrating that the defer-based approach still
suffers from the contention on the global clock.

6.5 Concurrency Control Mechanism

We evaluate the impact of Ordo primitive on the existing OCC and
Hekaton algorithms with YCSB [17] and TPC-C benchmarks. We
execute read-only transactions to focus only on the scalability as-
pect without transaction contentions (Figure 13), which comprises
two read-queries per transaction and a uniform random distribu-
tion. We also present results from the TPC-C benchmark with 60
warehouses as a contentious case (Figure 14). Figure 13 shows that
both OCCORDO and HekatonORDO not only outperform OCC (5.6–39.7×)
and Hekaton (4.1–31.1×), respectively across architectures, but also
achieve almost similar scalability as that of TicToc and Silo, which
do not have global timestamp allocation overhead. The reason for
such an improvement is that both OCC and Hekaton waste 62–80%
of their execution time in allocating the timestamps, which has also
been shown by Yu et al. [66], whereas Ordo successfully eliminates
the logical timestamping overhead with a modest amount of modi-
fication. Compared with state-of-the-art optimistic approaches that
avoid global logical timestamping, OCCORDO shows comparable scala-
bility, thereby enabling Ordo to serve as a push-button accelerator
for timestamp-based applications, which provides a simpler way
to scale these algorithms. In addition, HekatonORDO has compara-
ble performance to that of other OCC-based algorithms and is only

1.2–1.3× slower because of its heavyweight dependency-tracking
mechanism that maintains multiple versions.

Figure 14 presents the throughput and abort rate for the TPC-C
benchmark. We run NewOrder (50%) and Payment (50%) transac-
tions only with hash index. The results show that OCCORDO is 1.24×
faster than TicToc and has a 9% lower abort rate, since TicToc
starts to spend more time (7%) in the validation phase because of
the overhead of its data-driven timestamp computation, as it has to
traverse the read and write set to find the common commit times-
tamp; OCCORDO already has a notion of global time, which speeds
up the validation process, thereby increasing its throughput with
lower aborts. Thus, hardware clocks provide better scalability than
software bypasses that come at the cost of extra computation. In the
case of multi-version CC, HekatonORDO also outperforms Hekaton by
1.95× with lower aborts.

6.6 Software Transactional Memory

We evaluate the impact of Ordo primitive by evaluating the TL2
and TL2ORDO algorithms on the set of STAMP benchmarks. Figure 15
presents the speedup over the sequential execution of these bench-
marks. The results show that TL2ORDO improves the throughput of
every benchmark. TL2ORDO has higher speedup over TL2 for both
Ssca2 and Kmeans because they have short transactions, which in
turn results in more clock updates. Genome, on the other hand,
is dominated by large read conflict-free transactions; thus, it does
not severely stress the global clock with an increasing core count.
In the case of Intruder, we observe some performance improve-
ment up to 60 cores. However, after 60 cores, TL2ORDO has 10% more
aborts than TL2, which in turn slows down the performance of the
TL2ORDO, as the bottleneck shifts to the large working set maintained
by the basic TL2 algorithm. We can circumvent this problem by
employing type-aware transactions [28]. In the case of Labyrinth,
we observe that the TL2ORDO improves the throughput by 2–3.8×.
Although Labyrinth has long running transactions [49], we observe
that the number of aborts decreases by 5.8–15.5×, which illustrates
that transactions in Labyrinth spend almost twice the amount of
time in re-executing the aborted transactions, which occurs because
of the cache-line contention of the global clock. Finally, TL2ORDO also
improves the performance of Vacation because it is a transactional-
intensive workload, as it performs at least 3 M transactions with
abort rates on the order of 300K–400K, which results in stressing the
global clock. In summary, Ordo primitive improves the throughput
of the TL2 by a maximum factor of two.
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6.7 Sensitivity Analysis of ORDO_BOUNDARY

To show that the calculated ORDO_BOUNDARY does not hamper the
throughput of the algorithm, we ran the hash table benchmark
with the RLUORDO algorithm on the Xeon machine with 98% reads
and 2% writes for three configurations: 1-core, 1-socket (30 cores),
and 8-sockets (240 cores). We found that on either increasing or
decreasing the ORDO_BOUNDARY by 1/8× or up to 8× of the global
offset (refer to Table 1), the scalability of RLUORDO algorithm only
varies by ±3% in all three configurations because the algorithm has
other bottlenecks that overshadow the cost of both the lower and
higher offsets. We can further confirm this result from Figure 8 (b)
results, as hardware clocks can generate 1.4 billion timestamps at
240 cores, while the maximum throughput of the hash table is only
102 million for a 2% update operation. We observe a similar trend
on a single core as well as for multiples of sockets. Furthermore,
we can also infer that another important point is that the Ordo’s
new_time()method does not act as a backoff mechanism, as we can
see consistent throughput even on decreasing the ORDO_BOUNDARY
to 1/8×, which is merely 34 ns on the Xeon machine. This point also
holds true for other timestamp algorithms, as they have to perform
other tasks [49, 66].

7 DISCUSSION

In this section, we discuss the limitations and implications of Ordo
and the invariant clocks with respect to the hardware, basic prob-
lems with clocks, and the design of algorithms.
Limitations. Themost important issuewith these hardware clocks
is the instruction ordering that varies with architectures. For ex-
ample, in the case of Intel architectures, we avoided instruction
reordering by relying on the RDTSCP instruction followed by an
atomic instruction to assign the timestamp. We do a similar opera-
tion for the ARM architecture as well. Another important problem
with the timestamp counters is that they will overflow after cross-
ing the 64-bit boundary in the case of Intel, AMD, and Sparc and
the 55-bit boundary for ARM. Even though it will take years for
the counters to overflow, the algorithms should also handle this
scenario like existing approaches [23].

Another important issue with Ordo is that we assume that ex-
isting hardware clocks have constant skew and do not suffer from
clock drift. However, this issue has been known to occur in various
older machines [24]. On the contrary, we have not seen such an
issue on any of our machines. Moreover, in a private communi-
cation, an Intel developer stated that current generations of Intel
processors do not suffer from clock drift as the hardware tries to
synchronize it. On the contrary, Oplog [8] empirically found that
the clocks are synchronized. Since hardware vendors do not provide
any such guarantee, our calculation is of the ORDO_BOUNDARY relaxes
the notion of synchronized clocks while only assumes that they
have constant skew. In addition, we believe that our algorithm (Fig-
ure 4) is applicable to machines with asymmetric architectures, such
as AMD Bulldozer [33]. However, we could not evaluate the scala-
bility of algorithms and the range of the ORDO_BOUNDARY because of
the unavailability of the machine, but we believe that algorithms
should still be scalable enough, as they have other bottlenecks
besides timestamping.
Design of timestamp-based algorithms. Timestamping is one
of the requirements of any logical timestamping-based algorithm.
Ordo drastically improves the scalability of several algorithms
across different architectures. On the other hand, Ordo’s notion
of global time simplifies these algorithms. For instance, a lot of prior
works tried to reduce the cache-line contention in both databases [62]
and STM [6, 7, 42, 44]. From the perspective of algorithm design, we
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does not act as a backoff mechanism for such logical

timestamping-based algorithms.

can incorporate a new method to compare time based on the thread
ID that can further decrease the uncertainty period. However, we
avoided such a method for three reasons. First, maintaining a pair-
wise clock table will incurmemory overhead and the application has
to load the whole table in the memory for reading. Second, applica-
tion developers may have to resort to thread pinning so that threads
do not move while comparing or doing an operation, as thread mi-
gration can break the assumptions of algorithms. Finally, the value
of ORDO_BOUNDARY is large enough to work on multisocket machines.
Moreover, ORDO_BOUNDARY overcomes the problem of thread migra-
tion because the cost of thread migration varies from 1–200 µs,
which does not affect the correctness of existing algorithms, as the
time obtained after thread migration is already greater than the

ORDO_BOUNDARY (refer to Table 1). However, Ordo is not a panacea
to solving the timestamping issue. For instance, the timestamped
stack [22] is oblivious to weak forms of clock synchronization that
have stutter.
More hardware support. Ordo enables applications or systems
software to correctly use invariant hardware timestamps. However,
the uncertainty window can play a huge part for large multicore
machines that are going to span beyond a thousand cores. It is
possible to further reduce the uncertainty window if processor
vendors can provide some bound on the cost of cache-line access,
which will allow us to use existing clock synchronization protocols
with confidence, thereby decreasing the uncertainty window to
overcome aborts occurring in concurrency algorithms. Moreover,
other hardware vendors should provide invariant clocks that will
enable applications to easily handle the ordering in a multicore-
friendly manner.
Opportunities. The notion of a globally synchronized hardware
clock opens a plethora of opportunities in various areas. For ex-
ample, applications like Doppel [51] and write-ahead-logging [39]
schemes can definitely benefit from the Ordo primitive. Since, an
OS can easily measure the offset of invariant clocks, it is not ap-
plicable to virtual machines (VM). We believe that the hypervisor
should expose this information to VMs to take full advantage of
invariant hardware clocks, which cloud providers can easily expose
through a paravirtual interface. Ordo can be one of the basic primi-
tives for the upcoming rack-scale computing architecture, in which
it can inherently provide the notion of bounded cache-coherence
consistency for the non-cache-coherent architecture.

8 CONCLUSION

Ordering still remains the basic building block to reason about the
consistency of operations in a concurrent application. However,
ordering comes at the cost of expensive atomic instructions that do
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not scale with increasing core count and further limit the scalabil-
ity of concurrency on large multicore and multisocket machines.
We propose Ordo, a simple scalable primitive that addresses the
problem of ordering by providing an illusion of a globally syn-
chronized hardware clock with some uncertainty inside a machine.
Ordo relies on invariant hardware clocks that are guaranteed to be
increasing at a constant frequency but are not guaranteed to be syn-
chronized across the cores or sockets inside a machine, which we
confirm for Intel and ARM machines. We apply the Ordo primitive
to several timestamp-based algorithms, which use either physical
or logical timestamping, and scale these algorithms across various
architectures by at most 39.7×, thereby making them multicore
friendly.
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