On the Effectiveness of Kernel Debloating
via Compile-time Configuration

Mansour Alharthi, Hong Hu, Hyungon Moon, Taesoo Kim

&Georgiaﬂmgﬁﬁﬁ@ﬁ@
o Tlechnolocy

—

The problem of bloated software

* High complexity: more vulnerabilities
e Unused interfaces: an attacker can use
* Unused code: more ROP gadget

Linux kernel is bloated

* Driving a variety of devices from servers to embedded
* Server-friendly features
* Embedded-only features

* Keep adopting new features
e Support for new hardware
* Performance optimizations

Problem of bloated kernel: avoidable bugs

* Linux distributions conservatively enable many features
e Just in case a user wants them

* A system ends up suffering from a bug (vulnerability)
in a feature that it never uses

 which we should avoid

Example: X32 ABI

e Use x86_64 ISA: more registers than i386 (IA-32).
* Keep pointer size 32-bit: smaller memory footprints.

* Rarely used but enabled by default by popular distributions.
* OpenSuse, Ubuntu, Solus.

* Related to a security-critical bug: CVE-2014-0038.

* Local privilege escalation.

Example: CVE-2014-0038

* Xx32 ABl uses compat sys recvmmsg toimplement recvmmsg.
* Incorrect casting at line 7 enables arbitrary memory write.
* Only the kernels that CONFIG X86 X32 enabled is vulnerable.

asmlinkage long compat sys recvmmsg(int fd, struct compat mmsghdr @ user *mmsg,
unsigned int vlen, unsigned int flags,
struct compat timespec _ user *timeout)

/...
if (COMPAT USE 64BIT TIME)
return sys recvmmsg(fd, (struct mmsghdr user *)mmsg, vlen,
flags | MSG_CMSG_COMPAT,
(struct timespec #) timeout); /* bug here//+/

Background: Linux kernel config. system

* Configuration options
e E.g., CONFIG_NET, CONFIG_X86 X32
* Determine if each source file/line is compile or not

* Configuration: a list of configuration options with the values

CONFIG_X86_X32=y
CONFIG_COMPAT _32=y
CONFIG_COMPAT=y

CONFIG_COMPAT _FOR_U64_ALIGNMENT=y
CONFIG_SYSVIPC_COMPAT=y
CONFIG_X86_DEV_DMA_OPS=y
CONFIG_NET=y

CONFIG_COMPAT _NETLINK_MESSAGES=y

Research goal

* The vulnerability-configuration option dependency

CONFIG_X86_X32 CVE-2014-0038

* Potential effectiveness of configuration option-grained tuning

@ —mmmmmm T -==""""Default configuration

CVEs

Deloated configuration

Enabled options

Summary of results

* Dependency
* Joptions that many vulnerabilities depend on.
* Idmany options that at least one vulnerability depends on.

* Tuning
* Popular programs do not need many options.
* Disabling inessential options make the kernel less likely to have vulnerabilites.

Rest of this talk

* Dependency
* Collecting the kernel vulnerabilities.
* Locating the patches.
* From a patch to the dependency.

* Tuning
* Indirect study with existing configurations.
* Direct study with hand-crafted configurations.

* Conclusion

Collecting the kernel vulnerabilities

* CVE data from National Vulnerability Database (NVD).

* De facto standard, since 1999 - 2046
* Vulnerabilities found 2005 or after.
* For easy access to patch: when the git was out —> 1773

* Only the upstream vulnerabilities.
* For fair comparison between different distributions or forks
e E.g., Ubuntu, Fedora or Android

- 1530 vulnerabilities collected

Locating the patches from NVD entries

* The NVD entry for CVE-2014-0038

"cve" 1 {
"data_type" : "CVE",
"data_format" : "MITRE",
"data_version" : "4.0",
"CVE_data_meta" : {
"ID" : "CVE-2014-0038",
"ASSIGNER" : "cve@mitre.org"

2

"url" : "https://github.com/torvalds/linux/commit/2def2ef2ae5f3990aabdbe8a755911902707d268"

}

-> Located patches for 1242 entries

A patch example

+++ b/net/compat.c
asmlinkage long compat_sys_recvmmsg(int fd, struct compat_mmsghdr __ user *mmsgqg,

if (COMPAT USE 64BIT TIME)
return __ sys recvmmsg(fd, (struct mmsghdr user *)mmsg, vlen,
flags | MSG CMSG COMPAT,
(struct timespec *) timeout);
if (timeout == NULL)
return _ sys recvmmsg(fd, (struct mmsghdr user *)mmsg, vlen,
flags | MSG CMSG COMPAT, NULL);
if (get compat timespec(&ktspec, timeout))
if (compat get timespec(&ktspec, timeout))
return -EFAULT;
datagrams = sys recvmmsg(fd, (struct mmsghdr user *)mmsg, vlen,
flags | MSG CMSG COMPAT, &ktspec);
if (datagrams > 0 && put compat timespec(&ktspec, timeout))
if (datagrams > 0 && compat put timespec(&ktspec, timeout))
datagrams = -EFAULT;

- Gives the change set

12

From a patch to the dependencies (1)

* Find the options that determines if the patched lines are compiled

* Assumption: no change required =2 no bug

From a patch to the dependencies (2)

e Kernel Makefiles determine if each file is included or not

Linux Kernel Source Tree

Patch for CVE-2014-003¢

‘= socket.o core/

net/compat.c:783
net/compat.c:792 et/] :chEa; -

net/compat.c:797 CONFIG_COMPAT TF=9(tmp-y) T T

e the files in net/802/
+= 11c/
+= ethernet/ 802/ sched/ netlink/

net/compat.c net/compat.c \net/compat.c

O

net/compat.c:797 pet/compat.c:792 /net/compat.c:783
A 4

CVE-2014-0038

From a patch to the dependencies (3)

° Kernel souri Linux Kernel Source Tree f|g OptionS.

net/ ‘ ‘

include/ —
el -I

Patch for CVE-2 @ "
net/core/skbuft core/ ‘

net/core/skbuf socket.c linux/
net/core/skbuf
skbuff.c skbuff.c

net/socket.c
' STATS) &&

Include/linux/errq ‘ ‘ errqueue.h "0 TCP &8

line 3805 line 709

lines 2870 & 287o line 22
1 3387 307 CVE-2017-7277 1

Observations from the graphs

e Case 1 (e.g., CVE-2014-0038):

* Disabling one or more option completely discards all patches line.

e Case 2 (e.g. CVE-2017-7077):

* There exists a patched line that is never discarded.

Linux Kernel Source Tree

et/
CONFIG_COMPAT .
socket.c linux/

net/compat.c pet/compat.c “\net/compat.c

net/compat.c:797 pet/compat.c:792 /net/compat.c:783

CVE-2014-0038

lines 3870 & 3872

CVE-2017-7277

Inferring the number of active vulnerability

* Optimistic:
* Discarding any of the patched line deactivates the vulnerability.
* “OR” operation when inferring the numbers

* Conservative:
* We must discard all patched lines to deactivate the vulnerability.
 “AND” operation when inferring the numbers

Some numbers from the dependency study

* JPotentially large configuration options
which are related to many vulnerabilities.

* CONFIG_NET: 100, CONFIG_KVM: 46, CONFIG_PCI: 39

* Many (701) configuration options are related to at least one.

* Only 136 (11%) vulnerabilities have a “bypass”.

* Which debloating cannot deactivate in the worst case.

Can we then tune?

* Indirect study with existing configurations
* Collected 66 default configurations

* Direct study with manual debloating
* Created 2 minimal, application-specific configurations

10

€S

EnabledConfigs

More enabled options =2 more vulnerabili

10

8 17— —e— CVEs

©o <

(00T) SAND JO #
(000T) SOIANOD JO #

Servers/desktops

Mobile (Android)

Embedded

Manual debloating

* Minimal web server: nginx
e Started from Ubuntu for x86
* Correctness: if it serves a simple web page

* Minimal sensor node: mosquitto
 Started from Buildroot for aarch64
* Correctness: if a client can deliver a message to a server

Targeted debloating is effective

Target Distribution # Options Dependency
OR
o
929 - 234 (74.8%) (Optimistic)
nginx Ubuntu 7598 - 1038 (86.3%) 1000—>412 (58.8%) AND

AND with Bypasses

1006 > 472 (53.1%) (Conservative)

OR
(o)
281 > 159 (43.4%) (Optimistic)
mosquitto Buildroot 1229 > 581 (52.7%) 472 - 265 (43.9%) AND

AND with Bypasses

526 = 347 (34.0%) (Conservative)

Conclusion

* Most (89%) of vulnerabilities can be nullified by configuration.
* Application-specific debloating is effective (34-74% reduction).

* Next steps
 Splitting large config options (e.g., CONFIG_NET)
* Automating the configuration-grained debloating

Thank you!

