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Abstract
Due to the continued exploitation of Adobe Reader, mali-
cious document (maldoc) detection has become a pressing
problem. Although many solutions have been proposed,
recent works have highlighted some common drawbacks,
such as parser-confusion and classifier-evasion attacks.

In response to this, we propose a new perspective for
maldoc detection: platform diversity. In particular, we
identify eight factors in OS design and implementation
that could cause behavioral divergences under attack,
ranging from syscall semantics (more obvious) to heap
object metadata structure (more subtle) and further show
how they can thwart attackers from finding bugs, exploit-
ing bugs, or performing malicious activities.

We further prototype PLATPAL to systematically har-
vest platform diversity. PLATPAL hooks into Adobe
Reader to trace internal PDF processing and also uses
sandboxed execution to capture a maldoc’s impact on the
host system. Execution traces on different platforms are
compared, and maldoc detection is based on the obser-
vation that a benign document behaves the same across
platforms, while a maldoc behaves differently during ex-
ploitation. Evaluations show that PLATPAL raises no false
alarms in benign samples, detects a variety of behavioral
discrepancies in malicious samples, and is a scalable and
practical solution.

1 Introduction

Cyber attackers are turning to document-based malware
as users wise up to malicious email attachments and
web links, as suggested by many anti-virus (AV) ven-
dors [39, 50, 54, 57]. Users are generally warned more on
the danger of executable files by browsers, email agents,
or AV products, while documents such as PDFs are treated
with much less caution and scrutiny because of the im-
pression that they are static files and can do little harm.

However, over time, PDF specifications have changed.
The added scripting capability makes it possible for doc-

uments to work in almost the same way as executables,
including the ability to connect to the Internet, run pro-
cesses, and interact with other files/programs. The growth
of content complexity gives attackers more weapons to
launch powerful attacks and more flexibility to hide mali-
cious payload (e.g., encrypted, hidden as images, fonts or
Flash contents) and evade detection.

A maldoc usually exploits one or more vulnerabili-
ties in its interpreter to launch an attack. Fortunately (or
unfortunately), given the increasing complexity of doc-
ument readers and the wide library/system component
dependencies, attackers are presented with a large attack
surface. New vulnerabilities continue to be found, with
137 published CVEs in 2015 and 227 in 2016 for Adobe
Acrobat Reader (AAR) alone. The popularity of AAR
and its large attack surface make it among the top tar-
gets for attackers [25], next to browsers and OS kernels.
After the introduction of a Chrome-like sandboxing mech-
anism [2], a single exploit can worth as high as $70k in
pwn2own contest [21]. The collected malware samples
have shown that many Adobe components have been ex-
ploited, including element parsers and decoders [37], font
managers [28], and the JavaScript engine [22]. System-
wide dependencies such as graphics libraries [23] are also
on attackers’ radar.

The continued exploitation of AAR along with the
ubiquity of the PDF format makes maldoc detection a
pressing problem, and many solutions have been proposed
in recent years to detect documents bearing malicious
payloads. These techniques can be classified into two
broad categories: static and dynamic analysis.

Static analysis, or signature-based detection [14, 27, 31,
33, 34, 36, 46, 52, 59], parses the document and searches
for indications of malicious content, such as shellcode
or similarity with known malware samples. On the other
hand, dynamic analysis, or execution-based detection [45,
48, 58], runs partial or the whole document and traces
for malicious behaviors, such as vulnerable API calls or
return-oriented programming (ROP).
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However, recent works have highlighted some common
drawbacks of these solutions. Carmony et al. [11] show
that the PDF parsers used in these solutions might have
overly simplified assumptions about the PDF specifica-
tions, leading to an incomplete extraction of malicious
payloads and failed analysis. It has also been demon-
strated that machine-learning-based detection could po-
tentially be evaded in principled and automatic ways [35,
53, 65]. In addition, many solutions focus only on the
JavaScript parts and ignore their synergy with other PDF
components in launching attacks. Therefore, even though
modern AV products support PDF-exploit detection, they
cannot quickly adapt to novel obfuscation techniques even
if the latter constitute only minor modifications of existing
exploits [55]. AV products also exhibit problems provid-
ing protection against zero-day attacks, due to the lack of
attack procedures and runtime traces.

In this paper, we propose PLATPAL, a maldoc detec-
tion scheme that analyzes the behavioral discrepancies
of malicious document files on different platforms (e.g.,
Windows or Macintosh (Mac)). Unlike the static and dy-
namic detection schemes that rely on existing malware
samples to construct heuristics, PLATPAL is based on a
completely different set of insights: 1) a benign document
behaves the same (in a certain level) across platforms,
while 2) a malicious document causes diverged behaviors
when launching exploits on different platforms.

The first assumption can be empirically verified by
opening many benign samples that use a variety of PDF
features across platforms. To support the second assump-
tion, we investigated the factors in OS implementation
that could cause behavioral divergences when under at-
tack and identified eight such factors, ranging from syscall
semantics (more obvious) to heap object metadata struc-
ture (more subtle). We further show how they can be used
to thwart attackers in finding bugs, exploiting bugs, or
performing malicious activities.

PLATPAL is based on these insights. To detect whether
a document has malicious payload, PLATPAL opens it
with the same version of AAR instances, but running on
top of different operating systems. PLATPAL records the
runtime traces of AAR while processing the document
and subsequently compares them across platforms. Con-
sensus in execution traces and outputs indicates the health
of the document, while divergences signal an attack.

Although the process sounds simple and intuitive,
two practical questions need to be addressed to make
PLATPAL work: 1) what “behaviors” could be potentially
different on different platforms? and 2) how can they be
universally traced? PLATPAL traces and compares two
types of behaviors. Internal behaviors include critical
functions executed by AAR in the PDF processing cycle,
such as loading, parsing, rendering, and script execution.
External behaviors include filesystem operations, network

activities, and program launches. This aligns with typical
malware analysis tools such as Cuckoo sandbox [44].

It is worth highlighting that PLATPAL should not be
considered as a competitor to current malware analysis
tools such as Cuckoo [44] as they rely on different assump-
tions. Current tools rely heavily on the availability of a
blacklist (or whitelist) of OS-wide activities are already
available such that a sample’s behaviors can be vetted
against the list. This approach works well for known
malware but might lost its advantage against 0-day PDF
exploits. On the other hand, PLATPAL does not require
the such a list to function and only relies on the fact that
it is difficult for an attacker to craft a malicious PDF that
exploits AAR in exactly the same way in both Windows
and Mac platforms.

PLATPAL is evaluated against 1030 benign samples
that use various features in the PDF specifications and re-
ports no discrepancies in their traces, i.e., no false alarms.
For a collection of 320 maldoc samples exploiting 16 dif-
ferent CVEs, PLATPAL can detect divergences in 209 of
them with an additional 34 samples crashing both AAR
instances. The remainder are undetected for various rea-
sons, such as targeting an old and specific version of AAR
or failure to trigger malicious activities. PLATPAL can
finish a scan of the document in no more than 24 seconds
per platform and requires no manual driving.
Paper contribution. In summary, this paper makes the
following contributions:

• We propose to execute a document across different
platforms and use behavioral discrepancies as an
indicator for maldoc detection.

• We perform in-depth analysis and categorization of
platform diversities and show how they can be used
to detect maldoc attacks.

• We prototype PLATPAL based on these insights.
Evaluations prove that PLATPAL is scalable, does
not raise false alarms, and detects a variety of behav-
ioral discrepancies in malicious samples.

We plan to open source PLATPAL to prompt using
platform diversity for maldoc detection and also launch a
PDF maldoc scanning service for public use.

2 Maldoc Detection: A Survey

Existing maldoc detection methods can be classified
broadly into two categories: 1) dynamic analysis, in which
malicious code is executed and examined in a specially in-
strumented environment; and 2) static analysis, in which
the detection is carried out without code execution. A
summary of existing methods is presented in Table 1.

272    26th USENIX Security Symposium USENIX Association



Category Focus Detection Technique Parser ? ML ? Pattern ? Evasion / Drawbacks

Static

JavaScript Lexical analysis [27] Yes Yes Yes
Heavy obfuscation,
Code loading

JavaScript Token clustering [59] Yes Yes Yes
JavaScript API reference classification [14] Yes Yes Yes
JavaScript Shellcode and opcode signature [31] No No Yes

Metadata Linearized object path [36] Yes Yes Yes
Mimicry [53],
Reverse mimicry [35]

Metadata Hierarchical structure [33, 52] Yes Yes Yes
Metadata Content meta-features [46] Yes Yes Yes
Both Many above-mentioned heuristics [34] Yes Yes Yes

Dynamic

JavaScript Shellcode and opcode signature [58] Yes No Yes Incompatible JS engine,
Non-script based attacksJavaScript Known attack patterns [45] Yes No Yes

JavaScript Memory access patterns [48] Yes No Yes

JavaScript Common maldoc behaviors [29] No No Yes Zero-day exploits
Document Violation of memory access invariants [62] No No No ROP and JIT-Spraying

Table 1: A taxonomy of malicious PDF document detection techniques. This taxonomy is partially based on a systematic survey
paper [40] with the addition of works after 2013 as well as summaries parser, machine learning, and pattern dependencies and
evasion techniques.

2.1 Static Techniques

One line of static analysis work focuses on JavaScript
content for its importance in exploitation, e.g., a majority
(over 90% according to [58]) of maldocs use JavaScript to
complete an attack. PJScan [27] relies on lexical coding
styles like the number of variable names, parenthesis, and
operators to differentiate benign and malicious JavaScript
code. Vatamanu et al. [59] tokenizes JavaScript code
into variables types, function names, operators, etc. and
constructs clusters of tokens as signatures for benign and
malicious documents. Similarly, Lux0r [14] constructs
two sets of API reference patterns found in benign and
malicious documents, respectively, and uses this to clas-
sify maldocs. MPScan [31] differs from other JavaScript
static analyzers in a way that it hooks AAR and dynam-
ically extracts the JavaScript code. However, given that
code analysis is still statically performed, we consider it
a static analysis technique.

A common drawback of these approaches is that they
can be evaded with heavy obfuscation and dynamic code
loading (except for [31] as it hooks into AAR at runtime).
Static parsers extract JavaScript based on pre-defined
rules on where JavaScript code can be placed/hidden.
However, given the flexibility of PDF specifications, it is
up to an attacker’s creativity to hide the code.

The other line of work focuses on examining PDF file
metadata rather than its actual content. This is partially
inspired by the fact that obfuscation techniques tend to
abuse the flexibility in PDF specifications and hide ma-
licious code by altering the normal PDF structure. PDF
Malware Slayer [36] uses the linearized path to specific
PDF elements (e.g., /JS, /Page, etc) to build maldoc clas-
sifiers. Srndic et al. [52] and Maiorca et al. [33] go one
step further and also use the hierarchical structure for
classification. PDFrate [46] includes another set of fea-

tures such as the number of fonts, the average length of
streams, etc. to improve detection. Maiorca et al. [34]
focuses on both JavaScript and metadata and fuses many
of the above-mentioned heuristics into one procedure to
improve evasion resiliency.

All methods are based on the assumption that the nor-
mal PDF element hierarchy is distorted during obfusca-
tion and new paths are created that could not normally
exist in benign documents. However, this assumption
is challenged by two attacks. Mimicus [53] implements
mimicry attacks and modifies existing maldocs to appear
more like benign ones by adding empty structural and
metadata items to the documents with no actual impact on
rendering. Reverse mimicry [35] attack, on the contrary,
attempts to embed malicious content into a benign PDF
by taking care to modify it as little as possible.

2.2 Dynamic Techniques

All surveyed dynamic analysis techniques focus on em-
bedded JavaScript code only instead of the entire doc-
ument. MDScan [58] executes the extracted JavaScript
code on a customized SpiderMonkey interpreter and the in-
terpreter’s memory space is constantly scanned for known
forms of shellcode or malicious opcode sequences. PDF
Scrutinizer [45] takes a similar approach by hooking the
Rhino interpreter and scans for known malicious code
patterns such as heap spray, shellcode, and vulnerable
method calls. ShellOS [48] is a lightweight OS designed
to run JavaScript code and record its memory access
patterns. During execution, if the memory access se-
quences match a known malicious pattern (e.g., ROP, crit-
ical syscalls or function calls, etc), the script is considered
malicious.

Although these techniques are accurate in detecting
malicious payload, they suffer from a common problem:
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an incompatible scripting environment. AAR’s JavaScript
engine follows not only the ECMA standard [18], but
also the Acrobat PDF standard [1] (e.g., Adobe DOM
elements). Therefore, without emulation, objects like doc,
app, or even this (which are very common in both benign
and malicious documents) will not function correctly. In
addition, malicious payload can be encoded as a font or an
image object in the document [37], which will neither be
extracted nor detected. Certain attacks might also exploit
the memory layout knowledge such as the presence of
ROP gadgets or functions available in AAR and its de-
pendent libraries, which is hard to emulate in an external
analysis environment.

Instead of emulating the JavaScript execution environ-
ment, Liu et al. [29] instruments the PDF document with
context monitoring code and uses AAR’s own runtime
to execute JavaScript code and hence is not affected by
the incompatibility problem. However, the instrumented
code only monitors common and known patterns of mali-
cious behavior such as network accesses, heap-spraying,
and DLL-injection, etc, which are not fully generic and
have to be extended when new anti-detection measures of
malicious code come up. CWXDetector [62] proposes a
W⊕X-like approach to detect illegitimate code injected
by maldocs during execution. But similar to W⊕X, its
effectiveness is compromised in the presence of ROP and
JIT-spraying.

2.3 Summary and Motivations
Surveying the maldoc detection techniques yields several
interesting observations:
Parser reliance. Since a document consists of both
data (e.g., text) and executable (e.g., script) components,
a common pattern is to first extract the executable com-
ponents and further examine them with either static or
dynamic analysis. To this end, a parser that is capable
of parsing PDF documents the same way as AAR does
is generally assumed. As shown in Table 1, all but three
methods use either open-sourced or their home-grown
parsers and assume their capability. However, Carmony et
al. [11] shows that these parsers are typically incomplete
and have oversimplified assumptions in regard to where
JavaScript can be embedded, therefore, parser confusion
attacks can be launched to easily evade their detection.
Machine learning reliance. Machine learning tech-
niques are heavily used in maldoc detection, especially
in static analysis, because of their ability in classifica-
tion/clustering without prior knowledge of the pattern.
As shown in Table 1, seven out of 13 methods use ma-
chine learning to differentiate benign and malicious docu-
ments, while another four methods can also be converted
to use machine learning for heuristics mining. How-
ever, recently proposed adversarial machine learning tech-

niques [20, 42, 65] raise serious doubts about the effec-
tiveness of classifiers based on superficial features in the
presence of adversaries. For example, Xu et al. [65] is ca-
pable of automatically producing evasive maldoc variants
without knowledge about the classifier, in a way similar
to genetic programming.
Structural/behavioral discrepancy. An implicit
assumption in the surveyed methods is that struc-
tural/behavioral discrepancies exist between benign and
malicious documents and such discrepancies can be ob-
served. Since the document must follow a public format
specification, commonalities (structural or behavioral) are
expected in benign documents. If a document deviates
largely from the specification or the common patterns of
benign samples, it is more likely to be a malicious doc-
ument. However, such an assumption is challenged by
the Mimicus [53] and reverse mimicry [35] attacks in a
way that a maldoc can systematically evades detection
if an attacker knows the patterns used to distinguish be-
nign and malicious documents. In addition, deriving the
discrepancy patterns requires known malware samples.
Therefore, all but one methods in Table 1 require known
malware samples either to learn patterns automatically or
to manually define patterns based on heuristics, expec-
tations, or experience. This restricts their capabilities in
detecting zero-day attacks where no prior knowledge can
be obtained.
Full dynamic analysis. It is worth noting that only one
dynamic detection method performs analysis on the en-
tire file; instead, the rest of the methods perform analysis
on the extracted JavaScript code only. This is in con-
trast with traditional sandboxed malware analysis such
as Cuckoo [44] or CWSandbox [63], which executes the
malware and examines its behavior and influence on the
host operating system during runtime. One reason could
be because the maldoc runs on top of AAR, which itself
is a complex software and leaves a large footprint on the
host system. The traces of maldoc execution are hidden
in the large footprint, making analysis much harder.
Motivation. The development of PLATPAL is motivated
by the above-mentioned problems in maldoc detection
research. We design PLATPAL to: 1) share the same view
of the document as the intended interpreter (i.e., AAR
in this paper); 2) use simple heuristics that do not rely
on machine learning; 3) detect zero-day attacks without
prior knowledge; 4) capture the maldoc’s influence on the
host system; and 5) be complementary to the surveyed
techniques to further raise the bar for maldoc attackers.

3 Platform Diversity

This section focuses on understanding why platform di-
versity can be an effective approach in detecting maldoc
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attacks. We first present a motivating example and then
list the identified factors that are important in launching
attacks, but are different on Windows and Mac platforms.
We further show how to use them to thwart attackers and
concretize it with four case studies. We end by discussing
platform-detection techniques that a maldoc can use and
the precautions PLATPAL should take.

3.1 A Motivating Example
In December 2012, researchers published a public proof-
of-concept exploit for AAR [37]. This exploit attacks
a heap overflow vulnerability found in the PDF parser
module when parsing an embedded BMP RLE encoded
image (CVE-2013-2729). By simply opening the maldoc,
the AAR instance on Windows platform (including Win-
dows 7, 8 and 10) is compromised and the attacker can
run arbitrary code with the privileges of the compromised
process. During our experiment, we ran this exploit on
the Windows version of AAR 10.1.4 and reproduced the
attack. However, when we opened the same sample with
the Mac version of AAR 10.1.4, the attack failed and no
malicious activities were observed.

In fact, in the malware history, Windows has drawn
more attraction from attackers than Mac, and the same
applies to maldocs. The Windows platform tends to be
more profitable because of its market share, especially
with enterprise users [38], who heavily use and exchange
PDF documents. Therefore, it is reasonable to expect that
the majority of maldocs target primarily the Windows
platform, as cross-platform exploits are much harder to
develop due to the factors discussed later.

The mindset of maldoc attackers and the discrepancy in
reacting to malicious payload among different platforms
inspire us to use platform diversity as the heuristic for
maldoc detection: a benign document “behaves” the same
when opened on different platforms while a maldoc could
have different “behaviors” when launching exploits on dif-
ferent platforms. In other words, cross-platform support,
the power used to make the PDF format and AAR popular,
can now be used to defend against maldoc attacks.

3.2 Diversified Factors
We identified eight factors related to launching maldoc
attacks but are implemented differently on Windows and
Mac platforms.
Syscall semantics. Both syscall numbers and the register
set used to hold syscall parameters are different between
Windows and Mac platforms. In particular, file, socket,
memory, process, and executable operations all have non-
overlapping syscall semantics. Therefore, crafting shell-
code that executes meaningfully on both platforms is
extremely difficult in practice.

Calling conventions. Besides syscalls, the calling con-
vention (i.e., argument passing registers) for userspace
function differs, too. While Windows platforms use rcx,
rdx, and r8 to hold the first three parameters, Mac plat-
forms use rdi, rsi, and rdx. This makes ROP-like attacks
almost impossible, as the gadgets to construct these at-
tacks are completely different.
Library dependencies. The different sets of libraries
loaded by AAR block two types of exploits: 1) exploits
that depend on the existence of vulnerabilities in the
loaded libraries, e.g., graphics libraries, font manager,
or libc, as they are all implemented differently on Win-
dows and Mac platforms; and 2) exploits that depend on
the existence of certain functions in the loaded libraries,
e.g., LoadLibraryA, or dlopen.
Memory layout. The offset from the attack point (e.g.,
the address of the overflowed buffer or the integer value
controlled by an attacker) to the target point, be it a return
address, GOT/PLT entry, vtable entry, or even control
data, is unlikely to be the same across platforms. In other
words, directing control-flow over to the sprayed code can
often be blocked by the discrepancies in memory layouts
across platforms.
Heap management. Given the wide deployment of
ASLR and DEP, a successful heap buffer overflow usually
leads first to heap metadata corruption and later exploits
the heap management algorithm to obtain access to con-
trol data (e.g., vtable). However, heap management tech-
niques are fundamentally different between Windows and
Mac platforms. Therefore, the tricks to corrupt metadata
structures maintained by segment heap [67] (Windows
allocator) will not work in the magazine malloc [5] (Mac
allocator) case and vice versa.
Executable format. While Windows platforms gener-
ally recognize COM, NE, and PE formats, Mac platforms
recognize only the Mach-O format. Therefore, maldocs
that attempt to load an executable after exploitation will
fail. Although “fat binaries” that can run on multiple CPU
architectures exist, we are not aware of an executable for-
mat (or any wrapper tools) that is capable of running on
multiple platforms.
Filesystem semantics. Windows uses backslashes (\)
as path separators, while Mac uses forward slashes (/). In
addition, Windows has a prefixed drive letter (e.g., C:\)
while Mac has a mount point (e.g., the root /). Therefore,
hard-coded path names, regardless of whether they are in
JavaScript or attacker-controlled shellcode, will break on
at least one platform. Dynamically generated filenames
rely on the fact that certain files exist at a given path,
which is unlikely to hold true across platforms.
Expected programs/services. This is heavily relied
upon by the dropper or phishing type of maldocs, for
example, dropping a malformed MS Office document
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that exploits MS Office bugs, or redirecting the user to
a malicious website that attacks the Internet Explorer
browser. As Mac platforms are not expected to have these
programs, such attacks will fail on Mac platforms.

3.3 Attack Categorization

As shown in Figure 1, a typical maldoc attack consists of
three steps: 1) finding vulnerabilities, 2) exploiting them
to inject attacker-controlled program logic, and 3) prof-
iting by performing malicious activities such as stealing
information, dropping backdoors, C&C, etc. The identi-
fied diversity factors in §3.2 can help detect maldocs at
different stages.

In terms of finding vulnerabilities, exploiting vulner-
abilities on platform-specific components can obviously
be detected by PLATPAL, as the vulnerable components
do not exist on the other platform.

The exploitation techniques can be divided into two
subcategories, based on whether an attack exploits mem-
ory errors (e.g., buffer overflow, integer overflow, etc) to
hijack control-flow or exploits logic bugs (e.g., JavaScript
API design flaws).

Memory-error based control-flow hijacking puts a high
requirement on the memory content during exploitation.
For example, ROP attacks, which are commonly found
in maldoc samples, require specific gadgets and precise
information on where to find them in order to make pow-
erful attacks. However, these gadgets and their addresses
in memory can be easily distorted by the discrepancies in
loaded libraries and memory layouts.

On the other hand, exploiting features that are natu-
rally cross-platform supported, e.g., JavaScript hidden
API attacks or abusing the structure of PDF document to
obfuscate malicious payload, are not subject to the intri-
cacies of runtime memory contents and are more likely to
succeed.

Finally, even if an attacker succeeds in the first two
steps, the attack can be detected while the maldoc is per-
forming malicious activities, such as executing a syscall,
loading a PE-format executable on Mac platforms, or
accessing a file that exists only on Windows platforms.

3.4 Case Studies

We use representative examples to show how platform
diversity can be used to detect maldoc attacks in each step
shown in Figure 1.
Platform-specific bug. One source of platform-specific
bugs comes from system libraries that are used by AAR.
An example is CVE-2015-2426, an integer overflow bug
in the Windows Adobe Type Manager Library. A detailed
study can be found at [28]. In this case, opening the

maldoc sample on Windows platforms will trigger the ex-
ploitation, while nothing will happen when opening it on
Mac platforms. In other words, maldocs that exploit bugs
in dependent libraries will surely fail on other platforms.

Another source of bugs comes from the AAR imple-
mentation itself, and we also found a few cases where
the implementation of the same function can be vulner-
able on one platform but safe on the other. For example,
CVE-2016-4119 is a use-after-free vulnerability in the
zlib deflating algorithm used by AAR to decompress
embedded images [30]. The Mac version of AAR is able
to walk through the document and exit gracefully, while
AAR on Windows crashes during the rendering stage.
A closer look at their execution shows that the decoded
image objects are different on these platforms.
Memory error. Due to the deployment of ASLR and
DEP in modern operating systems, direct shellcode in-
jection cannot succeed. As a result, attackers exploiting
memory errors generally require some form of heap prepa-
ration to obtain read/write accesses to control data, and
the most common target we observed is vtable.

In the case of [37], the maldoc sample exploits CVE-
2013-2729, an integer overflow bug in AAR itself, to
prepare the heap to obtain access to a vtable associated
with an image object. In particular, it starts by allocating
1000 consecutive memory chunks, each of 300 bytes, a
value carefully selected to match the size of the vtable,
and subsequently free one in every 10 chunks to create
a few holes. It then uses a malformed BMP image of
300 bytes to trigger the integer overflow bug and man-
ages to override the heap metadata, which resides in an
attacker-controlled slot (although the attacker does not
know which slot before hand). The malformed BMP im-
age is freed from memory, but what is actually freed is
the attacker-controlled slot, because of the heap metadata
corruption. Later, when the struct containing a vtable
is allocated in the same slot (almost guaranteed because
of heap defragmentation), the attacker gains access and
hijacks control-flow by overriding vtable entries.

However, this carefully constructed attack has two as-
sumptions, which do not hold across platforms: 1) the size
of the vtable on Windows and Mac platforms is different;
and 2) the heap object metadata structures are different.
As a result, overriding the heap metadata on Mac platform
yields no observable behaviors.
Logic bugs. Another common attack vector of AAR
is the logic bugs, especially JavaScript API design flaws.
Unlike attacks that exploit memory errors, JavaScript API
attacks generally require neither heap constructions nor
ROP-style operations. Instead, they can be launched with
as little as 19 lines of JavaScript code, as shown in Fig-
ure 2. Gorenc et al. [22] further extends this technique
to complete remote code execution attacks by abusing
hidden JavaScript APIs.
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Vulnerability Discovery Exploitation Malicious Activities Success

Platform-specific bugs

e.g., bugs in system library
CVE-2015-2426

AAR implementation bugs

Memory corruption

e.g., bugs in element parser 
CVE-2013-2729

Logic bugs

e.g., flaws in JavaScript API design
CVE-2014-0521

Steal sensitive information

Load executables

Execute shellcode

Drop other exploits

Other activities

Bug does not exist 
on other platforms

Discrepancies in:
    Memory layout
    Heap management
    Library functions

Syscall semantics

Executable format

Filesystem semantics

Expected programs

Attacks that cannot 
be detected with

 platform diversity

Figure 1: Using platform diversity to detect maldocs throughout the attack cycle. Italic texts near × refers to the factors identified
in §3.2 that can be used to detect such attacks. A dash line means that certain attacks might survive after the detection.

1 var t = {};
2 t.__defineSetter__(’doc’, app.beginPriv);
3 t.__defineSetter__(’user’, app.trustedFunction);
4 t.__defineSetter__(’settings’, function() { throw 1; });
5 t.__proto__ = app;
6 try {
7 DynamicAnnotStore.call(t, null, f);
8 } catch(e) {}
9

10 f();
11 function f() {
12 app.beginPriv();
13 var file = ’/c/notes/passwords.txt’;
14 var secret = util.stringFromStream(
15 util.readFileIntoStream(file, 0)
16 );
17 app.alert(secret);
18 app.endPriv();
19 }

Figure 2: CVE-2014-0521 proof-of-concept exploitation

Besides being simple to construct, these attacks are
generally available on both Windows and Mac platforms
because of the cross-platform support of the JavaScript.
Therefore, the key to detecting these attacks via platform
diversity is to leverage differences system components
such as filesystem semantics, expected installed programs,
etc., and search for execution divergences when they are
performing malicious activities. For example, line 15 will
fail on Mac platforms in the example of Figure 2, as such
a file path does not exist on Mac.

3.5 Platform-aware Exploitation

Given the difficulties of launching maldoc attacks on dif-
ferent platforms with the same payload, what an attacker
can do is to first detect which platform the maldoc is run-
ning on through explicit or implicit channels and then
launch attacks with platform-specific payload.

In particular, the Adobe JavaScript API contains pub-
licly accessible functions and object fields that could
return different values when executed on different plat-
forms. For example, app.platform returns WIN and MAC
on respective platforms. Doc.path returns file path to the

document opened, which can be used to check whether
the document is opened on Windows or Mac by testing
whether the returned path is prefixed with /c/.

Another way to launch platform-aware attacks is to
embed exploits on two platform-specific vulnerabilities,
each targeting one platform. In this way, regardless of on
which platform the maldoc is opened, one exploit will be
triggered and malicious activities can occur.

In fact, although platform-aware maldocs are rare in
our sample collection, PLATPAL must be aware of these
attack methods and exercises precautions to detect them.
In particular, the possibility that an attacker can probe the
platform first before launching the exploit implies that
merely comparing external behaviors (e.g., filesystem op-
erations or network activities) might not be sufficient as
the same external behaviors might be due to the result of
different attacks. Without tracing the internal PDF pro-
cessing, maldocs can easily evade PLATPAL’s detection
using platform-specific exploits, for example, by carrying
multiple ROP payloads and dynamically deciding which
payload to use based on the return value of app.platform,
or even generating ROP payload dynamically using tech-
niques like JIT-ROP [49].

However, we do acknowledge that, given the com-
plexity of the PDF specification, PLATPAL does not enu-
merate all possible platform-probing techniques. There-
fore, PLATPAL could potentially be evaded through im-
plicit channels we have not discovered (e.g., timing side-
channel).

3.6 Platform-agnostic Exploitation
We also identified several techniques that can help “neu-
tralize” the uncertainties caused by platform diversity,
including but not limited to heap feng-shui, heap spray,
and polyglot shellcode.
Heap feng-shui. By making consecutive heap alloca-
tions and de-allocations of carefully selected sizes, an
attacker can systematically manipulate the layout of the
heap and predict the address of the next allocation or
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de-allocation [51]. This increases the chance of obtain-
ing access to critical data such as vtables even without
knowing every detail of the system memory allocator.
Heap spray and NOP sled. By repeatedly allocating
the attack payload and NOP sled in heap [13], an attacker
is alleviated from using precise memory locations for
control-flow hijacking; instead, an attacker only needs to
ensure that control-flow is redirected to the sprayed area.
Ployglot shellcode trampoline. Although not seen in
the wild, it is possible to construct OS-agnostic shellcode
in a similar manner as CPU architecture-agnostic shell-
code [17, 64]. The key idea is to find operations that
are meaningful in one platform and NOP on the other
and use these operations to jump to different code for
platform-specific activities.

Although these operations can succeed on both plat-
forms, attacks using these techniques can still be detected
by platform diversity. This is because these operations
have to be paired with other procedures to complete an
end-to-end attack. For example, heap manipulation can
succeed but the resulting memory layout might not be
suitable for both platforms to land the critical data in
attacker-controlled memory because of the discrepancies
in heap management, while ployglot shellcode trampo-
lines can run without crashing AAR, but the attack can
still be detected by the malicious activities performed.

4 The PLATPAL Approach

This section presents the challenges and their solutions in
designing PLATPAL that harvests platform diversity for
maldoc detection.

4.1 Dual-level Tracing

Although the platform diversity heuristic sounds intuitive,
two natural questions arise: 1) What “behaviors” could
be potentially different across different platforms? and 2)
How can they be universally traced and compared?

To answer the first question, “behaviors” must satisfy
two requirements: 1) they are available and do not change
across platforms and 2) they are the same for benign doc-
uments and could be different for maldocs. To this end,
we identified two sets of “behaviors” that match these
requirements: AAR’s internal PDF processing functions
(internal behaviors) and external impact on the host sys-
tem while executing the document (external behaviors).

For internal behaviors, in AAR, PDF documents pass
through the PDF processing functions in a deterministic
order and trigger pre-defined callbacks sequentially. For
example, a callback is issued when an object is resembled
or rendered. When comparing execution across platforms,
for a benign document, both function execution order and

results are the same because of the cross-platform support
of AAR, while for a maldoc, the execution trace could be
different at many places, depending on how the attack is
carried out.

In terms of external behaviors, because of the cross-
platform nature of PDF specifications, if some legitimate
actions impact the host system in one platform, it is ex-
pected that the same actions will be shown when opening
the document on the other platform. For example, if a
benign document connects to a remote host (e.g., for con-
tent downloading or form submission), the same behavior
is expected on other platforms. However, if the Internet
connection is triggered only upon successful exploitation,
it will not be shown on the failing platform.

The architecture of PLATPAL is described in Figure 3.
PLATPAL traces both internal and external behaviors, and
we argue that tracing both types of behaviors is necessary.
Tracing external behaviors is crucial to catch the behav-
ioral discrepancy after a successful exploitation, i.e., the
malicious activity step in Figure 1. For example, after
a successful JavaScript hidden API attack [22], the at-
tacker might want to execute shellcode, which will fail
on Mac because of discrepancies in syscall semantics.
The internal behaviors, however, all show the same thing:
execution of JavaScript code stops at the same place.

The most compelling reason to have an internal behav-
ior tracer is to defeat platform probing attempts, with-
out which PLATPAL can be easily evaded by launching
platform-aware attacks, as described in §3.5. Another rea-
son to trace internal behaviors is to provide some insights
on which AAR component is exploited or where the at-
tack occurs, which helps the analysis of maldoc samples,
especially for proof-of-concept (PoC) samples that simply
crash AAR without any external activities.

4.2 Internal PDF Processing

PLATPAL’s internal behavior tracer closely follows how
AAR processes PDF documents. PDF processing inside
AAR can be divided into two stages.

In the parsing stage, the underlying document is opened
and the header is scanned to quickly locate the trailer
and cross reference table (XRT). Upon locating the XRT,
basic elements of the PDF document, called COS objects,
are enumerated and parsed. Note that COS objects are
only data with a type label (e.g., integer, string, keyword,
array, dictionary, or stream). One or more COS objects
are then assembled into PDF-specific components such
as text, image, font, form, page, JavaScript code, etc.
according to AAR’s interpretation of PDF specifications.
The hierarchical structure (e.g., which texts appear in a
particular page) of the PDF document is also constructed
along this process. The output, called PD tree, is then
passed to the rendering engine for display.
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Figure 3: PLATPAL architecture. The suspicious file is submitted to two VMs with different platforms. During execution, both
internal and external behaviors are traced and compared. Divergence in any behavior is considered a malicious signal.

The drawing stage starts by performing OpenActions
specified by the document, if any. Almost all maldocs
will register anything that could trigger their malicious
payload in OpenActions for immediate exploitation upon
document open. Subsequent drawing activities depend
on user’s inputs, such as scrolling down to the next page
triggers the rendering of that page. Therefore, in this
stage, PLATPAL not only hooks the functions but also
actively drives the document rendering component by
component. Note that displaying content to screen is
a platform-dependent procedure and hence, will not be
hooked by PLATPAL, but the callbacks (e.g., an object is
rendered) are platform-independent and will be traced.

In addition, for AAR, when the rendering engine per-
forms a JavaScript action or draws a JavaScript-embedded
form, the whole block of JavaScript code is executed.
However, this also enables the platform detection attempts
described in §3.5 and an easy escape of PLATPAL’s de-
tection. To avoid this, PLATPAL is designed to suppress
the automatic block execution of JavaScript code. Instead,
the code is tokenized to a series of statements that are
executed one by one, and the results from each execution
are recorded and subsequently compared. If the state-
ment calls a user-defined function, that function is also
executed step-wise.

Following is a summary of recorded traces at each step:
COS object parsing: PLATPAL outputs the parsing
results of COS objects (both type and content).
PD tree construction: PLATPAL outputs every PD com-
ponent with type and hierarchical position in the PD tree.
Script execution: PLATPAL outputs every executed
statement and the corresponding result.
Other actions: PLATPAL outputs every callback trig-
gered during the execution of this action, such as change
of page views or visited URLs.
Element rendering: PLATPAL outputs every callback
triggered during the rendering of the PDF element.

4.3 External System Impact

As syscalls are the main mechanisms for a program to
interact with the host platform, PLATPAL hooks syscalls
and records both arguments and return values in order
to capture the impact of executing a maldoc on the host
system. However, for PLATPAL, a unique problem arises
when comparing syscalls across platforms, as the syscall
semantics on Windows and Mac are drastically different.

To ease the comparison of external behaviors across
platforms, PLATPAL abstracts the high-level activities
from the raw syscall dumps. In particular, PLATPAL is
interested in three categories of activities:
Filesystem operations: including files opened/created
during the execution of the document, as well as file
deletions, renames, linkings, etc.
Network activities: including domain, IP address, and
port of the remote socket.
External executable launches: including execution of
any programs after opening the document.

Besides behaviors constructed from syscall trace,
PLATPAL additionally monitors whether AAR exits grace-
fully or crashes during the opening of the document. We
(empirically) believe that many typical malware activities
such as stealing information, C&C, dropping backdoors,
etc, can be captured in these high-level behavior abstrac-
tions. This practice also aligns with many automated
malware analysis tools like Cuckoo [44] and CWSand-
box [63], which also automatically generate a summary
that sorts and organizes the behaviors of malware into a
few categories. However, unlike these dynamic malware
analysis tools that infer maliciousness of the sample based
on the sequence or hierarchy of these activities, the only
indication of maliciousness for PLATPAL is that the set
of captured activities differs across platforms. Another
difference is that the summary generated by Cuckoo and
CWSandbox usually requires manual interpretation to
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judge maliciousness, while the summary from PLATPAL
requires no human effort in comparing behaviors across
platforms.

5 Implementation

PLATPAL consists of three components: 1) an internal
behavior tracer in the form of AAR plugin; 2) an external
behavior tracer in the form of syscall tracer; and 3) a sand-
boxed environment for dynamic document examination
based on VMware. We prototype PLATPAL to work on
recent Windows (versions 7, 8 and 10) and Mac (versions
Yosemite, El Capitan, and Sierra) platforms, and is com-
patible with all AAR versions from Adobe Reader X 10.0
to the latest version of Adobe Acrobat DC.

5.1 Internal Behavior Tracer
Given that AAR is closed-source software, it is not vi-
able to hook AAR’s PDF processing functions through
source code instrumentation. Initially, we used dynamic
binary instrumentation tools (i.e., Intel Pin [32] and Dy-
namoRio [7]) to hook the execution of AAR and examine
function calls at runtime. However, such an approach
has two significant drawbacks: 1) These tools introduce a
16-20 times slowdown, which is not tolerable for practical
maldoc detection. For example, executing a two-page
document could take up to five minutes, and sometimes is
even halted by the system; 2) The PDF processing logic
is hidden in over 15000 functions (latest version of AAR)
with no name or symbol information. It is difficult if not
impossible to identify the critical functions as well as to
construct the whole cycle.

To this end, PLATPAL chooses to develop an AAR
plugin as the internal behavior tracer. The AAR plugin
technology [3] is designed to extend AAR with more
functionalities such as database interaction, online col-
laboration, etc. The compiled plugin takes the form of a
loadable DLL on Windows and an app bundle on Mac,
which is loaded by AAR upon initialization and has sig-
nificant control over AAR at runtime. The AAR plugin
provides a few nice features that suit PLATPAL’s needs: 1)
Its cross-platform support abstracts the platform-specific
operations to a higher level; 2) It uses the internal logic
of AAR in PDF processing and summarizes the logic
into 782 functions and callbacks (nicely categorized and
labeled), which enables PLATPAL to both passively mon-
itor the execution of these functions and actively drive
the document, including executing JavaScript code and
rendering elements; 3) It is stable across AAR versions
(only two functions are added since version 10, which are
not used by PLATPAL); 4) Since the AAR plugin is in the
form of a loadable module, it shortens the total document
analysis time to an average of 24 seconds.

In recording behaviors discussed in §4.2, the COS
objects and PD hierarchical information are extracted
using the enumeration methods provided by the
CosDoc, PDDoc, and PDF_Consultant classes. JavaScript
code is first tokenized by a lexer adapted from
SpiderMonkey and executed statement-by-statement with
AFExecuteThisScript method from AcroForm class. The
rest of the PDF-supported actions are launched with the
AVDocPerformAction method. The PDF processing func-
tions exposed to the AAR plugin can be hooked by the
simple JMP-Trampoline hot-patching technique as sum-
marized in [6].

5.2 External Behavior Tracer
As illustrated in §4.3, PLATPAL’s external behavior tracer
records syscall arguments and return values during docu-
ment execution. On Windows, the tracer is implemented
based on NtTrace [41]; on Mac, the tracer is a Dscript
utilizing the DTrace [9] mechanism available on BSD
systems. Both techniques are mature on respective plat-
forms and incur small execution overhead: 15% to 35%
compared to launching AAR without the tracer attached,
which helps to control the total execution time per docu-
ment. Constructing the high-level behaviors is performed
in a similar manner as Cuckoo guest agent [44].

In PLATPAL, syscall tracing starts only after the doc-
ument is opened by AAR. The AAR initialization pro-
cess is not traced (as AAR itself is not a malware) and
PLATPAL is free of the messy filesystem activities (e.g.,
loading libraries, initializing directory structures, etc) dur-
ing the start-up, leaving the execution trace in a very short
and clean state. In fact, a benign document typically has
around 20 entries of filesystem traces and no network ac-
tivities or external program launches. AAR uses a single
thread for loading and parsing the document and spawns
one helper thread during document rendering. Syscalls of
both threads are traced and compared.

To compare file paths, PLATPAL further aggregates and
labels filesystem operation traces into a few categories
that have mappings on both platforms, including AAR
program logic, AAR support file, AAR working caches,
system library/framework dependencies, system fonts,
and temporary files. Files outside these labels will go to
the unknown category and will be compared based on
filenames.

5.3 Automated Execution Sandbox
For PLATPAL, the purpose of having an automated exe-
cution sandbox is twofold: 1) to confine the malicious
activities within a proper boundary and 2) to provide a
clean execution environment for each document exami-
nation that is free from side effects by prior executions.
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The virtual machine (VM) is initialized with a clean-slate
operating system and subsequently provisioned with the
necessary tools and settings, including AAR, the plugin,
and the syscall tracer. The memory and disk snapshot is
taken after the provision, and each subsequent document
execution restores the states from this snapshot. PLATPAL
uses VMware for the management of VMs and snapshots.
Workflow. PLATPAL can be started like
PlatPal <file-to-check>. After that, PLATPAL pop-
ulates a Windows VM and a Mac VM and restores the
memory and disk snapshots. The suspicious document is
then uploaded to these VMs and AAR is started with the
syscall tracer attached. After AAR is done with initial-
ization, the control is transferred to the plugin (internal
tracer), which opens the document for examination. Af-
ter the examination finishes (or AAR crashes), logs from
internal and external tracing are pulled from the respec-
tive VMs and compared on the host. PLATPAL reports
whether discrepancies are detected among these logs.

6 Evaluation

In this section, we validate the fundamental assumption
of PLATPAL: benign documents behave the same when
opened across different platforms, while maldocs behave
differently when doing exploitation on different platforms.
We also evaluate PLATPAL’s performance in terms of total
time taken to finish a complete analysis.
Experiment setup. The experiments were conducted on
a MacBook Pro (2016 model) with Intel Core i7 2.9GHz
CPU and 16GB RAM running macOS Sierra. One VM
is provisioned with Windows 7 Professional SP1 and the
other VM is provisioned with OSX Yosemite 10.10.1.
Each VM is further provisioned with 6 different versions
of AAR instances1 listed in Table 2. Each document
sample is forced to be closed after one minute execution.

6.1 Benign Samples

The benign sample set consists of three parts: 1000 sam-
ples are collected by searching Google with file type PDF
and no keywords. However, a majority of these samples
do not use features that are typically exploited by mal-
docs. For example, only 28 files contain embedded fonts
and 6 files contain JavaScript code. Therefore, we further
collected 30 samples from PDF learning sites2 that use ad-
vanced features in the PDF standard, including embedded
JavaScript (26 samples), AcroForm (17), self-defined font
(6), and 3D objects (2). All of the samples are submitted

1Previous versions of AAR can be obtained from ftp://ftp.
adobe.com/pub/adobe/reader

2The samples are mainly obtained from http://www.
pdfscripting.com and http://www.planetpdf.com/

to VirusTotal and scanned by 48 AV products and none of
them are flagged as malicious by any of the AV engine.

The samples are submitted to PLATPAL for analysis. In
particular, each document is opened by all six versions of
AAR instances on both platforms. This is to empirically
verify that all AAR reader instances do not introduce non-
determinism during the document executions. Pairwise
behavior comparison is conducted per AAR version and
no discrepancy is observed, for any AAR version tested.
More importantly, the experiment results support the first
part of PLATPAL’s assumption: benign documents behave
the same across platforms.

6.2 Maldoc Detection
The maldoc samples are all collected from VirusTotal.
In particular, we collected samples with identified CVE
numbers (i.e., the sample exploits a particular CVE) 3 as
of Dec. 31, 2016. As a prototype, we restrict the scope
by analyzing CVEs published after 2013 and further filter
the samples that are obviously mislabeled (e.g., a 2011
sample exploiting a 2016 CVE) or of wrong types (e.g.,
a zip file or an image file) and obtained a 320-sample
dataset.

The samples are submitted to PLATPAL for analysis.
In addition, we select the AAR versions that are most
popular based on the time when the CVE was published.
In other words, each exploit is a zero-day attack to the
AAR version tested. The per-CVE detection results are
presented in Table 2 and the breakdown in terms of which
behavior factor causes the discrepancy is listed in Table 3.
Interpretation. For any sample submitted to PLATPAL,
only three outcomes are possible:

1) Malicious: At least one behavioral discrepancy is
observed, including the case in which AAR crashes on
both platforms but the internal behavior is different, i.e.,
they crash at different PDF processing stages.

2) Suspicious: AAR crashes on both platforms but no
difference is observed in internal behaviors. Given that a
benign document has no reason to crash AAR, PLATPAL
considers these samples as suspicious.

3) Benign: No behavioral discrepancy can be observed
and AAR exits gracefully on both platforms.
Overall result. Out of 320 samples, PLATPAL detected
209 (65.3%) malicious samples, 34 (10.6%) suspicious
samples, and 77 (24.1%) benign samples.
Suspicious samples. Among the 34 suspicious samples,
we are able to confirm that 16 are PoC samples, including
7 released on Exploit-DB [19], 3 in public blogs, and 6 in-
ferred by their original filenames recorded by VirusTotal.
These samples are likely obtained by fuzzing and upon

3VirusTotal labels a sample with CVE number as long as one of the
hosted AV products flag the sample with the CVE label.
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CVE AAR Num. Result

Version Samples Both crash Divergence

2016-6946 DC.16.45 51 8 40
2016-4204 DC.16.45 78 7 37
2016-4119 DC.10.60 1 0 1
2016-1091 DC.10.60 63 6 31
2016-1077 DC.10.60 1 0 1
2016-1046 DC.10.60 4 0 4
2015-5097 11.0.10 4 0 4
2015-2426 11.0.10 14 6 8
2015-0090 11.0.10 1 0 1
2014-0521 11.0.00 2 0 2
2014-0495 11.0.00 2 0 2
2013-3353 10.1.4 16 4 10
2013-3346 10.1.4 7 0 7
2013-2729 10.1.4 23 3 19
2013-0640 10.1.0 30 0 22
2013-0641 10.1.0 23 0 20

Total 320 34 209

Table 2: PLATPAL maldoc detection results grouped by CVE
number. Both crash means AAR crashes on both platforms
while executing the maldoc sample with no divergence on in-
ternal behaviors; Divergence means at least one behavioral dis-
crepancy (either internal or external) is observed.

execution, will simply crash AAR. We expect it to apply
to the rest of the suspicious samples as well.

Benign samples. We identified several reasons for the
failed detection of these samples.

1) The maldoc targets old and specific AAR versions.
Although a majority of maldoc samples exploit a wide
range of AAR versions, we do find samples that target
old AAR versions only, i.e., 9.X and 8.X, including 8
CVE-2013-0640 samples, 3 CVE-2013-0641 samples,
and 1 CVE-2013-2729 sample. We also found that 13
CVE-2016-4204 samples and 10 CVE-2016-1091 sam-
ples seems to be exploiting AAR version 11.0.X and the
exploits do not work on the AAR DC version used in the
experiment. This is based on manual inspection of the
JavaScript dump from these samples.

In total, they account for 36 out of the 77 samples
classified as benign. This is also shows the drawback of
PLATPAL, being a dynamic analysis approach, it requires
proper setup of the execution environment to entice the
malicious behaviors.

2) The maldoc sample could be mis-classified by AV
vendor on VirusTotal. This could be true for 11 CVE-
2016-4204 and 8 CVE-2016-1091 samples, as out of the
48 AV products hosted on VirusTotal, only one AV vendor
flags them as malicious. In total, this accounts for 19 out
of the 77 samples classified as benign.

3) The maldoc does not perform malicious activity.
Not all malicious activities in the maldoc can be triggered.
In particular, we observed two CVE-2013-3353 samples
attempted to connect to a C&C server in JavaScript but

did nothing afterwards because of the lack of responses,
which results in no divergences in execution trace.

In the end, for the rest of the samples classified as
benign (20 in total), we are unable to confirm a reason
why no behavioral discrepancies are observed. It could
be because of any of the aforementioned reasons (but
we are unable to confirm) and we do not preclude the
possibility that some samples could evade PLATPAL’s
detection. Given the scope and flexibility of PDF speci-
fication, it is possible that PLATPAL needs to hook more
functions (e.g., per glyph to host encoding transforma-
tion performed a font) to capture finer-grained internal
behaviors.
Behavior effectiveness. Table 3 also shows the effec-
tiveness of various behaviors in detecting maldocs.

1) By the first row, it is possible to have only external
behavior divergences, while internal behaviors are the
same (e.g., due to pure JavaScript attacks). By the first
column, it is also possible to have only internal behavior
divergences, while external behaviors are the same (due
to the powerful error-correction capability of AAR).

2) Crash/no crash is the most effective external indica-
tor, as memory-error exploitation is the dominating tech-
nique for maldoc attacks among the samples. JavaScript
execution is the most effective internal indicator, as al-
most all attacks involve JavaScript; even memory error
exploits use it to prepare the heap.
Pinpointing attacks by internal tracer. One supple-
mentary goal of the internal tracer is to provide insights
on which AAR component is exploited or where the attack
occurs given a maldoc sample. To evaluate how this goal
is achieved, we performed a cross-check on where the
internal behavior divergence occurs and the targeted AAR
component of each CVE4. The result is shown in Table 4.

In four out of 7 cases, PLATPAL’s internal tracer finds
divergence during the invocation of the vulnerable compo-
nents. In the CVE-2015-2426 case, since the vulnerable
component is a font library, the divergence is first detected
during the rendering process. In the CVE-2013-3346 case,
the vulnerable component (ToolButton callback) is trig-
gered through JavaScript code and hence, the first diver-
gence occurs in the script engine. In the CVE-2013-2729
case, although the bug is in the parser component, the
divergence is detected when the maldoc is playing heap
feng-shui to arrange heap objects.
Resilience against automated maldoc generation. We
test PLATPAL’s resilience against state-of-the-art maldoc
generation tool, EvadeML [65], which automatically pro-
duce evasive maldoc variants against ML-depended ap-
proaches in Table 1 given a malicious seed file. To do this,
we selected 30 samples out of the 209 malicious samples
which are also detected as malicious by PDFrate [46],

4Only CVEs which full details are publicly disclosed are considered
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Internal Behavior External Behavior Total
No difference Both crash One crash Filesystem Network Executable

No difference 77 34 0 6 3 0 120
COS object parsing 4 8 23 0 0 0 35
PD tree construction 0 0 2 4 2 0 8
JavaScript execution 5 5 47 18 12 4 91
Other actions 0 0 0 2 0 2 4
Element rendering 3 10 35 9 5 0 62

Total 89 57 107 39 22 6 320

Table 3: PLATPAL maldoc detection results grouped by the factor causing divergences. Note that for each sample, only one internal
and one external factor is counted as the cause of divergence. E.g., if a sample crashes on Mac and does not crash on Windows, even
their filesystem activities are different, it is counted in the crash/no crash category. The same rule applies to internal behaviors.

CVE Targeted Divergence Detectscomponent first occurs

2016-4119 Parser Parser Vuln. component
2016-1077 Parser Parser Vuln. component
2016-1046 Script engine Script engine Vuln. component
2015-2426 Library Render Exploit carrier
2014-0521 Script engine Script engine Vuln. component
2013-3346 Render Script engine Exploit carrier
2013-2729 Parser Script engine Exploit carrier

Table 4: Divergence detected by PLATPAL’s internal tracer vs
the actual buggy AAR component.

the default PDF classifier that works with EvadeML5.
We then uses EvadeML to mutate these samples until all
variants are considered benign. Finally, we send these eva-
sive variants to PLATPAL for analysis and all of them are
again marked as malicious, i.e., behavioral discrepancies
are still observed. This experiment empirically verifies
PLATPAL’s resilience on automated maldoc generation
tools. The main reason for the resilience is that EvadeML
mainly focuses on altering the structural feature of the
maldoc while preserves its exploitation logic and also the
internal and external behaviors when launching the attack.

6.3 Performance
In PLATPAL, the total analysis time consists of two parts:
1) time to restore disk and memory snapshots and 2) time
to execute the document sample. The latter can be further
broken down into document parsing, script execution, and
element rendering time. Table 5 shows the time per item
and the overall execution time.

On average, document execution on both VMs can fin-
ish at approximately the same time (23.7 vs 22.1 seconds).
Given that the VMs can run in parallel, a complete anal-
ysis can finish within 25 seconds. A notable difference

5It is worthnoting that PLATPAL cannot be used as the PDF classifier
for EvadeML as EvadeML requires a maliciousness score which has
to be continuous between 0 and 1 while PLATPAL can only produce
discrete scores of either 0 or 1. Therefore, we use PDFrate, the PDF
classifier used in the EvadeML paper [65], for this experiment.

Item Windows Mac

Ave. Std. Ave. Std.

Snapshot restore 9.7 1.1 12.6 1.1
Document parsing 0.5 0.2 0.6 0.2
Script execution 10.5 13.0 5.1 3.3
Element rendering 7.3 8.9 6.2 6.0

Total 23.7 8.5 22.1 6.3

Table 5: Breakdown of PLATPAL’s analysis time per document
(unit: seconds).

is that script execution on the Windows platform takes
significantly longer than on the Mac platform. This is
because almost all maldoc samples target Windows plat-
forms and use JavaScript to launch the attack. The attack
quickly fails on Mac (e.g., wrong address for ROP gad-
gets) and crashes AAR but succeeds on Windows and
therefore takes longer to finish. The same reason also
explains why the standard deviation on script execution
time is larger on the Windows platform.

7 Discussion

7.1 Limitations

User-interaction driven attacks. Although PLATPAL
is capable of simulating simple users’ interactions (e.g.,
scrolling, button clicking, etc), PLATPAL does not attempt
to explore all potential actions (e.g., key press, form fill-
ing, etc) or explore all branches of the JavaScript code.
Similarly, PLATPAL cannot detect attacks that intention-
ally delay their execution (e.g., start exploitation two min-
utes after document open). These are common limitations
for any dynamic analysis tool. However, we believe this
is not a serious problem for maldoc detection, as hiding
malicious activities after complex user interactions limits
its effectiveness in compromising the victim’s system.
Social engineering attacks. PLATPAL is not capable of
detecting maldocs that aim to perform social engineering
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attacks, such as faking password prompt with a JavaScript
window or enticing the user to download a file and execute
it. This is because these maldocs neither exploit bugs in
AAR nor inject malicious payload, (in fact they are legit
documents structural-wise) and hence will have exactly
the same behaviors on both platforms.

Targeted AAR version. If a maldoc targets a specific
version of AAR, its behaviors in PLATPAL will likely be
either crashing both AAR instances (i.e., exploited the bug
but used the wrong payload), or the document is rendered
and closed gracefully because of error correction by AAR.
In the latter case, PLATPAL will not be able to detect a
behavioral discrepancy. This is usually not a problem
for PLATPAL in practice, as PLATPAL will mainly be
used to detect maldocs against the latest version of AAR.
However, PLATPAL can also have a document tested on
many AAR versions and flag it as suspicious as long as a
discrepancy is observed in any single version.

Non-determinism. Another potential problem for
PLATPAL is that non-deterministic factors in document
execution could cause false alerts. Examples include
return value of gettime functions or random number
generators available through JavaScript code. Although
PLATPAL does not suffer from such a problem during the
experiment, a complete solution would require a thorough
examination of the PDF JavaScript specification and iden-
tify all non-determinism. These non-deterministic factors
need to be recorded during the execution of a document
on one platform and replayed on the other platform.

7.2 Deployment

As PLATPAL requires at least two VMs, a large amount of
image and memory needs to be committed to support the
operation of PLATPAL. Our current implementation uses
60GB disk space to host the snapshots for six versions of
AAR and 2GB memory per each running VM.

To this end, we believe that PLATPAL is best suited
for cloud storage providers (e.g., Dropbox, Google Docs,
Facebook, etc.) which can use PLATPAL to periodically
scan for maldocs among existing files or new uploads.
These providers can afford the disk and memory required
to set up VMs with diverse platforms as well as enjoy
economy of scale. Similarly, PLATPAL also fits the model
of online malware scanning services like VirusTotal or
the cloud versions of anti-virus products.

In addition, as a complementary scheme, PLATPAL can
be easily integrated with previous works (Table 1) to im-
prove their detection accuracy. In particular, PLATPAL’s
internal behavior tracer can be used to replace parsers
in these techniques to mitigate the parser-confusion at-
tack [11]. COS object and PD tree information can be fed
to metadata-based techniques [33, 36, 46, 52], while the

JavaScript code dump can be fed to JavaScript-oriented
techniques [14, 27, 31, 45, 48, 58, 59] for analysis.

7.3 Future Works

We believe that PLATPAL is a flexible framework that is
suitable not only for PDF-based maldoc detection but also
for systematically approaching security-through-diversity.
Support more document types. MS Office programs
share many features with AAR products, such as 1) sup-
porting both Windows and Mac platforms; 2) supporting
a plugin architecture which allows efficient hooking of
document processing functions and action driving; 3)
executing documents based on a standard specification
that consists of static components (e.g., text) and pro-
grammable components (e.g., macros). Therefore, we do
not see fundamental difficulties in porting PLATPAL to
support maldoc detection that targets MS Office suites.

As another example, given that websites can also be
viewed as HTML documents with embedded JavaScript,
malicious website detection also fits into PLATPAL’s
framework. Furthermore, given that Chrome and Firefox
browsers and their scripting engines are open-sourced,
PLATPAL is capable of performing finer-grained behavior
tracing and comparison with source code instrumentation.
Explore architecture diversity. Apart from platform
diversity, CPU architecture diversity can also be harvested
for maldoc detection, which we expect to have a similar
effect in stopping maldoc attacks. To verify this, we plan
to extend PLATPAL to support the Android version of
AAR, which has both ARM and x86 variants.

8 Additional Related Work

In addition to the maldoc detection work, being an N-
version system, PLATPAL is also related to the N-version
research. The concept of the N-version system was
initially introduced as a software fault-tolerance tech-
nique [12] and was later applied to enhance system and
software security. For example, Frost [60] instruments a
program with complementary scheduling algorithms to
survive concurrency errors; Crane et al. [16] applies dy-
namic control-flow diversity and noise injection to thwart
cache side-channel attacks; Tightlip [68] and Capizzi et
al. [10] randomize sensitive data in program variants to
mitigate privacy leaks; Mx [24] uses multiple versions of
the same program to survive update bugs; Cocktail [66]
uses multiple web browser implementations to survive
vendor-specific attacks; and Nvariant [15], Replicae [8],
and GHUMVEE [61] run program variants in disjoint
memory layouts to mitigate code reuse attacks. Similarly,
Orchestra [43] synchronizes two program variants which
grow the stack in opposite directions for intrusion detec-
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tion. In particular, Smutz et al. [47] attempts to identify
and prevent detection evasions by constructing diversi-
fied classifiers, ensembling them into a single system,
and comparing their classification outputs with mutual
agreement analysis.

Although PLATPAL is designed for a completely dif-
ferent goal (i.e., maldoc detection), it shares the insights
with N-version systems: an attacker is forced to simulta-
neously compromise all variants with the same input in
order to take down or mislead the whole system.

Another line of related work is introducing diversity
to the execution environment in order to entice and de-
tect malicious behaviors. For example, HoneyClient [56],
caches and resembles potentially malicious objects from
the network stream (e.g., PDF files) and then send it to
multiple emulated environments for analysis. Balzarotti et
al. [4] detects “split personality” in malware, i.e., malware
that shows diverging behaviors in emulated environment
and bare-metal machines, by comparing the runtime be-
haviors across runs. Rozzle [26] uses symbolic execution
to emulate different environment values malware typically
checks and hence, entice environment-specific behaviors
from the malware. to show diverging behaviors.

PLATPAL shares the same belief as these works: di-
versified execution environment leads to diversified be-
haviors, and focuses on harvesting platform diversity for
maldoc detection.

9 Conclusion

Due to the continued exploitation of AAR, maldoc detec-
tion has become a pressing problem. A survey of existing
techniques reveals that they are vulnerable to recent at-
tacks such as parser-confusion and ML-evasion attacks. In
response to this, we propose a new perspective: platform
diversity, and prototype PLATPAL for maldoc detection.
PLATPAL hooks into AAR to trace internal PDF process-
ing and also uses full dynamic analysis to capture a mal-
doc’s external impact on the host system. Both internal
and external traces are compared, and the only heuristic
to detect maldoc is based on the observation that a benign
document behaves the same across platforms, while a
maldoc behaves differently during exploitation, because
of the diversified implementations of syscalls, memory
management, etc. across platforms. Such a heuristic does
not require known maldoc samples to derive patterns that
differentiate maldocs from benign documents, which also
enables PLATPAL to detect zero-day attacks without prior
knowledge of the attack. Evaluations show that PLATPAL
raises no false alarms in benign samples, detects a variety
of behavioral discrepancies in malicious samples, and is
a scalable and practical solution.
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