
PlatPal: Detecting Malicious
Documents with Platform Diversity

Meng Xu and Taesoo Kim

Georgia Institute of Technology

1

Malicious Documents On the Rise

2

3

4

5

Adobe Components Exploited

Element parser

JavaScript engine

Font manager

System dependencies

137 CVEs in 2015

227 CVEs in 2016

6

Maldoc Formula

Flexibility of doc spec

A large attack surface

Less caution from users

More opportunities
to profit

Battle against Maldoc - A Survey

7

Category Focus Work Year Detection

Static

Dynamic

Battle against Maldoc - A Survey

8

Category Focus Work Year Detection

Static

JavaScript PJScan 2011 Lexical analysis

JavaScript Vatamanu et al. 2012 Token clustering

JavaScript Lux0r 2014 API reference classification

JavaScript MPScan 2013 Shellcode and opcode sig

Dynamic

Battle against Maldoc - A Survey

9

Category Focus Work Year Detection

Static

JavaScript PJScan 2011 Lexical analysis

JavaScript Vatamanu et al. 2012 Token clustering

JavaScript Lux0r 2014 API reference classification

JavaScript MPScan 2013 Shellcode and opcode sig

Metadata PDF Malware Slayer 2012 Linearized object path

Metadata Srndic et al. 2013 Hierarchical structure

Metadata PDFrate 2012 Content meta-features

Both Maiorca et al. 2016 Many heuristics combined

Dynamic

Battle against Maldoc - A Survey

10

Category Focus Work Year Detection

Static

JavaScript PJScan 2011 Lexical analysis

JavaScript Vatamanu et al. 2012 Token clustering

JavaScript Lux0r 2014 API reference classification

JavaScript MPScan 2013 Shellcode and opcode sig

Metadata PDF Malware Slayer 2012 Linearized object path

Metadata Srndic et al. 2013 Hierarchical structure

Metadata PDFrate 2012 Content meta-features

Both Maiorca et al. 2016 Many heuristics combined

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig

JavaScript PDF Scrutinizer 2012 Known attack patterns

JavaScript ShellOS 2011 Memory access patterns

JavaScript Liu et al. 2014 Common attack behaviors

Battle against Maldoc - A Survey

11

Category Focus Work Year Detection

Static

JavaScript PJScan 2011 Lexical analysis

JavaScript Vatamanu et al. 2012 Token clustering

JavaScript Lux0r 2014 API reference classification

JavaScript MPScan 2013 Shellcode and opcode sig

Metadata PDF Malware Slayer 2012 Linearized object path

Metadata Srndic et al. 2013 Hierarchical structure

Metadata PDFrate 2012 Content meta-features

Both Maiorca et al. 2016 Many heuristics combined

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig

JavaScript PDF Scrutinizer 2012 Known attack patterns

JavaScript ShellOS 2011 Memory access patterns

JavaScript Liu et al. 2014 Common attack behaviors

Memory CWXDetector 2012 Violation of invariants

Reliance on External PDF Parser

12

Category Focus Work Year Detection External Parser ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig No

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig Yes

JavaScript PDF Scrutinizer 2012 Known attack patterns Yes

JavaScript ShellOS 2011 Memory access patterns Yes

JavaScript Liu et al. 2014 Common attack behaviors No

Memory CWXDetector 2012 Violation of invariants No

Category Focus Work Year Detection External Parser ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig No

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig Yes

JavaScript PDF Scrutinizer 2012 Known attack patterns Yes

JavaScript ShellOS 2011 Memory access patterns Yes

JavaScript Liu et al. 2014 Common attack behaviors No

Memory CWXDetector 2012 Violation of invariants No

Reliance on External PDF Parser

13

Parser-confusion attacks
(Carmony et al., NDSS’16)

Reliance on Machine Learning

14

Category Focus Work Year Detection Machine Learning ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig No

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig No

JavaScript PDF Scrutinizer 2012 Known attack patterns No

JavaScript ShellOS 2011 Memory access patterns No

JavaScript Liu et al. 2014 Common attack behaviors No

Memory CWXDetector 2012 Violation of invariants No

Reliance on Machine Learning

15

Category Focus Work Year Detection Machine Learning ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig No

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig No

JavaScript PDF Scrutinizer 2012 Known attack patterns No

JavaScript ShellOS 2011 Memory access patterns No

JavaScript Liu et al. 2014 Common attack behaviors No

Memory CWXDetector 2012 Violation of invariants No

Automatic classifier evasions
(Xu et al., NDSS’16)

Reliance on Known Attacks

16

Category Focus Work Year Detection Known Attacks ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig Yes

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig Yes

JavaScript PDF Scrutinizer 2012 Known attack patterns Yes

JavaScript ShellOS 2011 Memory access patterns Yes

JavaScript Liu et al. 2014 Common attack behaviors Yes

Memory CWXDetector 2012 Violation of invariants No

Reliance on Known Attacks

17

Category Focus Work Year Detection Known Attacks ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig Yes

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig Yes

JavaScript PDF Scrutinizer 2012 Known attack patterns Yes

JavaScript ShellOS 2011 Memory access patterns Yes

JavaScript Liu et al. 2014 Common attack behaviors Yes

Memory CWXDetector 2012 Violation of invariants No

How about zero-day attacks ?

Reliance on Detectable Discrepancy
(between benign and malicious docs)

18

Category Focus Work Year Detection Discrepancy ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig No

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig No

JavaScript PDF Scrutinizer 2012 Known attack patterns No

JavaScript ShellOS 2011 Memory access patterns Yes

JavaScript Liu et al. 2014 Common attack behaviors Yes

Memory CWXDetector 2012 Violation of invariants No

Reliance on Detectable Discrepancy
(between benign and malicious docs)

19

Category Focus Work Year Detection Discrepancy ?

Static

JavaScript PJScan 2011 Lexical analysis Yes

JavaScript Vatamanu et al. 2012 Token clustering Yes

JavaScript Lux0r 2014 API reference classification Yes

JavaScript MPScan 2013 Shellcode and opcode sig No

Metadata PDF Malware Slayer 2012 Linearized object path Yes

Metadata Srndic et al. 2013 Hierarchical structure Yes

Metadata PDFrate 2012 Content meta-features Yes

Both Maiorca et al. 2016 Many heuristics combined Yes

Dynamic

JavaScript MDScan 2011 Shellcode and opcode sig No

JavaScript PDF Scrutinizer 2012 Known attack patterns No

JavaScript ShellOS 2011 Memory access patterns Yes

JavaScript Liu et al. 2014 Common attack behaviors Yes

Memory CWXDetector 2012 Violation of invariants No

Mimicry and reverse mimicry attacks
(Srndic et al., Oakland’14 and Maiorca et al, AsiaCCS’13)

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

20

Highlights of the Survey

Parser-confusion attacks

Automatic classifier evasion

Zero-day attacks

Mimicry and reverse mimicry

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

21

Motivations for PlatPal

What PlatPal aims to achieve

• Using Adobe’s parser

• Using only simple heuristics

• Capable to detect zero-days

• Do not assume discrepancy

• Complementary to prior works

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

22

Motivations for PlatPal

What PlatPal aims to achieve

• Using Adobe’s parser

• Using only simple heuristics

• Capable to detect zero-days

• Do not assume discrepancy

• Complementary to prior works

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

23

Motivations for PlatPal

What PlatPal aims to achieve

• Using Adobe’s parser

• Using only simple heuristics

• Capable to detect zero-days

• Do not assume discrepancy

• Complementary to prior works

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

24

Motivations for PlatPal

What PlatPal aims to achieve

• Using Adobe’s parser

• Using only simple heuristics

• Capable to detect zero-days

• Do not assume discrepancy

• Complementary to prior works

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

25

Motivations for PlatPal

What PlatPal aims to achieve

• Using Adobe’s parser

• Using only simple heuristics

• Capable to detect zero-days

• Do not assume discrepancy

• Complementary to prior works

Prior works rely on

• External PDF parsers

• Machine learning

• Known attack signatures

• Detectable discrepancy

26

Motivations for PlatPal

What PlatPal aims to achieve

• Using Adobe’s parser

• Using only simple heuristics

• Capable to detect zero-days

• Do not assume discrepancy

• Complementary to prior works

A Motivating Example

• A CVE-2013-2729 PoC against Adobe Reader 10.1.4

SHA-1: 74543610d9908698cb0b4bfcc73fc007bfeb6d84

27

28

29

Platform Diversity as A Heuristic

30

When the same document is opened across
different platforms:

• A benign document “behaves” the same

• A malicious document “behaves” differently

Similar Ideas

• Two variants placed in disjoint memory partitions
[N-Variant Systems]

• Two variants with stacks growing in different directions
[Orchestra]

• Multiple variants with randomized heap object locations
[DieHard]

• Multiple versions of the same program
[Varan, Mx]

31

Questions for PlatPal

32

• What is a “behavior” ?

• What is a divergence ?

• How to trace them ?

• How to compare them ?

PlatPal Basic Setup

33

Windows Host

Virtual Machine 1

Adobe Reader

MacOS Host

Virtual Machine 2

Adobe Reader

?

PlatPal Dual-Level Tracing

34

Virtual Machine 1

Adobe Reader

Internal Tracer

Virtual Machine 2

Adobe Reader

Internal Tracer

?

Windows Host MacOS Host

Traces of PDF
processing

PlatPal Dual-Level Tracing

35

Virtual Machine 1

Adobe Reader

Internal Tracer

Syscalls

External Tracer

Virtual Machine 2

Adobe Reader

Internal Tracer

Syscalls

External Tracer

?

Windows Host MacOS Host

Impacts on
host platform

Traces of PDF
processing

PlatPal Internal Tracer

36

Adobe Reader

Internal Tracer

COS object parsing

PD tree construction

Script execution

Other actions

Element rendering

• Implemented as an Adobe
Reader plugin.

• Hooks critical functions and
callbacks during the PDF
processing lifecycle.

• Very fast and stable across
Adobe Reader versions.

PlatPal External Tracer

37

Virtual Machine

Adobe Reader

Syscalls

External Tracer

Host Platform

Filesystem
Operations

Network
Activities

Program
Executions

Normal Exit
or Crash

• Implemented based on NtTrace
(for Windows) and Dtrace (for
MacOS).

• Resembles high-level system
impacts in the same manner as
Cuckoo guest agent.

• Starts tracing only after the
document is loaded into Adobe
Reader.

PlatPal Automated Workflow

38

Windows VM

Restore Clean
Snapshot

Launch Adobe
Reader

Attach External
Tracer

Open PDF

Drive PDF by
Internal Tracer

Dump Traces

Restore Clean
Snapshot

Launch Adobe
Reader

Attach External
Tracer

Open PDF

Drive PDF by
Internal Tracer

Dump Traces

MacOS VMCompare
Traces

PlatPal <file-to-check>

Evaluate PlatPal

39

• Robustness against benign samples

A benign document “behaves” the same ?

• Effectiveness against malicious samples

A malicious document “behaves” differently ?

• Speed and resource usages

Robustness

40

Sample Type Number of Samples Divergence Detected ?
(i.e., False Positive)

Plain PDF 966 No

Embedded fonts 34 No

JavaScript code 32 No

AcroForm 17 No

3D objects 2 No

• 1000 samples from Google search.

• 30 samples that use advanced features in PDF standards
from PDF learning sites.

Effectiveness

• 320 malicious samples from VirusTotal with CVE labels.

• Restricted to analyze CVEs published after 2013.

• Use the most recent version of Adobe Reader when the CVE is
published.

41

Effectiveness

Analysis Results of  
320 Maldoc Samples

65%
11%

24%

No Divergence
Both Crash
Divergence

42

Effectiveness

Analysis Results of  
320 Maldoc Samples

65%
11%

24%

No Divergence

Breakdown of 77  
potentially false positives

26%

3%

25%

47%

Targets old versions
Mis-classified by AV vendor
No malicious activity trigerred
Unknown

43

Time and Resource Usages

Average Analysis Time Breakdown
(unit. Seconds)

Item Windows MacOS

Snapshot restore 9.7 12.6

Document parsing 0.5 0.6

Script execution 10.5 5.1

Element rendering 7.3 6.2

Total 23.7 22.1

Resource Usages

• 2GB memory per running virtual
machine.

• 60GB disk space for Windows
and MacOS snapshots that
each corresponds to one of the
6 Adobe Readers versions.

44

Evaluation Highlights

• Confirms our fundamental assumption in general:

benign document “behaves” the same

malicious document “behaves” differently

• PlatPal is subject to the pitfalls of dynamic analysis

i.e., prepare the environment to lure the malicious behaviors

• Incurs reasonable analysis time to make PlatPal practical

45

Further Analysis

• What could be the root causes of these divergences?

46

Diversified Factors across Platforms

47

Category Factor Windows MacOS

Shellcode
Creation

Memory
Management

Platform
Features

Diversified Factors across Platforms

48

Category Factor Windows MacOS

Shellcode
Creation

Syscall semantics Both the syscall number and the register set used to hold
syscall arguments are different

Calling convention rcx, rdx, r8 for first 3 args rdi, rsi, rdx for first 3 args

Library dependencies e.g., LoadLibraryA e.g. dlopen

Memory
Management

Platform
Features

Diversified Factors across Platforms

49

Category Factor Windows MacOS

Shellcode
Creation

Syscall semantics Both the syscall number and the register set used to hold
syscall arguments are different

Calling convention rcx, rdx, r8 for first 3 args rdi, rsi, rdx for first 3 args

Library dependencies e.g., LoadLibraryA e.g. dlopen

Memory
Management

Memory layout Offset from attack point (e.g., overflowed buffer) to target
address (e.g., vtable entries) are different

Heap management Segment heap Magazine malloc

Platform
Features

Diversified Factors across Platforms

50

Category Factor Windows MacOS

Shellcode
Creation

Syscall semantics Both the syscall number and the register set used to hold
syscall arguments are different

Calling convention rcx, rdx, r8 for first 3 args rdi, rsi, rdx for first 3 args

Library dependencies e.g., LoadLibraryA e.g. dlopen

Memory
Management

Memory layout Offset from attack point (e.g., overflowed buffer) to target
address (e.g., vtable entries) are different

Heap management Segment heap Magazine malloc

Platform
Features

Executable format COM, PE, NE Mach-O

Filesystem semantics \ as separator,  
prefixed drive letter C:\

/ as separator, 
no prefixed drive letter

Config and info hub registry proc

Expected programs MS Office, IE, etc Safari, etc

Back to The Motivating Example

51

1. Allocate 1000 300-bytes chunks

2. Free 1 in every 10

3. Load a 300-byte malicious BMP image

4. Corrupt heap metadata due to a buffer overflow

5. Free BMP image, but what is actually

freed is slot 9

6. A vtable of 300-byte is allocated on

slot 9, which is attacker controlled

Another Case Study

52

CVE-2014-0521 PoC Example

Apply Diversity to Stop Attacks

53

Vulnerability Discovery Exploitation Malicious Activities Success

e.g. bugs in system library

CVE-2015-2426

Platform-specific bugs

Apply Diversity to Stop Attacks

54

Vulnerability Discovery Exploitation Malicious Activities Success

Adobe implementation bugs

e.g. bugs in system library

CVE-2015-2426

Platform-specific bugs

Apply Diversity to Stop Attacks

55

Vulnerability Discovery Exploitation Malicious Activities Success

Adobe implementation bugs

e.g. bugs in element parser

CVE-2013-2729

Memory corruption

Logic bugs
e.g. bugs in JavaScript API

CVE-2014-0521

e.g. bugs in system library

CVE-2015-2426

Platform-specific bugs

Apply Diversity to Stop Attacks

56

Vulnerability Discovery Exploitation Malicious Activities Success

Adobe implementation bugs

e.g. bugs in element parser

CVE-2013-2729

Memory corruption

Logic bugs
e.g. bugs in JavaScript API

CVE-2014-0521

Execute shellcode

Load executables

Steal sensitive info

Drop other exploits

Other activities

e.g. bugs in system library

CVE-2015-2426

Platform-specific bugs

Apply Diversity to Stop Attacks

57

Vulnerability Discovery Exploitation Malicious Activities Success

Adobe implementation bugs

e.g. bugs in element parser

CVE-2013-2729

Memory corruption

Logic bugs
e.g. bugs in JavaScript API

CVE-2014-0521

Execute shellcode

Load executables

Steal sensitive info

Drop other exploits

Other activities

Attacks that

cannot be

detected with

platform diversity

Bypass PlatPal ?

58

An attacker has to simultaneously
compromise all platforms in order to

bypass PlatPal.

Platform-agnostic Attacks

59

• Heap feng-shui

Predict the address of next allocation and de-allocation.

• Heap spray and NOP-sled

Alleviate attackers from using precise memory address.

• Polyglot shellcode trampoline

Find operations that are meaningful on one platform and NOP
on the other.

Limitations of PlatPal

• User-interaction driven attacks

• Social engineering attacks

e.g., fake password prompt

• Other none-determinism to cause divergences

e.g., JavaScript gettime or RNG functions

60

Potential Deployment of PlatPal

• Not suitable for on-device analysis.

• Best suited for cloud storage providers which can scan
for maldocs among existing files or new uploads.

• Also fits the model of online malware scanning services
like VirusTotal.

• As a complementary scheme, PlatPal can be integrated
with prior works to provide better prediction accuracy.

61

Conclusion

• It is feasible to harvest platform diversity for malicious
document detection.

• PlatPal raises no false alarms in benign samples and detects
a variety of behavioral discrepancies in malicious samples.

• PlatPal is scalable with various ways to deploy and integrate.

https://github.com/sslab-gatech/platpal

(Source code will be released soon)

62

https://github.com/sslab-gatech/platpal

