A Scalable Ordering Primitive
for Multicore Machines

Sanidhya Kashyap Changwoo Min Kangnyeon Kim Taesoo Kim

Georgia \V/7at $ onrversiry or
Tech | ¥ TORONTO

nnnnn

Fra of multicore machines

Supermicro
Intel Xeon F

By Sue Smith / NewsFactc

PUBLISHED c
OCTOBER -
24 =

en

Cavium' Expands the ThunderX2 Server Ecosystem for
Cloud and HPC Applications

Rapid Growth of System Vendors and Configuration Options Fueling Ecosystem Expansion

Frankfurt, Germany and San Jose, California - June 19, 2017 - Cavium, Inc. (NASDAQ: CAVM), a
leading provider of semiconductor products that enable secure and intelligent processing for
enterprise, datacenter, cloud, wired and wireless networking, continues to aggressively expand the
ThunderX2 server ecosystem with a broad array of commercial and open source partners.

Demonstrating success in working closely with software developers and communities since the initial
launch of ThunderX®, Cavium has established a significant ecosystem that spans Operating Systems,
Development Environments, Tools, and Applications. An increasing array of hosted options such as
Packet.Net and the online Scaleway® cloud service offerings, combined with a rich set of single and
dual-socket ODM and OEM platforms that include and OCP configurations, allow developers to easily
build, develop, and deploy their software on ThunderX based platforms.

The ThunderX2 product family is Cavium's second-generation 64-bit ARMv8-A server processor SoCs
for datacenter, cloud and high-performance computing (HPC) applications. The family integrates fully
out-of-order, high-performance custom cores supporting single- and dual-socket configurations.
ThunderX2 is optimized to drive high computational performance delivering outstanding memory
bandwidth and memory capacity. The new line of ThunderX2 processors includes multiple workload
optimized SKUs for both scale up and scale out applications and is fully compliant with ARMv8-A
architectiire specifications a< well ac the ARM Server Race Svctem Architectiire and ARM Server Race

Supermicro
Intel Xeon F

By Sue Smith / NewsFactc
OCTOBER E
24 |»

en

Scope of multicore machines

Cavium™ Expands the ThunderX2 Server Ecosystem for
Cloud and HPC Applications

Rapid Growth of System Vendors and Configuration Options Fueling Ecosystem Expansion

Frankfurt, Germany and San Jose, California - June 19, 2017 - Cavium, Inc. (NASDAQ: CAVM), a
leading provider of semiconductor products that enable secure and intelligent processing for
enterprise, datacenter, cloud, wired and wireless networking, continues to aggressively expand the
ThunderX2 server ecosystem with a broad array of commercial and open source partners.

Demonstrating success in working closely with software developers anc communities since the initial
launch of ThunderX®, Cavium has established a significant ecosystem that spans Operating Systems,
Development Environments, Tools, and Applications. Anincreasing array of hosted options such as
Packet.Net and the online Scaleway® cloud service offerings, combined with a rich set of single and
dual-socket ODM and OEM platforms that include and OCP configurations, allow developers to easily
build, develop, and deploy their software on ThunderX based platforms,

The ThunderX2 product family is Cavium's second-generation 64-bit ARMVB-A server processor SoCs
for datacenter, cloud and high-performance computing (HPC) applications. The family integrates fully
out-of-order, high-performance custom cores supporting single- and dual-socket configurations.
ThindarX? ic antimizart tn drive hich Aelivarina mamnns

Huge hardware
thread parallelism

How are operations executed correctly?

Ordering

Becomes scalability bottleneck

E=E=
S A -
BEE

Example: Read Log Update (RLU)

Fxtension of RCU
Modifies objects in a thread's local log
Clock maintains correct snapshot (old vs new)

Frees objects via epoch-based reclamation

Read Log Update (RLU) operation

Global Clock A log/buffer to store

(22) copies (per-thread) 3 P

N ﬁ \\\ Read on start

S
3 Q Local Clock
(22)

RLU commit operation

Global Clock | |1. P updates clocks Write Clock
(23) 2. P executes RCU-epoch P (23)
=2 Waits for Q to finish w

Logical Clock maintains correctness/ordering
Maintained via atomic instructions = FAA/CAS

3 Q Local Clock
(22)

Q will read only old objects

Issue with logical clock

* RLU suffers from global clock contention
- Cache-line contention due to atomic instructions

- Possible to circumvent with our approach
Phi ARM

How can we achieve ordering
with minimal timestamping overhead?

= 60
Atomic = 6 |
30 Ord0 e
0 | | | o 1 1111

0 64 128 192 256 0 16 32 48 64 80 96

#cores #cores

Our proposed ordering primitive: Ordo

* Exposes a monotonically increasing clock

— Current hardware already provides
- rdtscp (X86), cntvct (ARM), stick (Sparc)

* Relies on a per-core invariant hardware clock

- Monotonically increases with constant skew regardless
of dynamic frequency and voltage scaling

Challenges with Ordo

* Comparing two clocks
- Clocks are not synchronized

- Cores receive RESET signal at varying times
* Application:
- Modifying algorithms to use Ordo

- Able to compare between two timestamps

Embracing the invariant clocks

* Measure a global uncertainty window
— Ensure a new timestamp once a window is over

- Provides a notion of globally synchronized clock

* Measured offset MUST have the invariant:
Measured offset is greater than the physical offset
- Physical offset: offset due to RESET signal

- Measured offset: physical offset + one-way delay

10

Calculating global uncertainty window:
ORDO_BOUNDARY

* Add one-way delay latency on each path

C, C, 1) Calculate C, timestamp
C = C 2) Notify C, via memory
o | T e § 3) Get C, timestamp
)

4) Repeat steps 1-3 to get
the minimum

T(C)): 20

time

11

Calculating global uncertainty window:
ORDO_BOUNDARY

* Add one-way delay latency on each path

Cl C2 * Repeat prior steps in
opposite direction
|T(C.): 506« Do not know which clock
/ s ahead of the other

C.»C
30

12

Calculating globa

ORDO

uncertainty window:

SOUNDARY

* Repeat steps for each pair of cores from C, to C,

* The maximum offset is the ORDO BOUNDARY

C. =»C
20

C,=»C
30

C,e=C

30

T(C,): ©

time

Ordo application

* Applicable to any timestamp-based algorithm

* Expose Ordo APl for these algorithms
- get_time(): Current hardware timestamp

- cmp_time(t,, t,): Compare two timestamps with
uncertainty, if |t;-t;| < ORDO_BOUNDARY

- new_time(t): Return t.,,> (t + ORDO_BOUNDARY)

* Catch: Algorithms should handle uncertainty

14

Algorithms with Ordo
handling uncertainty

* Physical to logical timestamping:
— Rely on cmp_time () to compare two timestamps
- Either defer or revert if comparison is uncertain

- Use new_time () to guarantee new time
* Physical timestamping:

- Use new_time () to access the global clock

15

Read Log Update (RLUY°) operation

(30) clock (22)

Global offset 3 b P's local

ﬁ Read on start

3 Q Local Clock Q’'s core
(50) clock (50)

RLUC commit operation

Write Clock

Global offset (150)

(30)

N
|
|
|
|
|
|
|
|
|
|
|
|

3 Q Local Clock
(50)

Q will read only old objects

Algorithms moditied with Ordo

--
L 4

* Transactional Locking (TL2) in STM
* Database concurrency control: OCC, MVCC

* Oplog used in Linux forking functionality

~ .
--

Fvaluation

* Questions:

Measured global offset (ORDO_BOUNDARY)
Maximum scalability of Ordo

Ordo’s impact on algorithms

* Machines configuration:

240 core, 8 socket Intel Xeon machine (Xeon)
256 core, Intel Xeon Phi (Phi)

96 core, 2 socket ARM machine (ARM)

32 core, 8 socket AMD machine (AMD)

19

Offset between clocks

* Empirically measured offset after reboots

« ORDO BOUNDARY is the maximum offset

Machine Minimum (ns) Maximum (ns)
Intel Xeon 70 276
Intel Xeon phi 90 270
ARM 100 1,100

AMD 93 203

Timestamping with Ordo

* Ordo relies on hardware timestamping

e 17.4 - 285.5x faster than atomic increments

12 12
% Xeon(Atomic) ==
< 8 8
9 ___Xeon(Ordo) &
(Va] . s A W W A s s A A A A A AN
% (
S 4
o
@)
O _
0 60 120 180 240
12 12
ARM(Atomic) w=m
8 8

ARM(Ordo) @

Ops/usec/core

O 16 32 48 64 80 96
#core

Phi(Atomic) =m
Phi(Ordo) &

0 64 128 192 256

AMD(Atomic) w=m
AMD(Ordo) &=

0 4 8 1216 20 24 28 32
#core

21

Scaling RLU with Ordo

* RLUO¢rdo |5 2.1x faster on an average

* Still suffers from object copy and its locking

RLU(Ordo) 2% e

0O 16 32 48 64 80 96 0 8 16 24 32
#core #core

22

Discussion and limitations

* Simplifies the design and understanding of
algorithms

* Not a panacea

- Applicable when clock is contentious

* No skew consideration

* Thread ID-based timestamp comparison has its
imitation

23

Conclusion

* Ordo is a scalable timestamping primitive

- Relies on invariant hardware clocks
* Exposes time-based API to the user
* Applied Ordo to five concurrent algorithms

* Improves the scalability of algorithms by at
Most 39.7x across architectures

24

Backup Slides

Offset between clocks

* Clocks are not synchronizea
- 8t socket in Xeon and 2n socket in ARM

- Results remain consistent even after reboots and
measuring after a period of time
I9OO

— 600

Ii] 300
0

Arm

24 48 72 9%

core

Offset between clocks

26

Sensitivity of ORDO_BOUNDARY

* Varying ORDO_BOUNDARY from 1/8x — 8x

* Cyclesincreases from 32.2-18K on Xeon machine

Normalized throughput

1.08

1.04

1.00 [~

0.96

0.92

/\

1-socket 8-sockets 27

Physical timestamping: Oplog

* Improves Exim performance by 1.9x at 240 cores

120k —
Stock m—

100k -Oplog(Ordo) mmjm—

80k

60k

Messages/sec

40k

20k

Ok

30 60 90 120 150 180 210 240 78

#core

Scaling database concurrency control

* Improves OCC and MVCC by 4.1-39.7x for read-only (YCSB)
e OCCordo 1.24x faster than Tictoc and Silo (TPC-C)

OCC MVCC i

OCC (Ordo) —@—100 MVCC (Ordo) —E—

Txns/usec

29

O 16 32 48 64 80 96
core

Cannot use clock synchronization
Drotocols

* No information on minimum bounds on
message delivery between/among clocks

 Protocols introduce various errors

* Can lead to mis-synchronized clocks

- Larger or smaller than the actual physical offset

Lead to incorrect implementation of
concurrent algorithms

30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	RLU Clocks and Logs
	RLU Commit – Phase 1
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

